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Information-based source localization
with distinct binaural cues

Patrick DANÈS*

Proceedings of the 23rd International Congress on Acoustics – 2019 – Aachen, Germany

Abstract
Audio-motor binaural localization algorithms, which combine directional cues extracted from the sensed
signals with the motion of the sensor, are known to overcome shortcomings such as font-back ambiguity
and source range non-observability. They can be improved by closing the loop from their output to the
control inputs of the sensor, i.e., the sensor motor commands. This paper presents an approach, coined
“information-based feedback control”, which drives in real time a binaural head so as to gather information
on the location of a static source. On the one hand, a “greedy” approach moves the head to its next best
position. On the other hand, a multi-step-ahead scheme determines its most effective path over a receding
horizon of size N, by reasoning on average over yet uncollected audio data. Both methods internally entail
the prediction of binaural cues, e.g., ITDs, ILDs or a combination of both. Some results can be given an
elegant commonsense interpretation.
Keywords: Robot audition, Binaural hearing, Source localization, Audio-motor localization, Information-
based feedback control

1 INTRODUCTION
Since the early days of robot audition, sound source localization has been widely acknowledged as the
early fundamental stage required to endow robots with Cocktail Party ability in real environments, be this
problem tackled from the Computational Auditory Scene Analysis viewpoint or by means of standard sig-
nal processing techniques [14]. First approaches relied on binaural sensors; in view of their moderate
robustness to changing experimental conditions and of the difficulty to get and exploit accurate models of
the scatterers holding the microphones, microphone arrays were later envisaged [1]. However, the potential
benefits of so-called “active” approaches, which seamlessly combine into audio-motor schemes the sensed
audio stream with the motor commands of the sensor, had long been identified [13]. This gave rise to a
renewal of interest for binaural setups, which avoid the engineering cost and burden of multichannel syn-
chronous acquisition. The binaural active audition paradigm also complies with psychology and neurology
approaches which consider binaural audition in humans as an exploratory and purposive process, entailing
the combination of hearing and motion, as well as multiple feedback loops: e.g., from the cognitive level to
low-level binaural processing stages (“shaping the ears”), or from the cognitive level to planned motions (in
order to reinforce/weaken hypotheses about the meaning of the scene) [3]. Feedbacks loops do also exist
at the very low reflex level. As a matter of fact, the unconscious interweave of binaural sensing and head
motion can well be an information-based sensorimotor feedback which moves the head so as to decrease
the spatial uncertainty on the acoustic environment.

This paper outlines an engineering approach to information-based binaural localization with robots.
The aim is to augment an audio-motor localization scheme, which computes a belief on the relative position
of a sound source with respect to a moving binaural head, with a feedback control that computes in real

*LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France, patrick.danes@laas.fr

1



Figure 1: Overview. Figure 2: Decomposition of active binaural localization into three stages.

time the head motion that maximizes, on average, the spatial information on the source. Before entering
into details, we overview some neighboring problems addressed in the literature.

The early approaches to binaural audio-motor localization on artificial agents noticed the obvious im-
pact of the head trajectory on the uncertainty associated to the source position estimate. For instance, [11]
propose a simulated comparison of various head displacements, which are combined with audio cues in-
side a particle filter. More recently, still relying on a particle filter, a binaural robot endowed with vision
actively moves so as to maximize the decrease of entropies between the current and next beliefs on the
hidden source position. In [2], the motions of a binaural head obtained by reinforcement learning on the
basis of a frequency analysis of the sensed signals show that the expected source should be located in the
median plane, or “auditory fovea”. The Monte Carlo approach of [18] drives an agent towards a specific
goal while lowering the spatial uncertainty on a sound source by optimizing a criterion which combines the
distance to the goal and the entropy of the next source position belief. All these strategies can be termed
“greedy” or “myopic”, as their aim is to get the next best head motion. Active motion has also been consid-
ered in [8] and [12]. In the context of robotics Simultaneous Localization and Mapping (SLAM) with other
sensing modalities, greedy active motion strategies have also been investigated, entailing Shannon entropy,
mutual information, or Fisher information matrix, e.g., [4]. Besides, efforts have been made to cope with
long-term criteria, that depict the gathered information after the application of a sequence of N motor com-
mands. For instance, [20] designs a dynamic programming based approximate solution to the minimization
of the expectation, over the next unknown measurements, of a probabilistic occupation grid. Recently, a
Monte Carlo Tree Search solution [15] minimizes the expectation, over the measurements to appear on a
receding horizon, of a criterion made up with approximations of the entropies of the source position beliefs
over this horizon (themselves expressed as Gaussian sums by means of an extension of the Gaussian sum
filter proposed in [16]). Though this complete and convincing method assumes a countable admissible set
of control inputs, its major drawback is its computation time, so that it comes within planning rather than
feedback control.

The paper is organized as follows. Section 2 provides a mathematical statement of the considered
information-based binaural localization problem. It relies on a three-layer framework made up with short-
term directional source localization, audio-motor localization, information-based feedback control. The
exploration is guided by virtual exploratory audio cues that can be related to the hidden head-to-source
direction by means of an analytical equation with constant-variance additive noise. Section 3 sketches
the proposed mathematical solution. It is shown that the complexity fundamentally differs depending on
whether a greedy (one-step-ahead) or N-step-ahead problem is addressed. Rather than entering into the
mathematical details of the solution detailed elsewhere, qualitative insights are given. Section 4 presents
some results, in the form of sample trajectories corresponding to the selected exploratory audio cues. Con-
clusions and prospects end the paper.
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2 PROBLEM STATEMENT

2.1 Notations
Consider a binaural head of approximate radius a, endowed with two microphones R1,R2 (Figure 1). Its

associated frame is F = (O,−→xR,
−→yR,

−→zR), with −→xR pointing downwards, −→yR =
−−−→
R2R1
∥−−−→R2R1∥

supporting the interau-

ral axis, and −→zR pointing frontwards. An motionless omnidirectional sound source E emits continously.
The unknown head-to-source position is characterized by the (hidden) state vector x = (ey,ez)

T ∈ R2

such that
−→
OE = ey

−→yR + ez
−→zR , or, equivalently, by the polar coordinates (r,θ), with r =

√
e2

y + e2
z and

θ =−atan2(ey,ez). As time evolves, these variables are subscripted by the discrete index k.
The measurement vector zk gathers the binaural information collected by R1,R2 over a short temporal

snippet ending at time k, typically the the left and right channel-time-frequency decompositions. The
measurement model between x and z, though unknown and very involved, is assumed static, i.e., zk depends
solely on xk.

Between consecutive times k and k+1, the head undergoes a rigid motion. Its control input vector, or
“motor command”, is defined as uk = (T T

k ,φk)
T ∈R3, with Tk = (u1k,u2k)

T = (
−−−−→
OkOk+1.

−→yRk,
−−−−→
OkOk+1.

−→zRk)
T

the 2D translation and φk = u3k =
̂(−→zRk,
−−−→zRk+1)around −→xRk

the finite rotation which, when applied in sequence,
turn Fk into Fk+1. The prior dynamics pdf p(xk+1|xk) can be equivalently described by the stochastic state
equation

xk+1 = RT (φk)xk −RT (φk)Tk +wk, wk ∼ N (0,Qk) (1)

where R(φ) =
(

cosφ −sinφ

sinφ cosφ

)
stands for the nontrivial diagonal block of the 3× 3 rotation matrix of angle

φ around −→xR , and the additive dynamic noise wk is assumed white zero-mean Gaussian with known co-
variance Qk. Mutual independence of wk, the random initial state x0 and of all measurement noises is also
assumed.

2.2 A three-layer framework to active binaural localization
Active binaural localization is addressed through the framework outlined on Figure 2. At each time k, the
following sequence is completed. Stage A processes the measurement zk so as to detect the activity of the
source and computes a HRTF-based “pseudo-likelihood” p(zk|θk) of the head-to-source azimuth θk, along
[17]. Stage B assimilates all these cues up to time k and combines them with the sensor motor commands
into a Gaussian sum Unscented Kalman filter, resulting in the state (head-to-source position) filtering pdf
(or “belief”) p(xk|z1:k)≈ ∑

Jk
j=1 γ

j
k N (xk; x̂ j

k|k,P
J
k|k) expressed as a Gaussian mixture. Observe that if Qk = 0

in (1), then the current filtering p(xk|z1:k) and next prediction p(xk+1|z1:k) pdfs describe the same belief on
the source location in the world frame, but expressed from the respective viewpoints of Fk and Fk+1. This
audio-motor localization, described in [16], enables front-back disambiguation as well as faithful source
range recovery. This paper addresses the feedback controller featured in Stage C, which processes the state
filtering pdf from Stage B so as to move the head in the most informative way.

2.3 Information-based optimum control strategy
The fundamental problem defining Stage C can now be stated.

Multi-step-ahead information-based feedback control. At time k, given the state filtering pdf
p(xk|z1:k)≈ ∑

Jk
j=1 γ

j
k N

(
xk; x̂ j

k|k,P
j

k|k
)
, find the sequence ū∗N = u⋆k : u∗k+N−1 of control inputs to be applied

over a sliding window of size N starting at k (i.e., from time k to k+N − 1) such that the expected value
Ezk+1:k+N |z1:k

h(xk+N |z1:k+N) of the entropy h(xk+N |z1:k+N) of the state filtering pdf p(xk+N |z1:k+N) at final
time k+N is minimum. □

This problem makes sense for two reasons. On the one hand, the entropy of a pdf is a convenient
measure of the information it conveys. On the other hand, as zk+1:k+N are not yet known at time k, the
expectation of the entropy of the state filtering pdf at the end of the receding horizon over these future
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measurements (conditioned known measurements up to k) is considered. Basically, N = 1 corresponds to
the greedy strategy.

2.4 Simplifying assumptions
Binaural signals to be sensed in the future are hardly predictable, and so is the pdf p(zk+1:k+N |z1:k) involved
in the criterion to be minimized at time k. This is why the following is assumed to hold.

Fundamental assumption. In Stages A and B of the three-stage framework to active binaural localization
(Figure 2), z stands for the measurement variable (channel-time-frequency decomposition) depicted above.
However, in the above fundamental problem defining Stage C, zk+1, . . . ,zk+N stand for “exploratory audio
cues” instead. A variable z is said to be an exploratory audio cue iff it is linked to the hidden state x by
a known closed-form measurement model, the measurement noise of which is additive white zero-mean
Gaussian (independent of all other noises) and has a (co)variance unrelated to the hidden state value. In
other words, the exploration (computation of ū∗N) is driven by kind of virtual measurements

zk+i = l(xk+i)+ vk+i, i = 1, . . . ,N, vk+i ∼ N (0,Rk+i) with Rk+i independent of hidden xk+i, (2)

and v1:N white independent of x0, w0:k+N , etc. □

Other less fundamental assumptions are also in effect.
• The state filtering pdf p(xk|z1:k) is reduced to a single Gaussian, so that p(xk|z1:k)≈N (xk; x̂k|k,Pk|k).
• Farfield exploratory audio cues are considered, i.e., l(xk+i) = l̄(θk+i), with l̄(.) given analytically.
• Those cues are assumed scalar, i.e., zk+i ∈ R, Rk+i ∈ R.

3 SKETCH OF THE MATHEMATICAL SOLUTION
As aforementioned, the one-step-ahead (or “greedy”) problem is equivalent to N = 1. As it will be shown
to be significantly easier than the general N-step-ahed problem (N > 1), it deserves a specific treatment.
Recall that the entropy h(N (x; x̄,P)) of the Gaussian pdf N (x; x̄,P) is an affine increasing function of
det(P), so that, for the purpose of its optimization it will be replaced (with a slight notation misuse) with
det(P). The higher the value of det(P), the higher the volume of the 99%-probability confidence ellipsoid
of N (x; x̄,P).

3.1 One-step-ahead problem
In view of the Unscented Kalman filter (UKF) equations [10], when starting from p(xk|z1:k)≈N (xk; x̂k|k,Pk|k)
the next state filtering pdf comes as p(xk+1|z1:k+1) ≈ N (xk+1; x̂k+1|k+1,Pk+1|k+1), with Pk+1|k+1 indepen-
dent of zk+1. Hence, the expectation Ezk+1|z1:k

h(xk+1|z1:k+1) of the entropy h(xk+1|z1:k+1) of p(xk+1|z1:k+1)
amounts to h(xk+1|z1:k+1). Furthermore, if the dynamic noise covariance Qk is neglected, then the optimum
control is [7, 5]

ū⋆1 = (T ∗
yk,T

∗
zk,φ

∗
k ) = argmin

ū1=uk=(Tyk,Tzk,φk)

((Tyk,Tzk),φk)∈(T ×R)N

J1(ū1), with J1(ū1) = h(xk+1|z1:k+1) = K′
1 −h(zk+1|z1:k)︸ ︷︷ ︸

=:F1(ū1)

and K′
1 independent of ū1,

(3)

where
• T and R term the admissible translation and rotation domains (henceforth, respectively, a disk

centered on 0 of given radius for the 2D translation and a 1D line segment centered on 0 for the
rotation);

• h(zk+1|z1:k) stands for the entropy of the next measurement prediction pdf p(zk+1|z1:k); it depends
on ū1 = uk = (Tyk,Tzk,φk) and is thus denoted by F1(ū1).
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If the Gaussian approximation p(zk+1|z1:k) ≈ N (zk+1; ẑk+1|k,Sk+1|k) produced by the UKF is used for
p(zk+1|z1:k), then the information-based one-step-ahead optimum control simplifies as

ū⋆1 =(T ∗
yk,T

∗
zk,φ

∗
k )= arg max

((Tyk,Tzk),φk)∈T ×R
F1(Tyk,Tzk,φk), with F1(Tyk,Tzk,φk) = h(zk+1|z1:k)≈ logdet(Sk+1|k).

(4)
Therein, the criterion F1(ū1) comes as a combination of the image, through the function l(.) entailed in the
exploratory audio cues model (2), of sigma-points of the next state filtering pdf p(xk+1|z1:k). These sigma-
points are themselves functions of the decision variable ū1. Hence, though the genuine F1(ū1) has no closed
form, it can easily be approximated. So can its gradient, through Taylor expansion. Consequently, (3)-(4)
can be solved by means of the projected gradient algorithm.

3.2 N-step-ahead problem
The corresponding information-based optimum control input sequence is given by [6, 5].

ū⋆N = u∗k : u∗k+N−1 = arg min
ūN=uk:uk+N−1

ūN∈(T ×R)N

JN(ūN), with JN(ūN) = K′
N −h(zk+1|z1:k)︸ ︷︷ ︸

=:F1(ū1)

−
N

∑
i=2

Ezk+1:k+i−1|z1:k

[
h(zk+i|z1:k+i−1)

]
︸ ︷︷ ︸
=:Fi(ūi,zk+1:k+i−1)

(5)

and K′
N independent of ūN , where the entropy h(zk+i|z1:k+i−1) of the i-step-ahead measurement prediction

pdf p(zk+i|z1:k+i−1) depends on the sequence ūi of the i next control inputs to be determined and on the
i−1 future exploratory cues zk+1:k+i−1, so that it is denoted by Fi(ūi,zk+1:k+i−1). Its conditional expectation
over these yet unknown virtual measurements must be evaluated, what makes the N-step-ahead problem
significantly harder.

A way out is to use the approximation [19]

∫
p(zk+1:k+i−1|z1:k)Fi(ūi,zk+1:k+i−1)dzk+1:k+i−1 ≈

2(i−1)

∑
j=0

w jFi(ūi,Z j,i(ūi−1)), (6)

where {Z j,i} are the 2(i−1)+1 sigma-points, deterministically drawn by the Unscented Transform (UT),
of the Gaussian approximation N (zk+1:k+i−1; ẑk+1:k+i−1|k,Sk+1:k+i−1|k) of the joint measurement predic-
tion pdf p(zk+1:k+i−1|z1:k), and {w j} are the corresponding UT weights. N (zk+1:k+i−1; ẑk+1:k+i−1|k,Sk+1:k+i−1|k)
is readily obtained by means of the UT and the exploratory audio cues model (2) on the basis of the Gaus-
sian approximation N (xk+1:k+i−1; x̂k+1:k+i−1|k,Pk+1:k+i−1|k) of the joint state prediction pdf p(xk+1:k+i−1|z1:k).
N (xk+1:k+i−1; x̂k+1:k+i−1|k,Pk+1:k+i−1|k) itself can be obtained from N (xk; x̂k|k,Pk|k) ≈ p(xk|z1:k) by re-
peated application of the prior dynamics (1) and use of the UT. Hence, x̂k+1:k+i−1|k, Pk+1:k+i−1|k, ẑk+1:k+i−1|k,
Sk+1:k+i−1|k depend on the sequence of decisions variables ūi−1 = uk : uk+i−2. So do the sigma-points
{Z j,i}, which are denoted {Z j,i(ūi−1)}. In summary, the information-based N-step-ahead optimum control
simplifies as

ū⋆N = u∗k : u∗k+N−1 = arg max
ūN∈(T ×R)N

F1(ū1)+
N

∑
i=2

2(i−1)

∑
j=0

w jFi(ūi,Z j,i(ūi−1)). (7)

In spite of the apparent simplicity of (7), it must be kept in mind that for each index i in {2, . . . ,N}, and for
each jth sigma-point Z j,i(ūi−1) associated to i, Fi(ūi,Z j,i(ūi−1)) is the value

[
Fi(ūi,zk+1:k+i−1)

]
zk+1:k+i−1=Z j,i(ūi−1)

of the entropy Fi(ūi,zk+1:k+i−1) = h(zk+i|z1:k+i−1) of p(zk+i|z1:k+i−1), when evaluated at the sequence of
virtual measurements zk+1:k+i−1 = Z j,i(ūi−1). For each sigma-point Z j,i, which implicitly depends on the
sequence ūi−1 of decision variables under optimization, a Gaussian approximation

[
p(zk+i|z1:k+i−1)

]
zk+1:k+i−1=Z j,i(ūi−1)

≈
N (zk+i; ẑ(k+i|k+i−1), j,S(k+i|k+i−1), j) can be produced by a UKF, leading to Fi(ūi,Z j,i(ūi−1))≈ logdet(S(k+i|k+i−1), j),
in the vein of (4). The obtained approximation of the genuine criterion of (5) is quite impossible to write
by hand. Nevertheless it can be programmed, and even if Taylor expansions are hardly conceivable, auto-
matic differentiation in the framework of dual numbers algebra [9] is still possible to get its gradient. This
enables again a solution by means of the projected gradient algorithm.
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Figure 3: Geometric interpretation of h(zk+1|z1:k) for various motions, when using ITD-like exploratory
cues.

3.3 Qualitative insights
Commonsense characterization of one-step-ahead (greedy) control optimality can be established. Figure 3-
(a) displays the binaural head at time k with its attached frame, the genuine position of the source E (yel-
low), as well as the 99%-probability confidence ellipse (grey) corresponding to p(xk|z1:k)≈N (xk; x̂k|k,Pk|k).
The set of radial lines rigidly linked to the head and intersecting at its center are the loci of the head-to-
source positions which correspond to evenly-spaced values of the exploratory measurement at time k.
These drawn on the picture typically correspond to the Woodworth-Schlosberg approximation of ITDs: the
locus z = 0 is supported by −→zRk; it splits the 2D plane into two halves onto which z keeps the same sign and
evolves monotonically; around −→zRk is the auditory fovea, for which the sensitivity of z to the head-to-source
position is maximum.

Let the motor command uk applied to the head between times k and k+ 1 correspond to a clockwise
rotation, and consider the situation at k+ 1 (Figure 3-(b)). The blue 99%-probability confidence ellipse
corresponds to p(xk+1|z1:k) ≈ N (xk+1; x̂k+1|k,Pk+1|k). The green cone represents the 99%-probability
confidence set of the pdf p(xk+1|zk+1), i.e., the spatial uncertainty sector on the head-to-source position
extracted from a single hypothetical measurement zk+1. As the measurement noise (co)variance Rk+1 is
constant, the denser are the iso-z radial lines (which are still rigidly linked to the head) around zk+1, the
smaller is the extent of this confidence cone. The red 99%-probability confidence ellipse corresponds to
the next state filtering pdf p(xk+1|z1:k+1) ≈ N (xk+1; x̂k+1|k+1,Pk+1|k+1) obtained by fusing the two last
pdfs. As aforementioned, the entropy of p(xk+1|z1:k+1) is all the smaller as the volume of this ellipse is
low. Heuristically, the entropy of the next measurement prediction pdf p(zk+1|z1:k) is all the bigger (resp.
smaller) as the number of iso-z radial lines intersected by the blue 99%-probability confidence ellipse of
p(xk+1|z1:k) is high (resp. low).

By comparing Figures 3-(b)-(c)-(d), the following heuristical rules of thumb can drawn so that uk is
optimum when using approximate Woodworth-Schlosberg ITDs as exploratory audio cues (virtual mea-
surements): while keeping into its admissible set T ×R, uk must

• orient the auditory fovea, rather than the interaural axis, towards the confidence ellipsoid associated
to the initial belief p(xk|z1:k);

• drive the head center on the line supporting the minor axis, rather than the major axis, of this ellipsoid;
• make the head get closer to this ellipsoid;

so that after the head motion this ellipsoid intersects as many iso-z radial lines as possible.

4 RESULTS WITH DISTINCT BINAURAL CUES
An experimental setup comprising a KEMAR head-and-torso-simulator mounted on a nonholonomic mo-
bile platform and endowed with a motorized neck has been designed in such a way that its binaural head is
omnidirectional. Simulations and live tests were conducted, which implement the Woodworth-Schlosberg
approximation of ITDs for a spherical head of same average radius. The simulations can be considered re-
alistic, as they rely on the binaural simulator developed in the framework of the EU FP7 Two!Ears project
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Figure 4: One-step-ahead optimum head motion with Woodworth-Schlosberg ITD exploratory cues
(Case 2)

Figure 5: One-step-ahead optimum head motion with Woodworth-Schlosberg ITD exploratory cues

Figure 6: One- (left) vs Five- (right) step-ahead optimum head motion with Woodworth-Schlosberg ITD
cues

(http://docs.twoears.eu/en/latest/binsim/) which can faithfully emulates the sensed binaural
signals. As aforementioned, the Woodworth-Schlosberg ITDs iso-z loci looks like the radial lines sketched
on Figure 3-(a). Due to space reasons, only simulated results with such virtual measurements are presented.

Nevertheless, exact farfield ITDs and ILDs for a spherical binaural head have also been implemented in
simulation. To this aim, the developments onto Legendre polynomials of the farfield left and right HRTFs
as well as their derivatives have been carefully implemented so as to keep within predefined tolerances.
The results with farfield spherical ITDs look like these sketched below for their Woodworth-Schlosberg
approximation. Farfield ITDs constitute relevant exploratory cues in view of their limited sensitivity to the
assumed source frequency and because they constitute a convenient approximation of the genuine range-
dependent ITDs for an important set of head-to-source positions. However, controlling the head motion
on the basis of virtual farfield ILD mesurements can give rise to bad results if precautions are not taken.
Unsurprisingly, iso-z loci of genuine spherical ILDs strongly depend on the assumed source frequency.
Moreover, their sensitivity to the source range is such that for a broad interval of source azimuths outside
the auditory fovea, they may strongly differ from iso-z radial lines of their farfield limits. Last, farfield
ILDs do not vary monotonically on each side of the head, so that they may lead to quite surprising and
unefficient motions in some circumstances.

Figures 4 and 5 display the one-step-ahead optimum head motion. It can be seen that the obtained
behavior of the head complies with the heuristic rules of thumb sketched in Section 3.3. Notice that
Figure 4 corresponds to an advantageous initial belief such that the further fusion with measurements is
very efficient.

Figure 6 compares the greedy strategy with the 5-step optimum head motion. It can be seen that the
second policy leads to a more “cautious” behavior of the head, in that it tends to first rotate and then follow
a straight path. The greedy policy can be transiently better in terms of performance (information criterion),
but is less efficient in the long term.

5 CONCLUSION AND PROSPECTS
The information-based feedback for binaural localization outlined in this paper aims at minimizing the
expected entropy of the head-to-source belief at the end of a receding N-element horizon. A tractable
approximate solution is obtained through the unscented transform, automatic differentiation, and the pro-
jected gradient algorithm. With no specific code optimization, it can run in real time on the binaural mobile
robot for small N’s. It has been extended to a multi-objective problem similar to [18]. Prospects consist
in the incorporation of this stochastic and optimization method with machine learning in order to consider
multiple sources in unanechoic/dynamic environments.
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