
HAL Id: hal-04951335
https://hal.science/hal-04951335v1

Submitted on 17 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Service Extraction from Object-Oriented Monolithic
Systems: Supporting Incremental Migration

Soufyane Labsari, Imen Sayar, Nicolas Anquetil, Benoit Verhaeghe, Anne
Etien

To cite this version:
Soufyane Labsari, Imen Sayar, Nicolas Anquetil, Benoit Verhaeghe, Anne Etien. Service Extraction
from Object-Oriented Monolithic Systems: Supporting Incremental Migration. 2025 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER), Mar 2025, Montréal,
Canada. �hal-04951335�

https://hal.science/hal-04951335v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Service Extraction from Object-Oriented Monolithic
Systems: Supporting Incremental Migration

Soufyane Labsari∗, Imen Sayar∗, Nicolas Anquetil∗, Benoit Verhaeghe†, Anne Etien∗

∗Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, Lille, France
†Berger-Levrault, Limonest, France

Abstract—Migrating large monolithic systems to service-based
architecture is a complex process, mainly due to the difficulty
of extracting reusable functionality from tightly coupled com-
ponents. To support this, Service Identification techniques have
been proposed to decompose monoliths into service candidates.
Implementing these service candidates requires significant re-
structuring efforts. To address this complexity and build con-
fidence in the target architecture, prior research recommends
using an incremental migration approach where services are
extracted one at a time. However, incremental migration has been
poorly explored in the literature and lacks dedicated tool support.
Thus, we explore the idea of a tool-assisted service extraction to
support incremental migration, where one service is extracted
at each increment. This paper first discusses the challenges
associated with incremental migration. Then, it presents a model-
based extraction approach aimed at automatically extracting
functionality as a service. The approach is supported by a tool
prototype evaluated on an industrial system and an open-source
project. Our results show that our tool can extract standalone
services that are successfully invoked by a reduced version of the
monolith.

Index Terms—Monolithic System, Incremental Migration, Ser-
vice Identification, Service-based Architecture, Strangler Fig

I. INTRODUCTION

Monolithic systems embed all their functionalities in a sin-
gle unit, and as they grow larger, they can become increasingly
difficult to manage [1]. In that context, organizations migrate
their monolithic systems to service-based architectures mainly
to reduce maintenance costs and improve flexibility [2, 3].

Monolith migration to services-based architecture relies on
analyzing and reusing the valuable business logic contained
in the monolith [4]. To support this, many Service Identifica-
tion (SI) techniques have been proposed to identify reusable
functionalities that can be transformed into services [5, 6].
These techniques use various monolith assets such as source
code, developer expertise, documentation, and existing tests
to analyze and recommend distinct functionalities that can be
extracted and deployed as standalone services.

Implementing a service-based application from a set of
service candidates derived from a large monolithic system
is a complex and time-consuming process [3]. It requires
significant re-architecture to isolate functionalities, decouple
dependencies, and restructure the system into standalone, and
deployable services. The lack of developer expertise in service-
based architecture [2] and the need to maintain business

continuity during migration [7] add further complexity to this
task.

To address this complexity, build confidence, and minimize
business disruption, previous work recommends to use an in-
cremental migration approach where services are implemented
one at a time [8, 9, 10]. However, they do not go further than
recommendations and do not present challenges or describe
approaches. Only Li et al. [11] present a manual approach to
incrementally extract services and apply it to an open-source
project. While the proposed process is outlined, no tool or
automation support is provided.

Moreover, several surveys among industrial practitioners [2,
12, 13] show that developers involved in migration projects
tend to use an incremental approach to migrate their system to
a service-based architecture. The use of incremental migration
approaches by industry professionals, combined with the lack
of research focus on these approaches, creates a gap.

To bridge this gap between the research and industrial
worlds, we present our preliminary work on an incremental
migration approach based on service extraction. Our goal
is to provide a tool-based approach to gradually migrate
from monolithic to service-based architecture. We propose an
approach, where, in each increment, a service is extracted
from the monolith and coexists alongside a reduced version
of the monolith (i.e., with removal of extracted code). Such
an approach involves assisting developers during the different
steps of the migration as described by Newman in [14]; namely
service identification, service extraction, call redirection, and
removal of old code in the monolith.

To achieve this goal, we developed a semi-automated ser-
vice extraction approach based on a model representation of
the monolith. The approach computes a static call graph from
the functionality entry point specified by the user, collects
and filters relevant classes, performs recursive dependency
analysis, and generates the code for the extracted service.

The main contributions of this paper are the following:
• a discussion of the challenges associated with incremental

migration towards services;
• an approach that focuses on identifying and extracting

one service at a time to support incremental migration;
• a five staged process for identifying one service;
• a prototype implementing our approach.
The rest of the paper is structured as follows. Section II

presents the related work and describes the used incremental

1



migration model. Section III discusses the challenges asso-
ciated with incremental migration. Section IV describes our
proposed service extraction approach. The application of our
extraction approach on an industrial case and an open-source
project is presented in Section V. A discussion about our work
is given in Section VI. Finally, Section VII concludes the paper
and discusses future works.

II. RELATED WORK AND BACKGROUND

In this section, we discuss the related work on service
extraction and incremental migration. We then present the in-
cremental migration model on which we rely. In the remainder
of this section, we use the term legacy [7] as it is used in the
related work to refer to the monolith.

A. Related Work on Service Extraction

Several methods have been proposed to reuse object-
oriented legacy code by extracting it as services. This is closely
related to the topic of Service Identification [6].

Bao et al. proposed an approach for extracting services
from object-oriented legacy systems using UML use cases to
identify services [15]. Their hypothesis is that a UML use
case is a good service candidate. The approach begins with
manually writing UML use cases. In the next step, test cases
are generated from each use case. After an instrumentation
step, tests are run to produce execution traces. From a manual
analysis of these traces, code segments implementing the use
case are collected. Zhang et al. suggested extracting services
using formal concept analysis, a technique for identifying
relationships between software artifacts and their properties
combining it with concept slicing [16]. Although both ap-
proaches enable the extraction of a single service, several of
their steps are manually performed, which can be challenging
for large systems.

According to Abdellatif [6], the state-of-the art of the Ser-
vice Identification Approaches (SIAs) are still at their infancy
mainly due to (1) the lack of validation on real enterprise-
scale systems; (2) the lack of tool support, and (3) the lack of
automation of SIAs.

B. Related Work on Incremental Migration

Incremental migration is a process that consists of a se-
quence of increments, each representing a distinct, and man-
ageable transformation step toward a new system [17]. This
allows system operations to continue during migration, reduces
risk, and makes complexity more manageable by migrating in
smaller, more controllable steps [7]. Incremental migration is
frequently used in the industry [2, 12, 13]. It is also a recom-
mended approach for managing the complexity of migrating
large monolithic systems to service-based architectures [8, 9].

A first incremental migration approach called Chicken Little
was proposed in the ’90s by Brodie et al. [17]. This approach
is similar to the Strangler Fig [18] defined 11 years later. Li
et al. [11] described an incremental migration process based
on the Strangler Fig model [18]. Microservices candidates are
identified using Domain-Driven Design (DDD) once for the

whole system. Then metrics are used to define the order in
which services should be extracted. The approach is applied
to a small case study. It is not clear how the whole approach
scales. This approach decomposes the whole system once and
uses this decomposition to extract services during the entire
migration process, which can last several years [17]. This can
lead to a lack of flexibility during the migration as the initial
decomposition could become obsolete. More generally there
is no evidence about the practicability of using a one-shot
decomposition to drive an incremental migration. Most of the
SIAs focus on decomposing the monolith in one shot.

As the Strangler Fig model is reported to be the most widely
used incremental approach in the industry [2, 12], we will
focus on this approach in the remainder of this paper.

C. Background

In the context of legacy system modernization, Martin
Fowler proposed the Strangler Fig model. This incremental
approach suggests that the new system should be incrementally
built around the old, eventually ”strangling“ and replacing
the old system components as the new system (the stran-
gler application) takes over. In the context of migration to
service-based architecture, the approach begins by identifying
functionality that can be extracted as a service and migrated
to the strangler application, gradually replacing the monolith
with new services (see Figure 1). As the process continues,
the monolith shrinks while the new system becomes more
robust [19].

More specifically, each increment of the migration is imple-
mented sequentially following a four-step process; three main
steps [14] and an optional one [19]:

1) Service identification: A functionality is selected, and the
corresponding code must be identified within the monolith.

2) Service extraction: The functionality is extracted (copy
or reimplement the code) to the service architecture and may
require adaptation to work as an autonomous service.

3) Calls redirection: Calls to the functionality are redirected
to the extracted service.

4) Manage residual code (optional): Once the service is
deployed and calls are redirected to this service, the extracted
code that remains in the monolith can be deleted if the
monolith is still being maintained during the migration.

The challenges associated with these steps are not discussed.
In addition, no tool supports this approach.

III. INCREMENTAL MIGRATION CHALLENGES

This section describes the challenges we have identified for
each step (see Section II-C) of the Strangler Fig migration
model.

A. Service Identification Step

Challenge C1: Service Prioritization [11]. Selecting the
functionality to extract requires special care. Removing a
highly dependent service too early could complicate the next
steps and may require additional increments to be completed
before the current increment can be deployed.

2



Monolith
Monolith

Extracted Service 1

Increment 1

Monolith

Extracted Service 1

Increment 2

Extracted Service 2
Extracted Service 1

Final Increment

Extracted Service 2

Extracted Service 3

Original system

Extracted Service 4

Fig. 1. Strangler Fig in the context of migration to service-based architecture

Challenge C2: Service Granularity [20]. Determining the
appropriate service granularity is a key challenge. Service
granularity refers to how many functionalities each service
should encapsulate. Finding the right balance is critical to
system efficiency. On the one hand, if services are too coarse-
grained, they may contain too many responsibilities, resulting
in reduced modularity and limiting the benefits of independent
development and scaling. On the other hand, services that are
too fine-grained can lead to excessive inter-service communi-
cation, resulting in increased network latency and increased
complexity in managing dependencies.

Challenge C3: Functionality code identification. In
Object-Oriented (OO) programs, the code implementing a
functionality is distributed across many interrelated ob-
jects [15], making its identification challenging. Moreover, the
dynamic features of object-oriented languages, such as reflec-
tion [21], introduce runtime dependencies that are difficult to
analyze [22].

Challenge C4: Service interdependencies. The high de-
gree of coupling between components of the monolith makes
it difficult to understand dependencies between functionalities
and challenging to identify clear service boundaries [12].

B. Service Extraction Step

Challenge C5: Shared code. The extracted functionality
might still rely on other parts of the monolith, such as shared
classes (e.g., utility classes, models) or utility methods. Copy-
ing these objects could spread duplicated code among both
the extracted service and the monolith, and further complicate
maintenance efforts.

Challenge C6: Shared state. The functionality may de-
pend on shared states in the monolith. Shared states between
functionalities within a monolith refer to data or variables
that multiple parts of the system access and modify, creating
dependencies and coupling between those functionalities [19].
Managing state transitions from monolith to service and en-
suring data consistency can be a significant challenge [23].

Challenge C7: Service adaptation. The extracted service
should be adapted to the service-oriented technology stack
that might be different. The functionality must be refactored
to use this technology stack, which may involve changes to
frameworks, programming languages, and data formats.

C. Calls Redirection Step

Challenge C8: Calls redirection. Redirecting calls involve
multiple scenarios: (1) from the monolith to the newly ex-
tracted service, (2) from the extracted service back to the
monolith, or (3) from the extracted service to previously
extracted services. Each of these scenarios requires rigorous
tracking and understanding of the dependencies within both
the monolith and the previously extracted services [14, 19].

D. Manage Residual Code Step

Challenge C9: Dead code removal. The removal of legacy
code, as new services are extracted, requires careful coor-
dination to avoid introducing bugs or leaving dead code in
the monolith, which can lead to maintenance issues. If the
code implementing the functionality is no longer referenced
elsewhere in the monolith, this code can be marked as dead
and safely removed.

E. General Challenge

Challenge C10: Dealing with several increments.
Extracting a service after several others leads to the
challenges previously cited (C2, C5, C6, and C8), not only
with the monolith but also with each single previously
extracted service. Service extractions are local and may
contain code artifacts that are shared with other services. This
could result in a wrong service cut, making maintenance of
the services even more challenging. Brodie et al., highlight
the dependencies between increments and that independent
increments can be implemented in any order [17].

Addressing these challenges by providing tool support is
crucial for the success of incremental migration, as it ensures
a smoother transition from monolithic to service-based archi-
tecture without degrading system integrity.

IV. PROPOSED APPROACH TO EXTRACT SERVICE

This section presents our approach to support incremental
migration and explains how we start dealing with some of
the identified challenges (see Section III). Our approach aims
at extracting all the functionality’s relevant artifacts within an
OO monolith using static analysis. In its current version, our
approach focuses on challenges C3 and C4 and consists of five
stages (see Figure 2): (1) select the functionality to extract, (2)

3



compute the associated call graph, (3) collect classes, (4) filter
classes, and (5) collect dependencies.

entry point
(a method)

(2)
compute call graph

collect classes (3)

class
class

class
class
class

static call graph

m1

m2

m3

m6

m4

m5

filter class
filter class

filter class
filter class
filtered class

(5)
collect dependencies

Developer

dependency class
dependency class

dependency class

filter class
filter class

filter class
filter class
filtered class

(1)
select functionality

Extracted service

(4)
filter classes

Fig. 2. Overview of our functionality extraction process

Stage 1: Select functionality to extract

In the context of an increment, one must select the func-
tionality to extract. In our solution, we propose to let the
developers choose the functionality that will be extracted as a
service. To help them in this task, we only require that they
select the entry point method (or methods) of the functionality.

Stage 2: Compute call Graph

From the given entry point, one must identify all the code
implementing the functionality (Challenge C3). For this, we
compute the call graph of the entry point to catch all the meth-
ods involved in the implementation of the functionality. This
is done using a static approach that ensures soundness [24]
(i.e., catch all the necessary methods for any scenario of the
functionality). However, static approaches are known to lack
precision (i.e., unnecessary methods may also be identified as
false positives) [25]. As a way to improve precision, we use
Variable Type Analysis (VTA) [26]. This approach supports
context-sensitive call graph construction, i.e., it differentiates
between the different contexts in which a method is invoked,
improving accuracy, especially in cases involving polymorphic
calls.

Stage 3: Collect classes

In this stage, we collect the classes containing the methods
present in the previously computed call graph. These methods
are selected within their classes in preparation for the next
stage.

Stage 4: Filter classes

In the classes collected at the previous stage, not all class
members (attributes and methods) are relevant to the function-
ality to extract. To improve the precision of the extraction, we
proceed by eliminating the irrelevant members. This will also
ensure that we remove unnecessary dependencies (Challenge
C4). Class attributes used by the selected methods are also
selected as part of the functionality implementation. This
ensures that all relevant data and states associated with the
functionality are captured. Possible setters and getters for these

attributes are also selected, even if they do not appear in the
call graph. This is needed because they might be necessary
for external frameworks (e.g., Spring or Hibernate).

Stage 5: Collect dependencies

A dependency analysis is then conducted to gather classes
referenced by the filtered classes and their selected methods.
For example, a method could reference a class using the Java
operator instanceOf. Such a class would not have been
caught in the previous stages.

Our approach is automated and implemented1 in Moose2, a
data and software analysis platform. Moose is used to create a
model representation of the monolith, enabling the automated
analysis and extraction of specific functionalities.

V. CASE STUDY

To assess the feasibility of our extraction approach, we
conducted case studies on two Java client-server applications.
The first case study focuses on the extraction of a service
on a real industrial application. The second case study fo-
cuses on extracting multiple services for the migration on an
open-source project. These case studies focus on migrating
the server side of the applications. The server side of both
applications follows a three-tier architecture composed of a
presentation layer, a business layer, and a data layer. Business
functionalities are exposed to the client side through the
presentation layer. We use these exposed functionalities as
entry points to extract services.

A. Case Study 1: OMAJE

Berger-Levrault is a software publisher that provides soft-
ware solutions for public administration, healthcare, education,
and industry. OMAJE is a subscription management Java
application used internally by the company to manage the
distribution of software licenses. The server side is composed
of 427 classes, including 3956 methods with a total of 34.4 K
lines of code.

A model representation of OMAJE’s source code was cre-
ated in Moose, and the following work is carried out on this
model. The goal of this case study is to assess the feasibility
of our extraction approach (see Section IV).

Extraction of a Service: Stage 1: A functionality was
selected for extraction as the first increment of the migration,
with the associated entry point in the presentation layer
being a method named findProduct. This functionality is
responsible for fetching a product from the database given an
ID (an integer). Stage 2: From the method entry point of the
functionality, a call graph was computed and contained 49
unique methods. Stage 3: A total of 17 classes, 5 interfaces,
and 1 enumeration were collected from the call graph methods.
Stage 4: During the filtering step, 342 methods and 114
attributes were removed from the 23 types collected in stage
3. 84 methods and 59 attributes were kept.

1https://doi.org/10.5281/zenodo.14057370
2https://github.com/moosetechnology

4



The code of the extracted service was generated as a Spring
project. It was successfully compiled without modification.
Three test cases were manually written to cover different
scenarios of the extracted functionality, and all of them passed
successfully.

B. Case Study 2: Spring PetClinic

Spring PetClinic3 is an open-source Java Web application
designed to demonstrate the capabilities of the Spring Frame-
work. Spring PetClinic simulates a veterinary clinic that allows
users to manage information about pets, owners, and visits,
making it a representative example of traditional monolithic
architecture. The Spring PetClinic server-side is composed
of 26 classes with a total of 111 methods (683 lines of
code). The presentation layer exposes 16 endpoints (methods
annotated with @GetMapping or @PostMapping), which
are accessible to the client side through HTTP requests.

The goal of this case study is to assess the feasibility of
the Strangler Fig model using our extraction approach. Several
services were extracted using the Strangler Fig steps described
in Section II-C. We used our extraction approach to automate
the first step (service identification) and conducted the others
manually since it is an in progress approach. The results of
this case study are available in the replication package4.

TABLE I
MIGRATION INCREMENTS OF SPRING PETCLINIC

Extracted Service Monolith
Increment Entry point method NOC NOM NOC NOM
0 - - - 26 111
1 showOwner 10 21 26 111
2 showVetList 11 21 26 108
3 processFindForm 12 41 26 105

Table I presents the increments performed and the associated
endpoint methods extracted (second column). It shows the
evolution of the monolith as services are extracted, including
the number of classes (NOC) and the number of methods
(NOM). Note that because the extracted classes are filtered,
they may not contain all the methods and attributes they
previously contained in the monolith.

First increment: Step 1. From the showOwner entry
point method, 8 classes were identified including 6 classes
representing data models, 1 class from the presentation layer,
and 1 class from the data access layer. Step 2. These classes
were extracted in a service project, and 2 classes were added
to make this service run as a standalone Spring application,
resulting in a total of 10 NOC. Step 3. A method was added
in the monolith to perform the call redirection to the extracted
service. Step 4. Only one method was removed from the
monolith as other methods are still used.

From increment 0 to increment 1, the number of methods
in the monolith did not decrease because a method was added
to redirect the call to the service. The next two increments

3https://github.com/spring-projects/spring-petclinic
4https://doi.org/10.5281/zenodo.14057370

were done in the same way. Extracted services mainly contain
data models that are duplicated among the monolith and the
services. After the third increment, 3 services are deployed in
Docker containers and successfully invoked by the monolith.

VI. DISCUSSION

Our work yielded the following conclusions: (1) many
challenges are not specified explicitly in the state-of-the-art,
(2) existing works on service extraction from monoliths focus
mainly on decomposing the whole system, and (3) even though
the incremental migration approaches are used in industry,
their automation is not supported. Our current work addresses
these three points and the obtained first results show that our
prototype is able to extract services gradually and needs to be
improved.

A notable observation from the case studies is the duplica-
tion of data models in the extracted services. This highlights
the challenge of shared code (C5) between the monolith and
extracted services. This could be handled by creating a shared
library as suggested by Newman [14], meaning that a pre-
processing step could be required on the monolith to prepare
the incremental migration.

When extracting a service with our methodology, it is hard
to identify dependencies between different monolith compo-
nents, which adds difficulties to the developer in managing
code duplication, calls redirection, etc. We think about using
existing tools such as visualization ones to assist the developer
during the extraction process.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach to support incre-
mental migration of object-oriented monolithic systems to
service-based architecture. We first discussed the challenges
that developers may face when adopting the Strangler Fig
model. We then presented a preliminary method to extract
a functionality based on code analysis to assist developers in
the implementation of an increment in the migration process.
We have implemented an open-source prototype of our tool
in the Moose platform. We evaluated our tool-based approach
by conducting case studies on two Java projects, an open-
source project (JPetStore) and a real-world project (OMAJE)
from our industry partner. The case studies have shown that
our prototype is able to extract standalone services that can be
executed and invoked from the monolith.

Future work. In the future, we plan to use existing solutions
to deal with some of the described challenges (C1, C4–9). For
instance, the challenge C4 could be addressed using formal
concept analysis [16] to understand dependencies among the
monolith. We will implement these solutions into a tool
to better support incremental migration. We will perform a
validation of our tool on real enterprise-scale systems with
our industry partner.

5



REFERENCES

[1] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, mo-
tivations, and issues for migrating to microservices ar-
chitectures: An empirical investigation,” IEEE Cloud
Computing, vol. 4, no. 5, pp. 22–32, 2017.

[2] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann,
“Microservices migration in industry: Intentions, strate-
gies, and challenges,” in IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2019,
pp. 481–490.

[3] M. Abdellatif, G. Hecht, H. Mili, G. Elboussaidi,
N. Moha, A. Shatnawi, J. Privat, and Y.-G. Guéhéneuc,
“State of the practice in service identification for soa
migration in industry,” in Service-Oriented Computing.
Springer International Publishing, 2018, pp. 634–650.

[4] R. Khadka, A. Saeidi, S. Jansen, and J. Hage, “A struc-
tured legacy to soa migration process and its evaluation
in practice,” in 2013 IEEE 7th International Symposium
on the Maintenance and Evolution of Service-Oriented
and Cloud-Based Systems, 2013, pp. 2–11.

[5] Y. Abgaz, A. McCarren, P. Elger, D. Solan, N. La-
puz, M. Bivol, G. Jackson, M. Yilmaz, J. Buckley, and
P. Clarke, “Decomposition of monolith applications into
microservices architectures: A systematic review,” IEEE
Transactions on Software Engineering, vol. 49, no. 8, pp.
4213–4242, 2023.

[6] M. Abdellatif, A. Shatnawi, H. Mili, N. Moha, G. E.
Boussaidi, G. Hecht, J. Privat, and Y.-G. Guéhéneuc, “A
taxonomy of service identification approaches for legacy
software systems modernization,” Journal of Systems and
Software, vol. 173, p. 110868, 2021.

[7] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy
information systems: issues and directions,” IEEE Soft-
ware, vol. 16, no. 5, pp. 103–111, 1999.

[8] A. A. Almonaies, J. R. Cordy, and T. R. Dean, “Legacy
system evolution towards service-oriented architecture,”
in International Workshop on SOA Migration and Evo-
lution, 2010, pp. 53–62.

[9] A. Carrasco, B. v. Bladel, and S. Demeyer, “Migrat-
ing towards microservices: migration and architecture
smells,” in Proceedings of the International Workshop
on Refactoring. Association for Computing Machinery,
2018, p. 1–6.

[10] S. Johann, “ Dave Thomas on Innovating Legacy Systems
,” IEEE Software, vol. 33, no. 02, pp. 105–108, 2016.

[11] C.-Y. Li, S.-P. Ma, and T.-W. Lu, “Microservice mi-
gration using strangler fig pattern: A case study on the
green button system,” in 2020 International Computer
Symposium (ICS), 2020, pp. 519–524.

[12] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating
towards microservice architectures: An industrial survey,”
in 2018 IEEE International Conference on Software
Architecture (ICSA), 2018, pp. 29–2909.

[13] M. Razavian and P. Lago, “A survey of soa migration in
industry,” in Internation Conference on Service-Oriented

Computing. Springer, 2011, pp. 618–626.
[14] S. Newman, Monolith to Microservices: Evolutionary

Patterns to Transform Your Monolith. O’Reilly Media,
2020.

[15] L. Bao, C. Yin, W. He, J. Ge, and P. Chen, “Extracting
reusable services from legacy object-oriented systems,”
in International Conference on Software Maintenance,
2010, pp. 1–5.

[16] Z. Zhang, H. Yang, and W. C. Chu, “Extracting reusable
object-oriented legacy code segments with combined
formal concept analysis and slicing techniques for ser-
vice integration,” in International Conference on Quality
Software, 2006, pp. 385–392.

[17] M. L. Brodie and M. Stonebraker, “Darwin: On the
incremental migration of legacy information systems,”
Distributed Object Computing Group, Technical Report
TR-0222-10-92-165, GTE Labs Inc, vol. 28, 1993.

[18] M. Fowler, “Strangler fig,” 2004, accessed: 2024-10-
24. [Online]. Available: https://martinfowler.com/bliki/
StranglerFigApplication.html

[19] C. Richardson, Microservices Patterns: With examples in
Java. Manning Publications, 2018.

[20] R. Haesen, M. Snoeck, W. Lemahieu, and S. Poel-
mans, “On the definition of service granularity and its
architectural impact,” in Advanced Information Systems
Engineering. Springer, 2008, pp. 375–389.

[21] J. Liu, Y. Li, T. Tan, and J. Xue, “Reflection analysis
for java: Uncovering more reflective targets precisely,”
in International Symposium on Software Reliability En-
gineering, 2017, pp. 12–23.

[22] V. Blondeau, A. Etien, N. Anquetil, S. Cresson, P. Croisy,
and S. Ducasse, “Test case selection in industry: An
analysis of issues related to static approaches,” Software
Quality Journal, vol. 25, pp. 1203–1237, 2017.

[23] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and
A. Barros, “Migrating enterprise legacy source code to
microservices: On multitenancy, statefulness, and data
consistency,” IEEE Software, vol. 35, no. 3, pp. 63–72,
2018.

[24] M. D. Ernst, “Static and dynamic analysis: Synergy
and duality,” in WODA 2003: Workshop on Dynamic
Analysis, May 2003, pp. 24–27.

[25] A. Utture, S. Liu, C. G. Kalhauge, and J. Palsberg,
“Striking a balance: pruning false-positives from static
call graphs,” in International Conference on Software
Engineering, 2022, p. 2043–2055.

[26] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-
Rai, P. Lam, E. Gagnon, and C. Godin, “Practical vir-
tual method call resolution for java,” in Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, 2000, p. 264–280.

6

https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html

	Introduction
	Related Work and Background
	Related Work on Service Extraction
	Related Work on Incremental Migration
	Background

	Incremental Migration Challenges
	Service Identification Step
	Service Extraction Step
	Calls Redirection Step
	Manage Residual Code Step
	General Challenge

	Proposed Approach to Extract Service
	Case study
	Case Study 1: Omaje
	Case Study 2: Spring PetClinic

	Discussion
	Conclusion and Future Work

