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Abstract. Modeling fiber orientation plays a crucial role in predicting the behavior of fiber reinforced
thermoplastic materials. The equation that governs the evolution of the fiber orientation is hyperbolic in
nature and requires handling of fourth-order tensors, which are currently unavailable in OpenFOAM®.
The current work explores the possibility of using OpenFOAM® and open-source symbolic computation
for modeling the evolution of fiber orientation. For this purpose, a functionObject was programmed

to work as a plug-in for any OpenFOAM® incompressible flow solver and compute the evolution of
fiber orientation in a decoupled manner. Several fiber orientation models and closure relations available
in the literature were implemented in the tool, which were verified by comparing their predictions
with independent results for a single material point obtained by numerically integrating the associated

governing equations.

1. Introduction

Thermoplastic materials are tied to our daily lives, encompassing a wide range of applications, from
household products to advanced technical appliances. To meet the permanent demand for enhanced prod-
ucts, fiber-reinforced thermoplastic materials (FRTM) are often employed to achieve specific properties
(property weighted by the density) that cannot be obtained with conventional materials. Industries such
as automotive heavily rely on this technology to achieve lightweight designs, essential for optimizing fuel
efficiency [1].

The final properties of thermoplastic parts depend on the microstructure developed during process-
ing. For FRTM, the effects of fiber length, concentration, and orientation play a significant role in the
performance of the final part. Particularly, fiber orientation has been extensively studied throughout the
last decades [2–6], leading to the development of several phenomenological models [7–13] based on the
seminal work of Jeffery [14] to quantify the state of orientation in FRTM parts. During the product de-
velopment phase, knowledge of this final state of orientation is crucial for structural analysis and design,
as it directly affects the parts’ mechanical performance [15–17].

In the context of OpenFOAM® only a few works have been dedicated to fiber orientation modeling,
where only the Folgar-Tucker (FT) [7] and reduce strain closure (RSC) [8] models in tensor-based for-
mulations have been reported [18–21]. Given the open-source character and outreach of OpenFOAM®,
this work presents a novel strategy for modeling the fiber orientation evolution in incompressible fluid
flows using the OpenFOAM®framework. The developed plug-in can be utilized for injection molding,
compression molding, and any other solver that involves fluid flow. The objective is to incorporate the
capability of predicting fiber orientation as an extension, without making modifications to an existing
solver. The approach involves creating a functionObject to solve the three-dimensional orientation evo-
lution equation with state-of-the-art models and closure approximations in a decoupled manner, using
a one-way interaction, where the velocity field affects the fiber orientation evolution but the computed
orientation will not influence the relation between the velocity gradient and the stress tensor (τ), i.e.,
the constitutive model, required to calculate the velocity field. Nevertheless, the strategy employed is
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flexible enough for the interested user to extend the developed classes to account for the effect of fiber
orientation into the stress tensor calculation [22].

The remaining paper is organized as follows: Sections 2 and 3 introduce, respectively, the fiber orienta-
tion modeling approaches and the state-of-the-art models together with the closure approximations used
in commercial applications. In Section 4, the proposed approach to implement fiber orientation modeling
within the OpenFOAM®framework is presented. Sections 6 and 7 showcase and discuss case studies in-
volving simple-shear and the flow in a center-gated disk, tested to validate the numerical implementations.
Finally, Section 8 summarizes the main conclusions drawn from this work.

2. Fiber orientation modeling with macroscopic descriptors

The employed formulation considers rigid, axi-symmetric, straight fibers, such as glass fibers typically
used to manufacture FRTM [9], whose orientation characterization can be carried out at different scales.
At the micro-scale, the orientation of individual fibers can be used as a complete descriptor. This can
be done through a pair of θ and ϕ angles or by a unit vector p that is aligned with the fiber axis, as
illustrated in Fig. 1. Both descriptions are related by:

p =





p1
p2
p3



 =





sin θ cosϕ
sin θ sinϕ

cos θ



 . (1)
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Figure 1. Schematic of the orientation of a single fiber.

The motion of a single, rigid, ellipsoidal fiber in a Newtonian fluid was formulated by Jeffery, assuming
that the: (i) velocity field was not influenced by the fibers; (ii) inertial and body forces were negligible;
(iii) the fluid velocity varied linearly with position and iv) the fluid where the fiber is suspended is
incompressible [14,23–25]. Under these conditions and in the absence of additional forcings, the equation
for describing the rate-of-change of the fiber orientation is given by [25]:

ṗ =W · p+ ξ
(

D · p−D : p p p
)

, (2)

or, equivalently, in tensor notation as [25]:

ṗi =Wijpj + ξ (Dijpj −Djkpkpjpi) , (3)

where:

• ṗ is time rate-of-change of p,

• W is the vorticity tensor, given by: W =
1

2

(

L− LT
)

,

• D is the rate-of-deformation tensor, given by: D =
1

2

(

L+ LT
)

,

• L is the velocity gradient tensor, given by Lij =
∂vi
∂xj

,

• vi are the components of the velocity vector, v,

• ξ is the particle shape factor, given by ξ =
a2r − 1

a2r + 1
, and
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• ar is the fiber aspect-ratio

Equation (3) reflects the effect of the flow on the fiber motion. The first term on the right-hand side
accounts for the influence of rigid-body rotation and the second (between parenthesis) for the effect of
fluid deformation on fiber orientation [25]. The term Djkpkpjpi will result in a vector that is parallel to
pi and scaled by Djkpkpj . This subtracts from Dijpj the component that is parallel to pi, thus ensuring
that ṗi is always perpendicular to pi and that the magnitude of pi remains constant [25]. It is also known
that Eqn. (3) is kinematically reversible. Meaning that the flow field might affect the fiber position and
orientation, but if the flow is reversed the fiber will return to its initial position and orientation [26].

In FRTM, it is common to have several thousand fibers per cubic millimeter, consequently, keeping
track of each orientation vector is a massive and mostly unnecessary task [25]. Thus, at the mesoscopic
scale, statistical methods are used to describe the state of orientation for collections of fibers, through
the use of a probability density function ψ

(

p, t
)

, also known in literature as an orientation distribution
function (ODF) [27]. The evolution of the ODF is governed by a Fokker-Planck equation [9,27], reading:

Dψ

Dt
= −∇s ·

(

ψṗ
)

, (4)

where:

•
Dψ

Dt
is the material derivative of ψ in canonical space,

• ∇s is the gradient operator evaluated at the unit sphere’s surface, and
• ψṗ represents the probability flux.

Equation (4) has several properties, and the reader is referred to references [25, 28, 29] for a more
complete description. Since p is a unit vector, all possible combinations of (θ, ϕ) or p are located on
the surface of the unit sphere (conformational space). In this work, only the normalization condition
of the ODF is reported. It states that the integral of ψ over the conformational space is unitary [25],
mathematically:

∮

ψ(p) dp = 1

or
∫ 2π

ϕ=0

∫ π

θ=0

ψ(θ, ϕ) sin (θ) dθ dϕ = 1.

(5)

Collisions between fibers will result in a diffusion-like behavior [26]. In 1984, Folgar and Tucker [26]
proposed a new model based on Jeffery’s work to account for fiber interactions by adding a phenomeno-
logical diffusive flux q, which reads [9]:

Dψ

Dt
= −∇s ·

(

ψṗ+ q
)

, (6)

with:

q = −Dr∇sψ, (7)

where Dr is a rotary diffusivity. The authors proposed a scalar rotary diffusivity, which has since been
known in the literature as the isotropic rotary diffusion (IRD) model and is given by:

Dr = CI γ̇, (8)

where:

• CI is a phenomenological parameter modeling the randomizing effect of fiber-fiber interactions,
and

• γ̇ is the magnitude of the rate-of-deformation tensor, given by γ̇ =
√

2D : D.

The ODF offers keen insights as an orientation descriptor, however, its usage for computer-assisted
engineering (CAE) in three-dimensional simulations is computationally expensive. To minimize this
difficulty, a macroscopic orientation descriptor was proposed by Advani and Tucker [7] in 1987, where
the information contained in the ODF was condensed into a tensor-based formulation, by operating on
the moments of the ODF. The most commonly used macro-descriptor is defined as [9, 27]:
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A =

∮

p pψ
(

p
)

dp

or

Aij =

∫ 2π

ϕ=0

∫ π

θ=0

pipj ψ(θ, ϕ) sin (θ) dθ dϕ.

(9)

This second-order tensor is symmetric and has a unitary trace. The tensor-based formulation of the
model proposed by Folgar and Tucker (FT), Eqn. (6), reads [9]:

Ȧ = Ȧ
H
+ Ȧ

IRD
, (10)

with:

Ȧ
H
=W ·A−A ·W + ξ

(

D ·A+A ·D − 2A : D
)

, (11)

Ȧ
IRD

= 2CI γ̇
(

I − 3A
)

, (12)

where:

• Ȧ is the material derivative of A,

• Ȧ
H
is the hydrodynamic component of motion that results from Jeffery’s model – the first term

of the right-hand side of Eqn. (6),

• Ȧ
IRD

is the isotropic rotary diffusion – the second term of the right-hand side of Eqn. (6),
• A is a fourth-order orientation tensor, and
• I is the second-order identity tensor.

Although computationally more efficient than the ODF, the use of orientation tensors have some
drawbacks:

• The reconstruction of the orientation distribution function from A is ambiguous, as A might not

represent a unique orientation state [28]. Figure 2 illustrates different fiber configurations that
result in the same orientation tensor.

• In the derivation of the transport equation for A , the next even-order tensor appears. To close
the system, a closure relationship is needed, and several authors have proposed solutions to write
Aijkl = f (Aij). In Section 3, the most relevant closure relations used in CAE will be presented.

• When an experimentally determined CI is unavailable, some authors use semi-empirical expres-
sions [21, 30] based on the product of the fiber volume fraction and the fiber aspect-ratio.

Nevertheless, this descriptor retains the generality of the ODF and provides a compact, computationally
efficient and convenient representation of the fiber orientation state, being the state-of-the-art descriptor
used in CAE applications.

Over the last four decades several modifications have been proposed to the FT model. Different stud-
ies have shown that the orientation kinetics predicted by the FT model evolve much faster than the
ones observed experimentally [9]. Accordingly, aiming to achieve a better agreement with the transient
experimental observations, Wang et al. [8] proposed a new objective model (independent of the consid-

ered coordinate system) designated reduced-strain closure (RSC). This model decomposes Ȧ into rate

equations for both the eigenvalues (λi) and eigenvectors (ei). The approach consists in slowing down
the evolution for the eigenvalues by a phenomenological scalar parameter (κ ≤ 1), while leaving the rate
equations for the eigenvectors unchanged [25]. The RSC model reads:

Ȧ = Ȧ
RSC

+ κȦ
IRD

, (13)

with:
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Figure 2. Illustration of fiber orientation states and the corresponding fiber orientation
tensor, A.

Ȧ
RSC

=W ·A−A ·W + ξ
(

D ·A+A ·D − 2 [A+ (1− κ) (L−M : A)] : D
)

, (14)

A =

3
∑

i=1

λi (ei ei) , (15)

L =

3
∑

i=1

λi (ei ei ei ei) , (16)

M =

3
∑

i=1

(ei ei ei ei) . (17)

The FT and RSC-IRD models work reasonably well for short FRTM [8]. However, when dealing with
long FRTM, their accuracy reduces, as longer fibers tend to align less in the flow direction [9]. To better
match experimental data, several authors [9–12] proposed the use of a tensorial rotary diffusion term, to
make it direction-dependent, C. The general framework, known as anisotropic rotary diffusion (ARD),
was proposed by Phelps and Tucker (PT) [9], and reads:

Ȧ = Ȧ
H
+ Ȧ

ARD
, (18)

with:

Ȧ
ARD

= γ̇
[

2C − 2tr
(

C
)

A− 5
(

C ·A+A · C
)

+ 10A : C
]

. (19)

Phelps and Tucker [9] proposed C = f
(

A,D
)

following a second-order polynomial as:

C = b1I + b2A+ b3A
2 +

b4
γ̇
D +

b5
γ̇2
D2, (20)

where the dimensionless parameters, bi, i = 1, . . . , 5, are obtained by fitting experimental data. However,
it is known that certain values of bi lead to unstable and non-physical solutions [25]. Additionally, this
model simplifies to the IRD counterpart if b1 is equal to CI , and b2...5 to zero. To encompass the need of
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matching transient results, the authors linked the ARD framework with the RSC methodology, creating
the ARD-RSC model, which is presently available in the proprietary software AutoDesk MoldFlow® [31].

Due to numerical stability problems and fitting dependency requirements of the rotary diffusion ten-
sor proposed by Phelps and Tucker, Tseng and co-workers [10, 32] proposed an alternative model, the
improved ARD (iARD), which the authors combined with a new formulation for slowing down the ori-
entation kinetics, known as the retarding principal rate (RPR). Although with a different approach than
the one used in the RSC, in essence, the RPR also aims at slowing down the evolution of the eigenvalues
without modifying the eigenvectors rate-of-change. Their fiber orientation model reads:

Ȧ = Ȧ
H
+ Ȧ

ARD
+ Ȧ

RPR
, (21)

with:

C iARD = C iARD
I

(

I − CM L̃
)

, (22)

L̃ =
D2

∥

∥D2
∥

∥

, (23)

Ȧ
RPR

= −R · Λ̇
IOK

·RT, (24)

Λ̇
IOK

ii
= α

[

λ̇i − β
(

λ̇2i + 2λ̇j λ̇k

)]

, i, j, k ∈ {1, 2, 3}, (25)

where:

• CM is a scalar parameter representing the fiber-matrix interaction,

•
∥

∥D2
∥

∥ is the magnitude of D2, given by
∥

∥D2
∥

∥ =

√

1

2
D2 : D2,

• Λ̇
IOK

is the material derivative of a diagonal tensor calculated under the intrinsic orientation
kinetics (IOK) assumption [32],

• λi is the i
th eigenvalue of A, ordered as: λ1 ≥ λ2 ≥ λ3,

• R is an orthogonal rotation matrix whose columns are the eigenvectors of A ( R = [e1, e3, e3]),

• RT is the transpose of R, and
• α and β are phenomenological scaling factors used to slow-down the eigenvalues evolution.

The proposed rotary diffusion tensor can be viewed as a special case of Eqn. (20) where only the first
and last terms are used [25]. The iARD-RPR model reduces to the FT model by specifying α = 0 and
CM = 0. Additionally, the RSC and RPR models are identical by setting α = 1− κ and β = 0 [10]. This
model is currently available in the proprietary injection molding simulation software Moldex3D® [33].

Further alternatives to model C were made in 2018 by Tseng et al. [11] and Bakharev et al. [12], who
proposed a similar fiber orientation model, where the rotary diffusion tensor was considered to be coaxial
with A. Tseng et al. [11] proposed the principal ARD (pARD), in which the rotary diffusion tensor is

defined as [27]:

CpARD = CpARD
I (e1 e1 +Ω e2 e2 + (1− Ω) e3 e3) , (26)

where 0.5 ≤ Ω ≤ 1 is a fitted scalar parameter. Bakharev et al. [12] proposed the Moldflow rotational
diffusion model (MRD), where C is defined as [27]:

CMRD = CMRD
I (D1 e1 e1 +D2 e2 e2 +D3 e3 e3) , (27)

where D1, D2 and D3 are non-negative scalar quantities.
Both CpARD and CMRD have a similar formulation. However, CpARD is less flexible and cannot be

reduced to the FT model whilst the CMRD formulation recovers the FT model by setting all parameters

equal to unity. The report of Bakharev et al. [12] provides suitable choices for the model parameters to
achieve the best correlation with experimental data.

Other fiber orientation models were proposed in the literature, such as Wang’s two constant model [25],
Kugler et al. [13] flow dependent model, MRD/pARD with RSC formulation for slowing fiber orientation
kinetics from Kugler et al. [34] and Kech et al. [35], and even data-driven approaches [36, 37]. The
interested reader is referred to [25, 27, 29] for a comprehensive literature review of the most relevant
associated topics.
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3. Closure models

As pointed out in Section 2, one of the drawbacks of using the tensor-based approach as a macro-
descriptor of fiber orientation is the need to calculate the next even-ordered orientation tensor, which
results from the derivation of the evolution equation of the lower order tensor. Breuer et al. [28] identified
in literature 17 closures to describe Aijkl and 4 to identify a sixth-order tensor. However, in commercial
applications, only the hybrid, the invariant-based optimal fitting (IBOF), or an orthotropic fitted closure
are typically used [33,38].

The hybrid closure was referred in the review of Advani and Tucker [39] as being a blend between a
quadratic and a linear closures. For a 3D case, the model reads:

Ahyb
ijkl = fAquad

ijkl + (1− f)Alin
ijkl, (28)

where:

• f is the blending factor, which is usually calculated as f = 1− 27 det (Aij) [39],

• Aquad
ijkl = AijAkl, and

• Alin
ijkl = −

1

35
(δijδkl + δikδjl + δilδjk) +

1

7
(Aijδkl +Aikδjl +Ailδjk +Ajlδik +Ajkδil +Aklδij),

with δij being the second-order identity tensor.

The quadratic closure component is known to be exact when the fibers are perfectly aligned in a
single direction, while the linear closure component is known to be exact for isotropic orientation [39].
This blended closure is used due to its small computational cost, when compared to other alternatives.
However, it is known to over-predict flow-induced fiber orientation [40–42].

The eigenvalue-based version of the natural closure (ORE) [43] is an orthotropic eigenvalue-based fitted
closure. The second-order tensor is decomposed into its eigenvalues and corresponding eigenvectors, with
λi sorted in descending order, λ1 ≥ λ2 ≥ λ3. Due to the normalization condition, Eqn. (5), the summation
of the eigenvalues of A should equal unity, consequently, only two eigenvalues are independent, typically
λ1 and λ2.

Consider Â to be a fourth-order tensor defined in the principal axis of A. Due to the orthotropic
character, this tensor can be written with contracted notation having 12 independent parameters as [40]:

Â =



















Â11 Â12 Â13 0 0 0

Â21 Â22 Â23 0 0 0

Â31 Â32 Â33 0 0 0

0 0 0 Â44 0 0

0 0 0 0 Â55 0

0 0 0 0 0 Â66



















. (29)

Assuming a complete symmetry of the fourth-order tensor, there are six independent variables as:

Â23 = Â32 = Â44,

Â13 = Â32 = Â55,

Â12 = Â21 = Â66.

(30)

Moreover, taking into account that the higher order tensor, Aijkl, includes information from the lower
order tensor, and since Aijkk = Aij [25, 29], the number of independent components can be further
reduced to 3, by:

Â11 + Â12 + Â13 = λ1,

Â21 + Â22 + Â23 = λ2,

Â31 + Â32 + Â33 = λ3,

(31)

and

Â11 = f1(λ1, λ2),

Â22 = f2(λ1, λ2),

Â33 = f3(λ1, λ2),

(32)

where f1, f2, and f3 are functions of the independent eigenvalues of A. For the ORE closure, these are
defined as:
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fi(λ1, λ2) =Ci1 + Ci2λ1 + Ci3λ2 + Ci4λ1λ2 + Ci5λ
2
1 + Ci6λ

2
2

+ Ci7λ
2
1λ2 + Ci8λ1λ

2
2 + Ci9λ

3
1 + Ci10λ

3
2 + Ci11λ

2
1λ

2
2

+ Ci12λ
3
1λ2 + Ci13λ1λ

3
2 + Ci14λ

4
1 + Ci15λ

4
2,

i ∈ {1, 2, 3}. (33)

The coefficients Ci1, . . . , Ci15 are reported in Verweyst’s PhD thesis [43], but are also available in [44].

Considering the normalization condition, the entries for Â44, Â55 and Â66 can be computed as [43]:

Â44 =
1

2

(

1− 2λ1 + Â11 − Â22 − Â33

)

,

Â55 =
1

2

(

1− 2λ2 − Â11 + Â22 − Â33

)

,

Â66 =
1

2

(

−1 + 2λ1 + 2λ2 − Â11 − Â22 + Â33

)

.

(34)

Once the components of Â have been calculated, the tensor is rotated to the case study reference frame
by:

Aijkl = RimRjnRkoRlpÂmnop. (35)

Another alternative is the IBOF closure approximation, proposed by Chung and Kown [41]. This
closure does not require the eigendecomposition of A and, instead, resorts to the invariants of the second-

order orientation tensor. The IBOF closure reads [41]:

Aijkl =β1S (δijδkl) + β2S (δijAkl) + β3S (AijAkl)+

β4S (δijAkmAml) + β5S (AijAkmAml) + β6S (AimAmjAknAnl) ,
(36)

where the function S gives the fully symmetric part of its fourth-order tensor argument:

S (Tijkl) =
1

24
[ Tijkl + Tijlk + Tikjl + Tiklj + Tiljk + Tilkj

+Tjikl + Tjilk + Tjkil + Tjkli + Tjlik + Tjlki

+Tkijl + Tkilj + Tkjil + Tkjli + Tklij + Tklji

+Tlijk + Tlikj + Tljik + Tljki + Tlkij + Tlkji] .

(37)

The six βi coefficients are functions of the second (I2) and third (I3) invariants of A, given by:

I2 =
1

2

[

tr
(

A
)2

− tr
(

A2
)

]

, (38)

I3 = det
(

A
)

. (39)

Additionally, only three coefficients are independent, β3, β4 and β6, whose values are given by:

βi =ai1 + ai2I2 + ai3I
2
2 + ai4I3 + ai5I

2
3 + ai6I2I3 + ai7I

2
2I3

+ ai8I2I
2
3 + ai9I

3
2 + ai10I

3
3 + ai11I

3
2I3 + ai12I

2
2I

2
3

+ ai13I2I
3
3 + ai14I

4
2 + ai15I

4
3 + ai16I

4
2I3 + ai17I

3
2I

2
3

+ ai18I
2
2I

3
3 + ai19I2I

4
3 + ai20I

5
2 + ai21I

5
3 ,

i ∈ {3, 4, 6}. (40)

where the fitting coefficients ai1, . . . , ai21 are provided in the Appendix of [41]. The remaining coefficients
are formulated as [41]:

β1 =
3

5

[

−
1

7
+

1

5
β3

(

1

7
+

4

7
I2 +

8

3
I3

)

− β4

(

1

5
−

8

15
I2 −

14

15
I3

)

−β6

(

1

35
−

24

105
I3 −

4

35
I2 +

16

15
I2I3 +

8

35
I22

)]

,

(41)

β2 =
6

7

[

1−
1

5
β3 (1 + 4I2) +

7

5
β4

(

1

6
− I2

)

− β6

(

−
1

5
+

2

3
I3 +

4

5
I2 −

8

5
I22

)]

, (42)

β5 = −
4

5
β3 −

7

5
β4 −

6

5
β6

(

1−
4

3
I2

)

. (43)

Due to the reduced number of operations compared to eigen-fitted closures, the IBOF closure is
considered as computationally more efficient, while maintaining a similar level of accuracy [41].
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4. Modeling fiber orientation within the OpenFOAM framework

Tensor-based fiber orientation modeling is a pure advective problem, hence the formulations presented
above are better suited for a Lagrangian approach [25]. To calculate the fiber orientation evolution
equation in an Eulerian framework, the following definition of material derivative can be employed:

Ȧ =
DA

Dt
=
∂A

∂t
+ v · ∇A =

∂A

∂t
+∇ ·

(

v A
)

− (∇ · v)A. (44)

Due to the incompressibility assumption, (∇ · v)A is null. The equation that governs the evolution of
A is a component-wise passive scalar equation, coupled by a source term given by the right-hand side of

the fiber orientation model. In order to introduce fiber orientation modeling into OpenFOAM®, some

considerations have to be made. In Section 2, the velocity gradient was defined as Lij =
∂vi
∂xj

, however in

OpenFOAM®, ∇vij = Lji =
∂vj
∂xi

, which requires the adaptation of the the vorticity tensor, W , whose

definition in the OpenFOAM®framework is the anti-symmetric of the one defined in Section 2 (Eqn. (3)).
Currently, OpenFOAM®does not provide a fourth-order tensor class, and only the extend branch offers

a simplified fourth-order tensor class, with nine independent components and a limited set of operations.
However, to be able to calculate the evolution of fiber orientation, it is necessary to know the product of
DklAijkl. Therefore, Aijkl must be computed based on a closure relation, as described in Section 3.One
potential solution for addressing this issue is to implement a comprehensive class to handle the operations.
Alternatively, recognizing that DklAijkl is a second-order tensor, it can be introduced as a source term
in the evolution equation, and symbolic computation can be used to infer the required operations and
generate the necessary code. In this work the latter approach was employed.

The framework for fiber orientation modeling was developed considering two abstract classes,
fiberOrientationModel and closureModel. These were developed following the structure of the viscos-
ity models available in $FOAM SRC/transportModels/incompressible/viscosityModels, with run-time
selection. For each class the required minimum attributes and member functions were added to model
fiber orientation. Accordingly, the fiberOrientationModel class contains a dictionary for collecting
input data from the user, fields that are common to all models (A, L, D, W , γ̇, and A : D), a pure
virtual solve method for assembling and solving the system of linear equations and some other minor
methods to assure its functionality. The closureModel class includes one pure virtual function named
computeClosure to compute the product DklAijkl and one virtual function named computeRSCClosure

to compute [Aijkl + (1− κ) (Lijkl −MijmnAmnkl)]Dkl, required by the RSC model (Eqn. (14)), together
with additional minor functionalities.

Based on the above structure, each fiber orientation model that derives from the fiberOrientationModel
class should: (i) specify a sub-dictionary to collect model-specific information and any required addi-
tional fields (e.g. C), and (ii) implement the corresponding solve method. Additionally, each closure
model (hybrid, ORE, IBOF, etc.), which derives from the closureModel class, should implement the
computeClosure method. If one decides to make the closure also available for the RSC approach, the
method computeRSCClosure should also be defined.

The framework implemented in OpenFOAM®is depicted in Fig. 3. Currently, these classes are
wrapped in a functionObject (FO) to work as a plug-in for any incompressible flow solver. At the end of
each specified time step, upon calling the execute method from the FO, the solve function from a spe-
cific fiberOrientationModel will be executed, assembling and solving the corresponding system of linear
equations. On the user’s side, inside the functions section in the controlDict dictionary, in addition to
the usual FO parameters, it is required to define a dictionary named fiberOrientationProperties that
indicates the fiber model (parameter model), fiber parameters (subdictionary <fiberModel>Properties),
and closure model (parameter closureModel).

Following the OpenFOAM®modeling approach, the final equation syntax is similar to the mathemat-
ical notation. As an example, the final form of the FT model, Eqn. (10), which is included in solve()

method, is given in Listing 1. The variable D doubleDot A4 contains the calculation of DklAijkl, whose
calculation is described in Section 5.

The resultant framework for the implemented fiber orientation modeling should be easily extendable to
other fiber orientation and closure models. Currently, due to the validity of the implemented formulations,
the available closure models are only valid for 3D cases.
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Figure 3. Concept for the functionObject for modeling fiber orientation.

✞

1 fvSymmTensorMatrix dA2dtEqn

2 (

3 fvm::ddt(A2 ) + fvm::div(phi , A2 , divScheme)

4 ==

5 symm( (W & A2 ) − (A2 & W )

6 +xi *(

7 (D & A2 ) + (A2 & D ) − (2.0*D doubleDot A4 )

8 ))

9 + 2.0*CI *shrRate *(symmTensor::I−3.0*A2 )

10 );
✝ ✆

Listing 1. Folgar-Tucker fiber orientation model.

5. Closure model with symbolic computation

The open-source library Sympy v1.11 [45] was used to perform the operations that OpenFOAM®does
not have, namely the contractions between fourth- and second-order tensors. This rich-featured library for
symbolic computation is written in Python language and provides functionalities to convert the symbolic
code into C -style code, which can be used in OpenFOAM® [46].

In the developed Python scripts provided in the repository folder fiberClosureSymbolic, a vector
is treated as a [3× 1] matrix, a second-order tensor as a [3× 3] matrix, and a fourth-order tensor as a
dense multidimensional array with shape [3× 3× 3× 3].

The Python script required to generate the C -code that calculates the closure method (computeClosure),
for the hybrid closure model in the hybrid class, is illustrated in Listing 2. In Lines 1–3 of Listing 2, the
Sympy module is imported with the alias sym and the functions symm, fourthOrderIndexPermutation
and generateCCode from the module fiberOrientationModelling Tools. These functions are respon-
sible for generating a symmetric second-order tensor, performing index permutations within the fourth-
order tensor and generating C -code, respectively.

Listing 2 comprises two functions, computeHybridClosure and main. The former computes the hybrid
closure symbolically, while the latter, creates the symbolic variables, performs the tensor contraction and
generates the associated C -code.

In the computeHybridClosure function, a matrix symbol is created representing a second-order tensor
(Line 7), symmetry conditions are applied (Line 9), and a second-order identity tensor is defined (Line

11). Finally, in Lines 13–36, the hybrid closure is computed following Eqn. (28), to obtain Ahyb
ijkl.

In the main function, in Lines 41–43, a matrix representing the second-order tensor D is created.
In Line 45 the computeHybridClosure function is executed, returning the computation of the hybrid
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✞

1 import sympy as sym

2

3 from fiberOrientationModelling Tools import symm, fourthOrderIndexPermutation,

→֒ generateCCode

4

5 def computeHybridClosure():

6

7 a = sym.MatrixSymbol(’A’,3,3)

8

9 A2 = symm(sym.Matrix(a))

10

11 I = sym.eye(3)

12

13 A4 linear = (

14 sym.Rational(−1,35)*

15 (

16 fourthOrderIndexPermutation(’ijkl’, sym.tensorproduct(I,I))

17 + fourthOrderIndexPermutation(’ikjl’, sym.tensorproduct(I,I))

18 + fourthOrderIndexPermutation(’iljk’, sym.tensorproduct(I,I))

19 )

20

21 + sym.Rational(1,7)*

22 (

23 fourthOrderIndexPermutation(’ijkl’, sym.tensorproduct(A2,I))

24 + fourthOrderIndexPermutation(’ikjl’, sym.tensorproduct(A2,I))

25 + fourthOrderIndexPermutation(’iljk’, sym.tensorproduct(A2,I))

26 + fourthOrderIndexPermutation(’klij’, sym.tensorproduct(A2,I))

27 + fourthOrderIndexPermutation(’jlik’, sym.tensorproduct(A2,I))

28 + fourthOrderIndexPermutation(’jkil’, sym.tensorproduct(A2,I))

29 )

30 )

31

32 A4 quadratic = sym.tensorproduct(A2, A2)

33

34 f = 1.0 − 27*A2.det()

35

36 A4 hybrid = f*A4 quadratic + (1.0 − f)*A4 linear

37

38 return A4 hybrid

39

40 def main():

41 d = sym.MatrixSymbol(’D’,3,3)

42

43 D = symm(sym.Matrix(d))

44

45 A4 = computeHybridClosure()

46

47 D doubleDot A4 = sym.tensorcontraction(sym.tensorproduct(D, A4),(0,4),(1,5))

48

49 generateCCode(sym.Matrix(D doubleDot A4))

50

51 if name == "__main__":

52 main()
✝ ✆

Listing 2. Symbolic computation of the hybrid closure model.

closure, and, in Line 47, the contraction DklAijkl is performed. To conclude this function, in Line 49,
C -code is generated from the symbolic computations.

The derivation of the C -code to implement the computeRSCClosure method in the Hybrid class is
illustrated in Listings 3 and 4. To compute the RSC closure, a script with a general framework was
developed through the RSC function. This method takes a closure function as an input argument and
performs the required symbolic computations. In Lines 2–8 of Listing 3, the slow-down symbolic variable,
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κ, is created as well as variables that will hold the eigenvalues (λi) and eigenvectors (ei) of A. Although
not required by the RSC approach, some orientation models and associated closures require the eigen-
values to be sorted in descending order and to have the eigenvectors as column vectors. Within the
OpenFOAM®framework, the eigenvalues of a symmetric second-order tensor are computed and sorted
in ascending order and the corresponding eigenvectors stored in a row-wise manner. The order of com-
putations within OpenFOAM®was taken into account in the symbolic computations (see Lines 10–21).

In Line 23 the closure relation (the argument of the RSC function) is executed to obtain Aijkl. Place
holders for tensors M (Line 25) and L (Line 26) are created and the respective expressions are formulated
(Lines 28–35) to get the expression between square brackets of the RSC model, Eqn. (14).

✞

1 def RSC(closureFunc):

2 k = sym.Symbol(’k’)

3

4 e = sym.MatrixSymbol(’eigenVector’,3,3)

5 eigVec = sym.Matrix(e)

6

7 w = sym.MatrixSymbol(’eigenValue’,3,1)

8 eigVal = sym.Matrix(w)

9

10 # Invert order to be consistent with OpenFOAM

11 tmpEigVal = eigVal.copy()

12

13 # sort eigenValues

14 eigVal[0] = tmpEigVal[2]

15 eigVal[2] = tmpEigVal[0]

16

17 # sort eigenVectors

18 eigVec = eigVec.T

19 tmpEigVec = eigVec.copy()

20 eigVec[:, 0] = tmpEigVec[:, 2]

21 eigVec[:, 2] = tmpEigVec[:, 0]

22

23 A4 = closureFunc()

24

25 M = sym.MutableDenseNDimArray.zeros(3,3,3,3)

26 L = sym.MutableDenseNDimArray.zeros(3,3,3,3)

27

28 for i in range(3):

29 e vector = sym.Array(sym.flatten(eigVec[:, i]))

30 M += sym.tensorproduct(e vector, e vector, e vector, e vector)

31 L += eigVal[i]*sym.tensorproduct(e vector, e vector, e vector, e vector)

32

33 tmp1 = sym.tensorcontraction( sym.tensorproduct(M, A4), (2,4), (3,5) )

34

35 tensorCombination = A4 + (1−k)*(L− tmp1)

36

37 return tensorCombination
✝ ✆

Listing 3. Symbolic computation of the RSC closure model.

The hybrid closure calculation used in the computeRSCClosure method is shown in Listing 4, which
comprises only the main function. Similarly to the one shown in Listing 2, upon creating Aij (Lines 7–9),
and [A+ (1− κ) (L−M : A)] (Line 11), following the RSC framework, the contraction with the rate-of-
deformation tensor is performed (Line 13). Finally, in Line 15, the associated C -code is generated.

6. Case studies

This section presents the analysis performed to verify the implementation of the fiber orientation
plug-in, implemented for modeling the evolution of fiber orientation, which was undertaken with two case
studies: simple-shear flow and the flow in a center-gated disk. For these, an adaptation of the solver
pimpleFoam was used. In both cases, because an analytic solution for the velocity field is available,
the pimpleFoam solver was modified to remove all computations of primitive variables. For assessment
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✞

1 import sympy as sym

2 from fiberOrientationModelling symbolicComputationTools import symm, generateCCode

3 from hybricClosure import computeHybridClosure

4 from rsc import RSC

5

6 def main():

7 d = sym.MatrixSymbol(’D’,3,3)

8

9 D = symm( sym.Matrix(d) )

10

11 A4 = RSC(computeHybridClosure)

12

13 D doubleDot A4 = sym.tensorcontraction(sym.tensorproduct(D, A4),(0,4),(1,5))

14

15 generateCCode(sym.Matrix(D doubleDot A4))

16

17 if name == "__main__":

18 main()
✝ ✆

Listing 4. Symbolic computation of the hybrid closure model with RSC.

purposes, the fiber orientation evolution results obtained in OpenFOAM®were compared with reference
data obtained from the Python scripts provided in the repository folder fiberOrientationPython, which
integrate the same fiber orientation evolution equations assuming homogeneous time evolving flows. For
that purpose, a Runge-Kutta5(4) time integration scheme [47] was used, with an absolute and relative
tolerances of 10−12 for both quantities.

6.1. Simple-shear case study. The velocity field for a simple-shear flow, with velocity along x, and a
null velocity at y = 0 plane, is given by:

v =





γ̇y
0
0



 , (45)

which, in accordance with the definition of gradient in OpenFOAM®, will result in the velocity gradient:

∇v =





0 0 0
γ̇ 0 0
0 0 0



 (46)

To verify the accuracy of the numerical implementation, a mesh refinement study using 7 progressively
refined grids was performed on the three-dimensional geometry shown in Fig. 4. The coarser mesh has 32
cells along the x- and y-directions and one cell in the z- direction. The number of cells in the x-direction
were doubled for each successively finer grid.

The initial velocity field and boundary conditions were defined with the utilities setExprFields and
setExprBoundaryFields by applying the exact solution in Eqn. (45). The shear-rate and fiber shape
factor were assumed to be unitary, γ̇ = 1 s−1 and ξ = 1. The initial and Dirichlet boundary conditions
for Aij on the left patch is given by:

Aij =





1/3 0 0
0 1/3 0
0 0 1/3



 . (47)

For the ”(right | top | bottom)” patches a zeroGradient condition was assigned and for the ”(front
| back)” patches a symmetryPlane boundary condition was used.

For this case study, three fiber orientation models were tested, namely FT, iARD-RPR and MRD.
The IBOF closure relation was employed with all models. For the FT model, two additional closure
relations were tested, Hybrid and ORE. The relevant parameters for these models and closure relations
are reported in Tab. 1 and were obtained from Favaloro and Tucker [27].

The discretization schemes and solution requirements employed are reported in Tabs. 2 and 3, respec-
tively. The orientation evolution equation was integrated from 0 s until 65 s, with the time step size
being controlled by the CFL condition for a maximum Courant number of 0.5.
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Table 1. Fiber orientation model parameters for the simple-shear case study.

Model

Parameter FT iARD-RPR MRD

CI 0.0311 0.0562 0.0198
CM — 0.9977 —
α — 0 —

Di — —
D2 = 0.4796
D3 = 0.0120

Closure
Hybrid
IBOF
ORE

IBOF IBOF

left

right

top

bottom

1 m

0.1 m

1 m

Figure 4. Geometry, mesh and patches for the simple-shear case study.

Table 2. Temporal and spatial discretization schemes for the simple-shear case study.

Term Scheme

ddtSchemes Euler
gradSchemes grad(U) Gauss linear
divSchemes div(phi,A2) Gauss upwind
laplacianSchemes none
interpolationSchemes linear
snGradSchemes none

Table 3. Solution methods for the simple-shear case study.

Parameter p

solver PBiCGStab
smoother DILU
tolerance 10−10

relTol 0
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6.2. Center-gated disk case study. The center-gated disk is a representative benchmark case of a
typical geometry in the injection-molding (IM) process. Due to the usual small thickness of parts pro-
duced by IM, the flow is typically dominated by shear, but extensional flow can also occur [48]. In this
case study, assuming constant viscosity (Newtonian behavior) is not realistic for IM of thermoplastic
materials. However, it was used for convenience in verifying the implemented fiber orientation add-on,
as an analytical solution is available.

The geometry and patches considered for the present case study are illustrated in Fig. 5. Due to
the axisymmetric flow conditions just a small angular region of the disk was employed for verification
purposes. Accordingly, the geometry in this case study is a 5◦ slice from a typical center-gated disk with
a feeding system, with a radius r ∈ [0.01, 0.12] m and a thickness of 0.003 m.

Technical view

2
.5
°

2
.5
°

Mesh
inlet

walls

outlet

symmWalls

Part

X
Y

Z

Figure 5. Part and mesh representation with the corresponding patches for the center-
gated disk case study (dimensions in m).

The velocity field, in cylindrical coordinates (r, θ and z) for a Newtonian fluid in a center-gated disk
is given by [41]:

v =











vr

vθ

vz
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3Q

8πrb
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)

0

0













, (48)

where:

• Q is the volumetric flow-rate,
• r is the radial position,
• b is the half-thickness of the disk, and
• z is the position along the thickness, where z = 0 corresponds to the mid-plane.

Taking into account the gradient definition in OpenFOAM®, the velocity gradient tensor is given
by [41]:

∇v =
3Q
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. (49)

Given the cylindrical symmetry of the problem and the Cartesian gradient implemented in OpenFOAM®,
to ensure that Eqn. (49) was taken into account, the problem geometry was defined so that the x-direction
aligns with the radial direction, y = 0, and z is perpendicular to the flow direction. For verification pur-
poses a mesh refinement study was carried out, using five progressively finer meshes. The coarser mesh
has 128 cells along the radial and thickness directions and one along the angular direction (θ in the
cylindrical coordinates). The cells in the radial direction were doubled for each successively finer grid to
increase the accuracy of the fiber orientation evolution.

For this case study, the flux and velocity fields were computed assuming a total flow rate of Q =
134.774 cm3s−1. Given that only a α = 5◦ slice is being considered, the case study flow rate was adjusted
to Qα/360.

For this case, the flux and the gradient at the cell center were prescribed through a coded functionObject
following Eqns. (48) and (49), respectively. For the second-order orientation tensor, the initial con-
dition and Dirichlet boundary condition for the inlet were defined as isotropic state, Eqn. (47). The
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zeroGradient boundary condition was applied to the walls and outlet, and symmetry to the symmWalls
patch. The discretization and solution settings were the same as those considered considered for the
simple-shear case study, Tabs. 2 and 3. Moreover, the fiber orientation parameters are described in
Tab. 4.

A coded functionObject was used to define a steady-state criteria. The simulation was stopped when
the initial maximum residual of Aij was below 10−6, and during 15 consecutive time steps the absolute
difference between the current and previously computed Aij was below 10−6, in all computational cells.

Table 4. Fiber orientation model parameters for the center-gated disk case study.

Model

Parameter FT

ξ 1
CI 0.001
closure IBOF

7. Results and discussion

7.1. Simple-shear case study. In the simple-shear case study, taking into account the velocity field
given by Eqn. (45), the Axz and Ayz components of the fiber orientation tensor are null, whereas the
Azz component will have a similar dynamic to the Axx component [39]. Thus, for verification purposes,
only the Axx and Axy components will be analyzed. The Axx component indicates the alignment in
the x-direction and the off-diagonal component the direction of orientation in the x − y plane [39]. To
compare the results from the Python script with the ones computed in OpenFOAM®, and given that
all streamlines are parallel to the x-axis, a pseudo-time (t

′

) was calculated based on the cell velocity and
the domain length by:

t
′

=
Lx

u
, (50)

where Lx is the length of the domain along the x-direction, with Lx = 0 at the inlet, and u is the
x-direction velocity component.

Given that only the velocity component in the x-direction is non-null, each line of cells in the x-direction
is expected to match a section in the fiber orientation curve. Figures 6, 7 and 8 depict the comparison
between the Axx and Axy components of the fiber orientation tensor with progressive mesh refinement
for the FT model using the different closure models tested. The scatter data displayed corresponds to the
line of cells at the y-position with the most significant numerical difference compared with the Python

reference data. Figure 9 shows the evolution of Axx when using the iARD and MRD models with the
IBOF closure.

The parameters defined for the models were set to obtain roughly the same value at a steady-state (
Axx ≈ 0.65) [27]. Comparing the different closures used with the FT model it is clear that the hybrid
model over-predicts the value of orientation for this simple-flow. This is a known issue in literature [39,41],
however, due to its computational simplicity it is employed in some proprietary software. The IBOF and
ORE present very similar transient results. This has also been addressed in literature [41], where the
major practical difference is the computational effort. The ORE requires the eigendecomposition of the
tensor Aij whilst the IBOF works with its invariants. Comparing the FT model with the iARD and MRD,
although the solution at steady-state is the same, the transient behavior differs substantially. The FT
model flattens out after ≈ 10 s while the iARD and MRD model present a pronounced peak. This shows
the ability of different phenomenological orientation models to capture different orientation behaviors,
whose choice is not trivial.

The results also show that with progressive mesh refinement, the simulated data computed in OpenFoam®

approximates the reference data generated with the Python script.

7.2. Center-gated disk case study. The parabolic flow profile given by Eqn. (48) represents a non-
homogeneous radial diverging flow field where the velocity magnitude decreases along the radial direction,
and, accordingly, the shear (γ̇) and stretch (ϵ̇) rates ratio are functions of the thickness and radial position,
as illustrated in Fig. 10.

Figure 10 depicts the ratio between the shear and extensional components on half-thickness of the
disk. For these conditions, null shear and elongation will occur at the mid-plane and wall, respectively.
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(a) Mesh 1 (b) Mesh 4 (c) Mesh 7

Figure 6. Mesh refinement study with the Folgar-Tucker model and the Hybrid closure
for the simple-shear case study.

(a) Mesh 1 (b) Mesh 4 (c) Mesh 7

Figure 7. Mesh refinement study with the Folgar-Tucker model and the IBOF closure
for the simple-shear case study.

At the mid-plane, where ∂u
∂x

< 0 with null shear-rate, the fibers are compelled to orient along the cross-
flow direction. As the magnitude of z increases, the shear-rate becomes more pronounced, reaching its
maximum at the wall. Consequently, the fibers tend to orient increasingly along the flow direction.

Similarly to the simple-shear case study, the Axy and Ayz components of the fiber orientation tensor
are always zero, whereas the Azz component will have a similar dynamic to the Axx (since the trace must
be unitary). Thus, for verification purposes, only the Axx and Axz components will be presented.

Referring to the results shown in Figs. 10 and 11, near mid-plane, at z/b = 0.102, the Axx component
initially tends towards zero due to the presence of a negative elongational rate and an insufficient shear-
rate to keep the alignment of the fibers in the flow direction. However, as the fluid advances along the
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(a) Mesh 1 (b) Mesh 4 (c) Mesh 7

Figure 8. Mesh refinement study with the Folgar-Tucker model and the ORE closure
for the simple-shear case study.

(a) Mesh 1 (b) Mesh 4 (c) Mesh 7

Figure 9. Mesh refinement study with the iARD and MRD models for the Axx com-
ponent for the simple-shear case study

radial direction, the small but non-null shear-rate gradually, albeit slowly, aligns the fibers along the flow
direction. This effect intensifies with z/b, i.e., while approaching the wall.

To compare the results obtained in OpenFOAM®, the FT model was integrated using 3000 linearly
spaced points along the radius, and 128 points along the thickness corresponding the z-coordinate of the
mesh. The orientation tensor was sampled at the cell centers with the sampling functionObject utility
of OpenFOAM®. The mesh refinement results for the closest ten evenly spaced z/b ratios are displayed
in Fig. 11. The mesh refinement study shows that with progressive refinement, the results obtained with
OpenFOAM®approach the reference data generated from the Python script.
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Figure 10. Map of shear/stretch ratio for the center gated disk.

(a) Mesh 1 (b) Mesh 5

Figure 11. Mesh refinement study with the Folgar-Tucker model and the IBOF closure
for the center-gated disk case study.

8. Conclusions

In this work, a functionObject that works as a plug-in tool for any OpenFOAM®incompressible flow
solver was programmed to calculate the evolution of fiber orientation in fiber reinforced thermoplastic
materials, following a decoupled approach. Several fiber orientation models and closure relations available
in the literature were implemented in the tool, which was verified by comparing the solver predictions
with independent results obtained by numerically integrating the associated governing equations.

Due to OpenFOAM®’s limitations in handling higher-order tensors, the developed methodology for
modeling fiber orientation, which requires fourth-order tensors, utilizes open-source symbolic computation
to perform the necessary calculations. This symbolic approach retains only the non-trivial operations,



36 B. Ramoa, R. Costa, F. Chinesta, and J.M. Nóbrega

thus enhancing efficiency. However, this comes with the cost of code readability, as the functions resulting
from the symbolic computations tend to be almost impossible to interpret.

State-of-the-art models and closure relationships currently employed in commercial solutions have
been described and implemented in OpenFOAM®. Benchmark test cases, including a simple-shear flow
and the flow in a center-gated disk, have been used to verify the numerical implementation, through
the comparison with results obtained with a Python routine that integrates the equations for a single
material point. A mesh refinement study was carried out for each type of flow. The results show that
with progressive mesh refinement the OpenFOAM® results approach the Python counterpart.

The developed code, scripts, and case studies are open to the community, and the authors welcome
suggestions and improvements.
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