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Abstract

Let Γ ⊂ C be a curve of class C(2, α). For z0 in the unbounded component
of C \ Γ, and for n = 1, 2, ..., let νn be a probability measure with supp(νn) ⊂ Γ
which minimizes the Bergman function Bn(ν, z) :=

∑n
k=0 |qνk(z)|2 at z0 among all

probability measures ν on Γ (here, {qν0 , . . . , qνn} are an orthonormal basis in L2(ν)
for the holomorphic polynomials of degree at most n). We show that {νn}n tends
weak-* to δ̂z0 , the balayage of the point mass at z0 onto Γ, by relating this to an
optimization problem for probability measures on the unit circle. Our proof makes
use of estimates for Faber polynomials associated to Γ.
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1 Introduction

Let K be a compact subset of the complex plane C and let M(K) denote the probability
measures on K. Given a positive integer n, if the support of ν ∈ M(K) contains at least
n+ 1 points, we can form the associated Bergman function

Bn(ν, z) :=
n∑

k=0

|qνk(z)|2,

where {qν0 , . . . , qνn} form an orthonormal basis in L2(ν) for Pn, the holomorphic polynomi-
als of degree at most n. One can set Bn(ν, z) = +∞ when ν has less than n+1 points in
its support, but since we are interested in asymptotics (n→ ∞) of Bergman functions, we
may assume K contains infinitely many points. We fix z0 ∈ Ω, the unbounded component
of C \K, and for each n we consider a probability measure νn with supp(νn) ⊂ K which
minimizes the Bergman function at z0 among all such ν ∈ M(K):

Bn(νn, z0) = min
ν∈M(K)

Bn(ν, z0).

The existence of at least one minimizing measure follows from the weak-∗ compactness of
M(K) and lower semicontinuity of the map ν 7→ Bn(ν, z0), see Lemma 2.1.
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Equivalently, νn solves the max-min problem

max
ν∈M(K)

λn(ν, z0), λn(ν, z0) = min
p∈Pn, p(z0)=1

∫

K

|p|2dν ≤ 1, (1.1)

where λn(ν, z0) is the Christoffel function of ν at z0. We recall that (cf., [12, Theorem
1.4])

λn(ν, z) = Bn(ν, z)
−1, n ≥ 0, (1.2)

where we note that, with our previous convention on Bn(ν, z), the equality still holds
when ν has less than n + 1 points.

Such an extremal measure νn is called an optimal prediction measure (OPM) for
K and z0 of order n. In general, it is not unique. For motivation to study this problem, we
refer to [2] where they give a nice application to the field of optimal design for polynomial
regression. Although Bn(ν, z) is well defined only if all orthogonal polynomials up to
degree n, exist, λn(ν, z) is always defined, equal to 0 when the support of ν consists of
fewer than n+1 points. In fact, λn(ν, z) is defined for all z ∈ C. For an extremal measure
νn, all the orthogonal polynomials qνnk , k = 0, . . . , n, do exist. Note also that, for each
n, the Bergman function Bn(ν, z) only depends on a finite number of moments of the
measure ν, namely

mj,k =

∫

K

zjzkdν, j, k = 0, . . . , n. (1.3)

It is known that Bn(νn, z0) is related to the polynomial of extremal growth at z0, see [2].
Indeed, one has

Bn(νn, z0) = sup
p∈Pn

|p(z0)|2
‖p‖2K

≤ e2ngΩ(z0), (1.4)

where the upper bound, with gΩ the Green function of Ω and the point ∞, follows from
the fact that

gΩ(z0) = sup{ 1

deg(p)
log |p(z0)| : p ∈ ∪nPn, ||p||K ≤ 1}. (1.5)

Here deg(p) denotes the degree of p and ||p||K := supz∈K |p(z)|. Note that polynomials
of extremal growth are also studied in the recent paper [3] where they are called dual
residual polynomials.

For a general probability measure ν on K and z ∈ C, we have that

1 ≥ λn(ν, z) ≥ λn+1(ν, z) ≥ 0

so that the limit
λ∞(ν, z) := lim

n→∞
λn(ν, z) (1.6)

exists and 0 ≤ λ∞(ν, z) ≤ 1. It has been verified by explicit computations in [2] that if:

i) K = [−1, 1] and z0 is real or purely imaginary,
ii) K = D := {z ∈ C : |z| ≤ 1} and |z0| > 1,

certain sequences of optimal prediction measures νn tend weak-* to a limit, namely

νn → δ̂z0 , n→ ∞, (1.7)
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where δ̂z0 denotes the balayage measure of δz0 , the point mass at z0, onto K. The authors
of [2] have conjectured that this convergence holds true more generally. It is the aim of the
present paper to show that the conjecture holds true for a more general class of compact
sets K and points z0 outside of K. Namely, our main result is the following theorem.

Theorem 1.1. Assume K is a compact subset bounded by a curve Γ ∈ C(2, α), 0 < α < 1
(i.e., Γ can be parameterized by a function of class C(2, α)). For z0 ∈ Ω, any sequence of

optimal prediction measures {νn}n tends weak-* to δ̂z0, the balayage of δz0 onto Γ.

Here, C(k, α) denotes the class of k−times continuously differentiable functions with k−th
derivative satisfying a Lipschitz condition of order α.

After some general preliminaries in the next section, in section 3 we complement the
study in [2] of the case of K = D, the closed unit disk. We show in Theorem 3.2 that

for z ∈ D, the balayage δ̂z to T := ∂D is the unique maximizer of λ∞(µ, z) from (1.6)
among µ ∈ M(T). We then study the more general case of K bounded by a C(1, α)
curve Γ in Section 4, and then by a C(2, α) curve in Section 5. To derive Theorem 1.1

in this setting, for z ∈ Ω we make a connection between λ̃∞(ν, z), a modification of λ∞
for measures ν supported on Γ, with λ∞(Φ∗ν, 1/Φ(z)) where Φ∗ν is the push-forward of
ν on T, Φ being a conformal map from the exterior of Γ to the exterior of T. After some
preliminary results, an outline of the proof is given in Section 4, followed by the details.
We conclude with an interesting observation on the distinction between the cases of K
being a curve versus K being an arc.

Acknowledgements: We would like to thank the referee for several useful suggestions,
including a shorter proof of Theorem 3.2.

2 General preliminaries

We begin with an elementary result.

Lemma 2.1. Let K be a subset of C, n a given positive integer, and z ∈ C. Then the
map ν ∈ M(K) 7→ Bn(ν, z) ∈ (0,∞] is weak-∗ lower semicontinuous.

Proof. By (1.2), it is equivalent to check that the map ν 7→ λn(ν, z) is upper semicontin-
uous, which is true since, for each p ∈ Pn, p(z) = 1, the map

ν 7→
∫

K

|p|2dν

is weak-∗ continuous, and λn(ν, z) is obtained as a minimum of such maps.

We continue with some observations related to [2].

1. The max-min in (1.1) coincides with the min-max for general compact K, namely

max
ν∈M(K)

min
p∈Pn, p(z0)=1

∫

K

|p|2dν = min
p∈Pn, p(z0)=1

max
ν∈M(K)

∫

K

|p|2dν. (2.1)

This follows from the classical minimax theorem, see the proof of [2, Proposition
2.1].
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2. Let K ⊂ C be compact and contain infinitely many points and fix z0 6∈ K. For
n ∈ N, let

Mn =Mn(z0, K) := sup{|p(z0)| : p ∈ Pn, ||p||K ≤ 1}. (2.2)

There exists a unique pn ∈ Pn with ||pn||K = 1 and pn(z0) =Mn; in [2] this is called
the polynomial of extremal growth relative to K at z0. Indeed, note that

Mn = sup{|p(z0)|||p||K
: p ∈ Pn} = [inf{ ||p||K

|p(z0)|
: p ∈ Pn}]−1

and

inf{ ||p||K
|p(z0)|

: p ∈ Pn} = inf{||p||K : p ∈ Pn, |p(z0)| = 1}

= inf{||1−Q||K : Q ∈ Pn, Q(z0) = 0}.
Let Vn := {Q ∈ Pn, Q(z0) = 0}. This is an n−dimensional complex vector space,
and clearly each nonzero Q ∈ Vn has at most n − 1 zeros in K (since Q(z0) = 0).
By the classical Haar uniqueness theorem in Chebyshev approximation (cf., [1], [6,
Theorem 19]), every continuous, complex-valued function on K admits a unique
best sup-norm approximant from Vn. Applying this to the constant function 1 there
exists a unique Qn ∈ Vn with Mn = [||1−Qn||K ]−1, and thus pn = 1−Qn.

3. From 2. and Remark 2.3 in [2], it follows that the support of an OPM νn of order
n for K and z0 as in 2. is contained in

Sn(K) := {z ∈ K : |pn(z)| = ||pn||K}.
The set {z ∈ C : |pn(z)| = ||pn||K} is a real algebraic curve in R2 of degree at
most 2n. In particular, for z0 ∈ Ω, the unbounded component of C \ K, if pn is
non-constant, any OPM νn for K is supported on ∂Ω. A necessary and sufficient
condition that pn be non-constant is that z0 lie outside of

K̂n := {z ∈ C : |qn(z)| ≤ ||qn||K for all qn ∈ Pn},
the n−th order polynomial hull of K. Since these sets K̂n decrease to

K̂ := {z ∈ C : |q(z)| ≤ ||q||K for all q ∈
⋃

n

Pn},

the polynomial hull of K, and Ω = C \ K̂, by appealing to either the Hilbert
lemniscate theorem (cf., [8, Theorem 5.5.8]) or simply Runge’s theorem, for any
z0 ∈ Ω, there exists n0 sufficiently large so that pn is non-constant for n ≥ n0.

Thus if, e.g., K is an ellipse of the form

K = {(x, y) ∈ R
2 : x2/a2 + y2/b2 = 1}

with a 6= b and z0 lies outside K, by Bezout’s theorem Sn(K) contains at most 4n points.
Since an OPM νn exists, the support of νn contains at least n + 1 points. On the other
hand, we recall in the next section that for the unit circle T = {(x, y) ∈ R2 : x2 + y2 = 1}
and a point z0 with |z0| > 1, there exist OPM’s νn which are absolutely continuous with
respect to arclength measure and hence with support T. It follows from 3. that OPM’s
for D and T coincide. More generally, if K is a compact subset bounded by a C(2, α)
curve Γ = ∂Ω (as in section 4) and z0 ∈ Ω, OPM’s νn for K and Γ coincide, at least for
n sufficiently large, which we will always assume.
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3 The unit disk D

We begin by recalling that the harmonic measure ωD(z, t) for the disk D and a point
z = |z|eiφ ∈ D is given by

dωD(z, t) =
1− |z|2
|eit − z|2

dt

2π
=

[
∞∑

k=−∞

|z||k| eik(φ−t)

]
dt

2π
= Re

(eit + z

eit − z

) dt
2π

=: Pz(e
it)
dt

2π
,

(3.1)
see e.g. [8, Chapter 4.3]. In particular, dωD(0, t) = dt/2π. It may also be defined as

the balayage δ̂z of the Dirac mass δz onto the unit circle T, see [9, Appendix A.3] or, by

conformal invariance, the balayage δ̂1/z of δ1/z onto T.

Definition 3.1. A positive and finite measure µ on the unit circle T satisfies the Szegő
condition if its density f = dµ/dθ satisfies

∫

T

log fdθ > −∞.

Then, the Szegő function is defined by

D(µ, z) = exp

Ç
1

4π

∫ 2π

0

eit + z

eit − z
log f(t)dt

å
, |z| < 1. (3.2)

Note that, with µa the absolutely continuous part of µ, and λ > 0, one has

D(µ, z) = D(µa, z), D(λµ, z) =
√
λD(µ, z). (3.3)

It is known, see [10, Theorem 2.4.1], that for any measure µ satisfying the Szegő condition,

λ∞(µ, z) = (1− |z|2)|D(µ, z)|2, |z| < 1. (3.4)

We also recall that for any measure µ on T the Christoffel function satisfies

|z|2nλn(µ, z) = λn(µ, 1/z), z 6= 0, (3.5)

see e.g. [10, Lemma 2.2.8]. These relations (3.4) and (3.5) will be crucial in the sequel, as
will the unicity in the next result.

Theorem 3.2. Let z ∈ D. The unique probability measure µ on T that maximizes
λ∞(µ, z), is the balayage measure δ̂z.

Proof. Let µ be a probability measure on T. By [10, Theorem 2.7.15], we have λ∞(µ, z) =
0 for any z ∈ D precisely when µ does not belong to the Szegő class. Thus, we may
assume that µ belongs to the Szegő class. By (3.4), we are led to maximize |D(µ, z)|. Let
µ = µa + µs, µa = gdt, g ∈ L1(T), be the Radon-Nikodym decomposition of the measure
µ. From (3.3), we see that the larger the mass of µa, the larger the modulus of D(µ, z).
Thus, µs should vanish, that is, µ has to be absolutely continuous.

We write

dµ = f(eit)dωD(0, t) =
f(eit)

Pz(eit)
dωD(z, t).
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Then since
∫ π

−π

log f(eit)dωD(0, t) =

∫ π

−π

log
f(eit)

Pz(eit)
dωD(z, t) +

∫ π

−π

logPz(e
it)dωD(z, t),

it suffices to maximize the entropy functional

∫ π

−π

log
f(eit)

Pz(eit)
dωD(z, t) =

∫ π

−π

log(
dµ

dωD(z, t)
)dωD(z, t)

over absolutely continuous probability measures µ. Jensen’s inequality yields that the
maximum is attained, uniquely, when dµ/dωD(z, t) = 1; i.e., dµ = dωD(z, t).

It is proved in [2] that, for a given degree n and z0 = |z0|eiφ with |z0| > 1, the harmonic
measure (3.1) for 1/z0,

dµP (θ) := dωD(1/z0, θ) =

[
∞∑

k=−∞

|z0|−|k| eik(φ−θ)

]
dθ

2π
,

is an OPM of order n for D and z0, as well as any measure µ whose moments

mk = mk(µ) :=

∫

T

zkdµ, k = 0,±1, . . . ,±n

coincide with those of the harmonic measure:

mk(µP ) :=

∫

T

zkdµP =

∫

T

zkdδ̂1/z0 =

{
(z0)

−k, k ≥ 0,

zk0 , k < 0,
|k| = 0, 1, . . . , n.

Moreover, from (1.4) and (2.2), since Mn(z0,T) = |z0|n we have, for n ≥ 0,

Bn(µP , z0) = |z0|2n, λn(µP , z0) = |z0|−2n. (3.6)

4 Preliminaries when K is bounded by a C(1, α) curve

Let K be a connected, simply connected, compact subset of C, with nonempty interior.
Let Ω be the unbounded component of C\K and Ω∞ := Ω∪{∞}. Let Φ be the conformal
map from Ω to C \ D, with Φ(∞) = ∞ and Φ′(∞) > 0. In this section, we assume that
Γ = ∂Ω is a C(1, α) curve. For r ≥ 1, we define the level curves of Φ,

Γr := {z ∈ Ω : |Φ(z)| = r}.

We will need several results.
We recall a result about sequences of conformal maps, see [13], Theorem 4 of Section

2.3.
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Theorem 4.1. Let J ⊂ C be a Jordan curve and let D be the bounded component of C\J .
Let {Dn}∞n=1 be a sequence of bounded, simply connected domains such that Dn+1 ⊂ Dn

for each n and
∞⋂

n=1

Dn = D.

Given z0 ∈ D, let F, Fn, n ≥ 1, be the conformal mappings of D, Dn, n ≥ 1, onto D

which take z0 to the origin and such that F ′(z0) > 0 and F ′
n(z0) > 0 for each n. Then we

have
lim
n→∞

Fn(z) = F (z) uniformly, for all z ∈ D.

We will also make use of the Faber polynomials Fn, n ≥ 0, of the interior of K, see [11].
They are defined by the following identity, see [11, p.62]:

Fn(z) = Φn(z) +
1

2πi

∫

Γr

Φn(t)

t− z
dt, |Φ(z)| > r ≥ 1,

where we recall that Γr := {z ∈ Ω : |Φ(z)| = r}.

Proposition 4.2 ( [11, p.61]). Let Γ be a C(1, α) curve, and let Fn, n ≥ 0, be the
associated Faber polynomials. Let F be a closed subset of the interior of K. Then, there
is a constant c(F ) such that

|Fn(t)| ≤
c(F )

nα
, t ∈ F.

Remark 4.3. The above result on the decrease of Faber polynomials in K also holds for
piecewise analytic curves Γ, see [5, Theorem 1].

Proposition 4.4 ( [11, Theorem 2 p.68]). When Γ is a C(p + 1, α) curve, p ∈ N, the
following estimate holds:

Fn(z) = Φn(z) +O
Å
log n

np+α

ã
, n→ ∞, (4.1)

uniformly for z ∈ Ω.

We denote by A(Ω∞) the set of functions analytic in a neighborhood of Ω∞.

Proposition 4.5. Given a function g ∈ A(Ω∞), Qn any polynomial of degree at most n,
and Pn the unique polynomial of degree at most n such that

Qn(z)g(z)− Pn(z) = O(z−1), z → ∞, (4.2)

one has

Qn(z)g(z)− Pn(z) = − 1

2πi

∫

Γg

Qn(t)
g(t)

t− z
dt (4.3)

for z outside of Γg, a simple, positively oriented, curve lying in K and in the domain of
analyticity of g.

Proof. Because of (4.2), the identity (4.3) is a simple consequence of Cauchy’s formula
applied to the difference Qn(z)g(z)− Pn(z) outside of Γg.
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Let µ be a probability measure on Γ. We set, for z ∈ Ω,

‹Bn(µ, z) :=
Bn(µ, z)

|Φ(z)|2n and λ̃n(µ, z) := |Φ(z)|2nλn(µ, z), n ≥ 0, (4.4)

and

‹B∞(µ, z) := lim sup
n→∞

‹Bn(µ, z) ≤ ∞ and λ̃∞(µ, z) := lim inf
n→∞

λ̃n(µ, z) ≥ 0. (4.5)

In fact, in Lemma 4.6 below, we show that the limits exist in (4.5). Note that since

Bn(µ, z) is weak-* continuous for our class of measures so is ‹Bn(µ, z).
The idea behind our proof that the weak-* limit of any subsequence {νn}n∈Y , Y ⊂ N

of OPM’s for Γ and z is δ̂z, the balayage of the point mass at z to Γ, is as follows. Using
Propositions 4.2, 4.4 and 4.5, we first show in Lemma 4.6 and Corollary 4.7 that for any
probability measure µ on Γ, λ̃∞(µ, z) (and hence ‹B∞(µ, z)) is related to λ∞(Φ∗µ, 1/Φ(z))
where Φ∗µ ∈ M(T). The crux of the matter is to then show that if α is a weak-* limit
of a subsequence {νn}n∈Y1

, Y1 ⊂ Y then (a perturbation of) a “diagonal subsequence”

{‹Bn(νn, z)}n∈Y1
, converges to (a perturbation of) ‹B∞(α, z) (Lemma 5.4). As in the proof

of Lemma 4.6, we use Faber polynomials in Lemma 5.1 as a tool to prove a sort of
monotonicity of {‹Bn(µ, z)} in n for general µ which is needed to apply Dini’s theorem to
conclude the proof of Lemma 5.4. After the proof of our main result, we make a remark
to indicate a relationship with an underlying general potential-theoretic question.

Lemma 4.6. Let z ∈ Ω and let µ be a measure on Γ. We have

λ̃∞(µ, z) = inf

ß∫
Γ

|f |2dµ, f ∈ A(Ω∞), f(z) = 1

™
. (4.6)

Moreover, λ̃∞(µ, z) = limn→∞ λ̃n(µ, z), i.e., the limit exists.

Proof. We first show

λ̃∞(µ, z) ≥ inf

ß∫
Γ

|f |2dµ, f ∈ A(Ω∞), f(z) = 1

™
.

Let Ψ be a conformal map from U = Int(K) to D. We consider the level curves

Γ̃k := {|Ψ| = 1 − 1/k}, k = 2, 3, ..., and let Ωk be the domain outside of Γ̃k. Then
Ωk ⊃ Ωk+1 ⊃ Ω, and Ω = Int(∩kΩk). Letting Φk denote the conformal map from Ωk to
C \ D with Φk(∞) = ∞ and Φ′

k(∞) > 0, it follows from Theorem 4.1 that Φk converges
locally uniformly in Ω to Φ.

Fix k ∈ N. We have, for each n,

λ̃n(µ, z) = |Φ(z)|2n inf
ß∫

Γ

|p|2dµ, p ∈ Pn, p(z) = 1

™

≥ |Φ(z)|2n inf
®∫

Γ

|p|2
(|Φk|)2n

dµ, p ∈ Pn, p(z) = 1

´

≥ |Φ(z)|2n inf
ß∫

Γ

|f |2dµ, f ∈ A(Ω∞), f(z) = Φk(z)
−n

™
.

=

∣∣∣∣
Φ(z)

Φk(z)

∣∣∣∣
2n

inf

ß∫
Γ

|f |2dµ, f ∈ A(Ω∞), f(z) = 1

™
.
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In the first inequality, we have used that |Φk| > 1 on Γ, and in the second inequality, we
have used that p/Φn

k is analytic in a neighborhood of Ω∞.
Letting k tend to infinity, since z ∈ Ω we have Φk(z) → Φ(z) as k → ∞, and thus

λ̃n(µ, z) ≥ inf

ß∫
Γ

|f |2dµ, f ∈ A(Ω∞), f(z) = 1

™
,

which implies the desired inequality:

lim inf
n→∞

λ̃n(µ, z) = λ̃∞(µ, z) ≥ inf

ß∫
Γ

|f |2dµ, f ∈ A(Ω∞), f(z) = 1

™
.

To show that

inf

ß∫
Γ

|f |2dµ, f ∈ A(Ω∞), f(z) = 1

™
≥ lim sup

n→∞
λ̃n(µ, z),

given ǫ > 0, take g ∈ A(Ω∞) with g(z) = 1 and
∫

Γ

|g|2dµ ≤ (1 + ǫ)2 inf

ß∫
Γ

|f |2dµ, f ∈ A(Ω∞), f(z) = 1

™
.

We show that for n ≥ n0(ǫ), we can find pn ∈ Pn such that
∫

Γ

|pn|2dµ ≤ (1 + ǫ)2
∫

Γ

|g|2dµ and pn(z) = Φn(z). (4.7)

Applying Proposition 4.5 with the function g and the polynomial Qn = Fn, the n−th
Faber polynomial for K, and making use of Proposition 4.2, we conclude that, for some
constant c independent of n,

|Fn(t)g(t)− Pn(t)| ≤
c

nα
, t ∈ Γ ∪ {z}.

By Proposition 4.4 applied with p = 0, we have Fn → Φn on Γ uniformly, and Fn(z) →
Φn(z). Since |Φ| = 1 on Γ and g(z) = 1 we get

|Pn| → |g|, uniformly on Γ, and Pn(z) → Φn(z).

Thus, we get, for n ≥ n0(ǫ), that pn := (Φn(z)/Pn(z))Pn satisfy (4.7).

For a measure µ on Γ we have Φ∗µ is a measure on the circle T. From (1.6),

λ∞(Φ∗µ, 1/Φ(z)) = lim
n→∞

λn(Φ∗µ, 1/Φ(z)).

Corollary 4.7. For any measure µ on Γ, it holds that

λ̃∞(µ, z) = λ∞(Φ∗µ, 1/Φ(z)), z ∈ Ω. (4.8)

Proof. One has, in view of (4.6) and (3.5),

λ̃∞(µ, z) = inf

ß∫
Γ

|f |2dµ, f ∈ Ae(Γ), f(z) = 1

™

= inf

ß∫
Γ

|f |2dΦ∗µ, f ∈ Ae(T), f(Φ(z)) = 1

™
= lim

n→∞
|Φ(z)|2nλn(Φ∗µ,Φ(z))

= lim
n→∞

λn(Φ∗µ, 1/Φ(z)) = λ∞(Φ∗µ, 1/Φ(z)).
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5 Case of K bounded by a curve Γ ∈ C(2, α)

With the same notation as section 4 we now assume that Γ = ∂Ω is a C(2, α) curve. We

start with proving a weak monotonicity of the sequence {‹Bn(µ, z)}n for µ on Γ.

Lemma 5.1. Let z ∈ Ω be fixed. Let µ be any measure supported on Γ such that the
orthogonal polynomials are well-defined up to degree N . Let n < N . Then there exist
positive numbers cn ≥ 1 such that

‹BN−n(µ, z) ≤ cn‹BN(µ, z), cn = 1 +O
Å
logn

n1+α

ã
, as n,N → ∞, (5.1)

where the cn’s are independent of the measure µ.

Proof. Let n < N . We will prove that

|Φ(z)|2nλN(µ, z) ≤ cnλN−n(µ, z)

for appropriate cn, which is equivalent to the inequality in (5.1).
To estimate |Φ(z)|2nλN (µ, z),

|Φ(z)|2nλN(µ, z) = |Φ(z)|2n min
p∈PN , p(z)6=0

∫
Γ
|p|2dµ

|p(z)|2

≤ |Φ(z)|2n min
p∈PN−n, p(z)6=0

∫
Γ
|Fnp|2dµ

|Fn(z)p(z)|2

=
|Φ(z)|2n
|Fn(z)|2

· min
p∈PN−n, p(z)6=0

∫
Γ
|Fnp|2dµ
|p(z)|2 .

To estimate
∫
Γ
|Fnp|2dµ, we get

∫

Γ

|Fnp|2dµ ≤ ‖Fn‖2Γ
∫

Γ

|p|2dµ

so that

|Φ(z)|2nλN(µ, z) ≤
|Φ(z)|2n
|Fn(z)|2

‖Fn‖2Γ · min
p∈PN−n, p(z)6=0

∫
Γ
|p|2dµ

|p(z)|2 .

The last minimum equals λN−n(µ, z) and we need estimate

|Φ(z)|2n
|Fn(z)|2

· ‖Fn‖2Γ

from above. Using the estimate (4.1) with p = 1 for each piece, we obtain

|Φ(z)|2nλN(µ, z) ≤
Å
1 +O

Å
log n

n1+α

ãã
· λN−n(µ, z),

from which the existence of the cn’s follows. The proof shows that they are independent
of the measure µ.

10



Remark 5.2. In the particular case of Γ = T, the unit circle, and µ = dθ/2π, the family
{zn}n∈N is an orthonormal basis, and

Bn(µ, z) =
|z|2n+2 − 1

|z|2 − 1
.

The inequality ‹Bn−1(µ, z) ≤ ‹Bn(µ, z) is true since it is equivalent to |z|2n+2 − 1 ≤ |z|2n+2.
For the harmonic measure µP in (3.1), from (3.6) we have Bn(µP , z0) = |z0|2n so that
‹Bn(µP , z0) = 1 for all n.

In Proposition 5.3 and Lemma 5.4, the point z is fixed and for any measure µ, we will
simply write ‹Bn(µ), ‹B∞(µ) instead of ‹Bn(µ, z), ‹B∞(µ, z), and similarly for other expres-
sions depending on z.

Proposition 5.3. Fix z ∈ Ω. Assume that a subsequence {νϕ(n)}n of a sequence {νn}n
of OPM’s tends weak-* to a limit measure α. Then α satisfies the following:
1) For all integers k, we have

‹Bk(α) ≤ 1 ≤ λ̃k(α). (5.2)

2) α has an infinite number of points in its support.

Proof. To show 1), for a given k, we have

‹Bk(α) ≤ lim inf
n

‹Bk(νϕ(n)) ≤ lim inf
n

cϕ(n)−k
‹Bϕ(n)(νϕ(n)) = lim inf

n

‹Bϕ(n)(νϕ(n)) ≤ 1.

Here the first inequality follows from lower semicontinuity of Bk (and hence ‹Bk), recall
Lemma 2.1. The second inequality and the equality use Lemma 5.1, while the final
inequality uses (1.4) and the fact that |Φ(z)| = egΩ(z), z ∈ Ω. The second inequality in
(5.2) is equivalent to the first one.

We prove 2) by contradiction. Assume that α has, say, k points in its support. Then,

Bk(α) = ∞, hence ‹Bk(α) = ∞, which contradicts the first inequality in (5.2), and proves
2). Note, in particular, that orthogonal polynomials of all degrees are well-defined for the
measure α.

From (5.2), all numbers ‹Bn(α), n ≥ 0, are less than or equal to 1, and thus

‹B∞(α) = lim
n

‹Bn(α) ≤ 1

(recall from Lemma 4.6 the limit exists).

Lemma 5.4. Let {νn}n be a sequence of OPM’s on K, with νn of order n. For any
subsequence {νϕ1(n)}n of {νn}n with a weak-⋆ limit α, there is a subsequence {νϕ2(n)}n of
{νϕ1(n)}n such that

lim
n

‹Bϕ2(n)(νϕ2(n)) =
‹B∞(α). (5.3)

Proof. Note that, by Proposition 5.3, the weak-* convergence νϕ1(n) → α implies that
orthogonal polynomials for the limit measure α exist for any degree n ≥ 0 and

‹B∞(α) = lim
n

‹Bϕ1(n)(α).
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If the sequence {νϕ1(n)} contains an element which appears infinitely many times, then α
is equal to this element; hence we may assume that each element in the sequence νϕ1(n)

appears at most a finite number of times. For a technical reason in the sequel of the
proof (in the definition of the functions Fn below), we replace the sequence νϕ1(n) with the
subsequence, still denoted νϕ1(n), where we keep only the last occurence of each repeated
element. Hence, with that change, each element in the sequence {νϕ1(n)} appears exactly
once.

We choose the subsequence {νϕ2(n)}n of {νϕ1(n)}n in such a way that

∀n ≥ 1, n ≤ ϕ2(n)− ϕ2(n− 1) < ϕ2(n+ 1)− ϕ2(n). (5.4)

For a measure µ, we set

‹Cn(µ) :=

(
n∏

k=0

cϕ2(k)−ϕ2(k−1)

)
‹Bϕ2(n)(µ), n ∈ N, (5.5)

where the ck are the constants in (5.1) (recall that they are independent of µ). The

sequence ‹Cn(µ) is increasing with n. Indeed,

‹Cn(µ)/‹Cn−1(µ) = cϕ2(n)−ϕ2(n−1)
‹Bϕ2(n)(µ)/

‹Bϕ2(n−1)(µ) ≥ 1,

where the inequality comes from (5.1).
For the measure α we also define

‹C∞(α) := L‹B∞(α), L :=

∞∏

k=0

cϕ2(k)−ϕ2(k−1) ≥ 1,

The infinite product in the definition of L converges because of (5.4) and the asymptotic
behavior of the ck as k tends to infinity, see (5.1). Also, by the choice of the subsequence
{νϕ1(n)}n, we have

‹C∞(α) = lim
n→∞

‹Cn(α). (5.6)

The set of measures S = {νϕ2(0), νϕ2(1), . . . , α} is compact. Consider the array of values
taken by the functions F0, F1, . . . , Fn, . . . , F∞ on S:

F∞
‹C∞(α) ‹C∞(α) ‹C∞(α) ‹C∞(α) ‹C∞(α) ‹C∞(α)

↑ ↑ ↑ ↑ ↑ ↑ ↑
Fn

‹C∞(α) . . . ‹C∞(α) ‹Cn(νϕ2(n)) → ‹Cn(α)
...

...
...

...
...

...
...

F1
‹C∞(α) ‹C1(νϕ2(1)) . . . → ‹C1(α)

F0
‹C0(νϕ2(0)) ‹C0(νϕ2(1)) . . . → ‹C0(α)

νϕ2(0) νϕ2(1) . . . νϕ2(n) → α

where all values above the ascending main diagonal ‹C0(νϕ2(0)),
‹C1(νϕ2(1)), . . . ,

‹Cn(νϕ2(n)), . . .

are equal to ‹C∞(α). Note our choice of the subsequence {ν‹ϕ1(n)} insures each Fn is well-
defined. The following properties are satisfied:
a) The function F∞ is constant, hence continuous on S.
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b) For each n, Fn is continuous at α because ‹Cn(νϕ2(k)) → ‹Cn(α) as n ≤ k → ∞. To see
this, using (5.5) we have

‹Cn(νϕ2(k)) =

(
n∏

p=0

cϕ2(p)−ϕ2(p−1)

)
‹Bϕ2(n)(νϕ2(k))

and ‹Bϕ2(n)(νϕ2(k)) → ‹Bϕ2(n)(α) as k → ∞ since νϕ2(k) → α weak-*.

c) At each νϕ2(n), the sequence of functions F0, F1, . . . , Fn, . . . increases to ‹C∞(α). Indeed,
by (5.1), we have

∀k ≤ n− 1, ‹Ck(νϕ2(n)) ≤ ‹Ck+1(νϕ2(n)), and ‹Cn(νϕ2(n)) ≤ ‹Cn(α) ≤ ‹C∞(α),

where the next-to-last inequality uses that νϕ2(n) is an optimal prediction measure.

d) At α, the sequence of functions F0, F1, . . . , Fn, . . . also increases to ‹C∞(α). This is a
consequence of (5.1) and (5.6).

Hence, from Dini’s theorem, we may conclude that the convergence is uniform which
implies that ‹Cn(νϕ2(n)) → ‹C∞(α) and thus also (5.3).

Proof of Theorem 1.1. Let {νϕ1(n)}n be a subsequence of {νn}n which converges weak-*
to a probability measure α. From Lemma 5.4, there exists a subsequence {νϕ2(n)}n of
{νϕ1(n)}n such that, as n tends to infinity,

‹Bϕ2(n)(νϕ2(n), z0) → ‹B∞(α, z0).

By definition of the OPM’s,

∀µ ∈ M(Γ), Bϕ2(n)(νϕ2(n), z0) ≤ Bϕ2(n)(µ, z0); hence ‹Bϕ2(n)(νϕ2(n), z0) ≤ ‹Bϕ2(n)(µ, z0).

Letting n tend to infinity, we get ‹B∞(α, z0) ≤ ‹B∞(µ, z0) which shows that α minimizes
‹B∞(µ, z0) over µ ∈ M(Γ), or equivalently, maximizes

λ̃∞(µ, z0) = lim inf
n→∞

λ̃n(µ, z0)

over measures µ ∈ M(Γ). By Corollary 4.7, this is equivalent to the fact that Φ∗α
maximizes λ∞(ν, 1/Φ(z)) over measures ν ∈ M(T). Finally, Theorem 3.2 shows that

Φ∗α = δ̂1/Φ(z0)
= δ̂Φ(z0),

where the balayage is onto T. By conformal invariance of the balayage, we obtain that α
equals δ̂z0 , the balayage of δz0 onto Γ.

We end with a discussion of a related asymptotic problem. For a connected, simply
connected, compact subset K of C we recall from (1.4) that for z0 ∈ Ω,

Bn(νn, z0) = sup
p∈Pn

|p(z0)|2
‖p‖2K

≤ e2ngΩ(z0) = |Φ(z0)|2n.

In fact, from the first equality together with (1.5) it follows that

lim
n→∞

Bn(νn, z0)
1/2n

|Φ(z0)|
= lim

n→∞

‹Bn(νn, z0)
1/2n = 1.
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There is the deeper question as to whether the limit of the sequence {‹Bn(νn, z0)}n –
without the 1/2n power – exists. Clearly

0 ≤ lim inf
n→∞

‹Bn(νn, z0) ≤ lim sup
n→∞

‹Bn(νn, z0) ≤ 1.

1. For the case of the unit circle, since

Bn(νn, z0) = sup
p∈Pn

|p(z0)|2
‖p‖2K

= |z0|2n = |Φ(z0)|2n,

recall (3.1) and (3.6), we have ‹Bn(νn, z0) = 1 for all n.

2. As a corollary of Lemma 5.4 and Theorem 1.1, it follows that for a C(2, α) curve
Γ, we have

lim
n→∞

‹Bn(νn, z0) = 1 (5.7)

for all z0 ∈ Ω.

3. For the interval [−1, 1], the existence of this limit for z0 6∈ [−1, 1] was shown by
Yuditskii [14] and Peherstorfer [7]; their proofs are very technical. Writing ψ(z) :=
z +

√
z2 − 1 for the conformal map from C \ [−1, 1] onto C \ D, we have gΩ(z) =

log |ψ(z)|. Two special cases are more easily computed. First, for x ∈ R \ [−1, 1],
the polynomial pn in (2.2) is the Chebyshev polynomial

Tn(z) =
1

2

(
(ψ(z))n + (ψ(z))−n

)
.

Thus for such x, from (2.1),

lim
n→∞

‹Bn(νn, x) = lim
n→∞

1

2

|(ψ(x))n + (ψ(x))−n|
|ψ(x)|n =

1

2
.

Next, for z = ia, a ∈ R, |a| > 1, from [2]

|pn(ia)| =
√
a2 + 1[|a|+

√
a2 + 1]n−1.

Since |ψ(ia)| = |a+
√
a2 + 1|, we have, for a > 0,

lim
n→∞

‹Bn(νn, ia) = lim
n→∞

√
a2 + 1[|a|+

√
a2 + 1]n−1

|a+
√
a2 + 1|n

=

√
a2 + 1

a+
√
a2 + 1

.

The results in [14] and [7] seem to indicate that, as with these special cases, for any
z0 6∈ [−1, 1],

lim
n→∞

‹Bn(νn, z0) < 1. (5.8)

4. For a circular arc Aα := {z ∈ C : |z| = 1, |argz| ≤ α}, 0 < α < π, Eichinger [4]

shows that limn→∞
‹Bn(νn, z0) exists for any z0 with |z0| 6= 1 and he calculates this

limit.
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Concerning 2., in particular, for the confocal ellipses

Er := {z ∈ C : |z − 1|+ |z + 1| = r + 1/r}

(5.7) holds for all points z0 outside Er for each r > 1. As r → 1, these ellipses converge
to the interval [−1, 1], which, according to 3., fails to have this property. We know of no

general results on existence of the limit of the sequence {‹Bn(νn, z0)}n.

Remark 5.5. For the interval [−1, 1], or, more generally, for a real analytic arc γ, there
is a problem with generalizing Lemma 4.6, Corollary 4.7, and the “weak monotonicity”
lemma, Lemma 5.1. Indeed, if such results were true for [−1, 1], then the proofs of
Proposition 5.3 and hence Lemma 5.4 and Theorem 1.1 would be valid as well. However,
equation (5.7) then gives

lim
n→∞

‹Bn(νn, z0) = 1

which contradicts (5.8). Thus other ideas or techniques are required to deal with arcs.
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