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Abstract—Many computer vision tasks use convolutional neu-
ral networks (CNNs). These networks have a significant com-
putational cost and complex implementations, in particular on
embedded systems. A common way to implement CNNs on
integrated circuits is to use low-precision quantized weights and
activations instead of de facto floating-point (FP) ones. This
is important to reduce the implementation cost. However, this
has a drawback regarding accuracy, and Quantization-Aware
Training (QAT) is one of the most popular approaches to
mitigate this issue. In this article, we introduce an multiplierless-
aware training approach that significantly reduces hardware
resource consumption. We propose to incrementally fix weights
to their current value based on their implementation cost. To
compute this cost, we base our approach on Multiple Constant
Multiplication (MCM) shift-and-add solving technique. With this
idea, we show a global implementation cost reduction by around
25% w. r. t. a vanilla QAT approach without hardware usage
in the loop. Compared to state-of-the-art multiplierless-aware
training methods, the network accuracy of our designs is closer
to that of a vanilla QAT baseline.

Index Terms—Convolutional Neural Network (CNN), Multiple
Constant Multiplication (MCM), Hardware accelerator

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have become a
mainstay in computer vision tasks such as image classification
or image restoration. While CNNs can easily be deployed on
powerful hardware for offline evaluation, there is an increasing
need to deploy such solutions at the edge. Indeed, in cases
such as self-driving cars, CNN inference should be carried
out as close as possible to the sensors with minimal latency.
However, CNNs have a significant computational cost, and
their implementation on embedded systems is complex and
prone to stringent constraints. As such, a common way to
implement CNNs on Field-Programmable Gate Arrays (FP-
GAs) or Application-Specific Integrated Circuits (ASICs) is
to use low-precision quantized weights and activations instead
of de facto floating-point ones. This avoids potentially costly
floating-point units in favor of smaller, dedicated, and opti-
mized integer-based arithmetic operators.

Knowing that the trained neural network will be imple-
mented using quantized weights and activations, it is possi-
ble to adapt the quantization accordingly [1]. This reduces
the overall hardware cost of the implementation. However,
quantization comes with a penalty in terms of accuracy loss
of the neural network [2], and additional constraints on the
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Fig. 1. Representation of different parallelization opportunities within a
convolution layer: (a) kernel parallelization, and (b) filter parallelization.

quantization step can further degrade it severely. To avoid
a significant drop in accuracy when using quantization, it is
possible to optimize it during the training process, and adapt
weights accordingly. This approach is called Quantization
Aware Training (QAT) [3] and is agnostic to the specifics of
the neural network architecture being optimized.

When looking at CNN implementation possibilities, it is
helpful to note that each input is multiplied by many quantized
weights, as illustrated in Fig. 1, where the input x is multiplied
by all the weights inside a kernel (to construct different output
elements) (a), and by the weight at the same position from
each filter (b). Due to memory transfer limits, we usually
do not have a fully parallel implementation [4]. Instead, we
usually either parallelize all the kernel multiplications (as in
Fig. 1a) or all the filter multiplications (as in Fig. 1b). In
both cases, as each input is multiplied by multiple constant
weights, minimizing this implementation cost is equivalent
to solving a corresponding Multiple Constant Multiplication
(MCM) problem. This problem involves minimizing the cost
of multiplying a single variable with multiple constants [5],
or in this particular case, the weights. It is possible to par-
allelize multiplications differently, using a loop interchange
method [6]. This is applied after training, while the focus of
this work is on hardware-aware training.

In this work, we present a novel hardware-aware quantized
training approach that also takes advantage of the MCM
approach, and show its efficiency directly through synthesis
experiments, with corresponding accuracy and hardware usage
metrics. We produced a new mathematical model, imple-
mented with Pyomo [7], to guide our quantized training flow.
It is inspired by both QAT and progressive pruning methods.
Ultimately, we implemented a corresponding accelerator using
High-Level Synthesis (HLS). Overall, we propose a complete



Fig. 2. Our training-to-hardware flow. From user-given parameters, we start
our quantization-aware training approach. Once trained, we produce HLS code
for the corresponding hardware accelerator.

training-to-implementation flow, as illustrated in Fig. 2. From a
given CNN architecture pre-trained using floating-point arith-
metic, we use a quantization-aware training method, such as
DoReFa-Net [8] for ResNet-18, to find appropriated quantized
weights. Then, we apply our hardware-aware method for the
refinement process, and we use PACT [9] for the activation
function quantization. Finally, we use HLS to generate an
optimized hardware accelerator.

In Section II, we provide the necessary background and
related work information. To our knowledge, existing FPGA
implementations of CNNs target small networks or do not
unroll as much compute as we propose. Then, in Section III,
we present our multiplierless-guided QAT approach. The
proposed hardware accelerator is described in Section IV,
whereas training and hardware synthesis results are discussed
in Section V.

II. BACKGROUND & RELATED WORK

A. Quantization-Aware Training

Quantizing an already trained model may introduce pertur-
bations that push it away from the region it had converged to
when using floating-point arithmetic. Re-training the model
with quantized parameters can generally improve accuracy,
and QAT is the most widely used approach to do this.
Popularized by the likes of BinaryConnect [3], the modus
operandi of QAT consists of performing forward and backward
passes using the quantized model in floating-point, with the
particularity that model parameters are quantized after each
gradient update, similar to projected gradient descent methods.

An important aspect to be aware of is that quantization
operators are non-differentiable. This creates issues during
backpropagation, since the gradient of such operators will be
zero almost everywhere (due to the piecewise flat nature of
quantizers), making progress during re-training impossible. A
common way to address this is to approximate the gradient
of this operator by a so-called Straight Through Estimator
(STE) [10] that essentially ignores the quantizer and approxi-
mates it with an identity function. This approach can also be
extended to learn quantization parameters during QAT as well,
such as activation clipping ranges [9] and activation scaling
factors [11], [12].

In this work, we used the DoReFa-Net method [8] as a
starting point for our QAT flow. This approach quantizes
weights to a given bit width and projects them on the range

Fig. 3. MCM implementation with the weight set {5, 8, 22, 40, 58} using a
single adder graph.

[−1, 1] using the tanh (·) operator. Values are also normalized
to reach at least one of the bounds, −1 or 1. Then, ReLU-based
activation outputs are quantized using PACT [9].

B. Shift-and-add-based Multiple Constant Multiplication

One common way to address MCM problems is to re-
place multiplications with shifts, additions, and subtractions
(adders), the so-called shift-and-add approach [13], [14]. For
example, the multiplication of an integer variable x by the
constant 7 can be done as 7x = 23x− x, replacing the costly
generic multiplication with a bit-shift and a subtraction.

Using the least number of adders (bit-shifts can be hard-
wired at a negligible cost) is a typical intermediate goal
to obtain a minimal cost hardware implementation. Various
MCM adder minimization methods exist, such as greedy
algorithms [13], heuristics [15], [16] or Integer Linear
Programming-based (ILP) approaches [14], [17]. Compared
to greedy algorithms based on the Canonical Signed Digit
(CSD) representation [13], heuristic methods generally provide
better solutions. However, these solutions still lack optimality
guarantees or certificates, w. r. t. the optimized metric, and
are not easily extendable. ILP approaches, on the other hand,
provide optimality guarantees or a certifiable gap to the best
known bound and can be conveniently modified [18], [19] to
incorporate different metrics.

In Section III, we present specifics of the problem we aim
to solve and show that it does not exactly map to an MCM
instance. Even so, an ILP-based approach is the most flexible
and the easiest to adapt to handle such changes. While slower
than heuristics for instance, put in the context of training, the
ILP runtime is usually dominated by the DNN optimization
time, making the ILP overhead acceptable.

Applying one of the above-mentioned methods on a set,
Y = {yi}ni=1 of n target constants, we can produce a “shift-
and-add chain” to perform all the multiplications yix. For
example, the multiplications x×{5, 8, 22, 40, 58} can be done
with the following shift-and-add sequence:

y1 = x << 2 + x = 5x,

y2 = x << 3 = 8x,

t1 = y1 << 1 + x = 11x,



Fig. 4. Adder in MCM ILP modeling. Integer variable ca is the fundamental
associated to the adder, its inputs ca,l and ca,r are chosen from previous
fundamentals, based on the value of the binary variables ca,i,k’s. The shifts
and signs of the adder are determined by sa,l, sa and σa,l, σa,r , respectively.

y3 = t1 << 1 = 22x,

y4 = y1 << 3 = 40x,

t2 = y1 << 3− t1 = 29x,

y5 = t2 << 1 = 58x,

where the ti are intermediate products. At each step, the value
by which x is multiplied with, e. g., 11 in the case of t1 or
58 in the case of y5, is called a fundamental. The same MCM
can be advantageously represented graphically as in Fig. 3
using an adder graph, where horizontal arrows are bit-shifts
and adders with a minus sign above perform subtractions.

Finding the best adder graph, i. e., one with the least number
of adders, is the same problem as using the least number
of adders in the shift-and-add chain. Usually, modern MCM
solvers use adder graph representations [14]–[16] instead of
the shift-and-add sequence approach. Heuristics, such as Hcub
[15] or RPAG [16], build adder graphs, adder after adder or
layer of adders after layer of adders, until the produced adder
graph successfully outputs all the target multiplications.

The ILP approach is based on the mathematical modeling
of an adder. For each adder, a ∈ [[1;N ]], where N is a
known upper bound on the total number of adders required
to solve the MCM instance, an integer variable ca encoding
the fundamental computed by the adder, is used. The value
of this fundamental directly stems from the input values of
the adder, their associated shifts and if the adder performs
an addition or a subtraction. This can be summed up as the
following equation:

ca = 2−sa ((−1)
σa,l 2sa,lca,l + (−1)

σa,r ca,r) , (1)

where integer variables s encode the shifts, binary variables σ
encode the signs, and ca,l and ca,r correspond to the previous
left and right fundamentals of the adder graph. These previous
fundamentals, including 1 as the input, are linked to the current
adder with binary variables ca,i,k. A graphic representation of
the equation above is presented in Fig. 4. Although (1) is
nonlinear, it has been shown that it can be linearized and used
in an ILP approach [14].

For our work, we used the MCM ILP model from [14] to
obtain optimized implementations of trained CNNs. We also
used a modified version of the model during training. The
overall approach is presented in Section III-B.

C. Shift-and-Add Aware Training

Recent work [20] has shown that it is possible to merge QAT
with shift-and-add aware quantization, which we call Adder-
Aware Training (AAT). This has been done by precomputing
sets of possible quantized values for which the overall im-
plementation cost is limited to 1 or 2 adders per adder graph.
Then the quantization steps during training are guided towards
one of these sets. Precomputing sets is costly, thus limited to
sets which can be implemented with a single or with two
adders. To get an idea of the number of sets and the challenge
of enumerating them, it is helpful to note that the number of
odd outputs of an adder graph is bounded by its number of
adders. Then, considering that 3-adder adder graphs output 3
odd values, which can be shifted to produce additional even
values, for 8-bit quantized weights, the number of possible
adder graph sets of outputs is

(
127
3

)
= 333 375. This number

is an upper bound as there are triples of odd fundamentals that
actually cannot be computed with a 3-adder adder graph, but
the order of magnitude remains. Hence, it is not reasonable to
precompute all the sets of quantized values requiring 3 adders
or more to implement.

Another work, called More AddNet [21] proposes an AAT
approach where the implementation is based on Reconfig-
urable Constant-Coefficient Multipliers (RCCMs). The pro-
posed RCCM implementation uses adder graphs with up to
4 reconfigurable adders. In their work, Hardieck et al. were
able to precompute sets with 3 and 4 adders as additional
constraints on the adder graph structure were imposed. This
reduced the search space to a reasonable size but this also leads
to a partial covering of all the possible 4-adder adder graphs
instead of a complete enumeration. Finally, we note that their
approach is not meant for parallelizing computations. Our ap-
proach, on the other hand, benefits from parallelism, thus does
not target the same overall implementation problem. For this
reason, we do not precisely compare hardware implementation
between More AddNet and our approach.

In our work, we do not rely on precomputed sets, we
compute the implementation cost only when needed. Al-
though we increase the training time by incorporating it as
an optimization component, it does not tend to bottleneck
global training time. Our goal is to guide the quantization
progressively towards a small implementation cost without
limiting possible weight values a priori. Progressively fixing
weights is a method that already proved its efficiency in the
case of pruning [22]. In that case, it consists of zeroing
out network parameters and activation signals, usually in a
progressive manner [23, Fig. 7]. The choice of weights to be
zeroed out is made based on a computed score. In our case,
instead of fixing weights to zero, we will fix them to their
current value.

III. PROGRESSIVE MCM-BASED QUANTIZATION FLOW

A. Our Strategy

The core idea of our MCM-based QAT flow is to fix the
neural network weights incrementally based on a shift-and-add



Fig. 5. Progressive weight fixation during network QAT. Every n-th epoch, a
percentage of all the weights is fixed. The flow takes a network layer as input,
then the Single Constant Multiplication (SCM) score is calculated for each
weight which is not yet fixed, taking into account previously fixed weights.
Then pglobal percent of the weights are fixed (represented in black).

complexity score. Our weight-fixing process is illustrated in
Fig. 5. This way, weights with the smallest implementation
cost are fixed for the rest of the training. Then, the other
weights are fine-tuned, and the process is repeated until the
end of the training, when all weights have been fixed.

As we target a multiplierless implementation, it is natural
to consider the Single Constant Multiplication (SCM) problem
for every weight and take the adder count from its solution
as the score. To do this, we apply the ILP-based approach
from [14] on each quantized weight. For example, suppose
that we have the following list of quantized weights:

W = [5, 40, 22, 8, 58] . (2)

Taking the adder counts, we obtain the scores

S = [1, 1, 2, 0, 2] . (3)

Hence, we should fix the weight 8 first, as zero adders are
necessary to implement it. Then 5, 40 (with one adder each),
and 22 and 58 (with two adders each).

In this example, we did not consider that the weights will ul-
timately be implemented together, solving an MCM problem.
Indeed, to implement the weights W, we can use 3 adders in
total (as illustrated in Fig. 3), instead of 0+1+1+2+2 = 6 if
each weight were to be implemented independently. However,
there is no straightforward way to group weights together a
priori. Hence, we cannot compute scores by considering the
possible inter-dependencies.

However, we can compute scores by considering past infor-
mation on fixed weights. This way, we can use already-fixed
weights to more accurately compute the score of quantized
weights. In (2), if we suppose that the first weight, 5, was
fixed in a previous step, the score S would be

S = [0, 0, 1, 0, 2] , (4)

instead of the one reported in (3). Indeed, in some cases, fixed
weights can lead to score reductions in weights that will be
fixed later. Here 40 is directly implemented from 5 as

40 = 5 << 3, (5)

and 22 only costs one additional adder, since

22 = 5 << 2 + 1 << 1. (6)

However, not all scores are impacted: 8 was already cost-free
as a power of 2, and 58 does not benefit from the fixed weight
5 since it still requires two adders.

To automatically compute these scores, we need to solve
an SCM problem for each weight, considering that some fun-
damentals are already available and not just the input 1. This
new problem is similar to the SCM/MCM problems, and its
complexity is identical to that of the SCM problem1, which is
conjectured to be NP-hard [24]. To solve this complexity issue,
instead of simply using the ILP-based approach from [14], we
first simplify it for SCM instead of MCM. Then, we modify
the model to use the knowledge of already fixed weights.

B. SCM Model with Fixed Weights

Our goal is to find the score for each weight W and, in our
case, this score basically corresponds to the minimal number
of adders that will be used to implement the adder graph which
outputs the constant C. In the following, we present our SCM
model for finding the implementation cost of the positive and
odd target constant C, stored with b bits, given the set F
of already-fixed weights. For each weight W , we can easily
compute its associated positive and odd target constant C as

C = odd (|W |) , (7)

where odd (·) corresponds to dividing the input by two until
the result is odd. Then, it is reasonable to consider the
implementation cost of Cx is close to the one of Wx: from
Cx, a simple shift permits to obtain |W |x and the sign can
usually be retrieved with minimal cost.

For our model, similarly to previous work [14] on MCM, we
use integer variables ca ∈ [[0; 2⌈log2 |W |⌉ + 1]], ∀a ∈ [[0;N ]], for
storing each fundamental. The first variable, c0, corresponds
to the input and is fixed to 1. The upper bound N on the
number of possibly useful adders is obtained using a greedy
algorithm [13] on the SCM problem, i. e., this bound is
obtained without considering already fixed weights. We do
not know a priori if all the N adders will be used or not.
Thus, we encode that the adder a is used in the adder graph
with binary variables ua ∈ {0, 1}, ∀a ∈ [[1;N ]].

We aim to minimize the number of actually used adders to
get the most realistic score for our problem. This is done with
the following objective:

min

N∑
a=1

ua. (8)

Then, we add constraints to fix the adder graph topology and
to ensure that the output is produced by one of the used adders.
The latter constraint is obtained by using a binary variable for
each adder, oa ∈ {0, 1}, ∀a ∈ [[1;N ]], where

ca = C if oa = 1, ∀a ∈ [[1;N ]], (9)
N∑

a=1

oa = 1, (10)

1The case where no weights are fixed, which is the SCM problem, is an
instance of our problem.



ensure that the adder ca corresponds to the target constant
for the binary variable oa equal to 1. At this point, the only
difference with the original MCM model [14] lies with the
constraints on the outputs, which are simplified.

Our main change is taking fixed weights into account in the
model. This can be done by increasing the number of variables
ca from a ∈ [[0;N ]] to a ∈ [[− |F| ;N ]]. Then, we fix

ca = F−a, ∀a ∈ [[− |F| ;−1]], (11)

to store the fixed fundamentals in the model.
In the original model, adders are linked together using

binary variables ca,i,k ∈ {0, 1}, ∀a ∈ [[1;N ]], i ∈ {l, r} ,∀k ∈
[[0; a− 1]], where ca,i,k = 1 implies that the i-th input (left or
right) of the adder a is the adder k. In our case, we have to
modify the indices to include fixed weights as possible inputs:
ca,i,k ∈ {0, 1}, ∀a ∈ [[1;N ]], i ∈ {l, r} ,∀k ∈ [[− |F| ; a − 1]].
This way, we are able to adjust the topology to include
fixed weights without any other changes to the other sets
of variables. Finally, our change only impacts the sets of
constraints involving ca,i,k.

These modifications to the original MCM model give rise
to an SCM model that takes fixed weights into account. As
we will see in Section V, solving this model with the Gurobi
optimizer [25] is quite fast and can be included in the CNN
training phase.

IV. MCM-BASED CNN INFERENCE ACCELERATOR
DESIGN

For the accelerator, we use a systolic array for each layer
which is based on a weight stationary (WS) dataflow [26]
design. The design fully unrolls the layer, employing the
Im2Col algorithm to execute both convolution and fully
connected layers as matrix-matrix multiplications [27], [28].
A high-level view of the accelerator architecture is shown in
Fig. 6, where Processing Elements (PEs) use adder graphs.
The input X is fed into the PE array column per column. The
systolic array, here called “PE array”, operates with a WS
strategy. Each PE corresponds to an MCM problem instance
obtained from filter parallelization (see Fig. 1), and post-
accumulation results are passed from one PE to the next.

We use HLS for our implementation. To do so, we integrated
HLS generation for adder graphs in our tool AdderGraphs2.
We utilized Xilinx AMD VITIS HLS 2022.2 and started
by verifying that adder graph generation with HLS has the
expected effect: our high-level description of an adder graph
should lead to a better circuit than basic multiplications.

To test this, we compared adder graphs against simple
constant/variable products (c×x). For every 8-bit constant, we
solved the associated SCM problem to obtain the best adder
graph, and we produced the corresponding HLS. For example,
the multiplication by 23 led to the following C++ code:

y = (x << 1 + x) << 3 - x;

We found that the number of LUTs in the resulting circuit was
always lower when using adder graphs than the simple product

2https://github.com/remi-garcia/AdderGraphs

Fig. 6. Our global architecture of a convolutional layer accelerator employs
a Weight Stationary strategy [26]. This architecture includes an array of
Ci · Kx · Ky PEs, which hold stationary weights, while each PE passes
the post-accumulation result to the next. Within each PE, the weights are
hard-coded, here with an adder graph. Additionally, a post-accumulation input
from the previous PE and a register (in blue) are used to store the current
post-accumulation.

y = c*x;. Hence, we used HLS for all our implementations
and benefited from its ease of use for the complete CNN de-
scription. In particular, although in Fig. 6 PEs are represented
with a shift-and-add implementation, HLS allowed us to easily
switch from one implementation strategy to another and to
compare different solutions (generic product vs shift-and-add).

V. EXPERIMENTS

A. Experimental Setup

We evaluated our method using three CNN models: ResNet-
18 on ImageNet-1K [29] and ResNet-20 [30] on CIFAR-
10 [31] datasets, for image classification, and VDSR-10 [32]
on the Set5 [33] and Set291 (comprising 200 images from [34]
and 91 images from [35]) datasets, for super-resolution.

For ResNet-18 and ResNet-20, we started our training with
pretrained floating-point weights from timm [36] and from
scratch, respectively. In both cases, we employed a Stochastic
Gradient Descent (SGD) optimizer with a momentum of 0.9.
For ResNet-18, we started with a learning rate of 7×10−3 and
a weight decay of 4×10−5. The learning rate was reduced by
a factor of 0.1 every 5 epochs. The process took 20 epochs
with batch size set to 256. For ResNet-20, we started with a
learning rate of 3 × 10−3, and a weight decay of 5 × 10−5.
The learning rate was reduced by a factor of 0.1 every 20
epochs. Training lasted for 100 epochs, with a batch size of

https://github.com/remi-garcia/AdderGraphs


128. In case of VDSR-10, we used locally pretrained weights.
Then, we ran the training over 30 epochs with a learning rate
of 10−3, SGD with 0.9 momentum as the optimizer, and a
batch size of 4. The learning rate was reduced by a factor of
0.1 every 12 epochs, and the weight decay was set to 10−3.

For the quantization, we targeted 8-bit fixed-point weights
using DoReFa-Net [8], and we used PACT [9] for activations.
For ResNet-18, every 4 epochs we fixed pglobal = 20%
of the weights based on the scoring strategy presented in
Section III-B. For ResNet-20, we fixed pglobal = 10% of the
weights every 10 epochs. For VDSR-10 experiments, we also
added gradient clipping in the training loop, as in [32], and
we applied our strategy every 5 epochs, fixing pglobal = 16.6%
of the weights each time.

We have implemented the ILP model for SCM with fixed
weights using the modeling language Pyomo [7], and we used
the open-source tool jMCM [14] for the final implementation.
In both cases, we used the Gurobi 12.0 [25] ILP solver. We
did not set any time limit on the solving time as models were
small enough to be optimally solved in a few seconds, at most.

Finally, the hardware synthesis and simulation results have
been done using Xilinx AMD VITIS HLS 2022.2 targeting
a ZCU104 board. We have also developed an open-source
tool AdderGraphs that automatically generates HLS for the
adder graphs, and then combines them in a complete HLS
accelerator flow for each CNN.

B. Results

In this section, we compare our approach with classic
QAT and different AAT [20], [21] approaches, confirming
that a shift-and-add implementation of CNNs has a positive
impact on the final hardware cost. We also want to verify
that our progressive adder-aware training approach does not
excessively degrade model accuracy, all while significantly
reducing the overall cost. This investigation is directed by three
main research questions:

RQ1 Does using a shift-and-add implementation signifi-
cantly reduce FPGA hardware cost compared to using
DSP arithmetic blocks or vanilla product operators?

RQ2 Does our shift-and-add aware training approach lead
to smaller circuits than vanilla QAT?

RQ3 How does the progressive adder-aware training method
perform in terms of accuracy compared to QAT and
precomputed set-based approaches?

It would be interesting to compare the hardware resource
consumption of our approach with state-of-the-art AAT meth-
ods to elaborate on RQ2. However, More AddNet [21] is not
meant for the parallelization we included in our accelerator,
thus a direct comparison would not be fair. Also, [20] did not
target large CNNs as we do.

1) RQ1: Using Adder Graphs, LUTs or DSPs: In previ-
ous sections, we proposed an adder-aware training strategy.
However, adder graphs might not be interesting for hardware
implementation of CNNs and we need to assess their suit-
ability first. To that end, we trained a ResNet-18 [30] CNN
on ImageNet 1K [29] using QAT and compared the HLS

TABLE I
LUT, FF AND DSP CONSUMPTION COMPARISON OF THREE DIFFERENT

IMPLEMENTATIONS ON A XILINX ZCU104 BOARD FOR A CONVOLUTION
LAYER OF MULTIPLE CNNS. RESULTS ARE GIVEN IN PERCENTAGE OF

UTILIZATION OF THE COMPLETE BOARD AND INCLUDE THE
IMPLEMENTATION OF THE SYSTOLIC ARRAY. WEIGHTS ON 8 BITS WERE

OBTAINED FROM A CLASSIC QAT FLOW.

CNN Method LUT (%) FF (%) DSP (%) Latency (µs)

ResNet-20
Simple ∗ 15.17 1.90 0 5.15
∗ + pragma 3.91 0.90 68.06 5.15
Adder graph 8.49 1.54 0 5.15

ResNet-18
Simple ∗ 64.94 9.44 0 5.16
∗ + pragma − − 308.4† −
Adder graph 41.82 7.05 0 5.16

VDSR-10 ∗ + pragma − − 615.57† −
†indicates an estimation as place and route was not possible.

synthesis results of (i) the vanilla multiplication (Simple ∗ lines
in Table I), (ii) the multiplication with an additional pragma
enforcing the use of DSPs (∗ + pragma lines), and (iii) our
adder graph description (Adder graph lines). In each case, we
compare implementations of the second layer of the networks.
Their dimensions for ResNet-20, ResNet-18 and VDSR-10 are
16×16×3×3, 32×32×3×3 and 54×54×3×3, respectively.
The results are summarized in Table I.

In all cases, we obtained the same latency. Using HLS,
we provide a target frequency and the synthesis tool added
registers as needed. Thus, we explain that latency does not
differ between methods due to the fact that most registers have
probably been inserted in other parts of the accelerator, and
not in the PEs. Hence, we believe that the latency is not driven
by the PEs, but rather by the surrounding logic.

Enforcing the use of DSPs with a pragma is not reasonable:
more than half of the DSPs of the board are used for a
single layer of ResNet-20, a 20-layer CNN. For ResNet-18
and VDSR-10, the number of DSPs required for a single layer
exceeds the available resources. Using adder graphs, on the
other hand, is promising. Even with weights trained using
simple QAT, i. e., not specifically targeting this implementa-
tion, the shift-and-add implementation has a very low resource
consumption. Our shift-and-add implementation uses half the
resources of the simple ∗ operator in HLS.

The adder graph implementation is still too costly for a
complete implementation of the ResNet-20 network on a
single Xilinx ZCU104 board. Indeed, if all the layers had the
same cost, it would require around 170% of the available LUT
resources. Although the assumption of “same cost layers” is
not correct, the need for LUTs largely exceeds the 100% limit,
and thus the conclusion certainly holds. Our AAT approach
could however reduce the resource consumption down to a
reasonable level. For the other CNNs we evaluate, implement-
ing the complete network on a single Xilinx ZCU104 board
is certainly out-of-reach as almost half of the LUT resources
are used just for a convolutional layer of ResNet-18 and the
synthesis of a single layer of VDSR-10 does not even finish.



TABLE II
COMPARISON OF THE ADDER GRAPH IMPLEMENTATION COST BETWEEN A

CONVOLUTION LAYER OF TWO CNNS, WITH 8-BIT WEIGHTS OBTAINED
FROM QAT OR WITH OUR APPROACH. LUT AND FF CONSUMPTION IS

GIVEN IN PERCENTAGE OF UTILIZATION OF A XILINX ZCU104 BOARD,
INCLUDING THE IMPLEMENTATION OF THE SYSTOLIC ARRAY. NO DSP

WERE USED.

CNN Method LUT (%) FF (%) Latency (µs)

ResNet-20 Classic QAT 8.49 1.54 5.15
Our AAT 6.19 1.20 5.15

ResNet-18 Classic QAT 41.82 7.05 5.16
Our AAT 23.46 4.23 5.16

2) RQ2: Implementation Cost of the Shift-and-Add Aware
Training Approach: We demonstrated that using adder graphs
for the hardware implementation permits to reduce resource
consumption w. r. t. automatic synthesis choices. Using a pro-
gressive adder-aware weight-fixing method, we expect that our
approach should further reduce the hardware utilization.

To verify this hypothesis, we compare the implementation
cost of a layer with weights obtained using QAT and our
approach. Results are reported in Table II. Our progressive
approach reduces the LUT consumption by 27% and the FF
consumption by 22% for a layer of ResNet-20. If all the
20 layers were the same cost, implementing this CNN on
the Xilinx ZCU104 board would lead to a 123.8% hardware
utilization. Although this still exceeds available resources, we
are closer to being able to implement a complete ResNet-20
network on a single Xilinx ZCU104 board.

For a ResNet-18 layer, we achieve a reduction in LUT
usage of over 43%. Although the complete implementation
of a ResNet-18 network on a Xilinx ZCU104 board cannot
be considered for the moment, this large reduction of LUT
and FF utilization is very encouraging and demonstrates the
efficiency of the method.

3) RQ3: Accuracy of the Shift-and-Add Aware Training Ap-
proach: With this last research question, we want to measure
the effect of our method on accuracy. It is well-documented
[3] that quantization negatively impacts the accuracy of the
network. Using QAT reduces the accuracy loss, but still
degrades accuracy w. r. t. floating-point training and inference.

Our approach has the same hyperparameter settings as
vanilla QAT, and incorporates an additional one by fixing
weights during training. Hence, we lose a bit of flexibility
compared to QAT and we cannot reasonably expect to have
a better, or even the same, accuracy than QAT. However,
compared to existing adder-aware techniques [20], [21], which
rely on precomputed sets of quantized values to round towards,
we propose a more flexible method. Thus, we expect to have
a better accuracy, or at least similar.

Results are reported in Table III. On ResNet-18, with our
set of training hyperparameters, we obtain a similar reference
accuracy (using floating-point) as More AddNet. Compared
to QAT accuracy results, we lose 0.7 percentage points of
accuracy using our more constrained method. However, using
a progressive approach allowed us to keep a top-1 accuracy

TABLE III
ACCURACY RESULTS WITH RESNET-18 ON IMAGENET 1K, RESNET-20

ON CIFAR-10 AND VDSR-10 ON SET5. WEIGHTS ARE QUANTIZED WITH
8 BITS. THE ACCURACY OF RESNET-18 AND RESNET-20 IS THE TOP-1

ACCURACY GIVEN AS A PERCENTAGE, AND THE ACCURACY OF VDSR-10
IS CALCULATED FOR A ×3 UPSCALING WITH PSNR EXPRESSED IN DB.

ResNet-18 ResNet-20 VDSR-10

[21] Our Our Our

Top-1 rel. Top-1 rel. Top-1 rel. Top-1 rel.

Float 73.2 100 73.1 100 92.8 100 34.03 100
QAT 72.7 99.3 73.0 99.9 92.7 99.9 33.97 99.8
Our − − 72.3 98.9 92.4 99.6 33.97 99.8
3-Add 72.0 98.4 − − − − − −
2-Add 71.0 97.0 − − − − − −
1-Add 61.9 84.6 − − − − − −

above the 3-Add More AddNet results. On ResNet-20, our
accuracy results are very close to the accuracy obtained with
a vanilla QAT. For VDSR-10, our method and vanilla QAT led
to the same PSNR results, and these results are only slightly
below the reference floating-point training.

VI. CONCLUSION

Adder-Aware Training (AAT) methods, and hardware
implementation-aware training in general, have been getting
increased attention over the last few years. There exists an
approach adapted to small neural network controllers [20] and
another for larger CNN implementations [21]. This second
approach is not meant for parallel implementation. With our
work, we fill this gap in the literature. In this work, we
propose a progressive training method to obtain CNN weights
that are well-suited for a parallel implementation of the
neural network. With our hardware experiments on ResNet-18,
ResNet-20, and VDSR-10, we demonstrate that our method
does not degrade network accuracy much, and that it leads to
a significant reduction in implementation cost, by around 25%
w. r. t. vanilla QAT. Our method can be directly applied to any
neural network in which computations can be parallelized. In
particular, it would be interesting to have a direct comparison
with previous AAT work [20] on smaller neural networks.

To compute scores at each fixing step, we solve an
ILP model per network weight. We show that, although
this increases training times, solving ILP models does not
bottleneck training time. Still, a large increase in the number of
weights will automatically induce a longer optimization time.
To overcome this issue, it might be interesting to develop a
dedicated heuristic for this problem or to adapt existing SCM
or MCM heuristics [15], [16]. Finally, as CNNs are robust to
small weight changes [37], these weights could be adjusted to
lead to an MCM implementation with a smaller cost [6]. In our
work, we first quantize weights and then compute their SCM
score. An interesting path to further reduce the implementation
cost would be to merge both ideas by computing the score of
multiple approximations of each weight and only retain the
best solution.
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