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Sergei Kuksin∗ Armen Shirikyan†
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Abstract

The paper deals with the problem of long-time asymptotic behaviour
of solutions for classes of ODEs and PDEs, perturbed by stationary noises.
The latter are not assumed to be δ-correlated in time, so that the evolu-
tion in question is not necessarily Markovian. We first prove an abstract
result which imply the mixing for random dynamical systems satisfying
appropriate dissipativity and controllability conditions. It is applicable
to a large class of evolution equations, and we illustrate it on the ex-
amples of a chain of anharmonic oscillators coupled to heat reservoirs,
the 2d Navier–Stokes system, and a complex Ginzburg–Landau equa-
tion. Our results also apply to the general theory of random processes
on the 1d lattice and allow one to get for them results related to Do-
brushin’s theorems on reconstructing processes via their conditional dis-
tributions. The proof is based on an iterative construction with quadratic
convergence. It uses the method of Kantorovich functional, introduced
in [KPS02, Kuk02, Kuk06] in the context of randomly forced PDEs, and
some ideas suggested in [Shi15, KNS20] to prove mixing with the help of
controllability properties of an associated system.
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0 Introduction

In a Hilbert space H of finite or infinite dimension, we consider smooth discrete-
time and continuous-time random dynamical systems, stirred by bounded sta-
tionary stochastic processes. Our goal is to study the long-time asymptotic
behaviour of their trajectories. That is, we examine random dynamical systems
(RDS) of the form

uk = S(uk−1, ηk), k ≥ 1; u0 = v; uk ∈ H ; (0.1)

u̇(t) = F (u(t), η(t)), t ≥ 0; u(0) = v; u(t) ∈ H. (0.2)

Here {ηωk , k ∈ Z} and {ηω(t), t ∈ R} are bounded stationary processes in a
Banach space E, and the mappings S : H × E → H and F : D × E → H
are C2-smooth (in the sense of Fréchet), where D ⊂ H is a suitable dense
subspace. We begin with reducing Equation (0.2) to a discrete-time system of
the form (0.1). To do it, we generalise the setting a bit and assume that the
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random input ηω(t) entering (0.2) is a bounded process in E that is stochastically
T -periodic for some T > 0; that is,

D
(
η(·)

)
= D

(
η(·+ T )

)

(so T is any positive number if the process η is stationary). We also assume that,
for any v ∈ H and η ∈ L2

loc(R+;E), Equation (0.2) has a unique solution u(t)
in an appropriate functional class, and that the mapping

ST : H × L2(0, T ;E) → H, (v, η(0,T )) 7→ u(T )

is C2-smooth, and its first- and second-order derivatives are bounded on bounded
subsets. Let us define intervals Jk = [(k − 1)T, kT ) for k ∈ Z and denote

ηk := η
∣∣
Jk

∈ L2(Jk;E). (0.3)

We naturally identify intervals Jk with JT := [0, T ) and spaces L2(Jk;E) with
L2(JT ;E) =: Ê. Then {ηk, k ∈ Z} becomes a stationary process in Ê, and if we
set uk = u(kT ) for k ≥ 0, then the sequence {uk, k ≥ 0} satisfies Equation (0.1)
with S = ST and E replaced by Ê. Thus, we have reduced the problem of long-
time behaviour of trajectories of (0.2) to that for some system (0.1). So below in
Introduction, we shall talk about systems (0.1), and only at the end shall discuss
some applications to nonlinear PDEs which can be written as systems (0.2).

System (0.1)

We assume that K := suppD(ηk) is a compact subset of E and that some
compact set X ⊂ H is invariant for system (0.1); that is, S(X × K) ⊂ X . In
practice the compactness of K is a mild restriction after we assumed that the
process η is bounded, while an invariant compact set X ⊂ H exists if (0.1) is a
dissipative finite-dimensional system, or if it comes from a system (0.2) which is
a well-posed nonlinear parabolic PDE; see the applications discussed at the end
of Introduction. Our goal is to prove that system (0.1) is exponentially mixing
in the dual-Lipschitz distance (also known as the Kantorovich–Rubinstein dis-
tance).1 That is, there exists a probability measure µ on X such that, for any
initial state v ∈ X , the trajectory {uk} of (0.1) satisfies

‖D(uk)− µ‖∗L ≤ Ce−γk, k ≥ 0, (0.4)

for some positive constants C and γ, independent of v.2 If the random vari-
ables {ηk} are i.i.d., then system (0.1) defines a Markov process in H . The

1Recall that the distance between two (Borel) probability measures µ and ν equals the dual-
Lipschitz norm of µ−ν, defined as ‖µ−ν‖∗

L
= sup |〈f, µ〉−〈f, ν〉|, where the supremum is taken

over all Lipschitz functions on X such that |f | ≤ 1 and Lip(f) ≤ 1. This distance metrises
the weak convergence of measures; in particular, relation (0.4) implies that D(uk) ⇀ µ as
k → ∞; e.g., see [KS12, Section 1.2.3].

2See below the first item of Remark 0.1 for a discussion of relation of this notion with the
traditional mixing for stationary random processes.
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mixing in Markov systems has a long history and goes back to the thirties of
the last century. Staring from the pioneering works of Kolmogorov [Kol37] and
Doeblin [Doe38, Doe40] various methods were developed to prove it in one or
another form, similar to (0.4); see the books [Kha12, MT93, Bor98, KS12]. But
if the random variables {ηk} and {η(t)} are not independent, then the dynam-
ics in systems (0.1) and (0.2) are not Markovian, and their long time behaviour
remains essentially an open problem, which was studied only for some spe-
cific models. When system (0.2) is a chain of anharmonic oscillators, coupled to
heat baths, Eckmann–Pillet–Rey-Bellet [EPR99] used a Markovian reduction to
prove, in some special cases, the convergence in law of its solutions to a unique
stationary measure (see also Jakšić–Pillet [JP97, JP98] for general Hamiltonian
systems coupled to one heat bath). A similar idea was used by Hairer [Hai05]
and Hairer–Ohashi [HO07] for dissipative SDEs driven by a fractional Brown-
ian motion. On the other hand, for some classes of non-Markovian systems that
arise in applied probability and are rather different from (0.1) and (0.2), the
mixing is known, probably, starting with Sevastianov’s work [Sev57]; see also
the paper [Ver17] and the references therein.

Our goal in this work is to obtain a theorem which establishes the mix-
ing (0.4) for a large class of systems (0.1) in a phase space H of finite or infinite
dimension (which includes the systems that Equations (0.2) may be reduced
to). To do that, apart from the compactness assumption on the support K
of D(ηk) and on the invariant set X , we now impose two more restrictions on
the process {ηk} and two restrictions on the mapping S. They are simplified
versions of Hypotheses (GD), (ALC), (DLP′) and (SRZ), stated in Section 2.1.

Assumptions on the process {ηk}

We recall that η := {ηk}k∈Z is a stationary process in the Banach space E
such that suppD(ηk) = K is a compact subset of E. For l ∈ Z, we denote
by ηl = (. . . , ηl−1, ηl) the l-past of the process, so that ηl is a random element
ofKZ− , where Z− = Z\N. We provide the product spaceEZ− with the Tikhonov
topology, which can be metrised on its compact subset K := KZ− with the help
of the distance

d(ξ, ξ′) =

0∑

k=−∞

ιk‖ξk − ξ′k‖E , ξ = (ξk, k ∈ Z−), ξ′ = (ξ′k, k ∈ Z−), (0.5)

where ι > 1 is an arbitrary fixed number. For any ξ ∈ K, consider the con-
ditional distribution P{η1 ∈ · |η0 = ξ} =: Q(ξ; ·) of η1 under the condition
that the 0-past is fixed: η0 = ξ. This is a probability measure on E, depend-
ing on ξ ∈ K and supported by K (e.g., see [Dud02, Section 10.2]). For any
integer m ≥ 1, the measures Q(ξ; ·) allow one to calculate the conditional dis-
tribution Qm(ξ; Γ) = P

{
(η1, . . . , ηm) ∈ Γ |η0 = ξ

}
, where Γ ∈ B(Em) (see

relation (2.6) in Section 2.1). For ξ ∈ K, let {ηj(ξ), j = 1, 2, . . .} be a process
in K such that, for any m ≥ 1,

D
(
η1(ξ), . . . , ηm(ξ)

)
= Qm(ξ; ·).
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We impose on the process η the following two restrictions:

(η1) If dimE < ∞, then the measures {Q(ξ; ·), ξ ∈ K} have densities, so that

Q(ξ; dx) = pξ(x) dx, (0.6)

where the function p : K×X → R is Lipschitz-continuous. If E is a Hilbert

space with an orthonormal basis basis {fl}, then ηk is representable in the

form

ηk =

∞∑

j=1

rlη
l
kfl, (0.7)

where the numbers rl > 0 are such that
∑

|rl| < ∞, and {ηlk, k ∈ Z} are

independent real-valued stationary processes (indexed by the integer l ≥ 1)
such that |ηlk| ≤ 1, and the corresponding conditional laws Ql(ξ; ·) are

representable in the form (0.6) with some Lipschitz-continuous functions.

Let us emphasise that no uniformity in l is required for the Lipschitz con-
stants for the densities of the conditional laws Ql(ξ; ·). For a general form of
this condition when E is a Banach space, see Hypothesis (DLP′) in Section 2.1.

The second assumption on the process η requires that it stays close to zero
with positive probability, for every past:

(η2) For any n ∈ N and δ > 0 there exist s ∈ N and ε > 0 such that

P{‖ηj(ξ)‖ < δ, j = s+ 1, . . . , s+ n} ≥ ε for every ξ ∈ K.

Crucial assumption (η1) means not only regularity of the conditional dis-
tributions of the process η, but also that it forgets the past exponentially fast.
Indeed, definition (0.5) of the distance on K implies that pξ(x) regarded as a
function of ξ−l is Lipschitz-continuous with a constant of order ι−l. Moreover,
in Section 3.2, we show that the results of our work imply that every process sat-
isfying (η1) and (η2) is mixing in some sense that is weaker than it is customary
in ergodic theory, and which we call feeble mixing.

Condition (η1) is close to those used by Dobrushin in his work [Dob68,
Dob70] on reconstructing the distribution of a lattice random field from its
conditional distributions. The results of the above papers immediately imply
that every family of measures {Q(ξ; ·), ξ ∈ K} as in (η1) is a system of condi-
tional distributions of a discrete-time stationary process η. However, they do
not ensure the uniqueness of the law of η.3 In this regard, let us note that, in
Theorem 3.2, we derive from our results that, if in addition to (η1) a family
of measures {Q(ξ; ·)} satisfies (η2), then the law of the process η is defined
uniquely.

3Dobrushin addressed the uniqueness problem in his later works devoted to Gibbs systems
(e.g., see [Dob74]). To the best of our knowledge, those results were not extended to random
processes.
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Assumptions on the mapping S

We recall that the map S : H ×E → H is C2-smooth and bounded on bounded
sets, together with its derivatives of the first and second order. We assume in
addition that it possesses the following two properties:

(S1) There is k ≥ 1 and a number a ∈ (0, 1) such that the trajectory of the free

system (0.1) with η1 = η2 = · · · = 0 satisfies the inequality

‖uk‖ ≤ a‖v‖ for all v ∈ H.

Assumption (S1) implies, in particular, that the origin is a stable equilib-
rium for the free system. We state the second assumption in a weaker and
simplified form, sufficient for the validity of the main theorem, referring the
reader to (ALC) in Section 2.1 for its complete version.

(S2) There exist a Hilbert space V , compactly and densely embedded into H ,

and an open set O ⊂ H × E containing X × K such that S defines a

C1-smooth mapping from H × E to V , and for any (u, η) ∈ O the linear

operator DηS(u, η) : E → H has a dense image.

Note that if dimH < ∞, then Assumption (S2) means that, for (u, η) ∈ O,
the mapping DηS(u, η) : E → H is surjective. Both in finite- and infinite-
dimensional cases, this type of properties of system (0.1) often appears in the
control theory and may be verified by well-known arguments; see examples in
Section 4.

The main result

The statement below is a simplified version of the main result of this paper,
proved in Sections 1 and 2:

Main Theorem. Let us assume that Hypotheses (η1), (η2), (S1), and (S2) are
fulfilled. Then there is a Borel probability measure µ on H such that suppµ ⊂ X
and, for any initial condition v which is a random variable in X independent
from {ηk, k ≥ 1}, inequality (0.4) holds.

In Section 2.3, we show that µ is a stationary measure for system (0.1) in
the sense that there is an X-valued stationary process {ûk, k ≥ 0}, which is a
weak solution of the equation in (0.1) 4 such that D(ûk) ≡ µ. We also prove that
the attraction property for µ established in the Main Theorem extends to the
convergence in distribution of the whole trajectories: if v is as in the theorem
and {uk} is the corresponding trajectory of (0.1), then for any s ∈ N

D(uk, . . . , uk+s) ⇀ D(û0, . . . , ûs) =: µs+1 as k → ∞. (0.8)

4See Section 1 for a definition of this notion.
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Remark 0.1. 1. Let {ûk} be a weak stationary solution of (0.1) and let F0 be
the σ-algebra generated by the initial state û0. Take any s ∈ N and any
bounded continuous function g : Xs+1 → R. Then, by (0.8) and the Markov
property, we have

E
{
g(ûk, . . . , ûk+s)

∣∣F0

}
=

∫

Es+1

g(~w)µs+1(d~w) + o(1) as k → ∞.

It follows that if f : X → R is another bounded continuous function, then

E
(
f(û0)g(ûk, . . . , ûk+s)

)
= Ef(û0)Eg(ûk, . . . , ûk+s) + o(1) as k → ∞.

If this relation was valid for the indicator functions f and g of all Borel sets
in X and Xs+1, then the stationary process {ûk} would have been mixing
in the sense of classical ergodic theory. Thus, the convergence relations (0.4)
and (0.8) can be characterised as a mixing with a smaller set of observables .
This type of feeble mixing has been actively studied over the last thirty years;
e.g., see [DDL+07]. It is known, for example, that similarly to the classical
mixing, it implies both SLLN and CLT for the process {ûk}; see [DDL+07],
Section 4.1 in [KS12], and Subsection 3.2.

2. In fact, our proofs do not use the stationarity of the process {ηk} enter-
ing (0.1). They also apply in the case when the conditional distribution
Q(ξ; ·) of ηl+1, given the past ηl = ξ, depends on l, but the bounds on
characteristics of decompositions (0.6) and (0.7) in (η1) and the choice of
constants s and ε in (η2) may be made uniform in l.

3. If {ηk} are independent random variables, then the Main Theorem is close to
the result of paper [KZ20] (which is a simplified version of the work [KNS20]
in which a stronger statement is proved).

4. In the case when the phase space H is finite-dimensional, convergence (0.4)
can be strengthen to a similar inequality for the total variation metric. This
result can be derived from the Main Theorem and will be presented in the
subsequent article [KS25].

5. When applied to systems (0.2), our results allow one to treat nonlinear PDEs
which depend nonlinearly on stationary processes. This is in contrast with
the theory of stochastic PDEs, where the nonlinear PDEs are driven by
random forces that as functions of time are white noises and therefore should
enter the equation linearly (since nonlinear functions of such noises are not
well defined).

6. In the interesting and important case of stochastic PDEs with conservative
polynomial nonlinearities, existing techniques permit one to establish expo-
nential mixing only for equations with quadratic nonlinearities. They also
may apply to an equation with cubic conservative nonlinearity if it allows for
very strong a priori estimates. In the latter case, the existing techniques give
only mixing with an algebraic rate. The reason for this restriction comes
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from the Foiaş–Prodi inequality, used to prove the mixing in all such sys-
tems.5 Consider, for example, paper [KN13]. It establishes the mixing for
the cubic CGL equation (0.18) with µ = 0 and any d, when η(t, x) is a ran-
dom field, smooth in x and white in t. There, a crucial step of the proof is a
Foias–Prodi type estimate at the bottom of p. 415, which involves quadratic
exponential moments of the norms of solutions. If the nonlinearity in equa-
tion was of degree r > 3 rather than cubic, then the estimate would involve
exponential moments of solutions of degree r − 1 > 2. They are “hopelessly
unbounded” since it is impossible to believe that norms of solutions for an
SPDE with a conservative nonlinearity allow for better estimates then those
for norms of the Wiener process whose time-derivative drives the equation.

About the proof

It is well known that any random process becomes Markovian if we add to the
process its past. In our case this thesis implies the following (cf. [BF92, EPR99,
Hai05, HO07] and [Bor98, Section 13]). Recalling that ηk = (ηl, l ≤ k) ∈ EZ− ,
for a trajectory {uk, k ≥ 0} of (0.1) we denote

Uk = (uk,ηk) ∈ H × EZ− =: H.

Then {Uk, k ≥ 0} is a trajectory of the following lifting of system (0.1) in H to
a system in H:

Uk = S (Uk−1, ηk), k ≥ 1, (0.9)

U0 = (v,η0), (0.10)

where
S : H× E → H,

(
(u,η), ξ

)
7→

(
S(u, ξ), (η, ξ)

)
.

Since ηk ∈ K a.s., Equation (0.9) defines a stochastic system in X = X × K,
and trajectories of (0.1) in X define trajectories of (0.9), (0.10) in X. The
natural projection ΠX : X → X sends these trajectories of (0.9), (0.10) back
to trajectories of (0.1). It is not hard to see how to define properly trajectories
of (0.9) with any initial data U0 ∈ H, and that the corresponding dynamics in H

is Markovian; see Section 1.1. So it remains to show that the obtained Markov
process in H is exponentially mixing with some stationary measure µ since then
(0.4) holds with µ = (ΠX)∗µ. But the Markov process, defined by (0.9), is
rather complicated because the phase space H is “much bigger” than H , and
the resulting process is not strong Feller. Accordingly, existing approaches do
not imply the mixing property for system (0.9). Below, to establish the mixing,
we use coupling, combined with the method of Kantorovich functional suggested
in [KPS02, Kuk02] (also see in [Kuk06, KS12]), and enrich it with some ideas
from our works [Shi15, KNS20, KZ20, Shi21].

5with the exception of the stochastic Burgers equation, which possesses some very special
extra properties.
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The proof goes in two steps. Firstly, in Section 1, we prove Theorem 1.3,
which establishes the mixing for a class of Markov systems that includes (0.9)
as a particular case. The proof uses Newton’s method of quadratic convergence.
Due to the complexity of the situation, the method provides only exponential
(rather than super-exponential) rate of convergence to a limit: the power of the
method is used to cope with the fact that available estimates are rather weak.
Secondly, in Section 2, we verify in Theorem 2.4 that if Hypotheses (η1), (η2),
(S1), and (S2) hold for system (0.1), then the extended system (0.9) meets the
conditions of Theorem 1.3. This proves the Main Theorem stated above.

Applications

The Main Theorem applies to Equations (0.1) obtained by the discrete-time
reduction from various ODEs and PDEs depending on bounded stationary pro-
cesses. To show this, we first construct in Section 3.3 a large class of T -periodic
random processes η(t), taking values in a Hilbert space E of finite or infinite
dimension and having locally square-integrable trajectories, such that the cor-
responding path-valued stationary process {ηl} in L2(0, T ;E) defined by (0.3)
satisfies (η1) and (η2). Next, in Section 4, we give various applications of our
results to equations driven by additive stationary processes possessing the above
properties.

In Section 4.1, we examine a chain of n anharmonic 1d oscillators with
coordinates qj , momenta pj (1 ≤ j ≤ n), and a smooth Hamiltonian

H(p, q) =

n∑

j=1

p2j
2

+ V (q), (p, q) = (p1, . . . , pn, q1, . . . , qn) ∈ R
2n, (0.11)

where V is a C2-smooth function. At sites j = 1 and j = n, the chain is coupled
with heat reservoirs which affect the 1st and nth particles by adding to the
corresponding equations terms −γ1p1+ζ1(t) and −γnpn+ζn(t). Here γ1, γn > 0
are damping coefficients and ζ1, ζn are statistically 1-periodic processes as above
with E = R and T = 1. We shall assume that

|ζ1(t)|, |ζ2(t)| ≤ c∗ for almost every t ≥ 0, (0.12)

where c∗ > 0 is a number. Let us set ζ = (ζ1, ζn) and denote by K the support
of the process {ζ(t), 0 ≤ t ≤ 1} in the space L2(0, 1;R

2). Let v(p, q) be the
vector field of the chain of oscillators in the case when ζ1 = ζ2 = 0. Roughly
speaking, we impose the two hypotheses below:

Global stability. The vector field v(p, q) has a globally asymptotically stable

equilibrium at (0, 0) and admits a coercive6 Lyapunov function L(p, q)
such that

〈
∇L(p, q), v(p, q)

〉
+ 2c∗|∇L(p, q)| ≤ −δL(p, q) (0.13)

6This means that L(p, q) → +∞ as |(p, q)| → +∞.
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outside a compact set in R2n, where 〈·, ·〉 stands for the standard inner

product, and δ > 0 is a number.

This condition implies that there is a compact set X ⊂ R2n which, for every ω,
is invariant and absorbing for the inhomogeneous dynamics under the study.

Linearised controllability. For every initial condition at t = 0 in X and

every curve ζ(·) ∈ K, the system linearised at the corresponding solution

is linearly controllable at t = 1.

In Section 4.1, we prove Theorem 4.2, which shows that the above properties are
sufficient for the system in question to be mixing. We also provide an example
when those conditions are satisfied.

It should be noted that chains and networks of anharmonic oscillators and
rotators have been the focus of intensive research for the last thirty years; see
the papers [EPR99, EH00, CE16, CEHR18, Raq19, NR21] and the references
therein. The problem in question consists of a system of ODEs driven by Brow-
nian or Poissonian noises, which are unbounded processes in time. In those
works, a sufficient condition for mixing is the existence of a Lyapunov function
in the stochastic sense and the Hörmander bracket condition. In our setting,
we deal with a bounded noise and require the existence of a Lyapunov function
in the deterministic sense (which may be easier to construct; see [DLS24]) and
controllability of a family of linearised equation, which is different from, but
related to the Hörmander condition.

Next, in Section 4.2, we deal with the 2d Navier–Stokes system, which is
considered in a smooth bounded domain D ⊂ R2 and is subject to an external
random force:

∂tu+ 〈u,∇〉u − ν∆u+∇p = η(t, x), div u = 0, x ∈ D. (0.14)

Here u = (u1, u2) and p are unknown velocity field and pressure, ν > 0 is
the viscosity, and η is a random force, described below. Equations (0.14) are
supplemented with the no-slip boundary condition

u
∣∣
∂D

= 0 (0.15)

and with an initial condition for the velocity

u(0, x) = u0(x). (0.16)

Let us denote by H the standard space of square-integrable divergence-free vec-
tor field onD whose normal component vanishes on the boundary ∂D (see (4.12)).
Then, under mild hypotheses on η, for any u0 ∈ H , problem (0.14), (0.16) has
a unique H-valued solution u(t), and our goal is to investigate its long-time
asymptotics.

Let {ej, j ≥ 1} be an orthonormal basis in H , formed by the eigenfunctions
of the corresponding Stokes operator. We assume that η(t) is a random process
in H of the form

η(t) =

∞∑

j=1

bjη
j(t)ej ,

10



where the sequence {bj > 0} converges to zero sufficiently fast and {ηj} are
i.i.d. statistically 1-periodic real process such that the corresponding stationary
process in L2(0, 1;R) satisfies (η1) and (η2); see Section 3.3.3. In Theorem 4.4,
we show that the Main Theorem applies to (0.14) and therefore convergence (0.4)
holds for the laws of its solutions.

The Main Theorem also applies if η(t) in (0.14) is a kick force of the form

η(t, x) =

∞∑

k=1

ηk(x)δ(t − k), ηk(x) =

∞∑

j=1

bjη
j
kej(x), (0.17)

where the sequence of positive numbers {bj} converges to zero sufficiently fast,

and for j = 1, 2, . . . the real-valued random variables {ηjk, k = 1, 2, . . . } form
i.i.d. bounded stationary processes. If they satisfy Hypotheses (η1) and (η2),
then the Main Theorem applies in this situation as well.

Finally, in Section 4.3, we consider the following complex Ginzburg–Landau
equation in a smooth bounded domain D ⊂ Rd, with the Dirichlet boundary
condition:

∂tu− (ν + iµ)∆u+ i|u|2su = η(t, x), x ∈ D. (0.18)

Here ν and µ are positive numbers and s ≥ 1 is an integer such that s ≤ 2/(d−2)
if d ≥ 3. If the external force η is a statistically 1-periodic random process in a
suitable Sobolev space of functions of x, then as we show in Theorem 4.5, the
Main Theorem also applies to the solutions of this equation.
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Notation

We write Z (Z+, Z−) for the set of (non-negative, non-positive) integers, denote
by BE(a, r) an open r-ball in a Banach space E, centred at a, and write BE(r)

if a = 0. For an integer m ≥ 1, a vector ~ξm = (ξ1, . . . , ξm) ∈ Em, and a number

δ > 0, we denote by Oδ(~ξm) the set BE(ξ1, δ)×· · ·×BE(ξm, δ). When E is finite
dimensional, we write ℓ for the Lebesgue measure on E. By D(η) we denote the
law of a random variable η, and ⇀ signifies the weak convergence of measures.

If X is a Polish space, then we write B(X) for its Borel σ-algebra and P(X)
for the set of probability measures on (X,B(X)). Unless otherwise stated,
spaces P(X) are provided with the weak topology. Borel-measurable maps
from X to another measurable space are often called just measurable, and a
random field {ζωx , x ∈ X} is said to be measurable if it define a measurable map
(ω, x) → ζωx from Ω×X to X . Given a subset Q ⊂ X , we denote by Qc = X \Q
its complement, by 1Q its indicator function, and by Q its closure.
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1 A class of random dynamical systems

1.1 Description of the model

Let X be a compact metric space with a distance dX, E be a separable Banach
space, and (Ω,F ,P) be a complete probability space. Consider a transition
probability {P(U ; ·)}U∈X from X to E.7 In what follows, P(U ; ·) plays the
role of the law of a random input (or noise) acting on a dynamical system in the
space X, and we shall always assume that it satisfies the following hypothesis:

(DN) Driving noise. The mapping U 7→ P(U ; ·) is continuous from X to

the space P(E) endowed with the weak topology. Moreover, there is a

number C > 0 and a compact set K ⊂ E such that suppP(U ; ·) ⊂ K for

any U ∈ X, and

‖P(U ; ·)− P(U ′; ·)‖∗L ≤ CdX(U,U
′) for U,U ′ ∈ X. (1.1)

Let {ζUk , U ∈ X}k≥1 be a sequence of independent K-valued measurable

random fields on X defined on a complete probability space (Ω̂, F̂ , P̂). Thus, the

map (U, ω̂) 7→ ζUk (ω̂) is measurable from X × Ω̂ to K for any k ≥ 1. We shall
always assume that

D(ζUk ) = P(U ; ·) for any U ∈ X and k ≥ 1. (1.2)

Let us fix a Lipschitz-continuous map S : X×K → X and consider the following
random dynamical system (RDS) in X:

Uk = S (Uk−1, ζ
Uk−1

k ), k ≥ 1. (1.3)

Equation (1.3) is supplemented with the initial condition

U0 = V, (1.4)

where V is an X-valued random variable that is defined on the same probability
space and is independent of the family {ζUk , U ∈ X, k ≥ 1}.

In what follows, we always assume that the underlying probability space
(Ω̂, F̂ , P̂) for (1.3) is the completion of the tensor product of countably many
copies of a fixed complete probability space (Ω,F ,P). Moreover, writing ω̂ =

(ωk, k ≥ 0) for points of Ω̂, we shall assume that

V depends only on ω0 and ζUk depends only on ωk for k ≥ 1, U ∈ X. (1.5)

It is well known that, given a transition probability {P(U ; ·)}U∈X on E that
satisfies Hypothesis (DN), there is a measurable random field {ζU , U ∈ X}
(where for the probability space one may take the interval [0, 1] endowed with
the Lebesgue measure) such that D(ζU ) = P(U ; ·) for any U ∈ X; see [Dud02,

7Thus, for any U ∈ X, we have a Borel probability measure P(U ; ·) on E such that, for
any Γ ∈ B(E), the function U 7→ P(U ; Γ) is measurable from X to R; cf. [Par05, Chapter 5].
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Theorem 11.7.5] and [KS12, Theorem 1.2.28]. Hence, setting ζUk (ω̂) = ζU (ωk)
for U ∈ X and k ≥ 1, we obtain a sequence of independent random fields satis-
fying (1.2). In what follows, we write {Uk(V ), k ≥ 0} for a trajectory of (1.3),
(1.4) and call it a solution of (1.3), (1.4) corresponding to the probability space

(Ω̂, F̂ , P̂) and the random fields {ζ·k}. Very often, we shall drop a specification
of the probability space and random fields.

Let {Fk}k≥0 be the natural filtration of (Ω̂, F̂ , P̂); that is, Fk consists of those

elements of F̂ that depend only on ωk := (ω0, . . . , ωk). In what follows, we call

a space Ω̂ as above with the filtration {Fk} a suitable (filtered) probability space
constructed from the space (Ω,F ,P), always assuming (1.5). The following
result is a consequence of (1.2), (1.5), and Fubini’s theorem.

Proposition 1.1. The family of trajectories {Uk(V )} of (1.3), corresponding
to all possible deterministic initial conditions V ∈ X, form a Markov process
in X, corresponding to the filtration {Fk}, with the continuous time-1 transition
probability

P1(U ; ·) = S∗

(
U,P(U ; ·)

)
, U ∈ X. (1.6)

Due to (1.6), the Markov semigroups defined by this process do not de-

pend on the specific choice of a suitable probability space (Ω̂, F̂ , P̂) and random
fields {ζ·k}. Therefore, the laws of solutions {Uk(V )} are also independent of
that choice.

Proof of Proposition 1.1. By construction, the random variable Uk(V ), k ≥ 0,
depends only on ωk, so it is Fk-measurable. We now prove that, for any integers
k,m ≥ 0 and any bounded measurable function f : X → R,

E{f(Uk+m(V )) | Fk} = f̂m(Uk(V )) P-almost surely, (1.7)

where f̂m : X → R is a bounded measurable function depending only on f andm.
The relation is obvious for m = 0, and a simple induction argument shows that
it suffices to establish it for m = 1. But for m = 1 and any Fk-measurable
function function ϕ(ωk), we have

E
(
f(Uk+1(V ))ϕ(ωk)

)
= E

ωk

[
E
ωk+1f

(
S (Uωk

k , ζ
U

ωk

k

k+1 (ωk+1)
))
ϕ(ωk)

]

= E
ωk

[
ϕ(ωk)Ef

(
S (Uωk

k , ζ
U

ωk

k

1

))]
,

since the law of ζUk does not depend on k. Thus,

E{f(Uk+1(V )) | Fk} = Ef
(
S (x, ζx1 )

)∣∣
x=Uk

.

It remains to note that the map x 7→ Ef(S (x, ζx1 )) defines a bounded measur-

able function f̂1(x), depending only on f , so (1.7) holds form = 1. Relation (1.6)
follows obviously from the last equality.
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In what follows, we denote by {Pk(U ; ·), k ∈ Z+, U ∈ X} the transition
probability for the Markov process associated with the RDS (1.3) (it is given
by (1.6) for k = 1). Often, when studying the long-time asymptotics of tra-

jectories for (1.3), we need to replace the underlying probability space Ω̂ with
another suitable probability space. This will not change the Markovian char-
acter of the dynamics and the laws of solutions of (1.3). The next subsection
describes an important example of a dynamical system driven by a stationary
process that can be reduced to an RDS of the form (1.3).

1.2 Dynamical systems with stationary noises

Consider an RDS of the form (0.1):

uk = S(uk−1, ηk), k ≥ 1, u0 = v. (1.8)

Here uk ∈ H , where H is a Hilbert space, {ηk}k∈Z is a stationary process
that takes values in a Banach space E and is defined on a complete probability
space (Ω,F ,P), and S : H × E → H is a continuous map. We assume that
suppD(ηk) =: K is a compact subset of E (so {ηk} also may be regarded as a
process in K), and suppose that there is a compact subset X ⊂ H such that
S(X × K) ⊂ X . Then (1.8) defines an RDS in X . We are interested in the
long-time behaviour of trajectories of this system.

In what follows, we distinguish between weak and strong solutions of (1.8):
strong solutions are those that are constructed by relations (1.8), and will be
denoted {uk(v), k = 0, 1, . . . }, whereas weak solutions are, as usual, trajec-
tories {ũk} of system (1.8), in which {ηk} and v are replaced with another
process {η̃k} and a random variable ṽ having the same joint distribution and
possibly defined on a different probability space. All weak solutions have the
same distribution. This is in difference with system (1.3), where the random
fields {ζ·k} must be defined on some suitable probability space, and ζ·k must
be Fk-measurable. Accordingly, a weak solution of the equation in (1.8) is
that of problem (1.8) with some v. Weak solutions of (1.8) will be denoted
as ({ũk}, {η̃k}) or, for short, as {ũk}.

As before, we provide the space EZ− with the Tikhonov topology whose
restriction to the compact subset K := KZ− is metrised by distance (0.5). We
define the measure

σ := D(η−), η− = {ηk, k ∈ Z−}, (1.9)

which is an element of P(K), and denote by E ⊂ K its support.
For any ξ ∈ K, denote by Q(ξ; ·) the conditional law P{η1 ∈ · |η = ξ}

of η1 given the past {ηk = ξk}k∈Z−
; see [Dud02, Theorem 10.2.1]. It is uniquely

defined up to ξ’s from a negligible set with respect to the measure σ. Now
we assume in addition that the process {ηk} satisfies the following continuity
condition, similar to the Feller property for Markov processes.
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(Fel) The conditional measure Q(ξ; ·) can be chosen to be a continuous mapping

from E to P(K) ⊂ P(E). Moreover, there is C > 0 such that

‖Q(ξ; ·)−Q(ξ′; ·)‖∗L ≤ Cd(ξ, ξ′) for any ξ, ξ′ ∈ E .

This condition allows us to (uniquely) define Q(ξ; ·) for ξ ∈ E and regard it as
a transition probability, continuous in ξ (see [Par05, Section 5.1]).

We now fix a specific realisation of the process {ηk} in (1.8), convenient for
the purposes of this work. We construct it as a process defined on some suitable
probability space (Ω̂, F̂ , P̂), where Ω̂ = {(ω0, ω1, . . . )} with ωj ∈ Ω (see Sec-
tion 1.1). For k ≤ 0, the random variables ηk depends on ω0 as for the original
process ηk in (1.8), while for k ≥ 1 we take ηk = ηk(ωk) = ηk(ωk−1, ωk) with
ωk := (ω0, . . . , ωk), where for any ωk−1 ∈ Ωk the mapping ω 7→ ηk(ωk−1, ω)
is a random variable ω 7→ ζ

η
k−1

k (ω), with law equal to Q(ηk−1; ·), such that
ζηk (ω) is a measurable random field, for each k ≥ 1. Here K ∋ ηk := (ηl, l ≤ k).
An induction argument in k ≥ 0 readily shows that this modification of the
process {ηk} is distributed as the original one.

Let us introduce the product space X = X × E endowed with the metric

dX(U,U
′) = L ‖v − v′‖H + d(ξ, ξ′), (1.10)

where L ≥ 1 is a parameter specified later, and denote the natural projections
to the two components by

ΠX : X → X, ΠE : X → E . (1.11)

We consider a map S : X×K → X defined by the relation

S (U, η) =
(
S(v, η), (ξ, η)

)
, (1.12)

where U = (v, ξ) ∈ X and η ∈ K. Finally, we introduce an RDS in X by

Uk = S (Uk−1, ζ
ξ
k−1

k ), k ≥ 1, (1.13)

where Uk = (vk, ξk). The system (1.13) is supplemented with the initial condi-
tion

U0 = V := (v, ξ),

where (v, ξ) is a random variable depending only on ω0. We thus obtain a
special case of system (1.3). By Proposition 1.1, it defines a Markov process in
the extended phase space X.

Let {uk = uk(v)} be a trajectory of the RDS (1.8). For k ≥ 0, we de-

note Ûk = (uk,ηk), where ηk = (ηl, l ≤ k). By the construction of the ver-
sion of the process {ηk} described above, for k ≥ 0 we have ηk = ηk(ωk) =
ηk(ωk−1, ωk) (so also ηk = ηk(ωk)), where ηk(ωk−1, ·) is the random variable

ωk 7→ ζ
ηk−1(ωk−1)

k (ωk) with D(ζξk ) = Q(ξ; ·). It follows that

S
(
Ûk, ζ

η
k−1

k

)
=

(
S(uk−1, ηk), (ηk−1, ηk)

)
= Ûk.

So {Ûk, k ≥ 0} is a trajectory of (1.13) with Û0 = (v0,η0). We have thus proved
the following result.
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Lemma 1.2. Let an F0-measurable random initial condition V = (v, ξ) be such
that v ∈ H and ξ is a K-valued random variable whose law is equal to σ. Let
{Uk = (vk, ξk), k ≥ 0} be a solution of (1.13), (1.4), where for U = (v, ξ) ∈ X

we have D(ζUk ) = Q(ξ; ·) (so P((v, ξ), ·) = Q(ξ; ·)). Then, for any k ≥ 0, the
distribution of the vector [U0, . . . , Uk] is such that

D([v0, . . . , vk]) = D
(
[u0(v), . . . , uk(v)]

)
, D(ξk) = σ. (1.14)

Since all weak solutions have the same law, relation (1.14) remains true if
we replace there the strong solution {uk(v)} with any weak solution of (1.8).

In conclusion, let us note that both spaces H and E can be assumed to be
separable. Indeed, denoting by H̃ and Ẽ the closures of the vector spans of X
and K, respectively, we define the map

S̃ : H̃ × Ẽ → H̃, (u, η) 7→ PH̃S(u, η),

where PH̃ : H → H stands for the orthogonal projection to H̃ . Since the image

of X × K under S is contained in X , we see that S̃ and S coincide on X × K.
Thus, replacement of S with S̃ in (1.8) will not change the trajectories, and we
obtain an RDS of the same form with separable spaces.

1.3 A criterion for mixing

We now prove a result providing a sufficient condition for the property of expo-
nential mixing for the RDS (1.3). To this end, we impose the two hypotheses
below on the map S and the transition probabilities P(U ; ·)

(GCP) Global controllability to points. For any ε > 0, there is an integer

m ≥ 1 and a point Û ∈ X (both depending on ε) for which the following

property holds: for any U ∈ X there are ξ1, . . . , ξm ∈ K such that the

points U0, . . . , Um ∈ X defined by U0 = U and Uk = S (Uk−1, ξk) for

1 ≤ k ≤ m satisfy the relations

ξk ∈ suppP(Uk−1, ·) for 1 ≤ k ≤ m, dX(Um, Û) < ε. (1.15)

Let us set

Dδ = {(U,U ′) ∈ X× X : dX(U,U
′) ≤ δ} (1.16)

and define the Lipschitz seminorm of a map Φ : K → E by the relation

Lipξ(Φ) := sup
ξ1,ξ2

‖Φ(ξ1)− Φ(ξ2)‖E
‖ξ1 − ξ2‖E

,

where the supremum is taken over all ξ1, ξ2 ∈ K such that 0 < ‖ξ1 − ξ2‖E ≤ 1.
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(LAC) Local approximate controllability. There are positive numbers C∗,

δ, and q < 1, a finite-dimensional subspace F ⊂ E, and a continuous map

Φ : Dδ ×K → F

such that, for any (U,U ′) ∈ Dδ,

sup
ξ∈K

‖Φ(U,U ′, ξ)‖E + Lipξ

(
Φ(U,U ′, ·)

)
≤ C∗dX(U,U

′), (1.17)

sup
ξ∈K

dX
(
S (U, ξ),S (U ′, ξ + Φ(U,U ′, ξ)

)
≤ q dX(U,U

′). (1.18)

We shall also need a decomposability and regularity hypothesis on the driving
noise in (1.3). We recall that a closed subspace F ⊂ E is said to be complemented
if there is another closed subspace F † ⊂ E such that E = F ∔ F †. Obviously,
the existence of a complementary subspace is equivalent to the existence of a
continuous projection PF : E → E onto F . A simple consequence of the Hahn–
Banach theorem is that any finite-dimensional subspace is complemented. In
what follows, if E is represented as the direct sum of closed subspaces F and F †,
then we denote by PF and PF † the associated projections.

(DLP) Decomposability and Lipschitz property. The subspace F enter-

ing (LAC) possesses a complementary subspace F † ⊂ E such that the

measure P(U ; ·) admits a disintegration of the form

P(U ; dξF , dξF †) = PF †(U ; dξF †)PF (U, ξF † ; dξF ), U ∈ X, (1.19)

where PF †(U ; ·) denotes the projection of P(U ; ·) to F †, and PF (U, ξF ; ·)
stands for the regular conditional probability of P(U ; ·) when the projec-

tion to F † is fixed and is equal to ξF † . Moreover, there is a function

pF : X× E → R+, Lipschitz continuous in both arguments, i.e.

|pF (U, ξ)−pF (U
′, ξ′)| ≤ M

(
dX(U,U

′)+‖ξ−ξ′‖E
)
for U,U ′ ∈ X, ξ, ξ′ ∈ E,

(1.20)
such that, for any U ∈ X and ξF † ∈ F †, we have

PF (U, ξF † ; dξF ) = pF (U, ξF † , ξF ) ℓF (dξF ), (1.21)

where ℓF stands for the Lebesgue measure on F .

In view of the well-known formula for the total variation distance (e.g., see
Proposition 1.2.7 in [KS12]), it follows from (1.20) and (1.21) that, for any
U,U ′ ∈ X and ξF † , ξ′F † ∈ F †, we have

‖PF (U, ξF † ; ·)− PF (U
′, ξ′F † ; ·)‖var ≤ M1

(
dX(U,U

′) + ‖ξF † − ξ′F †‖E
)
,

where M1 > 0 does not depend on U,U ′ and ξF † , ξ′F † .
Recall that, by Proposition 1.1, the trajectories of (1.3) form a discrete-time

Markov process. The following theorem is the main result of this section.
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Theorem 1.3. Suppose that Hypotheses (GCP), (LAC), and (DLP) are ful-
filled. Then the Markov process associated with the RDS (1.3) has a unique
stationary measure µ ∈ P(X), and there are positive numbers C and γ such
that 8

‖Pk(U ; ·)− µ‖∗L ≤ Ce−γk for any U ∈ X, k ≥ 0. (1.22)

Moreover, if {Vk, k ≥ 0} is a stationary trajectory of this Markov process,
D(Vk) ≡ µ, and µs = D(V1, . . . , Vs), then

‖D(Uk, . . . , Uk+s)− µs+1‖
∗
L ≤ Cse

−γk for any U ∈ X, k ≥ 0, (1.23)

where {Uk} stands for the trajectory of (1.3) issued from U .

A proof of this result is presented in the next subsection. It uses Theo-
rem 3.1.1 of [KS12] and some ideas from [Shi15, KNS20, KZ20, Shi21].

1.4 Proof of Theorem 1.3

We begin with a description of the scheme of the proof. It is well known that,
to prove (1.22) under some minimal compactness assumption (which trivially
holds now since the space X is compact), it suffices to establish that, for any
probability measures λ, λ′ on X, we have

‖P∗
kλ−P∗

kλ
′‖∗L ≤ Ce−γk ∀ k ≥ 0, (1.24)

where P∗
k : P(X) → P(X) denote the Markov operators, corresponding to the

kernels Pk(U ; Γ). To establish (1.24), we use the method of Kantorovich func-
tional (suggested in [KPS02, Kuk02, Kuk06] in the context of randomly forced
PDEs), following its presentation in [KS12, Section 3.1.1]. Let F : X×X → R+

be a measurable symmetric function minorised by dX. We define the Kan-
torovich functional associated with F by the formula

KF : P(X)× P(X) → R+, KF (µ, µ
′) = inf

M

∫

X×X

F (V, V ′)M(dV, dV ′),

where the infimum is taken over all couplings M of µ and µ′, i.e., over all
measures M ∈ P(X × X) whose marginals coincide with µ and µ′. In view of
Theorem 3.1.1 of [KS12], relation (1.24) (and so also (1.22)) will be established
if we find a function F satisfying the above properties, a number κ ∈ (0, 1), and
an integer s ≥ 1 such that

KF (P
∗
sλ,P

∗
sλ

′) ≤ κKF (λ, λ
′) for any λ, λ′ ∈ P(X). (1.25)

To prove (1.25), it suffices to find a coupling (Φλ
s , Φ

λ′

s ) for the pair of measures
(P∗

sλ,P
∗
sλ

′) such that

EF (Φλ
s , Φ

λ′

s ) ≤ κKF (λ, λ
′), (1.26)

8Recall that the norm ‖ · ‖∗
L

was defined in footnote 1.
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since the left-hand side of (1.25) is bounded by EF (Φλ
s , Φ

λ′

s ). The following con-
struction of a coupling satisfying this property was suggested in the references
mentioned above.

Suppose that, for some complete probability space (Ω,F ,P), we have con-
structed measurable maps R,R′ : X × X × Ω → X such that R = R(U,U ′;ω)
and R′ = R′(U,U ′;ω) form a coupling for (P1(U ; ·), P1(U

′; ·)) for any U,U ′ ∈ X,
i.e.,

D(R) = P1(U ; ·), D(R′) = P1(U
′; ·). (1.27)

Then, denoting by (Ω̂, F̂ , P̂,Fk) the suitable probability space as in Section 1.1,
constructed from the space (Ω,F ,P) above and formed of points ω̂ = (ω0, ω1, . . . )
with ωj ∈ Ω, and setting ω̂k = (ω0, . . . , ωk), we define iterations of (R,R′) by
the formulas9

Φ0(U,U
′;ω0) = U, Φ′

0(U,U
′;ω0) = U ′,

Φk(U,U
′; ω̂k) = R

(
Φk−1(U,U

′; ω̂k−1), Φ′
k−1(U,U

′; ω̂k−1), ωk
)
,

Φ′
k(U,U

′; ω̂k) = R′
(
Φk−1(U,U

′; ω̂k−1), Φ′
k−1(U,U

′; ω̂k−1), ωk
)
.





(1.28)

The construction readily implies that

D
(
{Φk(U,U

′)}k≥0

)
= D

(
{Uk(U)}k≥0

)
,

D
(
{Φ′

k(U,U
′)}k≥0

)
= D

(
{Uk(U

′)}k≥0

)
;

(1.29)

we recall that {Uk(V ), k ≥ 0} is a solution of (1.3), (1.4). Besides, it is easy to
see that

the family
{(

Φk(U,U
′)), Φ′

k(U,U
′)
)
, k ≥ 0

}
is a Markov

process in X× X with respect to the filtration {Fk}.
(1.30)

It is shown in [KS12] that if the random variables R and R′ satisfy certain
properties, then for λ = δU and λ′ = δU ′ relation (1.26) with Φλ

s = Φs(U,U
′),

Φλ′

s = Φ′
s(U,U

′) holds for some κ < 1, and that this implies the validity of (1.26)
for any measures λ and λ′, with suitable Φλ

s and Φλ′

s constructed from Φs and Φ′
s.

In accordance with this programme, we now construct a pair of maps R,
R′ and show that they possess the required properties. Recall that the sets Dδ

were defined by (1.16). In the following two propositions, we assume that the
hypotheses of Theorem 1.3 are fulfilled.

Proposition 1.4. There is a complete probability space (Ω,F ,P), measurable
maps R,R′ : X× X× Ω → X, and positive numbers θ, N , and q < 1 satisfying
the inequality

Nθ < 1− q, (1.31)

such that (1.27) holds for any (U,U ′) ∈ X×X, and the following properties are
fulfilled.

9When we write a random variable η(ω̂) as η(ω̂k), it means that η depends only on the

components ω̂k of a point ω̂ ∈ Ω̂.

19



Independence. For (U,U ′) ∈ Dc
θ, the random variables R(U,U ′) and R′(U,U ′)

are independent.

Squeezing. For (U,U ′) ∈ Dθ, we have

P
{
dX

(
(R(U,U ′),R′(U,U ′)

)
≤ q dX(U,U

′)
}
≥ 1−NdX(U,U

′). (1.32)

As was mentioned above, iterations of R and R′ allows one to construct a
Markov process (Φk, Φ

′
k) on a suitable filtered probability space (Ω̂, F̂ , P̂,Fk).

The following result establishes two key properties of that process.

Proposition 1.5. There is a number θ > 0 satisfying (1.31) such that, for any
(U,U ′) ∈ Dθ, the following inequality holds for the Markov process (1.30):

P̂
{
dX

(
Φk(U,U

′), Φ′
k(U,U

′)
)
≤ qkdX(U,U

′) for all k ≥ 0
)}

≥ 1−N1 dX(U,U
′),

(1.33)
where N1 = N(1 − q)−1. Besides, for any δ > 0, there exist a number p > 0
and an integer l ≥ 1 such that, for any (U,U ′) ∈ X× X,

P̂
{
dX

(
Φl(U,U

′), Φ′
l(U,U

′)
)
≤ δ

}
≥ p. (1.34)

Once these two propositions are established, direct application of the results
in [KS12, Section 3.2.3] will imply the validity of (1.26) and prove Theorem 1.3.

Proof of Proposition 1.4. In what follows, we denote d := dX(U,U
′). The proof

is divided into three steps.

Step 1: Estimate for a total variation distance. Let Φ be the map entering
Hypothesis (LAC) and let Ψ(U,U ′, ξ) = ξ + Φ(U,U ′, ξ). We claim that there is
θ ∈ (0, δ) such that, for any (U,U ′) ∈ Dθ,

∆(U,U ′) :=
∥∥P(U ′; ·)− Ψ∗(U,U

′,P(U ′; ·))
∥∥
var

≤ C1d. (1.35)

Here and below Ci, i = 1, 2, . . . , stand for some positive numbers not depending
on U and U ′.

To prove (1.35), note that, for any (U,U ′) ∈ Dδ, the map Φ(U,U ′, ·) : K → E
satisfies the hypotheses mentioned in the beginning of Section 5. In particular,
in view of (1.17) and (1.18), inequalities (5.1) hold with κ = C∗d. Apply-
ing Proposition 5.1, we see that Φ(U,U ′, ·) must satisfy inequality (5.2), which
coincides with (1.35).

Step 2: Construction of R and R′. Let us fix any (U,U ′) ∈ Dθ and consider
two pairs of random variables in E,

(
ζU , Ψ(U,U ′, ζU )

)
and

(
Ψ(U,U ′, ζU ), ζU

′)
,

where D(ζU ) = P(U, ·) and D(ζU
′

) = P(U ′, ·). We denote by λ(U,U ′) the law
of the first pair and define λ′(U,U ′) to be the law of a maximal coupling for the
second pair, i.e., for the pair

(
D(Ψ(U,U ′, ζU )) = Ψ∗(U,U

′,P(U ′; ·)), D(ζU
′

) = P(U ′; ·)
)
.
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In view of Theorem 1.2.28 in [KS12], we can assume that λ and λ′ are transition
probabilities from Dθ to E × E. Then Π2∗λ(U,U

′) = Π1∗λ
′(U,U ′) for any

(U,U ′) ∈ Dθ, where Πi : E × E → E, i = 1, 2 denotes the natural projection
from the direct product to its ith component. In view of the measurable version
of the gluing lemma (see [Vil09, Chapter 1] and [BM20, Corollary 3.7]), there
exists a triplet ofE-valued random variables ζ̃(U,U ′), ξ(U,U ′), ζ̃′(U,U ′), defined
on the same probability space, such that the maps ζ̃, ξ, ζ̃′ : Dθ × Ω → E are
measurable, and for any (U,U ′) ∈ Dθ, we have

D
(
ζ̃(U,U ′), ξ(U,U ′)

)
= λ(U,U ′), D

(
ξ(U,U ′), ζ̃′(U,U ′)

)
= λ′(U,U ′).

Enlarging, if necessary, the probability space, we extend ζ̃(U,U ′) and ζ̃′(U,U ′)
from (U,U ′) ∈ Dθ to random fields on X× X in such a way that

ζ̃(U,U ′) and ζ̃′(U,U ′) are independent if (U,U ′) ∈ Dc
θ, (1.36)

and their laws are P(U ; ·) and P(U ′; ·), respectively. Finally, for any U,U ′ ∈ X,
we set

R(U,U ′, ω) = S
(
U, ζ̃(U,U ′)

)
, R′(U,U ′, ω) = S

(
U ′, ζ̃′(U,U ′)

)
. (1.37)

This implies, in particular, that (R,R′) is a coupling for the measures P1(U ; ·)
and P1(U

′; ·).

Step 3: Properties of R and R′. We claim that the maps defined by (1.37)
satisfy the properties of Independence and Squeezing. Indeed, the indepen-
dence of R and R′ for (U,U ′) ∈ Dc

θ follows from (1.36), so we only need to
establish (1.32) for (U,U ′) ∈ Dθ.

SinceD(ξ, ζ̃′) = λ′(U,U ′) is the law of a maximal coupling forD(Ψ(U,U ′, ζU ))
and D(ζU

′

), it follows from (1.35) that

P{ξ(U,U ′) 6= ζ̃′(U,U ′)} ≤ C1 d. (1.38)

On the other hand, since the law of (ζ̃, ξ) coincides with that of (ζU , Ψ(U,U ′, ζU )),
the definition of Ψ and inequality (1.18) imply that, with probability 1,

dX
(
S (U, ζ̃(U,U ′)),S (U ′, ξ(U,U ′))

)
≤ q d.

Therefore, if ω ∈ Ω is such that ξ(U,U ′) = ζ̃′(U,U ′), then

dX
(
S (U, ζ̃(U,U ′)),S (U ′, ζ̃′(U,U ′))

)
≤ q d.

Combining this with (1.38) and (1.37), we arrive at (1.32) with N = C1.

Proof of Proposition 1.5. Step 1: Proof of (1.33). Given an integer k ≥ 1, we
define the event

Gk =
{
dX

(
Φk(U,U

′), Φ′
k(U,U

′)
)
≤ q dX

(
Φk−1(U,U

′), Φ′
k−1(U,U

′)
)}

.

21



We claim that, for any (U,U ′) ∈ Dθ,

P̂
(
G̃k

)
≥ 1−Nd

k−1∑

l=0

ql =: δk, where G̃k =

k⋂

l=1

Gl. (1.39)

If this inequality is proved, then the probability of the intersection G̃ of all Gk

can be minorised by

1−Nd

∞∑

l=0

ql = 1−N1d,

and the required inequality (1.33) will follow from the observation that G̃ is a
subset of the event in the left-hand side of (1.33).

To prove (1.39), we argue by induction. For k = 1, inequality (1.39) coincides
with (1.32). Assuming that inequality (1.39) holds for k = m, we now prove it
for k = m+ 1.

By (1.30) and the Markov property, we have

P̂
{
Gm+1 | Fm

}
= P̂

{
dX

(
R(V, V ′),R′(V, V ′)

)
≤ q dX(V, V

′)
}
,

where V = Φm(U,U ′) and V ′ = Φ′
m(U,U ′). Now note that if ω̂ ∈ G̃m, then

dX(Φm(U,U ′), Φ′
m(U,U ′)) ≤ qmd ≤ θ, so by (1.32) the probability on the right-

hand side is minorised by 1 − Nqmd. Using the induction hypothesis, we thus
obtain

P̂
(
G̃m+1

)
= Ê

(
1G̃m

P̂
{
Gm+1 | Fm

})
≥

(
1−Nqmd

)
P̂
(
G̃m

)

≥
(
1−Nqmd

)
δm > δm+1.

This completes the induction step and the proof of (1.33).

Step 2: Transition to a ball of small radius . Let us note that all our construc-
tions and conclusions above remain true if we replace the number θ, defining the
set Dc

θ (cf. (1.31)), with any smaller positive constant, depending only on the
system (1.3). Thus, without loss of generality, we shall assume in what follows
that

θ ≤
1

2N1
, (1.40)

where N1 > 0 is the number in (1.33). In this case, the right-hand side of (1.33)
is minorised by 1/2 if d = dX(U,U

′) ≤ θ.
As a first step in the proof of (1.34), we establish a simpler result concerning

single trajectories {Uk, k ≥ 0}. Namely, we claim that, for any δ > 0, there is
Uδ ∈ X, a number pδ > 0, and an integer mδ ≥ 1 such that

P̂
{
Umδ

∈ BX(Uδ, δ)
}
≥ pδ for any initial point U ∈ X. (1.41)

Indeed, in view of Hypothesis (GCP), in which we take ε = δ/2, there is a point

Û ∈ X and an integer m ≥ 1 such that, for any U ∈ X and some appropriately
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chosen vectors ξk ∈ E, 1 ≤ k ≤ m relations (1.15) hold with ε = δ/2. By the
continuity of S , there is ν > 0 such that, for any ξ̃k ∈ BE(ξk, ν), 1 ≤ k ≤ m,

the corresponding trajectory of the RDS (1.3) belongs to the ball BX(Û , δ) at
time k = m. Since ξk ∈ suppD(ζUk−1 ) for 1 ≤ k ≤ m, it follows that

P̂
{
ζ
Uk−1

k ∈ BE(ξk, ν) for 1 ≤ k ≤ m
}
> 0.

We have thus proved that the probability of transition from any point U ∈ X

to the δ-neighbourhood of Û at time k = m is positive. By the Feller property
and the well-known characterisation of the weak convergence of measures, the
function U 7→ Pm(U,BX(Û , δ)) is lower semicontinuous. Since it is positive
everywhere, we conclude that

inf
U∈X

Pm

(
U,BX(Û , δ)

)
> 0.

This shows that (1.41) holds with mδ = m and Uδ = Û .

Step 3: Proof of (1.34). In view of (1.29), if the processes Φk(U,U
′)

and Φ′
k(U,U

′) were independent, then the required result would follow immedi-
ately from (1.41). However, they are not, and we have to proceed differently. In
what follows, we can assume without loss of generality that δ < θ, where θ > 0 is
satisfies (1.40). Let k∗ > 0 be the smallest integer such that θqk∗ ≤ δ. We claim
that (1.34) holds with l = mδ/2 + k∗, where mδ/2 is the integer entering (1.41)
in which the radius δ of the ball is replaced with δ/2.

To prove this, we abbreviate Φk(U,U
′) = Φk, Φ

′
k(U,U

′) = Φ′
k, m = mδ/2.

We set ζl = (Φl, Φ
′
l) ∈ X× X, d(ζl) = dX(Φl, Φ

′
l) and define the stopping times

τ = τ(U,U ′) = min
{
k ≥ 0 : d(ζk) ≤ θ

}
, τm = τ ∧ (m+ 1).

Without loss of generality, we may assume that, in construction (1.28), when
(U,U ′) ∈ Dθ we take random variables R(U,U ′, ωk), R

′(U,U ′, ωk), k ≥ 1, from
some fixed collection of pairs of independent random fields

(R(·, ωk),R
′(·, ωk), k = 1, 2, . . . ).

Then we define processes {Φ̂k, k ≥ 1} and {Φ̂′
k, k ≥ 1} by relation (1.28), where

always the random fields R and R′ are independent and are taken from the
collection above. We set ζ̂l = (Φ̂l, Φ̂

′
l) and define d(ζ̂l), τ̂ , τ̂

m similarly to d(ζl),
τ , τm. Note that

τm = τ̂m and ζl = ζ̂l for l ≤ τm.

In view of (1.41),

P̂{τ̂m = m+ 1} ≤ P̂{d(ζ̂m) > θ} ≤ 1− (pθ/2)
2. (1.42)

Let us set Am = {dX(Φk(ζτm), Φ′
k(ζτm)) ≤ qkθ for k ≥ 0}. By the strong

Markov property, applied to the process {ζl}, we have

P̂{d(ζτm+k) ≤ qkθ for k ≥ 0} = P̂(Am) ≥ P̂
(
{τm ≤ m} ∩ Am

)

= E
(
1{τm≤m} P{Am | Fτm}

)
. (1.43)
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But for every ω ∈ {τm ≤ m}, we have τm = τ and d(ζτm) ≤ θ. So for every
such ω it holds that P{Am | Fτm} ≥ 1

2 in view of (1.33) and (1.40). Since
τm = τ̂m, then by (1.42) the right-most term in (1.43) is no less than 1

2 (pθ/2)
2.

As the event in (1.34) contains the event {d(ζτm+k) ≤ qkθ for k ≥ 0} if l = m+1,
then (1.34) is proved with l = mδ/2 + 1 and p = 1

2 (pθ/2)
2.

We have thus established (1.22). To establish (1.23), we first note that it
suffices to find Cs > 0 such that

‖D(U0, . . . , Us)−D(U ′
0, . . . , U

′
s)‖

∗
L ≤ CsdX(U,U

′) for U,U ′ ∈ X, (1.44)

where {Uk} and {U ′
k} stand for the trajectories of (1.3) issued from U and U ′,

respectively. Once this inequality is proved, (1.23) will easily follow due to the
Markov property.

To prove (1.44), we first consider the case s = 1. In view of (1.3) and (1.6),
for any continuous function f : X× X → R, we have

〈
f,D(U0, U1)

〉
=

∫

K

f
(
U,S (U, y)

)
P(U ; dy).

Assuming that f is 1-Lipschitz and satisfies the inequality ‖f‖∞ ≤ 1, and using
the Lipschitz property of S and inequality (1.1), it is easy to show that

∣∣〈f,D(U0, U1)
〉
−
〈
f,D(U ′

0, U
′
1)
〉∣∣ ≤ C1 dX(U,U

′),

where C1 > 0 does not depend on f . Taking the supremum with respect to f ,
we arrive at (1.44) for s = 1. A similar argument combined with induction
allows one to establish (1.44) for any integer s ≥ 2. The proof of Theorem 1.3
is complete.

2 Main results

2.1 Formulation of the main theorem

Let us recall the setting of Subsection 1.2. As was mentioned there after
Lemma 1.2, we assume without loss of generality that H is a separable Hilbert
space, E is a separable Banach space, S : H×E → H is a continuous map, and
X ⊂ H and K ⊂ E are compact subsets such that S(X ×K) ⊂ X . We consider
the stochastic system in (1.8),

uk = S(uk−1, ηk), k ≥ 1,

supplemented with an initial condition

u0 = u, (2.1)

where u ∈ X is a given point, and {ηk} is a stationary sequence satisfying the
properties mentioned in Subsection 1.2. In particular, the law of ηk has the
compact support K ⊂ E.

24



Definition 2.1. We shall say that stochastic system (1.8) is exponentially mix-
ing in the dual-Lipschitz norm 10 if there is a measure µ ∈ P(X) and positive
numbers C and γ such that, for any initial state u ∈ X , the corresponding
trajectory {uk}k∈Z+

of (1.8), (2.1) satisfies the inequality

‖D(uk)− µ‖∗L ≤ C e−γk, k ≥ 0. (2.2)

In what follows, we drop for short in the dual-Lipschitz norm and call
stochastic systems as in Definition 2.1 just exponentially mixing. Let us note
that if the initial state u0 is anX-valued random variable independent of {ηk}k∈Z,
then (2.2) remains valid. To see this, it suffices to remark that if λ = D(u0),
then

D(uk) =

∫

X

Pk(v, ·)λ(dv),

where Pk(v, ·) stands for the law at time k of the trajectory of (1.8), (2.1) with
u = v. We recall that the laws D(uk), k ≥ 1, depend not on the process {ηk},
but only on its distribution.

Below, we shall prove that, under certain restrictions, system (1.8) is mixing,
and at the end of Section 2.2, shall show that the measure µ in (2.2) is stationary
in the following sense: there exists a random variable v, measurable with respect
to F0, such that D(v) = µ and a weak solution {uk, k ≥ 0} for (1.8) such that
D(uk) ≡ µ. It is obvious from (2.2) that µ is the only measure with this property.

To ensure the property of exponential mixing for (1.8), we assume that the
map S : H × E → H is twice continuously differentiable and is bounded on
bounded subsets together with its derivatives up to the second order , and impose
the following four hypotheses on the dynamics and driving noise. For an integer
k ≥ 1, we denote 0k = (0, . . . , 0), where 0 ∈ E is repeated k times, and for a

vector ~ξn = (ξ1, . . . , ξn) ∈ suppD(η1, . . . , ηn) ⊂ Kn, we denote

Sn(v; ~ξn) = un, where {u1, . . . , un} is a trajectory of (1.8) with ηk = ξk.
(2.3)

(GD) Global dissipation. There is an integer k ≥ 1 and a number a ∈ (0, 1)
such that

‖Sk(u;0k)‖H ≤ a ‖u‖H for any u ∈ H.

Remark 2.2. This hypothesis implies that the unperturbed dynamics has one
globally stable equilibrium. In a subsequent paper, we shall relax this condition
to include stochastic perturbations of more general systems. The result will
be applicable, for instance, to a reaction-diffusion equation possessing finitely
many hyperbolic equilibria and a Lyapunov function.

We shall say that a closed subspace G ⊂ H is determining if there is a
number κ ∈ (0, 1) such that

∥∥(I − PG)DuS(u, η)
∥∥
L(H)

≤ κ for any u ∈ X , η ∈ K, (2.4)

10See the first footnote.
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where PG : H → H denote the orthogonal projection to G. This definition
is related to the usual concept of determining modes going back to Foiaş–
Prodi [FP67]. Indeed, assuming that X is convex and applying the mean value
theorem, we see that

∥∥(I − PG)
(
S(u, η)− S(u′, η)

)∥∥
H

≤ κ ‖u− u′‖H .

In particular, if {uk} and {u′
k} are two trajectories of (1.8) with the same driving

noise such that PGuk = PGu
′
k for k ≥ 1, then the difference uk−u′

k goes to zero
exponentially fast.

Remark 2.3. If H is a finite-dimensional space, then (2.4) trivially holds with
G = H . It also holds if the map S is smoothing in the sense that for some Hilbert
space V , compactly and densely embedded in H , the map S is continuously
differentiable from H × E to V . Indeed, in this case H admits a Hilbert basis
{ej, j ≥ 1} which also is an orthogonal basis of V such that the norms ‖ej‖V
go to infinity with j (e.g., see [LM72, Section 2.1]). Then (2.4) is fulfilled if we
take for G the vector span of {ej, 1 ≤ j ≤ N} with a sufficiently large N .

(ALC) Approximate linearised controllability. There exists an open set

O ⊃ X × K and a finite-dimensional determining subspace G ⊂ H such

that the closure of the image of the operator DηS(u, η) : E → H con-

tains G for any (u, η) ∈ O.

Recall that we denote by Q(ξ; ·) the conditional law of η1 given the past
{ηk, k ∈ Z−} = ξ ∈ E and that Assumption (Fel) holds for it. The next
hypothesis is an analogue of (DLP) in the current setting.

(DLP′) Decomposability and Lipschitz property. There is an increasing

sequence of finite-dimensional subspaces Fn ⊂ E, with complementary

subspaces F †
n ⊂ E, and projections Pn : E → Fn, such that the union ∪nFn

is dense in E, the operator norms of Pn are bounded uniformly in n ≥ 1,
and the following property holds for any n ≥ 1: for each ξ ∈ E , the

measure Q(ξ; ·) admits a disintegration

Q(ξ; dy) = Q†
n(ξ; dy

†
n)Qn(ξ, y

†
n; dyn), (2.5)

where the decomposition y = (yn, y
†
n) is associated with the direct sum

E = Fn∔F †
n, and we write Q†

n(ξ; ·) ∈ P(F †
n) for the image of Q(ξ; ·) under

the projection I − Pn onto F †
n. Moreover, there is a Lipschitz continuous

function ρn : E × E → R+ supported by E × K such that

Qn(ξ, y
†
n; dyn) = ρn(ξ, y

†
n, yn)ℓn(dyn),

where ℓn stands for the Lebesgue measure on Fn.

This hypothesis is a version of a condition often imposed in Dobrushin’s work
on reconstructing random fields on lattices from their conditional distributions
(e.g., Assumption 2 in [Dob70, Theorem 1] or [Dob68, Theorems 5 and 6]). If
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dimF < ∞, we take Fn = F for all n ≥ 1, so that F †
n = {0}, and condi-

tion (DLP′) simplifies to the assumption that Q(ξ; dy) = ρ(ξ, y)ℓ(dy), where ρ
is a Lipschitz function.

For any ξ ∈ E and any integer k ≥ 1, the conditional law of the vec-
tor (η1, . . . , ηk) given that the past η− := {ηl, l ≤ 0} equals ξ is the measure

Qk(ξ; dy1, . . . , dyk) = Q(ξ; dy1)Q(ξ1; dy2) · · ·Q(ξk−1; dyk), (2.6)

where ξl = (ξ, y1, . . . , yl) is the sequence obtained by concatenation of ξ and
(y1, . . . , yl). Given integers k ≥ 0 and m ≥ 1, we denote by Qm

k (ξ; ·) ∈ P(Km)
the measure

Qm
k (ξ; ·) = 〈projection of Qk+m(ξ; ·) to the last m components〉. (2.7)

Thus, Qm
k (ξ; ·) is the conditional law of the vector (ηk+1, . . . , ηk+m) given the

past η− = ξ. The following hypothesis is similar to the property of strong
recurrence in the context of Markov processes.

(SRZ) Strong recurrence to zero. For any n ∈ N and δ > 0, there is an

integer s ≥ 0 such that

inf
ξ∈E

Qn
s

(
ξ;Oδ(0n)

)
> 0. (2.8)

The following theorem is the main result of this paper. Its proof is based on
Theorem 1.3 and is presented in the next subsection.

Theorem 2.4. Suppose that Hypotheses (GD), (ALC), (DLP′), and (SRZ) are
fulfilled. Then the RDS (1.8) is exponentially mixing.

In conclusion of this subsection, let us mention that the question of exis-
tence of processes for which Hypotheses (DLP′) and (SRZ) are satisfied will be
discussed in Section 3. Here we only point out that if an E-valued stationary
process η := {ηk}k∈Z is such that (DLP′) holds for its conditional probabili-
ties Q(ξ; ·), then we have the following implications:

strong feeble mixing for η =⇒ strong recurrence =⇒ feeble mixing for η;
(2.9)

see Subsection 3.2 for exact statements. Thus, our class of admissible random
forces η can be informally characterised as mixing stationary processes with
Lipschitz continuous densities for conditional laws .

2.2 Proof of Theorem 2.4

Let us recall that the law of a trajectory uk for (1.8) issued from u ∈ X depends
not on the concrete realisation of the process {ηk, k ≥ 1}, but only on its law.
It coincides with that of the first component of the trajectory Uk = (vk, ξk)
for (1.13), with the phase space X = X × E , where S is defined by (1.12), and
D(U0) = δu⊗σ; see (1.9). Below we call the corresponding Markov process in X
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the U -process . If we prove that the U -process satisfies (1.22), then taking its
projection ΠX to the X-component, we can conclude that D(uk) satisfies (2.2)
with

µ = (ΠX)∗µ ; (2.10)

see (1.11). Moreover, applying (1.22) to a solution of (1.3) with initial condi-
tion U0 as above and using (1.14), we get

(ΠE)∗µ = σ. (2.11)

Thus, to prove Theorem 2.4, it suffices to check that the three hypotheses
of Theorem 1.3 are fulfilled. The proof of this fact is divided into three steps.
To simplify notation, we denote by σ ∈ P(EZ) the law of η = {ηk, k ∈ Z} and
write σm for the law of (η1, . . . , ηm), so that σm is the projection of σ to Em.

Step 1: Transition probability. We first express the law of the noise in the
RDS (1.13) and the transition probability of the U -process in terms of the

objects entering (1.8). To this end, note that since the law of ζξ1 equals Q(ξ; ·)
for any ξ ∈ E , we have

P(U ; Γ) = Q(ξ; Γ) for Γ ∈ B(E), U = (v, ξ) ∈ X. (2.12)

This relation and Hypothesis (DLP′) imply that P(U ; ·) satisfies Hypothe-
sis (DLP), in which one can take F = Fn with an arbitrary n ≥ 1.

We now describe the transition probability of the U -process. Recalling (1.12)
and (1.6), we see that the time-1 transition probability can be written as

P1

(
U,B × (Γ× Γ)

)
= δξ(Γ)

∫

Γ

1B

(
S(v, y)

)
Q(ξ; dy), (2.13)

where U and Γ are the same as in (2.12), Γ ∈ B(E), and B ∈ B(X). In other
words, for U = (v, ξ) ∈ X, denoting ΨU : K → X × E , η 7→ S (U, η), we can
write P1(U ; ·) = (ΨU )∗Q(ξ; ·). Then, using (2.13) and arguing by induction, it
is straightforward to see that the time-k transition probability has the form

Pk

(
U,B × (Γ× Γk)

)
= δξ(Γ)

∫

Γk

1B

(
Sk(v; y1, . . . , yk)

)
Qk(ξ; dy1, . . . , dyk),

where U = (v, ξ) ∈ X, Γ ∈ B(E), Γk ∈ B(Ek), B ∈ B(X), and we recall (2.3)
and (2.6).

Step 2: Global controllability to points (GCP). We claim that the required

property holds with Û = (0,0), where 0 ∈ E is the sequence whose elements
are all zero. Indeed, let us fix any ε > 0 and choose an integer l ≥ 1 and
a number δ > 0 so that, for any element ξ̂ = (ξ̂j , j ≤ 0) ∈ E satisfying the

inequality ‖ξ̂j‖E ≤ δ for 1 − l ≤ j ≤ 0, we have d(ξ̂,0) < ε/3. Let us take any
U = (u, ξ) ∈ X. By (GD), there is an integer n ≥ l not depending on U such
that ‖Sn

(
u;0n)‖H < ε

3L . Since S is continuous, we can find δ > 0 such that

∥∥Sn

(
u; ξ′1, . . . , ξ

′
n

)∥∥
H

<
2ε

3L
for u ∈ X , (ξ′1, . . . , ξ

′
n) ∈ Oδ(0n). (2.14)
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By (SRZ), there is s ∈ N such that (2.8) holds. It follows that there exist vectors
ξ1, . . . , ξs+n ∈ K such that

(ξs+1, . . . , ξs+n) ∈ Oδ(0n), (2.15)

ξj+1 ∈ suppQ
(
(ξ; ξ1, . . . , ξj); ·

)
for 0 ≤ j < s+ n. (2.16)

We now set vk = S(vk−1, ξk), where 1 ≤ k ≤ s+n and v0 = u. In view of (2.14)
and (2.15), we have ‖vs+n‖H < 2ε

3L . Furthermore, inequality (2.15) and the
choice of l imply that d(ξs+n,0) <

ε
3 , where ξk = (ξ, ξ1, . . . , ξk). Recalling that

the U -process is given by Uk = (vk, ξk) and using (1.10), we see that

dX(Us+n, Û) = L‖vs+n‖H + d(ξs+n,0) < ε.

Finally, it follows from (2.16) and (2.12) that ξk ∈ suppP(Uk−1; ·) for 1 ≤ k ≤
s+ n. This completes the verification of (1.15) with m = s+ n.

Step 3: Local approximate controllability (LAC). To prove (LAC), we define
the set

D̃δ = {(v, v′) ∈ X ×X : ‖v − v′‖H ≤ δ}

and suppose that, for a small δ > 0, we have constructed a continuous map

Φ̃ : D̃δ ×K → E, (v, v′, ξ) 7→ ξ′,

such that, for any (v, v′) ∈ D̃δ, the map Φ̃(v, v′, ·) : K → E is continuously
differentiable and satisfies the inequalities (cf. (1.17) and (1.18))

sup
ξ∈K

(
‖Φ̃(v, v′, ξ)‖E + Lipξ

(
Φ̃(v, v′, ξ)

))
≤ C′‖v − v′‖H , (2.17)

sup
ξ∈K

∥∥S(v, ξ)− S
(
v′, ξ + Φ̃(v, v′, ξ)

)∥∥
H

≤ q′‖v − v′‖H , (2.18)

where C′ and q′ < 1 are some positive numbers. In this case, recalling the
constant L ≥ 1 in the distance (1.10) and defining Φ : Dδ × K → E by the
relation

Φ(U,U ′, ξ) = Φ̃(v, v′, ξ), U = (v, ξ), U ′ = (v′, ξ′),

we see that (1.17) is trivially satisfied with C∗ = C′L−1. To prove (1.18), we
use (2.17) and (2.18) to write

dX
(
S (U, ξ),S (U ′, ξ + Φ(U,U ′, ξ)

)
≤ ι−1 d(ξ, ξ′) + ‖Φ(U,U ′, ξ)‖E

+ L ‖S(v, ξ)− S(v′, ξ + Φ̃(v, v′, ξ)‖H

≤ ι−1 d(ξ, ξ′) + L (L−1C′ + q′)‖v − v′‖H .

Up to this point, the number L ≥ 1 was arbitrary. We now choose it so large
that L−1C′ + q′ < 1. Then the above estimate implies inequality (1.18) with
q = max{ι−1, L−1C′+q′} < 1. Thus, it remains to construct Φ̃ satisfying (2.17)
and (2.18).
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To this end, let us denote by ∆(v, v′, ξ) the expression under the norm sign
in the left-hand side of (2.18), where Φ̃ is a map to be defined. Using the Taylor
formula and the C2-smoothness of S, we write

∆(v, v′, ξ) = (DvS)(v, ξ)(v − v′)− (DξS)(v, ξ)Φ̃(v, v
′, ξ) + r(v, v′, ξ), (2.19)

where the remainder term r satisfies the inequality

‖r(v, v′, ξ)‖H ≤ C1

(
‖v′ − v‖2H + ‖Φ̃(v, v′, ξ)‖2E

)
(2.20)

with some constant C1 not depending on v, v′, and ξ. We now need the following
lemma whose proof is given in Section 2.4 and is based on the Moore–Penrose
formula for pseudo-inverse; cf. [KNS20, Theorem 2.8].

Lemma 2.5. Let H and E be separable Hilbert and Banach spaces, G ⊂ H be
a finite-dimensional vector subspace, O be an open subset of a Banach space H,
and A : O → L(E,H) be a C1-smooth map such that, for any y ∈ O, the closure
of the image of the linear application A(y) contains G. Let finite-dimensional
subspaces Fn ⊂ E be as in (DLP′). Then, for any ε > 0 and any compact set
Y ⊂ O, there is an integer n ≥ 1 and a C1-smooth map11 Bε : O → L(G,Fn)
such that

‖A(y)Bε(y)f − f‖H ≤ ε ‖f‖H for any f ∈ G, y ∈ Y . (2.21)

By Hypothesis (ALC), for any (v, ξ) ∈ O ⊂ H ×E, the closure of the image
of the operator DξS(v, ξ) : E → H contains the finite-dimensional subspace G.
Applying Lemma 2.5 to A(v, ξ) = DξS(v, ξ), for any ε > 0 we can construct
C1-smooth mapping Bε : O → L(G,Fn) such that

‖DξS(v, ξ)Bε(v, ξ)f − f‖H ≤ ε ‖f‖H for (v, ξ) ∈ X ×K, f ∈ G. (2.22)

We now set
Φ̃(v, v′, ξ) = Bε(v, ξ)PG(DvS)(v, ξ)(v − v′). (2.23)

The validity of (2.17) with some constant C′ = C′(ε) follows from the compact-
ness of X ×K and the continuity of the functions entering (2.23). Furthermore,
substituting Φ̃ into (2.19) and using (2.4), (2.22), and (2.20), we derive

‖∆(v, v′, ξ)‖H ≤ (κ + C2ε)‖v − v′‖H + C3‖v − v′‖2H ,

where we set

C2 = sup
{∥∥PG(DvS)(v, ξ)

∥∥
L(H,G)

: (v, ξ) ∈ X ×K
}
, C3 = C1(1 + C′).

Up to this point, the number ε > 0 was arbitrary. We now choose ε > 0 and
δ > 0 so that q′ := κ+C2ε+C3δ < 1. In this case, inequality (2.18) holds, and
this completes the proof of the theorem.

11Let us emphasise that the map Bε is defined on O, but it depends on the choice of Y .
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2.3 Concluding remarks

The proof given above implies two additional properties: the stationarity of the
limiting measure µ and convergence in the space of trajectories. Namely, we
have the two propositions below, provided that the conditions of Theorem 2.4
are fulfilled.

Proposition 2.6 (Stationarity of µ). Equation (1.8) possesses a weak solu-

tion {(ûk, ξ̂k), k ∈ Z+} such that {(ûk, ξ̂k)} is a stationary process in X × E.
Moreover, D(ûk) ≡ µ.

Proof. Let us consider again the extended system (1.13), which generates a
Markov U -process in the space X = X × E . The latter has a unique stationary
measure µ ∈ P(X) whose projection to X is the limiting measure µ ∈ P(X)
for (1.8); see (2.10). Let {Vk = (vk, ξk)} be a stationary trajectory of (1.13),
so that D(Vk) ≡ µ. It suffices to take ûk = vk for k ≥ 0. Indeed, by (2.11),
D(ξk) = σ. So, by Lemma 1.2, {vk, k ≥ 0} is a weak solution of (1.8), and
D(vk) = (ΠX)∗µ = µ for each k ≥ 0. The construction readily implies that
{ûk, k ≥ 0} is an X-valued stationary process whose law is equal to µ at any
time k ≥ 0.

Relation (1.8) implies that the process {ûk}k∈Z+
is feebly mixing in the sense

of Section 3.2; cf. the proof of Proposition 3.4.

Proposition 2.7 (Convergence of trajectories). Let u be an X-valued random
variable independent of {ηk} and let {uk, k ∈ Z+} be the trajectory defined
by (1.8), (2.1). Then, for any integer s ≥ 1, the process [uk, . . . , uk+s] converges
in law in the dual-Lipschitz metric to [û0, . . . , ûs], where ûk is the stationary
trajectory described above. Moreover, the convergence is uniform with respect to
all initial conditions.

Proof. Let us consider again the extended system (1.13) and its stationary tra-
jectory {Vk, k ∈ Z+} as in Theorem 1.3. Let Uk be the trajectory of (1.13) issued
from an initial state whose law equals λ ⊗ σ ∈ P(X), where λ = D(u) ∈ P(X).
Projecting estimate (1.23) to the first component, we obtain the required con-
vergence.

Finally, let us notice that, by Theorem 2.4, Theorem 1.3 applies to the U -
process in the space X = X × E and, hence, the latter is exponentially mixing.
So, for any V = (v, ξ) ∈ X×E , the corresponding trajectory Uk defined by (1.13)
converges to µ in the dual-Lipschitz metric. The following proposition, whose
proof may be obtained by literal repetition of the arguments in Section 2.2,
shows that the initial point V can be taken from the larger set X×K, provided
that the strong recurrence to zero holds for ξ ∈ K; cf. Theorem 3.2 below.

Proposition 2.8. Let {Q(ξ; ·), ξ ∈ K} ⊂ P(K) be a transition probability on K
that coincides with the conditional probability introduced in Subsection 1.2 for
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ξ ∈ E. Suppose that the hypotheses of Theorem 2.4 are fulfilled, with inequal-
ity (2.8) replaced by the stronger condition

inf
ξ∈K

Qn
s

(
ξ;Oδ(0n)

)
> 0, (2.24)

where Qn
s (ξ; ·) is defined in (2.7). Then there are positive numbers γ and C

such that
sup

V ∈X×K

‖D(Uk)− µ‖∗L ≤ Ce−γk, k ≥ 0,

where µ ∈ P(X) is the stationary measure of the U -process on X×E constructed
in the proof of Theorem 2.4, and ‖ · ‖∗L stands for the dual-Lipschitz metric
over X ×K.

2.4 Proof of Lemma 2.5

The result would follow immediately from Theorem 2.8 in [KNS20] if E was a
Hilbert space. Since this is not the case, we need to proceed differently.

Let us fix a compact set Y ⊂ O and a number ε > 0, and denote by dH(f,H ′)
the distance of f from a subspace H ′ ⊂ H . Since the union ∪nFn is dense in E,
then the continuous functions (y, f) 7→ dH

(
f,A(y)Fn)

)
pointwise monotonically

converge to zero as n → ∞. By the Dini theorem, this convergence is uniform
on compact sets. So there exists an integer n ≥ 1 such that

sup
y∈Y

sup
f∈BG(1)

dH
(
f,A(y)Fn)

)
≤ ε. (2.25)

Let us endow Fn with an inner product and denote by An(y) the restriction
of A(y) to Fn. Then we can consider the adjoint operator An(y)

∗ : H → Fn

and, given δ > 0, define the family of operators

B(y, δ) = An(y)
∗
(
An(y)An(y)

∗ + δI
)−1

: H → Fn,

which form a C1 function of (y, δ) ∈ O × (0,+∞) with range in L(H,Fn).
Suppose we have proved that, for any y ∈ Y and f ∈ BG(1),

lim sup
δ→0+

‖D(y, δ)f − f‖H ≤ 2ε, (2.26)

where we setD(y, δ) = A(y)B(y, δ). Noting that ‖D(y, δ)‖L(H) ≤ 1 for any (y, δ)

and denoting by f1, . . . , fN ∈ G an ε-net in BG(1), we can write

‖D(y, δ)f − f‖H ≤ 2ε+ ‖D(y, δ)fj − fj‖H ,

where j ∈ {1, . . . , N} is such that ‖f − fj‖H ≤ ε. Combining this with (2.26),
we see that, for any y ∈ Y and a sufficiently small δy > 0, we have

sup
f∈BG(1)

‖D(y, δ)f − f‖H ≤ 3ε for 0 < δ ≤ δy.
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Since the function δ 7→ ‖D(y, δ)f − f‖H decreases with δ > 0, using the com-
pactness of Y and the continuity of the function y → D(y, δ), we can find δε > 0
such that

sup
y∈Y

sup
f∈BG(1)

‖D(y, δε)f − f‖H ≤ 4ε.

By homogeneity, this implies the required inequality (2.21) with Bε(y) = B(y, δε),
in which ε on the right-hand side is replaced with 4ε. Thus, it remains to es-
tablish (2.26) for fixed y and f .

In view of (2.25), there is fε ∈ An(y)Fn such that ‖f − fε‖H ≤ ε. Since the
norm of D(y, δ) does not exceed 1, we obtain

‖D(y, δ)f − f‖H ≤ 2ε+ ‖D(y, δ)fε − fε‖H . (2.27)

Using the spectral theorem for self-adjoint operators, it is straightforward to
check that ‖D(y, δ)fε − fε‖H → 0 as δ → 0+; see the proof of Lemma 2.7
in [KNS20]. Combining this with (2.27), we arrive at (2.26). This completes
the proof of the lemma.

3 Stationary processes satisfying the mixing hy-

pothesis

In this section, we discuss Hypotheses (DLP′) and (SRZ) and construct station-
ary processes for which they are satisfied. This type of questions were intensively
studied in the middle of last century; see the papers [Dob68, Dob70, Dob74]
and the references therein. Here we prove that the existence and uniqueness
(in law) of a stationary process with prescribed conditional laws follows from
Theorem 1.3. We also discuss the relation of properties (DLP′) and (SRZ) with
various concepts of mixing for stationary processes.

3.1 Existence and uniqueness

Let E be a separable Banach space, K ⊂ E be a compact subset, and K = KZ−

be the direct product of countably many copies of K with the distance d as
in (0.5). We begin with the following result due to Dobrushin [Dob70].

Proposition 3.1. Let {Q(ξ; ·), ξ ∈ K} ⊂ P(E) be a transition probability
from K to E for which suppQ(ξ; ·) ⊂ K for any ξ ∈ K and Hypotheses (Fel)
and (DLP′) hold with E = K, and let Qk(ξ; ·) ∈ P(Ek) be defined by (2.6) for
each k ≥ 1. Then there is an E-valued stationary random process {ηl}l∈Z such
that, for every k ≥ 1, the conditional law of (η1, . . . , ηk) given the past ξ ∈ K is
equal to Qk(ξ; ·) for ξ ∈ suppσ, where σ is defined by (1.9).

This proposition follows from Theorem 1 in [Dob70, Section 2] (applied to
Case 2 discussed there). We do not give further details, referring the reader
to the original paper and noting that the law of the constructed process may
not be unique, and that Hypothesis (SRZ) is not necessarily satisfied for it.
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The following result (whose proof does not use Proposition 3.1) shows that the
uniqueness holds, provided that the conditional measures, in addition to (Fel)
and (DLP′), satisfy a strong recurrence property, which is slightly more general
than (SRZ); cf. Proposition 2.8. Moreover, the result and its proof remain true
in the non-stationary case, as is mentioned in Remark 0.1 (2).

Theorem 3.2. In addition to the conditions of Proposition 3.1, let us assume
that {Q(ξ; ·), ξ ∈ K} possesses the following property:

(SR) Strong recurrence. For any integer n ≥ 1 and any δ > 0, there is a

vector ~ξn = (ξ̄1, . . . , ξ̄n) ∈ En and an integer s ≥ 0 such that

inf
ξ∈K

Qn
s

(
ξ;Oδ(~ξn)

)
> 0, (3.1)

where the measures Qn
s

(
ξ; ·) are constructed from the transition probabil-

ity Q
(
ξ; ·) using (2.6) and (2.7).

Then there is an E-valued stationary random process {ηk}k∈Z such that the
conditional measure of η1 given the past ξ ∈ K is equal to Q(ξ; ·) for any ξ ∈
E := suppσ, where σ = D({ηk, k ∈ Z−}). Moreover, the law of the process {ηk}
is uniquely defined, and there are positive numbers C and γ such that, for any
m, k ≥ 0,

sup
ξ∈K

∥∥Qm
k (ξ; ·)− σm

∥∥∗

L
≤ C e−γk, (3.2)

where σm ∈ P(Em) is the law of (η1, . . . , ηm).

Proof. Step 1: Proof of (3.2). Let us set X = K and denote by {ζξ, ξ ∈ X}
a random field on K such that D(ζξ) = Q(ξ; ·) for any ξ ∈ X. Consider the

following RDS on X, defined on some suitable probability space (Ω̂, F̂ , P̂):

ξk =
(
ξk−1, ζ

ξk−1

k

)
, k ≥ 1. (3.3)

Here ζξk (ω̂) = ζξ(ωk) for any ξ ∈ X and ω̂ ∈ Ω̂; cf. (1.13). We note that (3.3)
can be written in the form (1.3), where the mapping S : X × K → X is given
by S (ξ, η) = (ξ, η). By Proposition 1.1, it defines a Markov process in X. It
follows from (3.3) that

P1(ξ; ·) = δξ ⊗Q(ξ; ·) ∈ P(K)⊗ P(K) ≃ P(X), (3.4)

so that
Pl(ξ; ·) = δξ ⊗Ql(ξ; ·) ∈ P(K)⊗ P(Kl) ≃ P(X) (3.5)

for l ≥ 1. In particular, if we write ξk as (ξik, i ≤ k), then taking l = k + m
in (3.5) and projecting to the last m components, we see that

D
(
{ξik, k + 1 ≤ i ≤ k +m}

)
= Qm

k (ξ; ·). (3.6)

We claim that the RDS (3.3) satisfies all the conditions of Theorem 1.3.
Indeed, Hypothesis (GCP) follows from (SR) and an argument used in Step 2
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of Section 2.2, with 0n replaced by ~ξn = (ξ̄1, . . . , ξ̄n). Furthermore, Hypothe-
sis (LAC) with F = {0} is trivial since we can take Φ ≡ 0, and (DLP) follows
from (DLP′). Thus, the conclusion of Theorem 1.3 holds for (3.3), so that (3.3)
has a unique stationary measure σ ∈ P(X), and there are positive numbers C
and γ such that

sup
ξ∈X

‖D(ξk)− σ‖∗L ≤ Ce−γk, k ≥ 0. (3.7)

Denoting by σm ∈ P(Km) the projection of σ to the last m components and
using (3.6), we obtain (3.2) as a direct consequence of (3.7).

Step 2: Stationarity and construction of the process . We now prove that
σ ∈ P(X) is shift invariant. To this end, it suffices to show that

σm+1(Γ×K) = σm(Γ) for any m ≥ 1 and Γ ∈ P(Km). (3.8)

The definition of Qm
k (see (2.7)) implies that

Qm+1
k (ξ; Γ×K) = Qm

k (ξ; Γ) for any Γ ∈ B(Km).

Passing to the (weak) limit as k → ∞ in this relation (regarded as equality of
measures) and using (3.2), we arrive at (3.8).

Thus, σ is shift invariant, so that, by the Kolmogorov theorem, it can be
extended to a shift invariant measure on KZ, which is denoted by σ. We now
define a stationary sequence {ηk, k ∈ Z} as the canonical process corresponding
to σ. In the next step, we show that the conditional measures of {ηk} are given
by Q(ξ; ·), establishing thus the existence claim of the theorem.12

Step 3: Conditional measures . Let us consider a trajectory of (3.3) issued
from a random initial condition ξ0 that depends only on ω0 and is distributed
as σ ∈ P(X). In view of the stationarity of σ, the Markov property, and rela-
tion (3.4), for any bounded continuous function F : X×K → R, we have

∫

X

F (ξ)σ(dξ) = EF (ξ1) = E
(
E{F (ξ0, ζ

ξ0

1 )| F0}
)

= E

∫

K

F (ξ0, ξ)P1(ξ0; dξ) =

∫

X

σ(dξ)

∫

K

F (ξ, ξ)Q(ξ; dξ).

We see that Q(ξ; ·) is indeed the conditional measure of η1, given the past η = ξ.

Step 4: The uniqueness . Suppose there is another K-valued stationary pro-
cess {η′k}k∈Z whose conditional law is given by Q(ξ; ·) for ξ ∈ E ′, where E ′ ⊂ K

is the support of the law of {η′k, k ∈ Z−}, and denote by σ′ ∈ P(KZ) its law.
We wish to prove that σ′ = σ.

Given an integer m ≥ 1, we denote by σ′
m ∈ P(Km) the law of the random

vector (η′1, . . . , η
′
m). For any integers k,m ≥ 1 and any function f ∈ Cb(E

m),
we can write

∫

Km

f(y)σ′
m(dy) =

∫

K

∫

Km

f(y)Qm
k (ξ; dy)σ′(dξ),

12By Proposition 3.1, the existence is valid under weaker hypotheses. Our proof does not
use Dobrushin’s result and is given to make the presentation self-contained.
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where σ′ ∈ P(K) stands for the projection of σ′ to K. Passing to the limit as
k → ∞ and using (3.2), we obtain 〈f,σ′

m〉 = 〈f,σm〉. Since this is true for any
f ∈ Cb(E

m), we see that σ′
m = σm for all m ≥ 1, whence we conclude that

σ = σ′. The proof of the theorem is complete.

Corollary 3.3. Let Q(ξ; ·) be a transition probability from K to K that sat-
isfies Hypotheses (Fel), (DLP′), and (SRZ). Then there is a unique in distri-
bution stationary random process {ηk}k∈Z whose conditional measure coincides
with Q(ξ; ·) for ξ ∈ suppσ, where σ is given by (1.9).

Since it is easy to construct numerous examples of transition probabilities
Q(ξ; ·) from K to K which meet assumptions (Fel), (DLP′) and (SRZ), then
there are plenty of stationary processes {ηk} with compact support that satisfy
the hypotheses imposed on the random input in Theorem 2.4.

3.2 Strong recurrence, strong irreducibility, and mixing

The aim of this section is to prove implications (2.9). We shall say that an
E-valued stationary process η := {ηk}k∈Z (or η := {ηk}k∈Z+

) is feebly mixing
if for any integers n,m ≥ 1 and any functions f ∈ Cb(E

n) and g ∈ Cb(E
m) we

have
lim
k→∞

E
(
f(η)g(θkη)

)
= E f(η)E g(η), (3.9)

where θkη = {ηj+k, j ∈ Z} is the shifted process, and for a function h : El → R

we set h(η) = h(η1, . . . , ηl). We denote by σm and σ the laws of (η1, . . . , ηm)
and {ηk, k ∈ Z−}, respectively.

Proposition 3.4. Let η = {ηk}k∈Z be an E-valued stationary process whose
conditional probabilities satisfy Hypotheses (Fel), (DLP′), and (SR). Then η is
feebly mixing.

Proof. The main idea of the proof is well known, so that we skip the details.
Let f ∈ Cb(E

n) and g ∈ Cb(E
m). For any k > n and ξ ∈ E , the conditional

expectation given the past can be written as

E
{
g(θkη)

∣∣ηn = ξ
}
=

∫

Em

Qm
k−n(ξ; d~ym)g(~ym),

where ~ym = (y1, . . . , ym) and ηn = {ηj , j ≤ n}. Denoting by {Fk}k∈Z the
natural filtration associated with η and taking the conditional expectation with
respect to Fn, we obtain

E
(
f(η)g(θkη)

)
= E

(
f(η)E

{
g(θkη)

∣∣Fn

})

= E

{
f(η)

∫

Em

Qm
k−n(η

n, d~ym)g(~ym)

}
. (3.10)

In view of Theorem 3.2, the integral over Em converges (uniformly in ηn ∈ E)
as k → ∞ to 〈g,σm〉 = E g(η). Passing to the limit in (3.10) as k → ∞, we
arrive at (3.9).
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Now let η be a stationary process whose conditional probabilities satisfy
Hypothesis (Fel). We shall say that η is strongly feebly mixing if, for each
m ≥ 1,

lim
k→∞

sup
ξ,g

∣∣∣∣
∫

Em

Qm
k (ξ; d~ym)g(~ym)− E g(η)

∣∣∣∣ = 0, (3.11)

where the supremum is taken over all points ξ ∈ E = suppσ and all the functions
g ∈ Cb(E

m) with ‖g‖∞ ≤ 1. In this case, it follows from (3.10) that, for fixed m
and n, the limit in (3.9) holds uniformly in continuous functions f and g whose
absolute values are bounded by 1. Thus, when property (Fel) is satisfied, the
concept of strong feeble mixing defined above is close to the usual concept of
strong mixing, for which the validity of (3.11) is required uniformly in m ≥ 1;
see [IL71, Definition 17.2.2].

Let us note that, in view of Proposition 2.7, a stationary weak solution
of (1.8) is strongly feebly mixing. The following result prove an irreducibility
property for such processes.

Proposition 3.5. Any strongly feebly mixing E-valued stationary process η

satisfying Hypothesis (DLP′) is strongly irreducible in the following sense:

(SI) For any n ∈ N and δ > 0 there is an integer s ≥ 1 such that

inf
ξ∈suppσ

Qn
s

(
ξ;Oδ(~ξn)

)
> 0

for any ~ξn = (ξ1, . . . , ξn) ∈ suppσn, where σ ∈ P(E) is defined in (1.9).

Proof. Let us fix an integer n ≥ 1, a point ~ξn ∈ suppσn, and any number δ > 0.
We take any function g ∈ Cb(E

n) supported by Oδ(~ξn) such that 0 ≤ g ≤ 1 and

g(~yn) = 1 for ~yn ∈ Oδ/2(~ξn). In this case, we have

p := E g(η) > 0, Qn
s

(
ξ;Oδ(~ξn)

)
≥

∫

En

Qn
s (ξ; d~yn)g(~yn).

Combining this with (3.11), we see that

inf
ξ∈suppσ

Qn
s

(
ξ;Oδ(~ξn)

)
≥ p/2,

provided that s ≥ 1 is sufficiently large. This completes the proof.

3.3 Examples of processes satisfying the hypotheses of

Section 2.1

Corollary 3.3 implies the existence of many stationary processes satisfying (Fel),
(DLP′), and (SRZ). In Subsections 3.3.1 and 3.3.2 below, we describe two classes
of stationary processes possessing those properties.
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3.3.1 Discrete-time Markovian noises

Let E be a finite-dimensional space and let η = {ηk}k≥0 be a stationary Markov
process in E corresponding to transition probabilites {Pk(ξ; ·), k ≥ 0} that pos-
sess the following properties:

• the law of η1 has a compact support, and there is a Lipschitz continuous

function ρ : E×E → R+ such that P1(ξ; dy) = ρ(ξ, y)ℓ(dy) for any ξ ∈ E;

• there is a ball B ⊂ E, a point a ∈ E, an integer m ≥ 1, and a number

p > 0 such that ρ(ξ, a) > 0 for any ξ ∈ B, and Pm(ξ;B) ≥ p for any

ξ ∈ E.

In this case, Hypothesis (DLP′) is satisfied for η. Moreover, using Theorem 3.2,
it is not difficult to prove that (3.11) holds with ξ ∈ E , so that η is strongly
feebly mixing. Then, by Proposition 3.5, the process η satisfies the property
of strong irreducibility (SI). Moreover, if the second condition mentioned above
is fulfilled for the point a = 0 and some ball B = BE(δ) with δ > 0, then
a simple calculation based on the Kolmogorov–Chapman relation shows that
Hypothesis (SRZ) is also satisfied.

3.3.2 Discrete-time moving averages

Let ζ = {ζk}k∈Z be a sequence of i.i.d. random variables in finite-dimensional
space E whose law possesses a Lipschitz continuous density ρ(y). We assume
that the support of ρ is compact. Let us fix any sequence {al}l≥1 exponentially
going to zero and define

ηk = ζk +
∞∑

l=1

alζk−l, k ∈ Z. (3.12)

Obviously η = {ηk} is a stationary process in E. To simplify the presentation,
we further assume that

∑
l |al| < 1. In this case, denoting by ℓ∞(E) the space

of bounded E-valued sequences indexed by Z−, we see that the linear operator
A : ℓ∞(E) → ℓ∞(E) taking {ζj , j ∈ Z−} to the sequence {ηk, k ∈ Z−} defined
by (3.12) is invertible, and the inverse operator B has the form

(Bξ)k = ξk +
∞∑

l=1

blξk−l, k ∈ Z−,

where {bl, l ∈ N} is another exponentially decaying sequence of real numbers.
It follows that the conditional law of η can be written as

Q(ξ; dy) = ρ(y − h(ξ)), h(ξ) =

∞∑

l=1

al(Bξ)1−l = −

∞∑

l=1

blξ1−l,

where ξ = (ξl, l ∈ Z−) ∈ E . Since ρ is Lipschitz continuous, it follows that
Q(ξ; dy) has a Lipschitz continuous density, and so {ηk} satisfies (DLP′). Fur-
thermore, since an i.i.d. random process satisfies (SI), using the fact that the
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processes η and ζ can be reconstructed from each other with the help of the
continuous linear operators A and B, it is not difficult to conclude that (SI)
holds also for η. If, in addition, the support of the law of ζk contains 0 ∈ E,
then (3.12) readily implies that Hypothesis (SRZ) is satisfied.

3.3.3 Continuous-time noise

In this section, we denote by J the interval [0, 1) ⊂ R and by E the Lebesgue
space L2(J). Let {ϕl}l≥1 be an orthonormal basis in E and {ζl}l≥1 be a sequence
of independent scalar random variables whose laws possess Lipschitz continuous
densities dl : R → R+ with respect to Lebesgue measure on R. We assume that
|ζl| ≤ al almost surely for any l ≥ 1, where the numbers al > 0 are such that∑

l a
2
l < ∞. Thus, the function dl vanishes outside the interval [−al, al], and

the random series

ζ(t) :=

∞∑

l=1

ζlϕl(t), t ∈ J

converges almost surely in E. We denote by ν ∈ P(E) the law of the random
variable ζ. Let us write K for the support of ν. This is a compact subset of E.
Next, we fix any number ι > 1 and define a distance d(ξ, ξ′) on K = KZ− by
relation (0.5).

Proposition 3.6. Let the above hypotheses be fulfilled, let g : K × E → R+

be a Lipschitz continuous function such that g(ξ, y) ≥ c > 0 for all ξ ∈ K and
y ∈ E, and let m(ξ) =

∫
E g(ξ, y)ν(dy). Then the transition probabilities

Q(ξ; dy) = ρ(ξ, y)ν(dy), ρ(ξ, y) = m(ξ)−1g(ξ, y), (3.13)

satisfy Hypothesis (DLP′), in which Fn is the vector span of ϕ1, . . . , ϕn, and F †
n

is F⊥
n – the orthogonal complement to Fn in E. Moreover, the densities of the

conditional measures Qn(ξ, y
†
n; ·) entering (2.5) are given by the formula

ρn(ξ, y
†
n, yn) =

g(ξ, yn, y
†
n)Dn(yn)∫

Fn
g(ξ, z, y†n)νn(dz)

, (3.14)

where νn is the projection of ν to Fn, and Dn stands for the product of the
functions d1, . . . , dn.

Proof. In view of (3.13), for any integer n ≥ 1 and arbitrary bounded continuous
functions f : Fn → R and g : F⊥

n → R, we can write

∫

E

f(yn)g(y
†
n)Q(ξ; dy)

=

∫

F⊥
n

g(y†n)

{∫

Fn

f(yn)ρ(ξ, yn, y
†
n)Dn(yn)ℓn(dyn)

}
ν⊥n (dy†n), (3.15)
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where ν⊥n is the projection of ν to F⊥
n , and ℓn stands for the Lebesgue measure

on Fn. On the other hand, the projection of Q(ξ; ·) to F⊥
n is given by

Q†
n(ξ; dy

†
n) =

{∫

Fn

ρ(ξ, z, y†n)νn(dz)

}
ν⊥n (dy†n).

Combining this with (3.15), we arrive at relation (3.14) for the density of the
measure Q(ξ; y†n, ·). The Lipschitz continuity of ρn follows from similar property
of the function g and the inequality g ≥ c. Finally, the density of the union ∪nFn

is a consequence of the construction.

Corollary 3.7. In addition to the conditions of Proposition 3.6, let us assume
that 0 ∈ supp dl for any l ≥ 1. Then Hypothesis (SRZ) holds for the family
{Q(ξ; ·), ξ ∈ K}. Moreover, for any m ≥ 1 and δ > 0, inequality (2.24) holds
with s = 0.

Proof. Since the support of dl contains zero, we see that Q(ξ;BE(0, δ)) > 0 for
any ξ ∈ E. Combining this with (2.6), for any ξ ∈ K and m ≥ 1, we derive

Qm

(
ξ;Oδ(0m)

)
> 0.

By the portmanteau theorem, the function taking ξ ∈ K to the left-hand side
of this relation is lower semicontinuous and, hence, separated from zero on any
compact set. This implies the required inequality (3.1).

We now construct a continuous-time process whose restrictions to the inter-
vals Jk := [k − 1, k), k ∈ Z satisfy Hypotheses (DLP′) and (SRZ). To this end,
we first use Corollary 3.3 to construct an E-valued stationary process {ηk}k∈Z

such that the conditional law of η1 given the past {ηk = ξk, k ∈ Z−} is equal
to Q(ξ; ·) on the support of the law of {ηk}k∈Z−

. Then we define a process
η = {η(t)}t∈R by the relation

η(t) = ηk(t− k) for k ≤ t < k + 1, k ∈ Z.

The following result follows immediately from the construction.

Proposition 3.8. Almost every trajectory of η is a bounded function of time,
and the following two properties hold:

Periodicity. The law of η regarded as a probability measure on the separable
Fréchet space L2

loc(R) is invariant under the time-1 shift.

Regularity and recurrence. The restrictions of η to the intervals {Jk}k∈Z form
a stationary process in E that satisfy Hypotheses (DLP′) and (SRZ).

Finally, we construct a continuous-time process that takes values in an ar-
bitrary separable Hilbert space H , has a dense image, and satisfies Hypothe-
ses (DLP′) and (SRZ). To this end, we denote by {ej} an orthonormal basis
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in H , choose independent identically distributed processes {ηj(t), t ∈ R} satis-
fying the conclusions of Proposition 3.8, and consider the process

η(t) =

∞∑

j=1

bjη
j(t)ej , t ∈ R, (3.16)

where {bj} are non-zero numbers satisfying the inequality
∑

j b
2
j < ∞. The

following result is a consequence of Proposition 3.8 and the observation that
a conditional measure of a tensor product is the tensor product of conditional
measures.

Proposition 3.9. Almost every trajectory of the process η(t) constructed above
is a bounded function of time with range in H. Moreover, the two properties
formulated in Proposition 3.8 remain valid if we replace L2

loc(R) with L2
loc(R;H)

and E = L2(J) with L2(J ;H).

4 Application to randomly forced ODE and PDE

Theorem 2.4 directly applies to systems (0.1). In this section, we give three
examples which illustrate its applications to systems (0.2).

4.1 Chain of anharmonic oscillators coupled to heat reser-

voirs

Our first example deals with an application of the theorem to a chain of an-
harmonic oscillators coupled to heat reservoirs. Following [JP98, EPR99], we
fix a smooth Hamiltonian of the form (0.11) for a “small system” and, after
excluding the variables describing the reservoirs, write the equations of motion
for the coupled system in the form13

q̇ = p, ṗ = −∇V (q) + (−γ1p1 + ζ1(t))e1 + (−γnpn + ζn(t))en, (4.1)

where {ej , 1 ≤ j ≤ n} is the standard basis in Rn, γ1, γn are positive numbers,
and ζ1, ζn are stochastic processes with locally square-integrable trajectories.
Thus, the dissipation γipi and stochastic force ζi enter only the equations for p1
and pn. We shall prove that the question of mixing for (4.1) can be reduced to
a pure control problem for a family of linear ODEs with variable coefficients.
The latter can be studied with the help of well-known methods of control theory
and will be investigated in a subsequent publication (see also Example 4.3).

In what follows, we assume that V is twice continuously differentiable and
denote by v(p, q) the vector field entering (4.1):

v(p, q) = (p,−∇qV (q)− γ1p1e1 − γnpnen).

13We confine ourselves to a “linear” chain coupled to reservoirs at the endpoints. It is
not difficult to extend our analysis to more complicated geometries, similar to those studied
in [CEHR18, Raq19].
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A simple calculation shows that if (p(t), q(t)) is a trajectory for (4.1), then

d

dt
H
(
p, q

)
= −γ1p

2
1 − γnp

2
n +

(
ζ1p1 + ζnpn

)
≤ C

(
ζ21 + ζ2n

)
, (4.2)

where H(p, q) =
∑

j p
2
j/2 + V (q). Since ζ1 and ζn are locally square-integrable,

we see that H(p(t), q(t)) does not explode in finite time. Therefore, assuming
that

V (q) → +∞ as |q| → +∞,

we can conclude that all the solutions are defined for all t ∈ R. We shall denote
by Φt(·; ζ) : R2n → R2n the map taking an initial condition (p0, q0) to the value
of the corresponding solution of (4.1) at time t ≥ 0, and by B(r) the closed ball
in R2n of radius r centred at zero. Let us impose, in addition, the following two
hypotheses on V .

(BAS) Bounded absorbing set. For any M > 0, there is ρ > 0 such that,

for every r > 0, we can find Tr > 0 satisfying the following property: if a

measurable function ζ = (ζ1, ζn) : R+ → R2 is such that

sup
t≥0

∫ t+1

t

(
|ζ1(s)|

2 + |ζn(s)|
2
)
ds ≤ M, (4.3)

then for each (p0, q0) ∈ B(r) we have Φt(p0, q0; ζ) ∈ B(ρ) if t ≥ Tr.

This property is certainly satisfied if we impose the stronger condition (0.12) on
the functions ζ1, ζn and require the vector field v(p, q) to possesses a Lyapunov
function for which (0.13) holds. As will be shown in Proposition 4.1 below,
Hypothesis (BAS) implies the existence of a compact set X ⊂ R2n that absorbs
the trajectories of (4.1) in finite time and is invariant under the flow with an
arbitrary ζ satisfying (4.3).

(SE) Stable equilibrium point. There is c ∈ Rn such that

sup
(p0,q0)∈X

∣∣Φt(p0, q0; 0)− (0, c)
∣∣ → 0 as t → ∞. (4.4)

Since all trajectories of system (4.1) with ζ ≡ 0 are absorbed by X in finite
time, this condition implies that (0, c) is a unique globally stable equilibrium
for the flow Φt(·, 0). A sufficient condition under which (BAS) and (SE) are
fulfilled will be discussed in Example 4.3. The following result describes some
further properties of trajectories for (4.1) with a deterministic driving force ζ.

Proposition 4.1. Let us assume that Hypotheses (BAS) and (SE) are fulfilled,
and deterministic measurable functions ζ1, ζn in (4.1) satisfy (4.3). Then the
following properties hold.

Invariant set. There is a compact set X ⊂ R2n depending only on M such that,
for any (p0, q0) ∈ X, the trajectory of (4.1) issued from (p0, q0) satisfies
the inclusion (

p(t), q(t)
)
∈ X for any t ≥ 0.
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Absorption. For any r > 0, there is an integer Tr > 0 such that the trajectory
of (4.1) issued from an initial condition (p0, q0) ∈ B(r) belongs to X for
t ≥ Tr.

Proof. This result is established using a well-known argument, and we only
outline it. Let us recall that ρ > 0 is the radius of the absorbing ball defined
in (BAS). We denote T ≥ 1 the minimal time such that Φt(p0, q0; ζ) ∈ B(ρ) for
any t ≥ T , (p0, q0) ∈ B(ρ), and any pair ζ = (ζ1, ζn) satisfying (4.3). Let EM

be the set of functions ζ ∈ L2(0, T ;R2) for which inequality (4.3) holds with
the supremum taken over t ∈ [0, T − 1]. We endow EM with the weak topology
and consider the map (t, p0, q0, ζ) 7→ Φt(p0, q0; ζ) acting from the compact set
[0, T ] × B(ρ) × EM to the space R2n. Standard theory of ODEs implies that
this is a continuous map, so that the set

X :=

T⋃

t=0

⋃

ζ∈EM

Φt
(
B(ρ); ζ

)

is also compact. Moreover, it contains the absorbing ball B(ρ), and the very
definition of X easily implies that X is invariant under the flow Φt(·, ζ) for any
choice of ζ satisfying (4.3).

To formulate the main result of this subsection, we define E = L2(J,R2),
where J = [0, 1), and impose the following two hypotheses on the random pro-
cess ζ = (ζ1, ζn) (whose trajectories are assumed to be elements of L2

loc(R,R
2)

almost surely).

(CP) Compactness and periodicity. The law of ζ is invariant under the

time-1 shift, and the support of its projection to J is a compact subset

K ⊂ E.

(DR) Decomposability and recurrence. The stationary process {ηk} in E
defined by ηk(t) = ζ(t + k − 1) for t ∈ J satisfies Hypothesis (SRZ), in
which E ⊂ K := KZ− is the support of the law of {ηl, l ∈ Z−}. Moreover,

the conditional law Q(ξ; ·) of η1, given the past {ηl = ξl, l ∈ Z−}, is such
that (DLP′) holds.

We also need a condition on the linearisation of Eqs. (4.1) about its solu-
tions (p(t), q(t)),

ẋ = y, ẏ = −(D2V )(q(t))x + (−γ1y1 + ξ1(t))e1 + (−γnyn + ξn(t))en, (4.5)

supplemented with the zero initial condition:

x(0) = 0, y(0) = 0. (4.6)

Here (p(t), q(t)) is a solution issued from the set X , which was constructed in
Proposition 4.1. We thus obtain a family of linear ODEs, parametrised by the
initial condition (p0, q0) and the (deterministic) right-hand side ζ entering (4.1).
Writing ξ = (ξ1, ξn), we impose the following hypothesis.
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(LC) Linearised controllability. There is an open set O ⊂ R2n × E con-

taining X × K such that, for any ((p0, q0), ζ) ∈ O, the associated linear

system (4.5), (4.6) in R2n is controllable at time t = 1 with control ξ ∈ E.

Before formulating the main result of this subsection, let us mention that Hy-
potheses (CP) and (DR) are satisfied, for example, for random forces described
in Subsection 3.3.3 (see Corollary 3.7 and Proposition 3.8), whereas the control-
lability property (LC) requires a separate study. A simple system for which the
latter holds is given in Example 4.3.

Theorem 4.2. Let Hypotheses (BAS), (SE), (CP), (DR), and (LC) be fulfilled.
Then the random flow of (4.1) restricted to integer times is exponentially mixing
in the dual-Lipschitz metric. More precisely, there is a measure µ ∈ P(R2n) with
compact support and a number γ > 0 such that, for any r > 0 and a sufficiently
large Cr > 0, we have

sup
(p0,q0)∈B(r)

‖µt(p
0, q0)− µ‖∗L ≤ Cre

−γt, t ∈ Z+, (4.7)

where we denote by µt(p
0, q0) the law at time t of the trajectory of (4.1), issued

from (p0, q0) ∈ R2n.

Proof. We claim that Theorem 2.4 is applicable to the random flow of (4.1),
restricted to integer times and the invariant subset X . Indeed, (GD) is a con-
sequence of (4.4), and (ALC) and (SRZ) are postulated in (LC) and (DR),
respectively. The latter condition also implies that the properties of Hypoth-
esis (DLP′) are satisfied for Fn = E. Thus, all the conditions of Theorem 2.4
holds, so that we have inequality (4.7), in which B(r) is replaced with X . Fi-
nally, the validity of (4.7) for an arbitrary r > 0 follows from the fact that X
absorbs all the trajectories issued from B(r) at some positive time Tr; see the
second point of Proposition 4.1. This completes the proof of the theorem.

Theorem 4.2 ensures the convergence of the restrictions of trajectories to
integer times. It is not difficult to prove that, for any s ∈ (0, 1), the restrictions of
trajectories to the times s+Z+ also converge to a limiting measure µs ∈ P(R2n).
Since the corresponding argument is well known and is exactly the same as in
the case of the Navier–Stokes system, we discuss it briefly in the next subsection.
We conclude with an example for which Hypotheses (BAS) (CL), and (SE) are
satisfied.

Example 4.3. Let us assume that the potential V entering (0.11) is representable
in the form

V (q) =

n∑

i=1

(
aiq

2
i + Fi(qi)

)
+

n−1∑

i=1

bi(qi − qi+1)
2, q ∈ R

n, (4.8)

where ai and bi are positive numbers, and Fi ∈ C2(R) are some functions
with bounded derivatives. We claim that (BAS) holds. To see this, we denote
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by V0(q) the sum of the quadratic terms in (4.8) (that is, the expression in the
right-hand side of (4.8) with Fi ≡ 0) and write H0(p, q) for the corresponding
Hamiltonian. The damped Hamiltonian system associated with H0 has the form

q̇ = p, ṗ = −Dq − γ1p1e1 − γnpnen, (4.9)

where D > 0 is the symmetric matrix corresponding to the quadratic form V0.
Using the inequalities γ1, γn > 0, it is easy to check that (p, q) = (0, 0) is a
stable equilibrium for (4.9); see the argument below applied in the verification
of Hypothesis (LC). Therefore there is a positive-definite quadratic form L0(p, q)
such that

〈∇L0(p, q), v0(p, q)〉 ≤ −δ(|p|2 + |q|2), (p, q) ∈ R
2n,

where δ > 0 is a number, and v0 is the linear vector field in (4.9). Since the
difference V − V0 has bounded first-order partial derivatives, it follows that

〈∇L0(p, q), v(p, q)〉 ≤ −
δ

2
(|p|2 + |q|2)

outside a sufficiently large ball. This readily implies the existence of an absorb-
ing ball and of an absorbing invariant set X ⊂ R2n.

To ensure the validity of (SE) and (LC), we further assume that

F ′
i (0) = 0, inf

s∈R

F ′′
i (s) > −2ai for any 1 ≤ i ≤ n. (4.10)

To check (SE), note that if (p, q) is a trajectory of (4.1) with ζ1 ≡ ζn ≡ 0,

q̇ = p, ṗ = −∇V (q)− γ1p1e1 − γnpnen, (4.11)

then H(p(t), q(t)) is a non-decreasing function of time; see (4.2). It follows
that the Hamiltonian H must be constant on the ω-limit set of a solution. In
particular, for any trajectory (p, q) of (4.11) lying on such an ω-limit set, we
have p1 ≡ pn ≡ 0. We claim that p ≡ q ≡ 0 is the only such trajectory. This
will imply the validity of (SE) by a simple compactness argument.

The relation q̇1 = p1 (which is the first equation in (4.11)) implies that q1 is
constant in time. The equation

0 ≡ ṗ1 = −∂q1V (q) = 2b1q2 − 2(a1 + b1)q1 − F ′
1(q1)

implies that q2 is also constant in time, so that p2 ≡ 0. Arguing by induction,
we see that all pi vanish identically and all qi are constant. It remains to prove
that qi = 0. The second equation in (4.11) imply that

2aiqi + 2bi−1(qi − qi−1) + 2bi(qi − qi+1) + F ′
i (qi) = 0, 1 ≤ i ≤ n,

where b0 = q0 = bn = qn+1 = 0. A simple analysis based on (4.10) shows that
q1 = · · · = qn = 0 is the only solution of this system.
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Finally, the verification of the linearised controllability (LC) is based on
well-known techniques in the control theory of ODEs, using the propagation of
perturbation via the derivative of the potential V . Since the corresponding ar-
gument is technically more involved, we shall give it in a subsequent publication
devoted to a study of more general chains of oscillators and rotators.

Thus, Theorem 4.2 applies to the chain of anharmonic oscillators (4.1) with
a potential of the form (4.8), provided that the random forces ζ1, ζn are inde-
pendent and belong to the class of processes described in Subsection 3.3.3.

4.2 Two-dimensional Navier–Stokes system

Let us consider the Navier–Stokes system (0.14) in a bounded domain D ⊂ R2

with a smooth boundary ∂D. Let us impose the no-slip boundary condi-
tion (0.15), define the usual functional space

H = {u ∈ L2(D,R2) : div u = 0 in D, 〈u,n〉 = 0 on ∂D}, (4.12)

and denote by Π the orthogonal projection in L2(D,R2) onto H . Excluding
the pressure from (0.14) with the help of the standard argument, we write the
problem in question as a nonlocal PDE in H ,

∂tu+ νLu+B(u) = η(t), u(t) ∈ H, (4.13)

supplemented with the initial condition (0.16). Here L = −Π∆ is the Stokes
operator, B(u) = Π(〈u,∇〉u) is a quadratic map, u0 ∈ H is an initial function,
and η is a bounded stationary stochastic process in H of the form (3.16), in
which {ej} is an orthonormal basis in H composed of the eigenfunctions of L,
bj 6= 0 are some numbers such that

∑
j b

2
j < ∞, and ηj = {ηj(t), t ∈ R}j≥1 are

i.i.d. stochastic processes possessing the properties stated in Proposition 3.8.
Let us denote J = [0, 1) and introduce random functions ηjk : J → R by the

formula ηjk(t) = ηj(t+ k − 1). Writing

ηk =

∞∑

j=1

bjη
j
kej ,

we obtain a random variable in E := L2(J,H), and the construction implies
that {ηk}k≥1 is a stationary sequence in E. Denoting by K the Hilbert cube
{v ∈ H : |(v, ej)| ≤ bj for j ≥ 1}, we see that ηk ∈ K with probability 1.

For any initial condition u0 ∈ H , Equation (4.13) has a unique solution
u(t;u0) that belongs to the space L2

loc(R+, V ) ∩ C(R+, H) almost surely and
satisfies the initial condition (0.16). Let us denote by {uk(v), k ∈ Z+} the
restrictions of u(·; v) to integer times. The following theorem describes the
asymptotic behaviour of uk as k → ∞.

Theorem 4.4. Under the above hypotheses, there is a measure µ ∈ P(H) with
compact support and a number γ > 0 such that, for any R > 0, we have

sup
v∈BH (R)

∥∥D
(
uk(v)

)
− µ

∥∥∗
L
≤ CRe

−γk, k ≥ 0, (4.14)
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where CR > 0 depends only on R.

Proof. Since the norms of trajectories of η(t) are bounded by a universal number
for all t ∈ R, a standard argument shows that there is a compact absorbing set
X ⊂ H that is invariant under the random flow; cf. [BV92, Section 1.6]. Thus,
it suffices to prove inequality (4.14) in which the ball BH(R) is replaced with X .
To this end, we shall use Theorem 2.4. Namely, denoting by S : H × E → H
the time-1 shift along trajectories of Equation (4.13), we see that

uk = S(uk−1,ηk), k ≥ 1. (4.15)

Hence, it suffices to check the validity of Hypotheses (GD), (ALC), (DLP′),
and (SRZ). The first of them follows from a well-known dissipation property
of the Navier–Stokes system and is valid with k = 1. The validity of (DLP′)
and (SRZ) is the content of Proposition 3.9. Finally, to check (ALC), it suffices
to prove that the linearised Navier–Stokes system

∂tv + νLv +B(u, v) +B(v, u) = ζ(t), v(0) = 0 (4.16)

is approximately controllable at time 1. Here u ∈ H := L2(J, V ) ∩ C(J,H) is
a reference trajectory of (4.13) associated with an initial condition u0 ∈ X and
a right-hand side η ∈ K. The required property follows from the observations
that the control ζ has a full range in H and that the reference trajectories u are
taken from a bounded ball in H. This completes the proof of the theorem.

Theorem 4.4 proves the convergence of solutions for the Navier–Stokes sys-
tem as the times goes to +∞ along integer values. Let us show that, for any
s ∈ (0, 1), the measures D(u(s + k; v)) exponentially converge to a limit µs

in the dual-Lipschitz metric. Indeed, let {(vk, ξk), k ∈ Z+} be a stationary
weak solution of (4.15) (see Section 1.2). Then D(vk) ≡ µ, and the process
{ξk, k ∈ Z+} is distributed as {ηk, k ∈ Z+}. Let ξ(t) be the corresponding
H-valued process (so that ξ(t) = ξk(t − k + 1) for t ∈ [k − 1, k)) and let w(t),
t ≥ 0 be a solution of (4.13) with η replaced by ξ such that w(0) = v0. Then
w(k) = vk for k ∈ Z+. For v ∈ H , let uξ(t; v) be a solution of (4.13) with η ≡ ξ
such that uξ(0; v) = v. Then D(uξ(t; v)) = D(u(t; v)), where, as before, u(t; v)
solves (4.13) and equals v at t = 0. Relation (4.14) combined with a simple re-
sult on preservation of the weak convergence of measures under Lipschitz maps
(e.g., see [Shi21, Lemma 3.2]) implies that

sup
v∈BH (R)

∥∥D(u(t; v)) −D(w(t))
∥∥∗

L
≤ C′

Re
−γt, t ≥ 0,

where C′
R > 0 depends only on R. Obviously, for t = s + k with k ∈ Z+

and 0 < s < 1, the measures D(w(s + k)) do not depend on k. Denoting that
measure by µs ∈ P(H), we obtain the exponential convergence of D(u(s+k; v))
to it as k → ∞.

In conclusion, we note that Theorem 4.4 remains valid for a kick force of the
form (0.17), provided that the stationary random process {ηk}k∈Z satisfies ap-
propriate non-degeneracy and decomposability conditions. The corresponding

47



result is similar to that discussed in the next subsection for the Ginzburg–
Landau equation.

4.3 Complex Ginzburg–Landau equation

To simplify the presentation, we shall confine ourselves to the case of a kick force.
However, the result remains valid for continuous-time forces of the form (3.16)
under the same conditions as in Section 4.2.

Let D ⊂ Rd, 1 ≤ d ≤ 4 be a bounded domain with a smooth boundary. We
consider the PDE

∂tu− (ν + i)∆u+ ic|u|2su = η(t, x), x ∈ D, (4.17)

supplemented with the boundeaty condition (0.15). Here ν and c are positive
numbers, and s ≥ 1 is an integer such that s ≤ 2

d−2 for d = 3 or 4. In this
case, problem (4.17), (0.15) with η ≡ 0 is well posed in the Sobolev space H :=
H1

0 (D,C), regarded as a real Hilbert space with the inner product

(u, v) = Re

∫

D

〈∇u,∇v̄〉dx.

The corresponding phase flow in H possesses a Lyapunov function,

H(u) =

∫

D

(1
2
|∇u|2 +

c

2s+ 2
|u|2s+2

)
dx, (4.18)

which satisfies the inequality

d

dt
H(u(t)) ≤ −ν‖∆u‖2 − νc

(
|u|2s, |∇u|2

)
, (4.19)

where (·, ·) and ‖ · ‖ stand for the L2 real inner product and the corresponding
norm in L2(D;C). Concerning the random force η, we assume that it has the
form (0.17), in which {ej} is the complete set of L2-normalised eigenfunctions of
the Dirichlet Laplacian −∆ corresponding to the eigenvalues αj indexed in the

increasing order, ηjk are real-valued random variables such that |ηjk| ≤ 1 with
probability 1, and {bj} are positive numbers such that

∞∑

j=1

αjb
2
j < ∞.

These conditions ensure that {ηk} are H -valued random variables whose law
is supported by a compact subset K ⊂ H . Thus, denoting by S : H → H the
time-1 shift along trajectories of (4.17) with η ≡ 0 and writing uk = u(k), we
obtain the relation

uk = S(uk−1) + ηk, k ≥ 1. (4.20)

This is a particular case of the RDS (1.8), in which H = E = H . The following
theorem provides sufficient conditions under which the results of Section 2 can
be applied to (4.20).
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Theorem 4.5. In addition to the above conditions, assume that {ηk}k∈Z is
a stationary random process that satisfies Hypotheses (SRZ) and (DLP′) with
Fn = span{ej , 1 ≤ j ≤ n} and F †

n = F⊥
n , where the orthogonal complement is

taken in H . Then there is a measure µ ∈ P(H ) with compact support and a
number γ > 0 such that, for any R > 0, inequality (4.14) holds with H = H

and a constant CR depending only on R.

Proof. We apply Theorem 2.4. The validity of Hypotheses (DLP′) and (SRZ)
are postulated in the statement of the theorem, and (GD) follows immediately
from (4.19) and the fact that H(u) can be estimated from above and from below
by a power of the H1-norm. To check (ALC), note that the derivative of the
operator S(u, η) = S(u)+η with respect to η ∈ H is the identity operator in H ,
so that its image is equal to H . This completes the proof of the theorem.

5 Appendix: the image of transition probabili-

ties under Lipschitz maps

Let E be a separable Banach space represented as the direct sum of its closed
subspaces F and F † such that dimF < ∞, and let K ⊂ E be a compact subset.
We consider a map Ψ : K → E of the form Ψ(η) = η+Φ(η), where Φ : K → E is
a continuous map whose image is included in F , and for any η, η′ ∈ K, we have

‖Φ(η)‖E ≤ κ, ‖Φ(η)− Φ(η′)‖E ≤ κ ‖η − η′‖E, (5.1)

where κ > 0 is a number not depending on η and η′. Let P(U ; ·) be a transition
probability with an underlying compact metric space X.

Proposition 5.1. Suppose that P(U ; ·) satisfies Hypothesis (DLP). Then there
is C > 0 not depending on U and κ such that

∥∥P(U ; ·)− Ψ∗

(
P(U ; ·)

)∥∥
var

≤ Cκ for any U ∈ X. (5.2)

Proof. This result is essentially a simpler version of Theorem 2.4 in [KNS20],
and we confine ourselves to outlining the main steps.

Since the total variation distance is bounded by 1, there is no loss of gen-
erality in assuming that κ ≤ 1

2 . We need to prove that if f is the indicator
function of a Borel set in E, then the expression |〈f ◦Ψ,P(U ; ·)〉− 〈f,P(U ; ·)〉|
is bounded above by the right-hand side of (5.2) with a number C not depending
on U and f .

To this end, we use (1.19) to write

〈f ◦ Ψ,P(U ; ·)〉 =

∫

F †

PF †(U, dη)

∫

F

f
(
ξ + η + Φ(ξ + η)

)
pF (U, η; ξ) ℓF (dξ),

〈f,P(U ; ·)〉 =

∫

F †

PF †(U, dη)

∫

F

f(ξ + η)pF (U, η; ξ) ℓF (dξ).
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Note that the integrations are carried out over the projections of K to F † and F
(which are compact subsets), since the supports of the measures P(U ; ·) are
contained in K. The required estimate will be established if we prove that

∣∣∣∣
∫

F

f(ξ+ η+Φ(ξ+ η))pF (U, η; ξ) ℓF (dξ)−

∫

F

f(ξ+ η)pF (U, η; ξ) ℓF (dξ)

∣∣∣∣ ≤ Cκ.

(5.3)
To this end, we wish to make the change of variable ξ′ = ξ+Φ(ξ+η) in the first
integral. However, the map Φ is defined only on K. To overcome this difficulty,
we first use the Kirzsbraun–McShane theorem (see [Dud02, Theorem 6.1.1]) to
extend Φ to the whole space E in such a way that the extended map (for which
we keep the same notation) is also κ-Lipschitz. In this case, for any η ∈ F †,
the map ξ 7→ ξ + Φ(ξ + η) is a bi-Lipschitz homeomorphism of the space F
onto itself, and we denote by Θη(·) its inverse. The latter and its differential
(which exists almost everywhere in view of the Rademacher theorem; see [Fed69,
Section 3.1.6]) can be written in the form

Θη(ξ
′) = ξ′ − Φ(Θη(ξ

′) + η), DΘη(ξ
′) =

(
IdF +DΦ(Θη(ξ

′) + η)
)−1

. (5.4)

Using Theorem 3.2.5 in [Fed69] to perform the change of variable ξ = Θη(ξ
′),

we can write the first integral in (5.3) as

∫

F

f(ξ + η + Φ(ξ + η))pF (U, η; ξ) =

∫

F

f(ξ′ + η)
pF (U, η; Θη(ξ

′))

det
(
IdF +DΦ(Θη(ξ′) + η)

) ,

where we dropped the Lebesgue measure ℓF to shorten the formula. Thus, the
left-hand side δ(U) of (5.3) satisfies the inequality

δ(U) ≤

∫

F

∣∣∣∣
pF (U, η; Θη(ξ

′))

det
(
IdF +DΦ(Θη(ξ′) + η)

) − pF (U, η; ξ)

∣∣∣∣ ℓF (dξ), (5.5)

where we used the inequality 0 ≤ f ≤ 1. It follows from (5.4) and (5.1) that Θη

is a 2-Lipschitz function such that |Θη(ξ
′) − ξ′| ≤ κ. Combining this with the

Lipschitz property of pF (see (1.20)), we can easily show that

pF (U, η; Θη(ξ)) = pF (U, η; ξ) + q(U, ξ, η),

det
(
IdF +DΦ(Θη(ξ) + η)

)−1
= 1 + r(ξ, η),

where q and r are some functions satisfying the inequality

|q(U, ξ, η)|+ |r(ξ, η)| ≤ C1κ

with a constant C1 > 0 not depending on U , ξ, η, and κ. Combining this
with (5.5), we arrive at the required inequality (5.3).
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