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Abstract  

Reproducibility, measurability, and refutability are the foundation of the scientific method 

applied to empirical work. In the study of animal/human behavior, experimental protocols 

conducted in the lab are the most reliable means by which scientists can operationalize 

behaviors using controlled and parameterized setups. However, whether observations in the 

lab fully generalize in the real world remain legitimately disputed. The notion of 

“experimental design” was originally intended to ensure the generalizability of experimental 

findings to real-world situations. Experiments in the wild are more frequently explored and 

significant technological advances have been made allowing mobile neuroimaging. Yet some 

methodological limitations remain when testing hypotheses in real world. Herein, we discuss 

the limitations of inferential processes derive from empirical observations in the wild. The 

multi-causal property of an ecological situation often lacks controls, and this major concern 

may prevent the replication/reliability of behavioral observations. We discuss the 

epistemological grounds of the induction process for cognitive neurosciences and provide 

some possible heuristics for In situ experimental designs compatible with psychophysics in 

the wild. 
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1. What is the lab-dilemma? 
 

The lab dilemma raises the problem of the generalizability of a given (animal or human) 

behavior in contemporary scientific approaches of behavioral sciences - encompassing 

cognitive neurosciences, experimental psychology, and perceptual psychophysics (Yarkoni, 

2022). Since its inception, experimental psychology  has demonstrated that experiments in the 

lab met scientific criteria, with the application of sophisticated statistical methods on 

experimental data acquired in dedicated research settings and under highly controlled 

paradigms. The purpose of experimentation in psychology is to demonstrate the 

operationalization of human behavior to enable its  measurements. However, while lab 

experimentation is considered a scientific standard for a large community of behavioral 

researchers, it also comes with significant limitations: the lab itself. The radical shift of 

experimental psychology from its original focus - explaining natural human behaviors - to 

behavior under highly controlled settings raised the question of generalizability of lab results. 

As a trade-off to its scientific rigor in the lab, experimental psychology has to demonstrate its 

capacity to generalize constrained lab results to human psychology in the real world (Hammond 

& Stewart, 2001). The questions raised by the lab-dilemma affect human (Kingstone et al., 

2003, 2008) and animal (Gomez-Marin et al., 2014) research in similar ways, and behavioral 

(neuro)sciences as a whole. 

 

2.1 Fisher’s experimental design and the misuse of the induction process in 

experimental psychology 
 

In the 1940s, to adapt to the imperative request of generalization, experimental psychologists 

turned to Fisher's theory of factorial design for their experiments (Fisher, 1936; Fisher & others, 

1926). The factorial design described in the first article, “The arrangement of field experiment”, 

originally aimed at improving the agriculturist's control over farming parameters such as 

manured vs. unmanured, chloride vs. sulfate, or early vs. late manure applications. From a 

scientific perspective, an experimental design corresponds to the systematic preparation in 

assigning an experimental measurement to the levels of treatment. A design allows performing 

statistical analyses of the measurements from which the validity of a conclusion can be drawn 

(Kirk, 1995; Smith, 2000). Fisher's theory proposed a foundational framework from which 

modern experimental design in experimental psychology has emerged.  

However, the limitations of inductive inference led to a shortcoming of the generalization 

process between the psychologist and the agriculturist (Brunswik, 1943, 1952). The 



3 
 

agriculturist controls the parameters (e.g., the process of cultivation in a given field) to match 

his method with the circumstances of discovery. Indeed, inductive inference over 

uncontrollable parameters is not required in the agriculturist's research to achieve the 

generalization process. The uselessness of induction (of uncontrollable parameters such as the 

weather) can be seen in the fact that the testing situations fit with the real-world context that the 

agriculturist encounters (e.g., the cultivation of a particular fruit occurs at a specific time during 

the year and in a particular region).  

To the contrary, the psychologist has very few options to choose from in designing an 

experiment. The ecological situations include an infinity of possible contexts that could 

virtually lead to the same behavior. To solve this difficulty, psychologists use inductive 

inference on a sample of participants assumed to be representative of a population to warrant 

the generalizability of their results (Brunswik, 1955). However, the induction process following 

experimentation does not generalize the results to the diversity of possible situations in the real 

world; instead, the induction process relies on inferences informed by statistics derived from 

the selected sample of participants. Thus, the induction is restricted to generalizing the results 

collected in lab settings to the general population. In short, making inductive inferences from 

the lab to the real world appears impossible, and the generalizability of observations is 

unwarranted.  

Consequently, the limited validity of inductive inference towards real world situations in 

experimental psychology depends on the implicit quality of the controlled situations and how 

well it may (or not) represent the diversity of situations encountered in the natural habitat of 

human (or animal) lives. Furthermore, when studying a targeted behavior within an 

experimental design, it is crucial to recognize that the amount of variance captured by the 

experiment may not necessarily reflect or overlap the variance observed in real-world behavior. 

Egon Brunswik formulated the fundamental limitation of experimental psychology as the 

double standard, which explained the logic of the induction process applied to the individual or 

participant but not to the environment (Brunswik, 1943). To solve this fundamental issue in 

experimental psychology, Brunswik introduced a novel approach and experimental design, 

improving the possibility of generalizing results obtained in the lab to the real world.  

 

2.2 Brunswik’s ecological validity is a logical turn 

 

In the early 1950s, Brunswik introduced the notion of ecological validity to the field of 

experimental psychology (Brunswik, 1952). In his theoretical framework, the central proposal 
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was to dissociate the classic experimental design from the representative design. In the 

representative design, sampling stimuli from the environment, or artificial stimuli in which 

environmental properties were preserved, is a fundamental prerequisite for capturing 

psychological processes. Fundamental principle of the representative design is the rule that one 

may generalize the results from experiment only to those circumstances or objects that have 

been sampled in the design.  

 

 For Brunswick, goal-directed behaviors are, by default, adapted to the environment. 

Furthermore, the environment includes multi-causality and probabilistic relations between 

variables of interest - i.e., a probabilistic functionalism. Therefore, he argued that the design of 

experimental tasks should emulate as close as possible the ecological settings towards which 

the generalization was initially intended (Araujo et al., 2009; Dhami et al., 2004; Hammond & 

Stewart, 2001). In this representative design, ecological validity can be assessed if 

psychologists take into account the correlations between the relation of the organism to 

proximal cues (e.g., the processing of acoustic stimulations) and the objects indicated by distal 

cues e.g., the visual stimuli appearing in the surrounding environment- (Koffka, 1936) . He 

states, “Any fairly consistent rapport, be it intuitively perceptual or explicitly rational, with 

distal layers of the environment presupposes the existence of proximal sensory cues of some 

degree of ecological validity to serve as mediators of the relationship” (Brunswik, 1956, p.48). 

For Brunswik, the observer has an uncertain access to the distal object in the world. 

Therefore, the observer's attending can only infer the existence of the distal object to the 

appropriate local sensory cue. This means that the observer should preferentially attend to the 

valid sources of information about their objects in the world or sensory cues that are 

"ecologically valid". 

In the representative design, the statistical analysis of distal-proximal correlations, where 

one stimulus stands as a probability cue for the other stimulus, would be termed psychological 

ecology. Additionally, the strength of the correlation – i.e., the probability that one stimulus 

predicts the other in the environment – is coined ecological validity (Brunswik, 1952). Hence, 

in Brunswik's theoretical framework, the crucial take-home message of the representative 

design is that sampling situations and stimuli determine the target ecological situation in which 

generalization is intended to: a sample of the situations in an experiment thus becomes a unique 

sample of the target ecological situation (Holleman et al., 2020). Crucially, the representative 

design changes the logic of the inductive inference in experimental psychology and provides a 

generalization process. Indeed, the representative design confers the ecological value not to the 
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representative sampling of participants as in classical experimental design but to a 

representative sampling of a situation in the inference process (Brunswik, 1943; Schmuckler, 

2001).  

With his work, Brunswik raised awareness in experimental psychology on the issue of the 

generalization process when using Fisher's experimental design. The representative design is 

highly appealing but in its application, extracting the formal properties of the ecological 

situation and operationalizing them with behavior is a complex challenge (Araújo et al., 2007). 

Furthermore, the inter-correlations among cues assuming ecological validity prevent the 

experimenters from independently manipulating the cues’ co-occurrence in the real world 

(Massaro, 2014). Because of these concrete difficulties, very few researchers claim to be 

Brunswikian in their approach, apart from a few studies in learning and decision-making 

(Steiner & Frey, 2021). As for our current understanding of ecological validity, psychologists 

mostly elude representative designs since they do not integrate into their experimental tasks the 

sampling variables from the environment and a measure of natural statistics (i.e., correlation 

between cues (Hammond, 1996)). Therefore, ecological validity has been used to cover a 

variety of concept. For example, the notion of external validity (Campbell & Stanley, 2015) 

refers only to the generalization process from the experimental study to a larger population 

(Pinder et al., 2011), the capacity of some tasks in a study to reflect real-world situations 

(Ashcraft & Radvansky, 2009) and more largely to the generalization of experimental findings 

toward the real world. In the following lines, we use the term “ecological validity” in line with 

Brunswik’s definition. More precisely, we state that information generated by sources from the 

real world (e.g., the optical flow) shares a high probabilistic value to predict another stimulus 

in the real-world (e.g., time to contact with an approaching object). Following this definition, 

we assume three roots of the terminology regrouping: The validity of the source, the probability 

that one stimulus predicts another and the capacity to generalize the results. 

 

2.3 Where do we stand? 

 

The central issue of generalization described in the lab dilemma is alive and well today in all 

fields using the empirical approach of experimental psychology, including modern cognitive 

neurosciences. As it stands, the experimental design does not fully ensure the replicability of 

real-world experiments: one main reason is that the ecological variable provided by the 

experimental context (aka the real world) does not integrate the experimental design as a 
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factorized and controlled variable. In most experiments, the context is used as a group factor to 

test a laboratory effect in the real world but is not actually incorporated in the design. 

Critics have often questioned whether experimental results observed in the lab truly allow 

for a generalizable comprehension of ecological behavior. As Neisser (1976) or Wong and 

Bronfenbrenner (1977) put it, the risk of assessing behavior under artificial lab conditions is 

that outcomes may radically differ from everyday life. This limitation of modern cognitive 

neuroscience is clearly demonstrated by studies on economic decision-making. To 

comprehend decision-making in real-life situations involving risk, it is essential for 

researchers to ascertain concern whether the decision-making processes observed in economic 

experiments truly mirror real-life risky decision-making behavior. Without addressing this, 

the findings of the study are irrelevant in terms of simulating the ecological context it aims to 

replicate. The Balloon Analogue Risk Task (BART (Lejuez et al., 2002)) is widely regarded 

as the gold standard for evaluating individual differences in real-life risky decision-making. 

However, its practical application is hindered by its subpar psychometric properties, including 

low convergent validity and test-retest reliability. As a result, its association with real-life 

risky decision is also compromised (Ju & Wallraven, 2023; Pleskac et al., 2008; Steiner & 

Frey, 2021). An additional illustration of how laboratory findings may not apply to real-world 

situations can be observed in electrophysiological data, specifically in terms of response 

reliability. It is widely acknowledged that natural stimulation elicits remarkably consistent 

and synchronized activity in regions that exhibit no modulation of response in controlled 

laboratory experiments (Hasson et al., 2011). 

 Moreover, in humans and animals alike, the combination of task goals in lab settings may 

have such insignificant ecological validity that they may represent neural responses never used 

in natural behaviors (Gomez-Marin et al., 2014; Krakauer et al., 2017; Wong and 

Bronfenbrenner, 1977). In their view, the lab approach could only enhance our understanding 

of behavior under particular artificial circumstances. 

 The dichotomy between lab conditions (highly controlled but ecologically invalid) and 

ecological conditions (challenging to operationalize and control for but ecologically valid) 

could lead experimental research into a possible deadlock. To remedy to this difficulty, some 

research is heading towards new experimental approaches using virtual reality (e.g., Miller et 

al., 2019) naturalistic task settings (Redcay & Moraczewski, 2020) or testing behaviors in real 

world contexts through online tasks (Chaumon et al., 2022; Rogers, 2021). In parallel, new 

technical advances such as mEEG allow testing for the complexity of an ecological situation 

with a naturalistic behavior.  
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As underlined by Nastase et al. (Nastase, 2021; Nastase et al., 2020), new ways of thinking 

have emerged in modern cognitive neurosciences to build relevant brain and behavior models 

for our understanding of complex behaviors in the real world. One possibility is to progress by 

incorporating and adapting Brunswik’s theory and the original ecological validity into lab 

experimentation. Another possibility is to build new ways of experimenting with modern 

techniques and experimental data science (e.g., automatic method modeling or machine 

learning models). These approaches offer the potential to overcome some limitations of the 

traditional experimental approach, which relies on statistical inference from a small sample 

size. As previously mentioned, the concept of inductive inference is crucial in the experimental 

paradigm of behavioral science. However, it is worth noting that statistical inference based on 

data collected within a sample does not enable generalization or prediction in real-world 

scenarios. At most, we can only conclude that a sample can reproduce the same behavior in the 

same situation, but we cannot assume that the observed behavior will be replicated in the 

multitude of real-world situations. Therefore, classical inference, as understood within the 

experimental paradigm, does not guarantee accurate predictions outside of the sample (Yarkoni, 

2022). Additionally, data modeling is typically limited to smaller datasets collected from a 

limited number of sources, while complex and large datasets require automated methods such 

as algorithmic modeling (Breiman, 2001). To overcome these inherent limitations of the 

experimental paradigm, the research community has made significant progress in understanding 

brain function using machine learning tools, which offer numerous advantages. The major 

improvement is the ability to surpass the constraints of statistical inference based on a sample 

and to eliminate the need for control inherent in experimental design. Instead, the machine 

learning approach strives to gather a significant amount of unrestricted training data that 

faithfully captures the complexities of the real world and allows prediction out-of-sample 

(Nastase et al., 2020). Based on this approach, machine learning could create models that 

possess a high degree of predictive power for real-world phenomena. However, the machine 

learning approach also has its limitations due to the methods used and the challenges associated 

with interpreting the results. Firstly, it is crucial that the source of information holds ecological 

value; otherwise, the predictive value becomes detached from the real world. This scenario is 

akin to applying machine learning in experimental situations, where the classifier decodes data 

based on the experiment's parameters. In such cases, the strength of machine learning lies in its 

ability to solely explain the targeted phenomena within the experimental context. Secondly, if 

searcher fails to identify the sources of information utilized by the classifier to decode the data, 

he will gain no knowledge about the real-world phenomena targeted. Consequently, the 
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effectiveness of this data-driven approach depends solely on the researcher's ability to identify, 

a posteriori, the specific information and its combinations within the sensors that drive the 

classification (Carlson et al., 2018).  

In complement to the representative design and the machine learning approach, a 

complementary and transitioning solution for real world experimentation is necessary, which 

can respond to two primary scientific criteria: the reproducibility and the reliability of 

behavioral and brain measurements. Improving real world experimentation through the 

adaptation of the experimental design may be the most practical way for cognitive neuroscience 

because of the possibility of understanding behavior and the brain in situ, i.e. by going directly 

beyond the reductionism bias and misusing the induction process in lab experiments. 

Furthermore, a significant distinction is arising between the machine learning approach and the 

application of experimental design in real-world scenarios. The former prioritizes correlation 

over causality and relies on inductive inference through data-driven methods. Conversely, the 

latter adheres to the traditional hypothetico-deductive approach, aiming to comprehend 

phenomena through causal relationships (Kitchin, 2014). 

 

Despite such progress, the ecological situation of most studies taking place in the real world 

and published in the last decade tends to be set aside. The implication of multi-causal variables 

in the experimental design are set aside, reduced to a minimum and unaccounted for. Multi-

causality herein refers to the fixed and identified number of variables in a given situation that 

have the potential to modulate a behavior. This definition applies well to the lab in which the 

situation can be fully controlled but does not fit the real world, in which since the entire set of 

possible variables affecting the targeted behavior cannot be listed. Alternatively, multi-

causality can be seen as the features of a given variable acting on a targeted behavior. For 

example, in the real-world, the impact of an optical flow on behavior has multi-causal properties 

that are: speed, luminosity, and contrast, vestibular or haptic signals. In isolation, these 

properties can be independent variables. This conception of multi-causality fits with behavioral 

science's requisites and is consistent with the imperative of sampling situation proposed by 

Brunswik. 

 

For instance, most studies incorporate the ecological situation into their design as context, 

amounting to contrasting the external environment with the lab environment (De Vos et al., 

2014; Edwards & Trujillo, 2021; Scanlon et al., 2020; Zink et al., 2016) while a subset of studies 

do integrate the ecological situations (or the different external environments) as an ecological 
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context variable (Aspinall et al., 2015; Piñeyro Salvidegoitia et al., 2019; Reiser et al., 2019; 

Scanlon et al., 2020; Shiffman et al., 2008). Scanlon and collaborators (2020) designed an 

experiment in two different outdoor environments: they asked participants to perform an 

oddball task while cycling outdoors in a quiet park or near a noisy road. In this way, the 

ecological situation integrates the experimental paradigm because it is factorized into quiet vs. 

noisy environment. A first benefit of this approach is to directly test the effects of different 

ecological situations (here, noisy vs. quiet environment) on participants’ electrophysiological 

responses even if the ecological situation cannot be controlled. A second benefit is to 

demonstrate that mEEG can be reliably recorded in noisy environments. 

 

Other works also explored cognitive mechanisms and brain dynamics in ecological 

situations through process-oriented instructions or passive psychological tasks. For example, 

studies exploring spatial cognition looked at free or guided exploration in different urban 

environments (Aspinall et al., 2015; Wenczel et al., 2017). Interestingly, a recent study 

exploring spatial navigation proposed quantifying the saccade-related potentials linked to 

information processing in the real world as the effect of specific instructions on brain activity 

(Wunderlich and Gramann, 2021).  

Lab experiments have also provided some tasks for real world experiments. For example, an 

oddball auditory task presenting a series of frequent and infrequent stimuli have been used in 

different ecological situations (De Vos et al., 2014; Hölle et al., 2021; Ladouce et al., 2017; 

Scanlon et al., 2020; Zink et al., 2016) to explore attentional mechanisms in real world contexts. 

One limitation is that these kinds of tasks remain substantially separated from the ecological 

situation itself: the oddball paradigm calls cognitive mechanisms (attentional and predictive 

processes) without incorporating any of the given ecological situations (e.g., the fact that the 

person is currently moving in the real world).  

Last, previous studies have explored a targeted behavior directly in concordance with a real-

world situation. Lee and collaborators  (Lee et al., 1984) have explored how children and adults 

perceived an approaching car during a road-crossing task. In their study, they demonstrated that 

an experimental paradigm can be adapted to an ecological situation. Their initial hypothesis 

was that crossing the road safely requires perceiving the affordance of gaps between vehicles 

and that this ability could only be learnt by acting in relation to the traffic. From this assumption, 

an ecological situation was the only possibility to test their working hypothesis properly, but it 

was obviously too risky to operationalize such an experimental situation. To overcome the risk, 

a fake street was created adjacent to the real street so that children could safely make decisions 
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about crossing the street. The researchers instructed the children to cross the fake street “as if 

they were crossing the first half of the adjacent real street to a traffic island. It was emphasized 

that they should watch the real traffic on their side of the road and only cross the fake road - 

without swerving - when they were sure they could safely cross the real road”. Using this 

ecological paradigm, the authors safely demonstrated children’s tendency to accept gaps that 

are too short before crossing the road. This kind of adaptation of experimental paradigms to 

ecological experiments is surprisingly rare in behavioral neurosciences. Still, although this 

ecological paradigm approximated an ecological situation, the ecological variable was not 

controlled for or factorized in the design: e.g., the speed of the approaching car could be 

manipulated. 

 

Because of the inherent difficulties of conducting experiments in the real world, most 

experimental work in the wild used passive tasks or used ecological variables as context effects. 

As a result, psychophysical tasks are not being exploited and ecological variables are not 

controlled for and factorized in the design. As such, they do not provide the needed quantitative 

approach to study brain processes and behavior in relation to the real world. The process of 

generalization in cognitive neuroscience largely relies on statistical methods applied to 

quantitative data obtained in an experimental design that factorizes the independent variables. 

In almost all ecological studies, the absence of controlled and factorized ecological variable 

prevents exploring the causal relationship between an independent variable and the quantitative 

measures of behavior and the neural signals, besides the situational aspect. This difficulty in 

implementing experiments in ecological situations has arisen for one reason: ecological 

situations imply variable with multi-causal properties, leading an infinite number of working 

hypotheses about the cause of a behavioral effect. Consequently, as for an experimental 

paradigm in laboratory, if ecological variable is not controlled many ecological experiments 

cannot assume the standard scientific criteria of reproducibility, measurability, and refutability. 

 

2.4 Technical difficulties aside, what challenges do we face in the wild? 

 

Let us take an example of the complexity of exploring cognitive processes without control 

over an ecological situation and contextual stimuli. In a study, exploring the relation between 

urban context and brain activity, a sample of participants were recorded with mEEG while they 

followed a path through three distinct zones in the city center of Edinburgh (Aspinall et al., 

2015). The authors expected that the three urban zones would modulate participants’ brain 
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activity in relation to their emotional state. To do this, they used an algorithm to filter and 

translate combinations of mEEG signals into four variables indicating the emotional states of 

the participants as they followed the different paths through the city. The authors reported that 

when participants walked in a social interaction zone, compared to a busy street, the mEEG 

activity was more likely to be categorized as an "excited state". However, one severe limitation 

of the study was the impossibility to fully control events in each zone (context) that was visited 

by the participants. This prevented homogenizing the effects across participants. For example, 

a new object (a bike locked to the streetlamp) or an event (a cat crossing the street or the siren 

of an ambulance passing by) could radically change the experimental context, arousal, and 

emotional state of the participants. Eventually, each of these natural occurrences in the urban 

environment provides a plausible confounding factor for the question of interest.  

 

Alternative methodological solutions could be entertained for testing in the wild. A first 

solution is to develop new data processing to investigate natural cognition in the real world 

context. In their important study, Wunderlich and Gramann (2021) underlined the difficulties 

of exploring cognitive processes without control over the contextual situation and stimuli. To 

address this issue, the authors proposed a blink-related brain potential analysis during real world 

navigation. Their analysis aimed to link eye movement-related brain potentials during stimuli 

perception related to navigation in the real world. Under this approach, the working hypothesis 

is that blink-related brain potentials could specify the involvement of higher cognitive processes 

in the perception of stimuli. This design offers a tangible possibility to improve real world 

experiments. However, it can also run the risk of reverse inference so that the putative 

engagement of cognitive processes is inferred from correlated neuronal activities or activations 

of particular brain regions (Poldrack, 2006).  

Hence, to rigorously address the lab-dilemma issues, we wish to reach an experimental 

compromise between lab and ecological settings. For this, we introduce a set of eight guidelines 

and discuss a novel In situ design.  

 

2. Challenges of an approach neither fully wild, nor fully lab  
 

The key aspect of the In situ design is to adapt a lab experiment and its parameters to an 

ecological setting while minimizing unregulated variables from the real world. Below, we 

provide a list of guiding principles and present a case study demonstrating the potential of the 
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In situ design to perform psychophysical tasks in a real world setting by implementing an 

ecological parameter as an integrated variable in the experimental design. Descriptive statistics 

of two experiments illustrate the feasibility of such approach. 

 

 

3.1. Guiding principles of an In situ experimentation 
 

The ability to operationalize behaviors and ecological situations in a scientific framework are critical: 

experimentation in the real world must not only allow for the possibility of fitting the research questions 

with the ecological situation, it must also integrate elements of the context and situation as controlled 

parameters in the experiment itself. Conceiving experimentation in that manner partially solves the 

double standard stated by Brunswik (1943) with an inference process that is possible towards the 

diversity of real world situations. We describe below eight issues that raised by the lab-dilemma and 

provide sample guidelines intended to control for multi-causal properties in ecological experimentation. 

1) How to match controlled experimental parameters with the main ecological parameter? The chosen 

ecological situation must contain an overall variable effect, operationalized as a controlled parameter in 

the experimental paradigm (i.e., an independent variable). This way of thinking about an experimental 

design contributes to the independent variable's measurement quality. 

2) How to limit the effect of other multi-causal variables in the experiment? To control for other 

sources of effect, it is necessary to identify them and adapt the experimental protocol around them so 

that their statistical expectation can be close to zero. The real-world situation must be sufficiently 

flexible and controllable to reduce the effect variables by applying rigorous control over the situation. 

Since the experiment could take place in the real world, experimenters must adapt the controls according 

to their ecological situation.  It is important to note that the In situ design excludes the other sources of 

effect of the real world but not the multi-causality properties of the ecological variable, including the 

design. 

3) How to reproduce the experiment across testing sessions under the same ecological settings? This 

aspect is central and most challenging to implement, given the time and the necessary material. For a 

given participant, behavioral testing combined with mEEG necessitates between 30 to 60 minutes of 

installation time followed by 60 to 120 minutes of maximum recording time while the participant 

performs a task. Therefore, material limitations can be a limiting factor for the inclusion of many 

participants in a single testing session. Consequently, the real world situation should allow replicating 

the same ecological situation over time to correspond as closely as possible to the design of the 

experimentation. 
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4) How do we abide by the scientific replicability criterion in ecological settings? Any research team 

should be able a priori to replicate a study under In situ design given the implementation of control 

parameters over the ecological situation. This is particularly difficult, as previously noticed (Aspinall et 

al., 2015), and factors or events without the possibility to be parametrized may be considered random 

enough not to affect the observations' statistical reliability. 

5) How to ensure the safety of people and equipment? Using mobile equipment during testing sessions 

in the wild must not affect the safety of the participants or other people in the vicinity of the experimental 

setup.  

6) To stabilize the experiment in time and space: The necessity to carry out psychophysical experiments 

outside the lab (possibly with the same apparatus as in the lab) can be straining for the equipment. 

Consequently, the chosen environment and devices should still allow keeping the experimental setup 

steady without much manipulation. 

7) To limit the artifact generation for psychophysical tasks: Since one of the goals of In situ 

experimentation is to collect behavioral data from complex psychophysical tasks similar to lab 

conditions, the recording area needs to be sufficiently quiet to minimize the perturbations that may 

interfere with the behavioral engagement in the task.  

8) To limit the artifact generation for mobile neuroimaging: One of the main issues using 

neuroimagery methods such as mEEG remains the electrical artifacts in brain signals. Therefore, it is 

necessary to partly control the electrical sources around the setup that may affect the equipment. A 

primary recommendation is to use a power supply (without electrical outlets) for all equipment 

completed with a check of the recording area for foreign equipment to the setup. 

 

3. In situ experimenting in trains and train stations 
 

As part of a research project studying spatial and temporal cognition in the real world (Wildtimes ANR 

2019), we encountered the limitations of experimental protocols when transferring lab experiments to 

real world experiments. To overcome these limitations, we developed several experiments that 

incorporated, ad hoc, ecological variables from real-world situations. Hence, ecological variables were 

factorized and controlled for.  Below, we explain the In situ approach generally describing why the train 

context provided a relevant ecological situation for our questions. We then illustrate the feasibility of 

the approach for two psychophysical studies, one of which was ran in combination with mEEG. 

 

In high-speed trains like the French Train à Grande Vitesse (TGV), the motion generated by 

the displacement at high velocity provides an interesting solution to test the idea of In situ 
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design.  First, compared to other modes of transportation, the TGV provides a reliable place to 

do experiments by enabling the replication of identical ecological situation across several 

testing sessions, within and across individuals. In a study, experiments can be scheduled daily, 

at precisely the same time of day, and on the same journey. Departure and arrival procedures 

for a train journey are indeed standardized across days. 

The suitability of testing in trains deals with the various logistical advantages of the 

environment. With the help of SNCF (Société Nationale SNCF; primary operator for the French 

TGV), one can access TGV during their typical journeys and perform experimental work during 

the days that are carefully selected (Figure 1). Participants can be seated at tables, providing a 

situation comparable to the lab, which is a very decisive advantage for the tests. In our ceas 

studies, SNCF provided the needed logistical support and the infrastructure, such as rooms in 

train stations for setting up participants with mEEG without inconveniencing other passengers. 

Importantly also, conducting experiments in trains does not cause a security risk to the other 

passengers, unlike experimenting in cars on the road, for instance – and is perhaps less 

logistically demanding than road closure (Protzak & Gramann, 2018). 

The stability of TGV is also a substantial advantage for mEEG recordings and the prevention 

of possible artifacts. The electrical sources around the setup can be controlled for, which 

allowed recording mEEG signals without major electrical artifacts. In fact, TGV tends to act a 

bit like a Faraday cage, protecting against the magnetic field originating from catenaries.  

Importantly, in the context of In situ design, the speed of the TGV, its acceleration and its 

deceleration, can be factorized in an experimental design. Similarly, the orientation of 

participants in the train (facing forward or backward with the direction of the train) can be 

factorized and incorporated as experimental variables of interest. In one of our experiments, 

half of the participants were seated according to the randomization process of the factor level: 

facing in the same or the opposite direction of the train motion. Whether a participant is seated 

or moving in the train as well as the salience of the optical flow can be manipulated, along with 

the distance to a window and whether blinds are pulled or not. The double inverted row seating 

arrangements in the TGV is beneficial in that it allows exploiting the optical flow and 

factorizing ecological parameters. The TGV is also notoriously quiet and devoid of auditory 

cues typically heard in other regular trains on the train tracks.  
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Figure 1: Example of an In Situ design in train stations and trains. A: The photos show the sequence of an experimental 

session in the ecological Top: mEEG setup. Middle left: behavioral session at the train station testing four participants at the 

same time. Middle right: Boarding the TGV with a participant equipped with mEEG. Bottom left and right: Participants setup 

in the train. B: The ecological factor was the seating position of the participant so that the optical flow was forward (left panel) 

or backward (right panel). When the participant is sitting facing the direction of displacement (forward), the direction of the 

optic flow varies toward the egocentric reference frame. Conversely, when the participant is seated back to the direction of 

displacement (backward), the optic flow varies in the opposite direction to the egocentric frame of reference. The direction of 

the optical flow is given by the dotted red arrow. C: Speed profile of the TGV during the selected journey. D: Geographical 

path of the TGV between Paris and Lyon (629 kilometers of railway (Copyrights @ Google Maps)) 

 

4.1. Experimental case 1: spontaneous tapping during train journey 
 

Spontaneous motor tapping is a sensorimotor task in which participants pace a movement at 

their preferred tempo. It requires no special training and can be measured using finger-tapping 

task in which participants tap their index finger on a keyboard at a comfortable self-paced 

manner. Studies have shown that self-paced movements - from finger tapping to whole-body 

movements such as walking – spontaneously fall in the range of about 1-3 Hz or a mean time 

interval of about 500 ms (Collyer et al., 1994; MacDougall & Moore, 2005; Styns et al., 2007) 

with some natural inter-individual differences (Hammerschmidt et al., 2021).  Spontaneous 

tapping may reflect the speed of the internal clock and can provide insights on an individual’s 

feeling of time passing. Exploiting the In situ from the lab to the wild, our question was whether 

spontaneous tempo could capture the anecdotal report that waiting for the train seems to drag 

as compared to traveling in the train. We used this task during various episodes of a train 

journey to assess an individual’s variation of the speed of the internal clock. The test was 

performed during five episodes (our independent variable): while waiting for the train at the 
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station, at the beginning, middle and end of the train travel and at the arrival train station. The 

inter-tap-interval (ITI) was our dependent variable (Figure 2).   

Participants 

22 participants (12 women, 19-48 y.o) took part in the experiment. All were right-handed, non-

smokers, with normal or corrected-to-normal vision and audition, and with no known 

neurological or psychiatric antecedents. The participants were non-expert travelers on the that 

journey, they were not regularly practicing music nor singing and they were daily laptop users. 

The experiment was conducted in accordance to the ethics guidelines and the study was 

approved by the Comité Ethique de l’Université Paris-Saclay (CER-2018-034-UPSAY). Each 

participant signed a consent form prior to the study. This study was not preregistered. 

Procedure 

Participants traveled from Paris to Bordeaux using the TGV. The outbound TGV (Paris-

Bordeaux) traveled from 10 a.m. to 12 a.m. and the inbound TGV (Bordeaux-Paris) from 2 p.m. 

to 4 p.m. The selected journey satisfied all experimental criteria, namely: the journey was not 

too long, the trip had a reliable and systematic duration, the line was recent which prevented 

massive occupation, yet the destination is popular, easing the recruitment of participants. The 

participants were always tested on the same portion of the journey following the exact same 

time schedule (TGV inOui 8573 and 8508). The systematic scheduled provided a good control 

for the speed of the train, the vibrations, the auditory cues (absent in the Paris-Bordeaux) and 

the landscape. In the train, upstairs and downstairs seats, facing forward and backward, seats 

near windows and corridors were all counter-balanced across participants. They were controlled 

for and not factorized in this instance; the second study instead factorized this aspect. A light 

laptop (HP EliteBook 850 G3) was used to collect the data via Psychtoolbox (Matlab). 

Participants wear headphones (DT 770 PRO Beyedynamic 250 Ohms chosen to help with 

passive noise reduction). They were asked to produce a self-paced rhythm and to keep it as 

precisely as possible for one minute.  This task was realized five times during the journey: while 

waiting for the train, during the journey (at departure, during constant speed, and at arrival) and 

at the arrival station. 

Statistical Analysis 

All statistical analyses were carried out in the R programming language (R Core Team, 2017) 

and RStudio environment (v.2023.06.0; RStudioTeam 2015) and emmeans (Lenth,2017) 

software packages. The trial exclusion rule was based on the interquartile range and used within 
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participant to remove outliers: 12703 trials out of a total of 13210 trials were excluded. We used 

a general linear modelling approach with inter-individual variability treated as a random effect 

(Knoblauch K., Maloney L.T., 2012) and Tukey method for p adjustment. Pairwise 

comparisons were running post-hoc. Effect sizes were corrected with a sigma of .27 and a 

confidence level of 0.95. The statistical analysis provided here is not intended to provide a full 

interpretation of the study. 

 

Observations 

In all episodes of the journey, the data collected in this task showed an expected amount of 

inter-individual variability in tapping rate that is within the range of previous studies. The 

tapping rate is quantified as inter-tap-intervals (ITIs, in seconds). Figure 2A and 2B illustrate 

the behavioral profile for two participants. The distribution of ITIs for the tested population is 

provided in Figure 2C. In Figure 2D, we report the box plots for the study. 

 

 

Figure 2:  Finger-tapping task during episodes of a train journey. A-B: Examples of inter-tap-intervals (ITIs, in seconds 

(s)) for two participants collected at each episode of a train journey for one minute. Departure station (black) and arrival station 

(gray) were collected at the train station. Departure (green), travel (blue) and arrival (purple) were collected in the train. Each 

dot is a sample ITI for the participant. The faster the ITIs, the more sample in the minute. A: Participant 19 shows distinct 

tapping rates during the journey, with the fastest one during train travel. B: Participant 17 shows a more homogenous pattern 

of tapping across the episodes. C:Descriptive statistics. Distribution of ITIs per train episode. D: Mean ITIs as a function of 

the episodes. All episodes significantly differed in terms of tapping rate from each other (Table 1). The shorter the ITIs, the 

faster the tapping. At the train stations before departure and after arrival (black), participants tapped significantly more slowly 

than during travel episodes. One dot is an individual trial datapoint. 
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Overall, the descriptive statistics (Figure 2) show a comparable dispersion of ITIs at the train 

station (at departure in black or at arrival in gray) and during train travels (departure, travel, 

arrival). As time went by during the train travel, the ITIs appears to shorten (i.e.tapping rates 

became faster). 

 

Pairwise Contrasts Estimate SE symp.LCL asymp.UCL z.ratio p.value 

Departure - Departure Station -0.0297 0.00806 -0.0516 -0.00768 -3.681 0.0022 

Departure Station - Travel 0.1619 0.00767 0.1409 0.18281 21.092 <.0001 

Arrival - Departure Station -0.2655 0.00757 -0.2862 -0.24486 -35.08 <.0001 

Arrival Station - Departure Station -0.0819 0.00771 -0.1029 -0.06083 -10.615 <.0001 

Departure - Travel 0.1322 0.00766 0.1113 0.15311 17.259 <.0001 

Arrival - Departure -0.2358 0.00755 -0.2564 -0.21526 -31.256 <.0001 

Arrival Station - Departure -0.0522 0.00768 -0.0732 -0.03125 -6.797 <.0001 

Arrival - Travel -0.1036 0.00707 -0.1229 -0.08434 -14.653 <.0001 

Arrival - Arrival Station -0.1836 0.00719 -0.2033 -0.16402 -25.53 <.0001 

Arrival Station - Travel 0.08 0.0073 0.0601 0.09993 10.954 <.0001 
 

Table 1: Pairwise contrasts of ITIs across all episodes of a train journey. Results are given on the log scale. Confidence l

evel used: 0.95. Confidence level and p-values were adjusted using the Tukey method for comparing a family of five estimate

s. All episodes significantly differed from each other.  

 
 

Interpretations and limitations 

With this experiment, we demonstrate that a finger-tapping task can be easily exported to the 

real-world and can provide insights on how traveling may impact an individual’s internal clock. 

A major limitation of these observations is the within-individual design, preventing to firmly 

conclude whether a given train episode, or the chronology of the testing is the most important 

factor explaining changes in the rate of finger-tapping. We notably seen during the train journey 

that finger tapping fastens compared to the train stations. These pilot observations illustrate the 

feasibility of the In situ design and a simple case of how to incorporate an ecological 

experimental factor in the design. 

 

4.2. Experimental case 2: time-to-contact during train travel 
 

In a second example of an experimental In situ design during train travels, we used an 

auditory Time-To-Contact (TTC) task with mEEG to explore the impact of optical flow on the 

behavioral estimation of a sound trajectory and its associated brain activity. Predicting the time 

course of an approaching object enables anticipatory movements for interceptive or avoidance 

action. From an evolutionary perspective, this naturalistic behavior is relevant because it 



19 
 

determines the direction of potential predators and prey (Cade et al., 2020; Hall & Moore, 2003; 

Neuhoff, 2001). In the lab, artificially-induced TTC can generate temporal expectations (Chang 

& Jazayeri, 2018) and engage brain’s areas supporting temporal attention and orienting 

processes (Coull et al., 2008). One objective was to explore the impact of the congruence of 

optical flow with auditory TTC production: the most salient effect in the ecological situation of 

the train was thus exploited as an experimental parameter. We used the optical flow generated 

by the passive linear displacement of the train as an independent variable. We also included an 

additional factor at two levels - facing forward or facing backward with the direction of train 

motion. We expected that participants would provide faster responses and produce shorter TTC 

(pTTC) when facing forward (in the direction of the train travel). 

 

Participants 

A total of 71 participants were recruited for the study (35 in the lab experiment and 36 in the 

TGV experiment; the two samples were distinct). All participants provided a written informed 

consent. The experiments were approved by the independent ethics committee Comité 

d’Ethique pour la Recherche de l’Université Paris-Saclay (WildTimes, CER-2018-034 

UPSAY). No participants reported known neurological or psychiatric disorders. All were free 

of medication and had normal hearing or corrected-to-normal vision. 9 participants were a 

priori excluded from the initial samples (4 in the lab and 5 in the TGV experiment) due to their 

inability to discriminate the sound target or the trajectory. Hence, 31 participants (15 females, 

19-33 y.o) with a laterality quotient (right-handedness) of M = 74% according to the Edinburgh 

test (Oldfield, 1971) in the lab were included in our analysis. In the TGV, 31 participants (19 

females, 24-36 y.o) with a laterality quotient of M =54% were included in this analysis. This 

study was not preregistered. 

 

Procedure 

The train journey met specific requirements to accommodate the testing of the task: an outbound 

of at least 2 hours allowed enough time for training participants and running the full task, 

including breaks and unplanned issues (e.g., electrode impedance). A round-trip the same day 

minimized fluctuations in participants’ physiological or psychological states. Each journey 

covered 629 km in 2h 10min with a mean speed of 200 km/h and a peak at 300 km/h (Figure 

1C). The task started precisely 20 minutes after the departure of the train, allowing precise 

alignment to the TGV speed schedule. According to the TGV velocity profiles, the nominal 

speed was reached 15 minutes after departure and plateaued for one hour (the approximate 
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duration for the TTC task): the speed effectively varied from 270 km/h and 300 km/h during 

testing.  

Participants were seated next to a window, equipped with an audio headset that limited the 

effect of noise from and with an mEEG setup at the train station before departure (Figure 1A). 

Surrounding seats were free and reserved for experimental needs, thereby limiting risks of 

interference during the testing session. Participants could be facing forward or facing backward 

with the direction of travel (Figure 1B).  

 

Stimuli  

Auditory stimuli were generated using Matlab R2019a (The MathWork, Massachusetts, USA) 

as full trajectories of equal distance, duration, and constant velocity then trimmed using 

Audacity© 2.3.0 software (Team, 2014).  

 

Task 

Participants were trained and informed that the goal of the task was to estimate when the 

auditory stimulus would reach them. They were asked to report their estimation of TTC by 

pressing the SPACE bar on a computer keyboard as accurately as possible. They heard 50% or 

60% of a sound trajectory that should have lasted duration for 1 s, 1.75 s, 2.4 s, 4.2 or 7.35 s 

before actual contact.  The same experiment was tested in the lab. 

 

Statistical analysis 

Statistical analyses were performed with R v3.5.0 (Team & others, 2013). Before entering the 

data into the statistical model, outlier trials defined as +/- 2 * standard error to the mean in 

pTTC were removed.  Constant errors (CEs; difference between the sound arrival time and 

the participant’s estimated arrival time) were computed separately for the five durations:  

𝐶𝐸𝑖 =
∑(𝑇𝑎𝑟𝑔𝑒𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖− 𝑝𝑇𝑇𝐶𝑖)

𝑛𝑖
. An ANOVA using 3-levels predictor (Lab vs. Backward vs. 

Forward) and 5-levels predictor (Durations 1 to 5) was performed. 

 

EEG  

The EEG data collection PC (HP Elitebook 820 G1 - Intel (R) Core i5-4300U CPU@ 1.90 

GHz) was equipped with Brain Vision Recorder Version 1.24 (Brain Products, GmbH). We 

used thirty-two electrodes actiCAP Snap (10-20 international system; Brain Products, GmbH) 

coupled with the 32-channel version of the LiveAmp amplifier (Brain Products, GmbH) for the 
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recording of the EEG signals. We used MNE-Python (Gramfort et al., 2013). Visual inspection 

identified bad sensors (on average, less than 5% per dataset), which we interpolated. Raw data 

were bandpass filtered 0.1Hz - 40Hz. Ocular artifact rejection used routine Independent 

Component Analysis. Raw EEG signals were epoched per condition from -500 ms to 1200ms. 

 

Observations 

 

The data collection in this task demonstrates the possibility to experiment with a psychophysical 

task under in situ design and to collect mEEG data with the same reliability of signal as in the 

traditional lab context. The following behavioural observations (Figure 3) show the pTTC 

production for both Lab and TGV conditions and the effect of the factorized ecological variable 

(Forward vs. Backward) on the pTTC production. 
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Figure 3:  Behavioral observations in the TTC task. A: Mean produced time-to-contact (pTTC) as a function of target 

duration. In the both the lab (black) and in the TGV (orange), pTTC closely follow the identity line indicating that participants 

produced accurate responses for each of the five target durations. B: Mean Constant Errors (CEs) per target durations in the 

Lab (black) and in the TGV (orange). Grey dots are individual participants. CEs significantly varied with target duration 

(F(4,30) = 48.03, p < .001; η2
p = .380). A CE above 0 indicates that participants overestimated the TTC and were too late. A 

CE below 0 indicates that participants underestimated the TTC and were too early. Error bars are one standard deviation away 

from the mean. C: Effect of optical flow on pTTC. Mean CEs as a function of target duration and optical flow. No optical flow 

in the Lab (black). Participants facing forward (fuchsia) or backward (bleu) in the TGV. A significant interaction effect between 

Optical Flow-Forward × Target-7.35s increased CEs. *** correspond to significant contrast with Bonferroni correction (CEs 

= 0.26, SE = 0.074, Z = 3.56, pbonf<.001) for the target duration 7.25s. Error bars are one standard deviation away from the 

mean. 

 

Regarding mEEG signals, we reported all activities evoked by sound onset as a quality check 

(Figure 4). The evoked signal amplitude for each condition (The Lab (Figure 4A), the 

TGV(Figure 4B), Forward (Figure 4C) and backward (Figure 4D)) was reported for all 

sensors. The mean evoked activities comparing Lab and TGV ((Figure 4E) and Forward vs 

Backward  (Figure 4F) were reported over T7 and T8 sensors. The visual inspection allows us 

to confirm the close pattern of the evoked signal by sound onset in the Lab and the TGV  and 

the effect  of the ecological variable on evoked activities (Figure 4F). In addition, the reported 



22 
 

patterns of evoked activities also favor the possibility of collecting mEEg data in the real 

world during a psychophysics task such as the TTC task.  

 

 

Figure 4: mEEG Evoked brain responses (mEEG). A & B: Activities in the Lab and in the TGV evoked by the sound 

onset. C & D : The panels display the mean  evoked signal regarding the factorized ecological variable, respectively Forward 

(C) and Backward (D) condition. E: Evoked comparison activities in the Lab (grey) and TGV (orange) over sensors T7 and 

T8. 

3.2.3. Interpretation and limitations 

 

The current TTC task illustrates the modulation of time-to-contact estimation by the 

sense of optic flow generated by TGV displacement. The effect of optic flow is particularly 

relevant in the Forward condition, with a significant increase in CEs compared to Backward 

and Lab. The observation of this effect is an important proof of concept for in situ design and 

the possibility of including factorized ecological variables in the experimental design. 

Real-world experiments also show several limitations. For instance, in the current In 

Situ design, the outdoor luminosity could not be controlled due to the substantial variability of 

the times, days, and seasons during which data were collected. Nevertheless, we limited this 
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possible confound by conducting experiments between May and September, with a stable day 

duration during this period (in France).  

Additionally, experimentation in the wild can be more intense than in the lab: the 

duration of a complete session was close to ten hours, from the departure to the return to original 

location (Paris). Participants were not tested continuously and were granted many breaks. Tests 

were diversified to ensure attention on each, prevent boredom and avoid cognitive fatigue. The 

well-being of participant was taken care at all times and a great emphasis was placed on 

listening to the needs of participants.  

From the participant’s standpoint, wearing an mEEG cap in public can be uneasy 

(modulo cultural and personal preferences). The level of social acceptability from one 

participant to another was quite variable and the experimenters had to provide individualized 

assistance for each. For instance, alternatives for setting up or seating the mEEG participants 

that could limit stress or anxiety for the participants.  

 

At first sight, the will to introduce controls under an ecological situation feels contradictory 

with the multi-causality of the real-world situation. However, we argue that multi-causality is 

still present in the ecological variable. For example, in the current study, the optical flow (i.e. 

the ecological variable) was composed of many variations inherent to natural optical flow 

(visual, vestibular, luminosity, haptic, sound, etc...) able to modulate the behavior. Thus, all 

these sources of potential causality on target behavior (aka multi-causality) shared a common 

origin yet (the movement of the TGV). In this, the In situ design preserve the multi-causality 

through its ecological independent variable, despite control above the situation.   

 

4.3. Conformity of the tasks to the proposed In situ guidelines 
 

Table 2 provides a summary of how both experiments conform to the criteria delineated in 3.1. 

 

Item In situ  Finger Tapping Task Auditory Time-To-Contact task 

Ecological 

parameter 

✓ Episodes during the train 

journey. 

Optical flow given by motion 

comprising one factor with two 

levels (forward vs. backward). 

Multi-causality ✓ Confounding factor of the 

chronology of episodes during 

the journey calling for a control 

experiment fully randomizing 

the time of testing. 

The trains are generally quiet and 

stable regarding movement 

generated by the displacement. The 

occurrence of unaccustomed events 

is very low. 
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Reproducibility ✓ The experimentation takes place systematically for the same travel at 

the same day/hour. 

 

Replicability ✓ Paris-Bordeaux TGVs are 

available to all. The design is 

fully replicable. 

Paris-Lyon TGVs are available to 

all. The design is fully replicable. 

Safety ✓ No particular risks associated 

behavioral testing in high-speed 

trains. The protocol is also safe 

for people surrounding the 

experiment. 

No particular risks associated with 

mEEG recording and behavioral 

testing in high-speed trains. The 

protocol is also safe for people 

surrounding the experiment. 

 

Stability ✓ The layout of seat rows allows the possibility to deploy tables, useful 

for mEEG and behavioral apparatus (amplifier + laptop). 

Noise 

(behavior) 

✓ The seats surrounding the experimentation were dedicated to the 

research protocol. Thus, the experimental situation was generally very 

quiet without human perturbation due to chatting or movements. 

Noise (mEEG) ✓ N/A We systematically unplug the 

amplifier and laptop before starting 

mEEG recording. 

Table 2: Item validation for In situ design in the TGV. 

 

4. Discussion 
 

 

Our goal was to discuss a new In situ design adapted to real world situations in the 

historical context of the lab dilemma. The critical message of the In situ design is its capacity 

to fit the experiment and the parameters with an ecological situation, while limiting 

uncontrolled variables from the real world. The current report shows the feasibility of running 

psychophysics tasks in the real world and operationalizing an ecological parameter (e.g. the 

optical flow generated by the TGV) as a controlled variable integrated into the experimental 

design. Herein, we propose that the In situ design improves scientific criteria for real world 

experiments regarding the reliability of the results because the choice and the control of the 

ecological situation limit the multiplicity of variables that can affect the targeted behavior. It 

also allows a better reproducibility level because the ecological situation through task 

parameters allows for the operationalization of behavior and brain processes (like a classic 

parameter in an experimental design). The In situ design partly solves the double standard issue 

and guarantees a better validity toward the generalization of the results.  

 

The goal of the In situ design is not to tend toward a full generalization that seems 

unattainable, but rather to assign a limited degree of generalization to a finding based on the 
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specific conditions of its study In situ. This is how we can generalize the results obtained in an 

experimental setting, as long as the same conditions and an equivalent sample are replicated. 

The key difference here is that the effect of the dependent variable in the In situ design goes 

beyond the design and, because of its ecological nature, extends to certain aspects of the real 

world. Consequently, we can be confident that the behaviors influenced by these ecological 

variables will be replicated in any real-world scenarios that share the same characteristics as 

the In situ situation. For example, we could observe the same behaviors using an optical flow 

generated during a car journey. Given this, it would be quite straightforward to enhance the 

generalizability of the findings by considering the brightness of the optical flow for example. 

In order to achieve this, it would be adequate for the In situ design to incorporate an ecological 

luminosity variable, which would vary depending on the time of day, and include it in the 

statistical model. Consequently, we would be able to elucidate the results in terms of luminosity. 

It is important to note that we are operating within a purely hypothetico-deductive framework 

at this point, and any variable that is considered for integration into the design must be justified 

based on its relevance to the behavior being explained. Thus, the incorporation of variables into 

the In situ design follows the same principle as the experimental design. We view this approach 

as a middle ground between the complex nature of the real world, with its multi-causes on 

behavior, and the controlled nature of experimental design, which aims to isolate the effect of 

a specific variable on a targeted behavior. 

 

The need for cognitive neurosciences to improve experimental designs for characterizing 

ecological behaviors is becoming critical. A recent review on executive control of stopping 

action has underlined the need to adapt tasks for the real world (Hannah & Aron, 2021). The 

authors state the possibility of experimenting outside the lab to explore neural activities related 

to behavior required in everyday life. The possibilities to improve the design of psychological 

tasks for real-world experimenting can be summed up as an imperative for naturalistic tasks 

and the ecological validity of contexts. However, these possibilities can lead to confusion. As 

pointed out by Holleman et al. (2020), most studies claiming ecological validity refer to the 

putative proximity between a lab task and the real world, or to whether results from the lab can 

be generalized to the real world. For example, when a study in the lab uses pictures of 

naturalistic scenes to explore attention during visual search (Seidl-Rathkopf et al., 2015; Zeni 

et al., 2020) or naturalistic behavior for planning ability (e.g., Phillips et al., 2006), the added 

value regarding ecological validity resides solely in the task-goal (aka naturalistic task). Indeed, 

neither the pictures of naturalistic scenes nor the natural planning ability in the experimental 
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situation can warrant that the inference process can generalize to results in the real world. The 

second option is to move towards a real world scenario to improve the ecological validity 

regarding the context and the sensory cues. 

 

In the best-case scenario, an experiment taking place in the real-world should be the 

combination of a naturalistic task with a sufficient level of internal validity in an ecological 

situation. It should also involve a factorized ecological variable, and control for  other sources 

of effect. Indeed, the search for more proximity with the real world can be applied to the 

experimental context, the behavioral task, and the causality drawn from the electrophysiological 

and the behavioral measures. In all kinds of experimentations (lab, ecological, and VR), the 

context can be evaluated as a function of its proximity to the real world. For example, 

experimentation with spatial navigation in the lab does not have the same ecological value 

regarding the context as experimentation in real world navigation. In the same way, a behavioral 

task with solid internal validity is not equivalent to a naturalistic task regarding its 

generalizability. Last, it is logical that the measure following experimentation and task 

performance strongly related to the ecological validity of the task and the context. For a given 

targeted behavior, like the estimation of a sound trajectory and its time course exemplified with 

time to contact, each context can act for or against the ecological validity, the reliability of the 

measure, and its reproducibility. One possibility can be to combine the context of an experiment 

with each situation's specific features to understand a targeted behavior. 

 

VR is often proposed as a solution to improve the ecological value of experiments, 

notably with the possibility to emulate the real world and implement controlled parameters. 

However, VR is also faced with some paradoxical issues of its own. While the use of VR to 

explore behavior could mediate the non-ecological approach of lab experiments and the multi-

causal real world situation, it requires a deep understanding of the naturalistic behavior to 

parameterize the virtual environment in a relevant way for the behavior targeted in VR. Only a 

detailed knowledge about behavior and related brain mechanisms in the real world can ensure, 

by comparison, the reliability of a VR environment. Without this prerequisite, cognitive 

neuroscience loses the ecological value of VR. For example, in VR studies exploring the effect 

of optical flow on brain processes, the parameters related to optical stimulation generally use a 

moving peripheral grating or virtual environment (e.g., Lo Verde et al., 2019) without the 

possibility of being sure that the simulation generate the same behavior as the naturalistic 

stimulation. Furthermore, as argued by Krakauer et al. (2016), the possibility of VR to generate 
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meaningful advances in cognitive neuroscience regarding human or animal behavior and related 

neural activities will require a strong emphasis on natural behaviors performed by individuals. 

Therefore, to ensure the ecological validity of its paradigms, VR is constrained to finding 

markers in the study of natural behavior. 

 

5.1. In situ design as prerequisite to virtual reality? 
 

The In situ design proposed herein precisely provides a means to find these prerequisites for 

experimentation in VR. As illustrated in the current article, using the In situ design for 

understanding and measuring the impact of ecological optical flow on specific behavior and 

then comparing it with a VR simulation is a possibility to ensure the ecological validity of VR 

studies. Assuming the quality of the virtual environment, we should find in VR the same pattern 

of behavioral responses during the TTC task as in the In situ design. Once the virtual reality 

setup is validated from behavior observed in the real world, the VR can assume the ecological 

validity of the experiment design and allows an infinite number of conditions and parameters 

to be implemented to study the targeted behavior (i.e., manipulate the relation between sensory 

cues). However, VR remains a simulation in which neither vestibular inputs nor optical flows 

can be precisely reproduced. Thus, the back and forth between lab to real world and real world 

to VR remains essential to implement ecological validity. 

 

5.2. Why is advancing the ecological validity of experiments so crucial to 

cognitive neurosciences? 
 

 

The greatest challenge for cognitive neuroscience is to understand complex behavior and 

associated neural activity in an environment with multi-causal properties. Multi-causality in 

the real world and the probabilistic causation of events is the primary deterministic feature 

that has driven evolution and its shaping of psychological processes. Many studies in humans 

and animals have shown that brain responses are more reliable under natural conditions than 

they are under artificial stimulation (Hasson et al., 2011). Responses to natural scenes in 

visual cortex viewing are more reliable than artificial ones, and they also largely differ from 

those measured under artificial lab conditions (Yao et al., 2007). The capacity of lab 

experiments to understand ecological behavior and their related brain processes may be 

currently limited. To improve cognitive neuroscience, variables with characteristics of the 



28 
 

targeted ecological situation must be integrated into the experimental design one way or 

another. 

 

 

5.3. Conclusions 
 

Experimenting in the wild provides excellent new opportunities to advance traditional questions 

in cognitive neuroscience. The real world characteristics forces to invent new approaches, 

outside the traditional lab framework. Our main goal in the current article was to give some 

practical and theoretical insights on In situ experimental designs, from which experiment in the 

real world can generalize assuming scientific standards. The variety of real world situations 

generating ecological variables that can be integrated in an In situ design is near infinite. The 

take-home message is to search for these ecological situations to improve our understanding of 

animal and human behaviors in the wild. 
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