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Fixed point method for PET reconstruction with
plug-and-play regularization

Marion Savanier, Claude Comtat, Florent Sureau

Abstract—Deep learning has shown great promise for improv-
ing medical image reconstruction, often surpassing traditional
model-based iterative methods. However, concerns remain about
the stability and robustness of these approaches, particularly
when trained on limited data. The Plug-and-Play framework
offers a promising solution, showing that a convergent and
robust reconstruction can be ensured, provided conditions on
the plugged network. Yet, it has been underexplored in PET
reconstruction. This paper introduces a convergent PnP algo-
rithm for low-count PET reconstruction, leveraging the Douglas-
Rachford splitting method and various networks trained on
the fixed point conditions. We evaluate bias-standard deviation
tradeoffs across multiple regions including an unseen pathological
case and compared to model-based iterative reconstruction, post-
reconstruction processing, and PnP with a Gaussian denoiser.
Our findings emphasize the importance of how convergence
conditions are imposed on the PnP networks. While spectral
normalization underperformed, our deep equilibrium model
remained competitive with convolutional architectures and gen-
eralized better on our unseen pathology. Our method achieved
lower bias than post-reconstruction processing and reduced
standard deviation at matched bias compared to model-based
iterative reconstruction. Our results demonstrate PnP’s potential
to improve image quality and quantification accuracy in PET
reconstruction.

Index Terms—Low-count PET reconstruction, plug-and-
play, convergence, Douglas-Rachford splitting, deep equilibrium
model, constrained architectures

I. INTRODUCTION

Positron emission tomography (PET) is widely used in on-
cology, neurology, and cardiology but reconstruction remains
challenging due to its low spatial resolution and the presence
of Poisson noise, compromising accurate quantification, espe-
cially in low-count imaging scenarios.
Over the past decade, model-based iterative methods com-
bining a Poisson likelihood with handcrafted priors [1] have
been increasingly replaced by deep learning approaches [2].
Recent advances focus on learning priors from databases
of high-quality PET images, capturing underlying features
specific to a given protocol. This approach is at the basis
of hybrid methods that integrate the representation power of
modern deep learning with the generalization capabilities of
model-based iterative reconstruction thanks to their feedback
mechanisms enforcing data consistency [3], [4].
One of such hybrid methods consists of unfolding a low
number of iterations of a reconstruction algorithm [5] and
learning parameters related to the regularization decoupled
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across iterations - now layers. Unfolding networks (or vari-
ational networks) thus integrate the learning of regularizers
with the reconstruction task. While the original algorithm
might compute a Maximum a posteriori (MAP) estimate,
the unfolded iterations do not. Unfolding networks have
demonstrated high performance and reduced susceptibility
to hallucinations compared to standard deep learning post-
processing for some inverse problems [6]. Yet, with iteration-
dependent parameters, the connection between unfolding net-
works and the iterative algorithm from which it is derived
no longer exists, and the network may exhibit discontinuity
with respect to the data. Moreover, these networks are not
easily amenable to 3D imaging because of the high memory
load for backpropagation, limiting the number of unfolded
iterations and, thus, the solution search space. This highlights
the necessity of using a good initial input image. Given these
drawbacks, unfolding networks perform best when the inverse
problem is not overly ill-posed or when a preconditioner is
employed [7].
A more scalable hybrid technique is the plug-and-play (PnP)
approach [8], [9], where the proximity operator or the gradient
of the regularization1 is replaced by a pre-trained neural
network within the iterations of an optimization algorithm. Un-
der algorithm-dependent conditions on the network, classical
optimization algorithms can be shown to converge to either
a MAP estimate using results from nonconvex theory [11]–
[14] or to a fixed point by leveraging results from monotone
operators [15]–[17].
Various PnP methods exist, some aiming to learn smooth
approximations to the score function - the gradient of the
log of the ”true” prior of PET images - using (non-blind)
Gaussian denoisers [18] or, more recently, inverse gamma
denoisers to replace gradients in a Bregman geometry [19].
These score-based approaches involve an additional noise level
hyper-parameter, which ideally should depend on the size of
the database [20]. However, in practice, this parameter requires
tuning for each application and patient, making it unclear
how well the score function is approximated, especially with
limited training data, as in medical imaging. Score-based
denoisers have also been used to replace (Bregman [19])
proximity operators, albeit at the cost of losing the theoretical
interpretation of the learned prior [21]. Another class of PnP
methods leverages the monotone operator theory, generalizing
iterative convex algorithms [22]. These methods use learned
monotone operators [23] or learned resolvents of monotone
operators, requiring the neural network to be an averaged

1These methods are often referred to as RED (Regularization by Denoising)
[10]
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operator [15], [17], [25].
The choice of the training task for the plugged denoiser is often
overlooked, with a primary focus on architectural constraints
to ensure convergence. Most studies use Gaussian denois-
ers [15], [25], but alternatives exist, particularly in medical
imaging, where more general artifact removal approaches are
employed. These artifacts are related to the target inverse
problem and are closer to those seen on images along the PnP
iterations, such as subsampling streak artifacts in MRI [26].
The PnP paradigm has seen applications in MRI imaging [26]–
[29], but there has been limited exploration in PET imaging.
In this work, we extend our previous results [30] to present a
PnP method for PET reconstruction. Our goal is to reconstruct
images with the quality of high-count images from low-count
data to reduce the injected activity/acquisition time without de-
grading quantification. We focus on both the training task and
the neural network’s architecture. Drawing inspiration from
deep unfolding, we do not use a task-independent denoiser
but learn an operator related to our reconstruction task in
a PnP manner. Unlike deep unfolding, the network is not
trained within the iterations of the optimization algorithm, but
it is trained to solve the variational inclusion that arises from
our reconstruction problem. The PnP iterates are guaranteed
to converge to a unique fixed point under conditions on the
learned operator that are enforced either during training or by
design.
The paper is organized as follows. Section II formulates
the regularized PET reconstruction problem and presents ap-
proaches for implicitly regularizing the reconstruction using
deep learning. Section III introduces the PnP method, its
convergence conditions, and comments on how to implement
them. Section IV describes the simulations and data used in
the evaluation. Experimental results are shown in section V,
followed by discussions in section VI. Finally, conclusions are
drawn in section VII.

II. BACKGROUND

A. Regularized PET reconstruction

Let x ∈ [0,+∞[
N be the spatial distribution of an injected

radiotracer we aim to estimate from measurements counts
y = (ym)M−1

m=0 ∈ [0,+∞[
M in M lines of responses. Each

ym correspond to a Poisson random variable.
The maximum likelihood solution is computed by minimiz-
ing the negative logarithm of the Poisson likelihood or the
following data fidelity term f obtained by neglecting terms
independent of x = (xn)

N−1
n=0 :

f(x;y,b) =

M−1∑
m=0

KL(ym, pm) (1)

where

p = Hx+ b, (2)

KL(y, p) =

 −y log(p) + p if y > 0 and p > 0
p if p ⩾ 0 and y = 0
+∞ else.

(3)

where H ∈ RM×N is the system matrix accounting for
normalization, geometric projection, resolution effects and

including attenuation of photons, b ∈ ]0,+∞[
M is the

expectation of the background counts (scatter, randoms), and
p is the model of the expectation of the measured counts.
The inclusion of prior information on the PET image can be
achieved by computing a MAP estimate, reading as

x ∈ argmin
x∈RN

λf(x;y,b) + r(x) + ι[0,+∞[N (x), (4)

or equivalently

0 ∈ λ∇f(x;y,b) + ∂r(x) + ∂ι[0,+∞[N (x), (5)

where r is the regularizer, ι[0,+∞[N the indicator function over
the convex set [0,+∞[

N , and

∇f(x;y,b) = H⊤1−H⊤ y

Hx+ b
. (6)

For convex and non necessarily smooth r, the Douglas-
Rachford/ADMM algorithm is an efficient way of solving (4).

B. Learning the regularization using neural networks

The choice of regularization operators is tedious yet crucial.
In this work, we consider learning the regularization from a
database of PET images while ensuring convergence of the
reconstruction scheme. Despite this constraint, there are many
ways of learning such operators.
The function r can be learned directly using input (weakly)
convex neural networks trained as adversarial regularizers [32],
[33]. Alternatively, the regularization can be learned indirectly
by replacing ∇r with a neural network DΘ. In [11], the
authors propose a score-based approach for learning a network
parameterized as a gradient of a nonconvex r and plugged into
the gradient step of the proximal gradient algorithm.
A third and most popular choice is to learn a surrogate to proxr

in proximal splitting algorithms. For instance, [12] leverage
results from [34] to build from the gradient of a convex C1

function a proximity operator of a related nonconvex function.
They provide convergence guarantees for a panel of proximal
algorithms using such proximity operators. A limitation of
their results is that the range of the regularization parameter
is often constrained, or the image of the network is assumed
to be convex, which is difficult to verify in practice. The
convex-nonconvex approach of [35] provides another way of
creating proximity operators of nonconvex regularizers. This
framework considers regularizers that are structured enough
to guarantee the convexity of the overall objective that ap-
pears when computing its proximity operator [35]. Works
employing nonconvex regularizers prove convergence of the
iterates to one critical point, as it is the best case in most
nonconvex settings. Other extensions of the use of convex
regularizers consist of replacing proximity operators with more
general resolvents of (maximally) monotone operators. With
such surrogates, the optimization problem can be analyzed
as a monotone inclusion problem similar to (5) handled by
many classical splitting algorithms. Provided constraints on
the network and not on the hyperparameters, the algorithms
converge to a fixed point that can be made unique.
Our preliminary work [47] did not demonstrate a signifi-
cant difference between learning an explicit gradient of a
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nonconvex function compared to learning the resolvent of a
maximally monotone operator for our application. As we will
show later, a PnP method with a learned resolvent can be made
convergent to a unique fixed point whose characterization
will be used for learning. Our method relies on the Douglas-
Rachford (DR) splitting technique to address an inclusion
similar to (5).

III. METHOD

A. Douglas-Rachford splitting

We first introduce the DR splitting in the context of mono-
tone operators and rely on definitions and notation from [22].
DR aims at finding the zeros of a sum of two operators A
and B that are respectively α- and β-maximally monotone
(α, β ∈ [0,+∞[) on a closed subset C of RN . Hereinafter,
we assume that there exists at least one zero x ∈ C of A+B,
which thus writes as

0 ∈ Ax+ Bx. (7)

Let TDR be the underlying DR operator defined by

TDR =
1

2
Id +

1

2
RARB,

where RA = 2JγA − Id and RB = 2JγB − Id are the
reflections of JγA and JγB and γ ∈ R.
When γ ∈ ]0,+∞[ JγA and JγB are firmly nonexpansive
(FNE) on C, the composition RARB is 1-Lipschitz and thus
TDR is also FNE on C. It follows from the Krasnoselskii-
Mann theorem that the DR sequence (vn)n∈N ∈ CN defined
as

(∀n ∈ N) (vn+1,xn) = (TDR(v
n), JγB(v

n)), (8)

converges to a fixed point v ∈ FixTDR and x = JγBv ∈
Zer (A+ B).

Remark 1 A key property of the DR sequences (vn)n∈N is
their Fejér monotonicity with respect to Fix (TDR):

(∀n ∈ N) ∥vn+1 − v∥2 = ∥TDR(v
n)− TDR(v)∥2

⩽ ∥vn − v∥2 ⩽ ∥v0 − v∥2.

We have that (∀n ∈ N), vn ∈ B∥v0−v∥(v), where Bσ(v) is
the N -dimensional closed ball of radius σ centered on v.

It is well known that DR is equivalent to ADMM when
initialized with (x0,u0) = (JγB(v

0), JγB(v
0) − v0) and

(vn)n⩾1 = (zn − un−1)n⩾1. In this case, Iteration (8) reads
as

zn+1 = JγA(x
n + un)

xn+1 = JγB(z
n+1 − un)

un+1 = un + xn+1 − zn+1. (9)

B. Variational case

In Problem (7), when A = λ∂f and B = ∂(r + ι[0,+∞[N ),
x solves (4) i.e. it is the minimizer of an explicit objective
function.
Then, (9) simplifies as

zn+1 = proxγλf (x
n + un)

xn+1 = proxγr+ι[0,+∞[N
(zn+1 − un+1)

un+1 = un + xn+1 − zn+1. (10)

Iteration (10) is the classical variational form of ADMM. PET
reconstruction algorithms frequently handle the positivity con-
straint together with f by considering A = ∂(λf + ι[0,+∞[N )
and B = ∂r to use multiplicative EM-based algorithms
for computing proxγλf+ι[0,+∞[N

. Still, other convergent algo-
rithms can handle proxγλf even with subsets acceleration [36],
[48].

C. Plug-and-play case

Our PnP approach is an instance of the DR iteration; it
consists in solving Problem (7) with a variational monotone
operator A = ∂(λf + ζ

2∥ · −xEM∥2) (ζ ∈ [0,+∞[) and a
learned maximal monotone operator B which is implicitly
defined through its resolvent JB = DΘ. DΘ is a differen-
tiable neural network that embeds the positivity constraint.
Altogether, with our choice of A and B and given that f is
differentiable on [0,+∞[

N , Problem (7) becomes

0 ∈ λ∇f(x) + ζ(x− xEM) + (D−1
Θ − Id )x, (11)

for x ∈ [0,+∞[
N .

Note that operator D−1
Θ − Id is a properly defined set-valued

operator that might not reduce to a singleton. When ζ = 0 and
DΘ = proxr+ι[0,+∞[N

, (11) reduces to (5); our PnP approach
thus generalizes the previous variational case.
When γ ∈ ]0,+∞[, the DR sequence (vn)n∈N converges to
v = x + λ∇f(x;y,b) + ζ(x − xEM), (zn − xn)n∈N to 0,
(xn)n∈N and (zn)n∈N to

[FP] x = DΘ(v) = DΘ(x+ λ∇f(x;y,b) + ζ(x− xEM)).

As the function f + ζ
2∥ · −xEM∥2 is ζ strongly convex,

A + B is ζ strongly monotone. For ζ > 0, there exists a
unique solution to (11). Since B is 0-monotone, DΘ is 0.5-
averaged i.e. FNE. The learned resolvent only allows for using
γ = 1 in DR. Indeed, given a maximally monotone operator
B and γ ∈ ]0,+∞[, no simple formula is known to express
JγB from JB.
The ADMM version of the PnP DR algorithm applied to (11)
is given in Algorithm 1.

Remark 2 In general, Problem (11) does not compute a MAP
solution. When λ = 0, (xn)n∈N converges to a fixed point of

Algorithm 1 PnP ADMM iteration (DΘ FNE)

zn+1 = proxλf+ζ∥·−xEM∥2(xn + un)

xn+1 = DΘ(z
n+1 − un)

un+1 = un + xn+1 − z̃n+1
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DΘ if ζ = 0 or the post-processing solution DΘ(xEM) if
ζ = 1. When λ −→ +∞, the sequence (xn)n∈N converges
very slowly away from the maximum likelihood solution to x.
Contrary to the MAP approach where λ −→ +∞ leads to
a recovery of the maximum likelihood solution for all r, the
latter does not satisfy (11) in general, except if DΘ = Id .

D. Training Dθ

a) Learning a fixed point mapping: Our goal is to
reconstruct low-count data through Algorithm 1 to achieve
the image quality of high-count reconstructions. We thus train
the parameters of DΘ such that it satisfies [FP] for low-count
sinograms y and scaled high-count EM images x = xHC.

For training, we used the following loss

ℓ(xin,xHC) =
∥xHC −DΘ(xin(λTrain,y,xHC))∥2

∥xHC∥2
, (12)

where

xin = xHC + λTrain∇f(xHC;y,b) + ζ(xHC − xEM).

For a fixed subject, Var(∇f(x;y,b)) is inversely proportional
to the dose injected. We thus explicitly modeled this depen-
dence by setting

λTrain = αTrain ×
√
∥Hx+ b∥1

so that dose effects are mitigated. In addition to controlling
the amplitude of ∇f(x;y), λTrain also controls the weight of
the likelihood compared to the prior in Problem (11). As the
introduction suggests, reliance on hybrid deep learning/model-
based iterative methods on the data likelihood is crucial for
generalization. This pushes for using high λTrain values. On
the other hand, for large values of λTrain, xin(λTrain,y,xHC)
is close to λTrain∇f(x;y,b) whose dynamic will be very
different from xHC, making training more challenging, and
thus convergence of the training optimizer slower.

b) Constraining the neural network to ensure conver-
gence: Enforcing the FNE property on DΘ can be done by
design of the architecture (in that case, the constrained holds
on the whole space RN ) or enforced locally. Indeed Remark 1
shows that a local FNE property on C = B∥v0−v∥(v) is
sufficient for convergence. The choice of v0 is important; the
further it is from v, the larger the region where the constraint
must hold. Here we choose v0 = xEM.
Architectures averaged by design include feed-forward archi-
tectures using spectral normalization. A drawback is that this
strategy precludes architectures with skip connections and is
a conservative strategy that may over-contain the Lipschitz
constant when the number of layers is high. Architectures
FNE by design also include proximity operators of convex
functions. Instead of handcrafting them, they can be learned
as Deep Equilibrium networks (DEQ) [37], [38].
More generally, any architecture can be trained to be locally
FNE by adding a regularization term to the training loss

ℓ(xin,xHC) + βmax{|||J2DΘ−Id (x̃)|||+ ϵ− 1, 0}1+σ,
(13)

where |||J2DΘ−Id (x̃)||| is the spectral norm of the jacobian
of 2DΘ − Id at x̃ ∈ B∥xEM−xin∥(xin), and hyperparameters
ϵ ⩾ 0 and σ > 0 are respectively a margin and a smoothness
parameter. This Lipschitz regularization promotes the smooth-
ness of 2DΘ − Id in a data-dependent and task-dependent
way since the Jacobian is evaluated on a point derived from
the fixed point mapping.
If CNNs are natural candidates for the architecture of DΘ,
alternatives exist, such as networks unfolding the iterations
of an optimization algorithm. Deep unfolding models usually
have fewer parameters than traditional CNNs and tend to
generalize better, suggesting they could be smoother models.
In [39], the authors reported that such networks are associated
with a lower Lipschitz constant compared to a DRUnet,
making them prime candidates for learning locally constrained
architectures in a limited number of epochs.

IV. EXPERIMENTAL SETUP

Training a data-driven resolvent to map xin to xHC given
our FNE constraint requires a database of triplets of high-count
images, low-count images, and low-count data.

A. Simulation studies

The database used for learning and evaluation is generated
synthetically from real brain [18F]-FDG PET scans.
Fourteen 3D PET phantoms were constructed based on PET
reconstructions from healthy subjects, along with their T1-
weighted MRI images. The T1 images were segmented into
100 regions using FreeSurfer2 and the corresponding PET
values were then measured in a frame between 30 and 60
minutes after injection using PETSurfer to generate the 14
piecewise constant phantoms with anatomical and functional
variability [30]. Eleven phantoms were used for training, and
the others were used for evaluation.
Paired high-count and low-count sinograms (with a dose
reduction of 5) were simulated using an analytical simulator
[40] for a Biograph 6 TruePoint TrueV PET system. We
simulated normalization and attenuation but also scatter and
random effects and added Poisson noise to the sinograms.
Resolution degradation effects, e.g., positron range and finite
crystal width, were simulated in image space using a Gaussian
point spread function with FWHM 4 mm. This was repeated
for ten realizations per phantom for different averaged total
number of prompts in the range observed in the original FDG
exams, yielding high-count sinograms with between 135M
and 430M prompts and low-count sinograms with between
27M and 86M prompts. The sinograms were reconstructed
with CASToR [41] on a grid of size 128 × 128 × 109 with
a voxel size of 2.09 × 2.09 × 2.03 mm3, with resolution
modeling included in the reconstruction (OSEM with eight
iterations of 14 subsets) to yield paired high-count and low-
count reconstructions.
For evaluation of bias/variance trade-offs, we simulated 50
low-count replicates with the same averaged number of events.
We also inserted three hyper-intense spherical lesions in one

2https://surfer.nmr.mgh.harvard.edu
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Architecture FNE by design # parameters Approx.
time/epoch

# epochs with jac One operator call

DΘ U-net No 1 079 000 2h 20 Fast

DSN
Θ DnCNN with spectral normalization Yes 167 620 1min - Fast

DDU
Θ Unfolding No 59 689 3h 3 ∝ Nlayers = 10

DDEQ
Θ Deep equilibrium Yes 18 298 2h - ∝ Niter = 1000

TABLE I: Summary of the types of architectures used in Algorithm 1.

test phantom (two with a diameter of 8 pixels and the last
one of 4 pixels). The lesion activity concentration values were
four times the mean value of the area where they were inserted.
We simulated two doses (50 replicates each) for this phantom
(one with 22M prompts and one with 46M prompts). These
two simulations are used to assess the empirical generalization
of the methods evaluated on out-of-distribution examples with
unseen pathologies.

B. Architecture choice

We investigated four architectures for learning our data-
driven resolvent (DΘ, DDU

Θ , DSN
Θ , and DDEQ

Θ ). The different
architectures are summarized in Table I.

a) DRUnet: DΘ is a standard DRUnet [9] with three
levels, a single residual block, 32 channels, ELU activations,
3D strided convolutions, upsampling layers, and without any
normalization layers and biases. We added an outer ReLU
activation enforcing positivity.

b) Unfolding network: Our second network DDU
Θ un-

folds 10 iterations of an unmatched version of the Combettes-
Pesquet algorithm proposed in [42]. This algorithm has more
degrees of freedom thanks to unmatched linear operators (the
transposes of linear operators are replaced by surrogate opera-
tors) while keeping convergence and thus stability guarantees.
The algorithm solves the optimization problem

xin − x ∈ ∂ι[0,+∞[N (x) + L̃⊤(Lx− prox∥Diag(ΛΘ)·∥1
(Lx)),

where L ∈ RNC×N and L̃ ∈ RNC×N . For each it-
eration / layer n, we set Ln = Diag(Λθ(xEM))Cn

and L̃n = Diag(Λθ(xEM))C̃n . We learn parameters
{(C̃n)n∈[1,10], (Cn)n∈[1,10],Λθ} as well as the algorithm’s
step-sizes. Cn and C̃n are convolution layers with kernel size
7 and C = 16 channels. Λθ : RN 7→ ([0, 1]N )C is chosen as
in [43]: it is an RFDN with one input channel, 40 features,
C output channels, and superresolution factor one with a final
sigmoid. This promotes spatial adaptivity of the regularization,
which has been found to boost the performance of data-driven
regularizers [43]. Details on the architecture of a layer of DDU

Θ

can be found in the supplemental materials.
c) DnCNN with spectral normalization: DSN

Θ =
1
2 Id + 1

2SΘ, where SΘ is a DnCNN with 8 nonexpansive
layers, convolutions with a kernel size 3 × 3 × 3 and 32
channels.

d) Deep equilibrium:

DDEQ
Θ (xin) = argmin

x⩾0

1

2
∥x−xin∥2+∥Diag(Λθ(xEM))Cθx∥1,

where Λθ has the same architecture as for DDU
Θ and Cθ

is also a convolution layer with kernel size 7 × 7 × 7 and
C = 16 channels. DDEQ

Θ is thus the proximity operator of an
explicit convex nonsmooth spatially adaptive regularization
function.

Only DDEQ
Θ and DSN

Θ are FNE by design. DΘ and
DDU

Θ were enforced to be locally FNE during training
through the Lipschitz regularization (13).

C. Competing methods

1) MAP with fair regularization: The first competing
method is a classical MAP reconstruction with the fair regu-
larization on the difference between the first-order neighboring
pixels [1]:

Rfair(x) =

N∑
i=0

σ

(
|[Dx]i|

σ
− log(1 +

|[Dx]i|
σ

)

)
.

The threshold σ is tuned as advocated in [44]. For the
sake of simplicity, we used Algorithm 1, where we replaced
an application of DΘ with proxRfair

computed iteratively
using FISTA with warm restart and 100 iterations [45]. In
this setup, several values for hyperparameter λ were tested
(λ ∈ {15, 52, 89, 126, 163, 200}).

2) Post processing: The second competing method per-
forms a maximum-likelihood reconstruction with early stop-
ping (computed using OSEM with 16 iterations of 14 sub-
sets) followed by a post-processing denoising operation by a
DRUnet with the same architecture as above but trained to
map low- to high-count PET images without any Lipschitz
regularization.

3) PnP ADMM with Gaussian deep denoiser: The third
method uses a Gaussian denoiser DG

Θ in Algorithm 1 rather
than our reconstruction-driven operators, as classically done
in computer vision. DG

Θ has the same architecture as DΘ and
is trained with the Lipschitz regularization to remove white
Gaussian noise with a standard deviation in [0, 3500] on high-
count targets.

D. Implementation details

All networks (DΘ, DDU
Θ , DDEQ

Θ and DSN
Θ ) were imple-

mented using Pytorch 2.1 and trained on [FP] with ζ = 10−6

and αTrain ∼ U(50, 500) (see supplemental materials for the
validation of this range). The Adam algorithm was used as the
optimizer with default parameters except for training DSN

Θ for
which reducing the momentum parameter β1 to 0.5 was found
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beneficial. The learning rate was set to 10−3 for all networks.
In the Jacobian regularization (13), the spectral norm is com-
puted iteratively with the power method and autodifferentiation
is used to compute products with the Jacobian matrix. This
leads to a potentially very large memory load. To overcome
these issues, similar to [24], we turn off the tracking of the
gradients in the power method except for the last iteration
to compute the maximum eigenvalue. We also increase the
number of iterations along epochs from 5 to 50. Furthermore,
we first pre-trained the networks without regularization and
then added the regularization for 20 extra epochs. We set
β = 0.01, ϵ = 0.05, σ = 0.1 so as to ensure that the FNE
property is satisfied in our budget of epochs. Without Jacobian
regularization, the batch size was set to 8; with Jacobian
regularization, it was set to 4 to fit the VRAM capacity during
learning.
Optimization of (12) with our DEQ operator requires solving
an inner optimization problem. The forward pass is conducted
using 1000 iterations of the Condat-Vũ algorithm [46], and
the backward pass is computed using the Anderson algorithm
(with a maximum of 1000 iterations, regularization parameter
of 10−6 for the inner inversion).
The networks were evaluated in Algorithm 1 with λ =
α
√
∥y∥1 - serving as a proxy for ∥Hx + b∥1 - and α ∈

{50, 160, 275, 380, 500}. Computation of the proximity oper-
ator in Algorithm 1 is efficiently performed using standard
algorithms for solving penalized PET reconstruction problems
[31]. Algorithm 1 was run until ∥zn+1 − xn∥/∥xn∥ and
∥xn+1 − xn∥/∥xn∥ are below 5× 10−4.

E. Evaluation metrics

The reconstruction methods were assessed using a mul-
tiscale error analysis based on the Coiflet 3 wavelet over
four levels of resolution. The levels were chosen to capture a
broad range of spatial frequencies while minimizing boundary
effects. For each replicate, we computed the standard deviation
of multiscale error reflecting the variability of performance
across replicates and the mean image multiscale error obtained
by averaging the replicates for each method to highlight
systematic biases and artifacts that persist across replicates.
Additionally, the voxel-wise metrics of mean, bias with respect
to the scaled phantom and standard deviation are calculated
across the multiple noise realization and on different anatom-
ically relevant regions of interest (ROI). Our phantoms are
flat, so as to avoid favoring methods that naturally produce
smoother results, we also apply a Gaussian filter to all recon-
structed images and adjust the FWHM to 3mm. Voxel-wise
residual maps are displayed in the supplemental materials for
a more qualitative inspection.

V. RESULTS

A. Comparison of FNE architectures

We first compare different FNE architectures (DΘ, DDU
Θ ,

DDEQ
Θ and DSN

Θ ) all trained on [FP] with αTrain ∼ U(50, 500)
and evaluated in Algorithm 1 with λ = α

√
∥y∥1 and α ∈

{50, 160, 275, 380, 500} also on the data from Phantom A.
Figure 1 shows the mean bias and standard deviation of the

multiscale error across replicates and the multiscale error
of the mean image for each FNE architecture. We see that
DDEQ

Θ and DDU
Θ achieved the lowest errors across all scales,

indicating superior preservation of both coarse and fine im-
age structures. However, at finer scales, DDEQ

Θ demonstrated
higher STD between replicates compared to DDU

Θ . In contrast,
DΘ exhibited the lowest STD and slightly higher error at
finer scales, suggesting it struggles with preserving high-
frequency details. DSN

Θ exhibited higher mean error, especially
at coarser scales, suggesting a trade-off between preserving
global structure and details in the image. Moreover, it was
found to be the most sensitive to the value λ as shown by the
span of the values in figure 1.
Figure 2 shows slices of the reconstructed images for one noisy
replicate without Gaussian smoothing at a similar bias over
the thalamus. The fact that the extracerebral area, as well as
the white matter, are flatter with DDEQ

Θ is because DDEQ
Θ

is the proximity operator of an ℓ1 norm composed with a
learned operator. Even though it does not compute a proximity
operator, DDU

Θ model seems to inherit some of the properties
of the original ℓ1-based minimization algorithm it unfolds
because it also provides flatter reconstructed images. Both
DSN

Θ and DΘ slightly oversmooth the frontal area; with DDU
Θ ,

it most resembles the high-count reference. DDEQ
Θ appears as

an intermediary between the low-count EM reconstruction and
the high-count reference.
Both quantitatively and qualitatively, DSN

Θ was demonstrated
to underperform the other FNE networks.

B. ROI-based comparison with state-of-the-art methods

Second, we compare our PnP approach using our architec-
tures - except for DSN

Θ - with MBIR with fair regularization,
post-reconstruction processing (PP), and PnP with a classical
Gaussian denoiser (DG

Θ) on the data simulated from Phantom
A.
In figure 3, additional multiscale errors and STD metrics are
reported. Notably, we see that DG

Θ yields higher bias compared
to the other PnP approaches and that MBIR exhibits a higher
STD, especially at finer scales, indicating it is either prone
to keep noise or it introduced artifacts. The post-processing
approach provides slightly degraded trade-offs compared to
the PnP reconstruction with DΘ.
To further evaluate the methods, we provide bias versus
standard deviation plots for different ROIs (the whole brain,
caudate, cerebellum, thalamus and the frontal area) in figure
4 with all previous methods except for DSN

Θ . For all regions,
the use of the Gaussian denoiser DG

Θ provides the highest
bias values at matched STD compared to using other networks
in Algorithm 1. The post-processing approach systematically
yields the lowest STD but a higher bias on all ROIs. Our
PnP approach provided a lower STD than MBIR at matched
bias values on all metrics, although the improvement is less
apparent on the frontal area for DDEQ

Θ . It also achieved biases
similar to those obtained with the high-count reference for
a relatively higher STD. Regarding the differences between
our three PnP methods, we see that DDEQ

Θ achieves the best
tradeoffs relative to the other architectures over the whold
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brain, the white matter and the cerebellum, closely followed by
DDU

Θ and then DΘ. On all regions, DΘ provided lower STD
values than DDEQ

Θ and DDU
Θ but increased bias, especially in

the frontal area.
Reconstructed images are shown in Figure 5 for another slice
and noise replicate than Figure 2. The MBIR reconstruc-
tion appears patchy while DDEQ

Θ provided a more structure-
dependent smoothing but preserved some structured noise also
present in the original EM low-count solution. Reconstruc-
tions with DΘ and DDU

Θ are difficult to distinguish over
hot regions. Overall, post-processing provides the smoothest
solution. Moreover, we see that the image obtained with DG

Θ

looks very similar to the post-processing image except in the
extracerebral area, thus highlighting the over-regularization
effect of this network, especially in hot regions.

C. Evaluation on two out-of-distribution test cases

Third, we evaluate the previous methods on the two syn-
thetic test cases that differ from the training set. In the first
scenario, we introduced hyper-intense lesions while keeping
the same values for the different ROIs as before. In the
second scenario, we simulated an extra dose reduction by a
factor of two, including for hyper-intense lesions. Improved
reconstruction methods should, therefore, lead to a fixed tumor
mean relative to unsmoothed EM at high dose and reduced
white matter standard deviation relative to unsmoothed EM at
low dose.
Figure 7 shows plots of tumor mean across replicates versus
mean STD in the tumors for the two doses. The figure shows
close behavior between the MBIR and DDEQ

Θ for both doses.
For the two largest tumors, DDEQ

Θ is able to achieve the flattest
curve: the activity of tumors 2 and 3 remains very close to
the value obtained with EM while the noise over the tumor is
reduced. DDU

Θ better preserves the smallest tumor. Meanwhile,
the post-processing solution and PnP reconstruction with DΘ

reduce the tumors’ STD more than the others but underesti-
mate the tumors’ activity the most, especially for the smallest
tumor for the post-processing method.

VI. DISCUSSION

Our results first pinpoint that one can design a convergent
PnP method that uses deep learning models trained to enforce
the fixed-point condition of the reconstruction algorithm on
target images. By doing so, we depart from standard PnP
methods that consider separately the learning of the prior from
the reconstruction of the image. Precisely, we showed that, in
PnP ADMM, such models lead to better reconstructions than
using a Gaussian denoiser, which struggled to preserve edges
in the images. This is likely due to a mismatch between the
training denoising task and input images of the network across
the reconstruction iterations that should ultimately satisfy the
fixed-point conditions. This underscores the importance of
training networks on data representative of the reconstruction
task, especially in contexts with little training data. As a
consequence, our method is inherently designed for a specific
acquisition model and scanner type. Changes in scanner and
acquisition protocols may alter the statistical properties of the

data, requiring retraining of the models to maintain optimal
performance—just as is the case with deep unfolding recon-
struction methods.
Enforcing the convergence conditions was performed either
through training or by design. Notably, the use of spectral
normalization did not meet expectations. Although we limited
the number of stacked layers to avoid excessive downscaling of
the Lipschitz constant, the approach still fell short in terms of
performance. The likely cause is the difficulty of keeping the
Lipschitz constant sufficiently close to 1 for the network while
increasing the number of layers to obtain an efficient regular-
ization. On the contrary, we have shown that PnP ADMM
with locally regularized FNE models properly regularized
during learning (based on the Fejér monotonicity of the DR
sequences) converge and lead to improved results compared to
spectral normalization. Yet, the Jacobian regularization needed
for training was computationally heavy, often competing with
the scaled similarity loss. Although the unfolding architecture
resembles a fixed-point network operator, it did not eliminate
the need for the Jacobian regularization. However, one should
note that after pre-training, the DRUnet was associated with
a spectral norm of about 10 on the training set, while the
unfolding network was associated with a spectral norm of
around 1.6. Given that the chosen Jacobian regularization
strongly penalizes large spectral norms, the scaled similarity
loss was more strongly degraded in the first epochs of training
with the DRUnet compared to the unfolding model, leading
to different dynamics between denoising and Jacobian regular-
ization across epochs for the two types of architectures. The
relationship between optimization and Jacobian regularization
is a key area that warrants further investigation.
Despite being FNE by design, our DEQ proved to be at
least as competitive in terms of performance as the other
networks. Such an approach highlighted that global FNE
property does not necessarily hurt performance. Furthermore,
thanks to a spatially-dependent regularization strength, the
network or learned proximity operator still maintains genuine
high-intensity features (tumor regions) present and enables
smoothing (reducing noise) across uniform areas. The images
produced using the DEQ are sharper compared to the deep
unfolding model and, above all, the DRUnet. It however
sometimes retained high-intensity noisy structures from the
low-count data. Finally, it generalized well on lower dose and
real data.
Compared to post-reconstruction processing, the PnP recon-
structions are less smoothed and are associated with a reduced
bias. This highlights the value of embedding the network into
iterative reconstruction rather than applying it after recon-
struction, as already noted in [44]. Overall, the PnP methods
consistently outperformed the traditional MBIR approach, and
with a DEQ or an unfolded architecture, they succeeded
in matching MBIR’s performance on lesion recovery. The
relatively small size of our training set may have influenced
how networks handled smoothing. This may explain why more
constrained networks like the unfolding network and the DEQ,
which incorporate prior knowledge into their architecture,
performed better on out-of-distribution test cases.
Future efforts should focus on designing effective FNE archi-
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tectures. Architectures FNE by design are expected to best
generalize and be more robust to the diversity of input images
encountered by the network during optimization. DEQ is a
promising direction and regularized unfolding architecture will
perform better than correcting pre-trained architectures by
incorporating pre- or post-smoothing steps or combining a
network with a known Lipschitz constant and the identity op-
erator. We still acknowledge that applying a DEQ is not as fast
as applying an unfolding network or a DRUnet since it requires
solving a minimization problem. Yet, for PET reconstruction,
the cost of the reconstruction is dominated by the application
of the proximity operator of the data fidelity (more precisely,
application of the projection and backprojection), so this does
not hinder the method’s practicality.

VII. CONCLUSION

In this paper, we introduced a PnP method for PET recon-
struction with convergence guarantees. The method leverages
a data-driven regularization that was learned using fixed point
conditions involving low-count images and data, as well as
high-count images. Although the type of regularization was
constrained by the limited size of our training data, the method
showed competitive quantification metrics against several
baselines - from MBIR to deep learning methods - even in out-
of-distribution and real-world cases, establishing it as a reliable
candidate for low-dose PET reconstruction where robustness
to real-world degradation is important. While our work only
touched upon the interaction between network architecture,
optimization landscapes, and Jacobian regularization, we view
these interactions as promising avenues for future research.
Further work will explore alternative architectures incorporat-
ing anatomical information and extend evaluations to larger
clinical datasets.
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Fig. 1: Multiscale analysis of Algorithm 1 on Phantom A with different values of λ and four FNE architectures trained for λTrain =
αTrain ×

√
∥Hx+ b∥1 where αTrain ∼ U(50, 500).

Fig. 2: Axial and sagittal slices of reconstructed images using the four FNE architectures for a first data realization from Phantom A with
optimal λ.

Fig. 3: Multiscale analysis of Algorithm 1 on Phantom A with different regularization parameter values for our PnP methods and state-of-
the-art reconstruction methods
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Fig. 4: Comparison of Algorithm 1 applied on data from Phantom A with learned resolvent trained on [FP] for αTrain ∼ U(50, 500) or
as a Gaussian denoiser with MBIR and post-EM-reconstruction processing (PP). Bias vs standard deviation in several ROIs. The mean and
standard deviation values were calculated within the specified ROIs and then averaged across the multiple noise realizations for different
values of the regularization parameter.
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Fig. 5: Axial and coronal slices of reconstructed images for a second data realization obtained from Phantom A with optimal λ.
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Fig. 6: Axial slices of the reconstructions of one replicate (dose reduction of 10, Phantom B, Tumor 3) with regularization parameters
indicated by yellow circles in fig. 7.

(a) Dose reduction of 5 (Phantom B, 46M prompt coincidences)

(b) Dose reduction of 10 (Phantom B, 22M prompt coincidences)

Fig. 7: Mean tumor activity versus tumor standard deviation for two-dose reduction factors, and all reconstruction methods. Tumor 1 has a
diameter of 4 pixels, while tumor 2 and tumor 3 have a diameter of 8 pixels.
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Fixed point method for PET reconstruction with learned
plug-and-play regularization - Supplemental Materials

I. IMPLEMENTATION DETAILS ON DDU
Θ

Network DDU
Θ unfolds ten iterations of the unmatched Combettes-Pesquet algorithm; it reads as

DDU
Θ = LUCP

Θ10
◦ · · · ◦ LUCP

Θ1

where

LUCP
Θn

(·,xin)

Θn = {Ln, L̃n, ρn}
εϑ1 = 1 +max{|||Ln|||, |||L̃n|||}
εϑ2 =

√
1 + |||Ln|||2 + |||L̃n|||2

εϑ = min{ εϑ1,
εϑ2}

γ = 0.99/εϑ

v1,n = xn − γ(xn − z+ L̃nun)
p1,n = PC(v1,n)
v2,n = un + γ(Lnxn + un)
p2,n = proxγ(∥Diag(Λθ)·∥1)∗(v2,n)

q2,n = p2,n + γ(Lnp1,n + p2,n)

q1,n = p1,n − γ(p1,n − z+ L̃np2,n)
xn+1 = ρn(xn − v1,n + q1,n) + (1− ρn)xn

un+1 = ρn(un − v2,n + q2,n) + (1− ρn)un

(1)

Note that |||L||| denotes the spectral norm of the linear operator L.
We set x0 and u0 to zero. The learned parameters are Θ = {(ρn)n∈[1,10], (C̃n)n∈[1,10], (Cn)n∈[1,10],Λθ}.

II. EVALUATION METRICS

For each replicate, we computed the error between the wavelet coefficients of the reconstructed replicate xλ
r and the scaled

phantom xPh at each scale: for a wavelet decomposition across L levels with approximation coefficient, AL(x), and detail
coefficients at scale l < L for sub-band b ∈ B, D(b)

l (x),

xλ =
1

Nreal

Nreal∑
r=1

xλ
r

errL,λ(xλ,xλ
r ) =

∥AL(x
λ)−AL(x

λ
r )∥2

∥AL(xPh)∥2

errdetail,l,b,λ(xλ,xλ
r ) =

∥Db
l (x

λ)−Db
l (x

λ
r )∥2

∥Db
l (x

Ph)∥2

errl,λ(xλ,xλ
r ) =

1

|B|
∑
b∈B

errdetail,l,b,λ(xλ).

Errors were aggregated into the standard deviation of multiscale error stdl,λ, for l in [0, L],

stdl,λ =

∑Nreal

r=1 errl,λ(xλ,xλ
r )

Nreal
, (2)

and the mean image multiscale error biasl,λ to the phantom

biasl,λ = errl,λ(xλ,xPh). (3)

Our ROI-based metrics are computed as

biasROI,λ = 100×

√√√√∑JROI

j (xλ
j − xPh

j )2∑JROI

j (xPh
j )2

(4)

stdROI,λ = 100×

√√√√∑Nreal

r=1

∑JROI

j (xλ
j − xλ

j,r)
2

Nreal

∑JROI

j (xPh
j )2

. (5)
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(a) Evolution of J2DΘ
(xn + un) along PnP iterations (b) Evolution of the MSE between xn and xPh along PnP iterations

Fig. 1: Comparison of Algorithm 1 with DΘ with two different initial estimates (EM or zero). Results are shown for one realization with
different values of λ.

Fig. 2: Multiscale analysis of Algorithm 1 with different values of λ and three networks DΘ trained for λTrain = αTrain ×
√

∥Hx+ b∥1
with αTrain ∼ U(50, 500), αTrain = 25, αTrain = 750.

III. LEARNING WITH A LOCAL JACOBIAN REGULARIZATION

Figure 1a shows the evolution of the spectral norm of the Jacobian of 2DΘ−Id applied on the iterates xn+un in Algorithm
1 run for different values of λ and two initial points ((x0, z0) = (xEM,DΘ(xEM)) and (x0, z0) = (0, 0)). As a comparison,
we also reported the value of the spectral norm associated with our DRUnet after our pre-training stage without Jacobian
regularization for a fixed value of λ. We see that the spectral norm remains close to 1 for all values of λ and both initial values
with Jacobian regularization, whereas, without it, the spectral norm is close to 10. Figure 1b shows the evolution of the MSE
between xn and xPh along the iteration of Algorithm 1 with the same settings as Fig. 1a. The MSE converges to the same
value for a given likelihood weight λ. This indicates that our local Jacobian regularization, when coupled with the nonzero
quadratic term of our reconstruction, leads to convergence to the unique fixed point.

IV. SETTING α FOR LEARNING

Figure 2 illustrates the mean and standard deviation of the multiscale errors on the data from Phantom B for three FNE
DRUnets plugged in Algorithm 1. The networks are trained with different values of αTrain: αTrain ∼ U(50, 500), αTrain = 25
and αTrain = 750. Algorithm 1 is run with the same range of values for α = αTrain.
Using αTrain = 25 yields the highest STD values, meaning that the replicate reconstructions are noisy. If training with
αTrain = 750 strongly reduces the STD values across all scales, the reconstructions exhibited a significant degradation at the
coarse scales in terms of bias. Using αTrain ∼ U(50, 500) yields the lowest bias at the finest scale. At coarser scales (levels
1, 2 and 3), it strongly reduces the STD compared to αTrain = 25 while only slightly degrading the bias.
This experiment shows that choosing αTrain and thus λTrain is crucial for generalization in PnP ADMM. Mitigating this effect
can be achieved by training on a range of values for αTrain, which leads to the best compromise in terms of better bias/STD
tradeoff.

V. RESIDUAL IMAGES

Figures 3 shows residual maps for our out-of-distribution cases (synthetics tumors with lower dose). This confirms visually
that PnP-DEQ and PnP-DU are the most robust learning-based methods.
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Fig. 3: Residual images to Phantom B for one replicate (dose reduction of 10) and regularization parameters indicated by yellow circles in
the main document. The red arrow points to Tumor 3.
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