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ARITHMETIC PROPERTIES OF THE TAYLOR COEFFICIENTS OF
DIFFERENTIALLY ALGEBRAIC POWER SERIES

C. KRATTENTHALER† AND T. RIVOAL

Abstract. Let f =
∑∞

n=0 fnx
n ∈ Q[[x] be a solution of an algebraic differential equation

Q(x, y(x), . . . , y(k)(x)) = 0, where Q is a multivariate polynomial with coefficients in Q.
The sequence (fn)n≥0 satisfies a non-linear recurrence, whose expression involves a poly-
nomial M of degree s. When the equation is linear, M is its indicial polynomial at the
origin. We show that when M is split over Q, there exist two positive integers δ and ν such
that the denominator of fn divides δn+1(νn+ν)!2s for all n ≥ 0, generalizing a well-known
property when the equation is linear. This proves in this case a strong form of a conjecture
of Mahler that Pólya–Popken’s upper bound nO(n log(n)) for the denominator of fn is not
optimal. This also enables us to make Sibuya and Sperber’s bound |fn|v ≤ eO(n), for all
finite places v of Q, explicit in this case. Our method is completely effective and rests
upon a detailed p-adic analysis of the above mentioned non-linear recurrences. Finally,
we present various examples of differentially algebraic functions for which the associated
polynomial M is split over Q, among which are Weierstraß’ elliptic ℘ function, solutions
of Painlevé equations, and Lagrange’s solution to Kepler’s equation.

In the memory of Bernard Malgrange

1. Introduction

We denote by Q the field of algebraic numbers and by OQ the ring of algebraic integers.
Let us consider a non-trivial algebraic differential equation

Q(x, y(x), . . . , y(k)(x)) = 0, (1.1)

where Q ∈ C[X, Y0, . . . , Yk]; here and in the sequel, by “non-trivial” we mean that Q is of
degree ≥ 1 in at least one of the indeterminates Yj. Let us assume that (1.1) has a power
series solution f(x) :=

∑∞
n=0 fnx

n ∈ C[[x]]. We say that f is a differentially algebraic
power series, and write DA in short. For instance, the Taylor expansions at x = 0 of
x/ log(1 + x) and of tan(x) are DA power series, as these functions are solutions of the

Date: February 14, 2025.
2020 Mathematics Subject Classification. Primary 11B37; Secondary 05A10 11B65 30B10.
Key words and phrases. Non-linear recurrences, differentially algebraic power series, Gregory coeffi-

cients, Bernoulli numbers, Weierstraß ℘ function, Painlevé equations, elliptic modular invariant, Kepler’s
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equations x(1 + x)y′ + y2 − (1 + x)y = 0 and y′ − y2 − 1 = 0, respectively, which are both
Riccati equations.

A natural question arises: is it possible to bound |fn| non-trivially from above and from
below? In the Archimedean case, an upper bound was first obtained by Maillet [16], and
made more precise by various authors, in particular by Malgrange [17], and in the linear
case by Perron [18]. It is recalled in [15, p. 200] in the following form: there exist α, β > 0
that depend on Q and f such that |fn| ≤ αn!β for all n ≥ 0. A lower bound was obtained
by Popken [20] under the additional assumption that fn ∈ Q for all n ≥ 0, when Q is
embedded into C: there exist α, β > 0 that depend on Q and f such that either fn = 0
or |fn| ≥ αn−βn log(n) for all n ≥ 1, and if Q is a linear polynomial in Y0, . . . , Yk (i.e., the
differential equation is linear inhomogeneous with coefficients in C[X]), then either fn = 0
or |fn| ≥ αn−βn for all n ≥ 1. Similar lower bounds had been obtained earlier by Pólya [19]
when fn ∈ Q.

Popken’s lower bound has applications in the Theory of Transcendental Numbers, in
particular to the values of Weierstraß’ ℘ function; see [15, pp. 207–212]. It was reproved in
detail by Mahler in [15, Chapter 8], following the method used by Pólya [19] in the rational
case. There it is shown to be a simple consequence of the following result. Let dn denote
the least positive integer such that dnfn is in OQ. We shall from now on say that dn is
“the denominator of” fn. Then there exist α, β > 0 that depend on Q and f such that

dn ≤ αnβn log(n), n ≥ 1, (1.2)

and if Q is a linear polynomial in Y0, . . . , Yk then dn ≤ αnβn for all n ≥ 1. Popken’s
theorem follows by combining Maillet’s upper bound for the Galois conjugates σ(fn) of fn
(because

∑
n σ(fn)x

n is also DA) and the upper bound (1.2) for dn, and then by considering
the norm of dnfn over Q, which is a positive integer when fn ̸= 0.

Moreover, Mahler [15, p. 212] conjectured in rather loose terms that the exponent
βn log(n) in Popken’s lower bound “can probably be improved to something like”
βn log log(n). This would make the general bound closer to the bound in the linear case.
Such an improvement, which could be difficult to detect numerically, would follow immedi-
ately from the same improvement on the exponent of nn in (1.2) because in Maillet’s upper
bound the exponent is even O(1). A different type of improvement of (1.2) was made by
Sibuya and Sperber in [24, p. 112, Eq. (III’)], who proved that, for all finite places v of Q,
|fn|v ≤ ecn for some non-explicit constant c > 0 that depends on f , Q, and v; this had
been conjectured by Dwork. This proves in particular that f has positive v-adic radius
of convergence in Cp. Earlier, Mahler [14] had proved a lower bound for |f |v similar to
Popken’s in the Archimedean case. We refer to [23] for a survey of Archimedean and non-
Archimedean estimates for fn when f is a DA power series, in particular for (possibly not
optimal) explicit values of the constants α and β.
Mahler’s denominator conjecture was the starting point of our investigations, and this

also led us naturally to study Sibuya and Sperber’s v-adic bounds. Let us first consider
two simple examples in the linear case, both of hypergeometric type. The series h1(x) :=∑∞

n=0
xk∏n−1

k=0 (k
2+1)

is a DA power series solution to x2y′′′ + xy′′ + (1− x)y′ − y = 0, and the
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associated denominator dn satisfies dn =
∏n−1

k=0(k
2 +1) ≤

∏n−1
k=0(k+1)2 = n!2, as expected.

Notice however that, conjecturally, there exist no integers δ, ν, µ, s ≥ 0 such that dn divides

δn+1(νn+ µ)!s for all n ≥ 0 (1). On the other hand, the series h2(x) :=
∑∞

n=0
xk∏n−1

k=0 (2k+1)
is

also a DA power series solution to 2xy′′+(1−x)y′−y = 0. Here, the associated denominator
dn =

∏n−1
k=0(2k + 1) is not only bounded by

∏2n−1
k=0 (k + 1) = (2n)!, but this time it divides

(2n)!. This is not surprising: it is well-known that such a divisibility phenomenon holds
for all power series in Q[[x]] that are solution of a homogeneous linear differential equation
with coefficients in Q[x] and whose indicial polynomial at the origin has only rational roots.
This is the case for h2 (roots 0 and 1/2) but not for h1 (roots 0 and 1 ± i). See §3.1 for
the details.

A little more surprising may be the fact that a divisibility phenomenon also numerically
holds for certain DA series that are not necessarily solutions of a linear differential equation.
Let us consider for instance the series f(x) = 1 +

∑∞
n=1 fnx

n that satisfies the Riccati
equation xf ′(x) − xf(x)2 + af(x) − a = 0, where a ≥ 1 is a fixed integer. The sequence
(fn)n≥0 satisfies the non-linear recurrence relation

fn+1 =
1

n+ a+ 1

n∑
j=0

fjfn−j, n ≥ 0, f0 := 1, (1.3)

and we observed numerically that seemingly n! (n + a)! fn ∈ Z for all n ≥ 0. (Note that,
if a = 0, then fn = 1 for all n ≥ 0.) Our first thought was that this observation would
be easy to prove by considering the sequence φn := n! (n+ a)! fn, which is solution of the
recurrence

φn+1 =
n∑

j=0

n+ 1

(j + 1)a

(
n

j

)(
n+ a

j

)
φjφn−j, n ≥ 0, φ0 := a!,

where the Pochhammer symbol (α)m is defined by α(α+1) · · · (α+m− 1) for m ≥ 1, and
(α)0 = 1. The binomial coefficients are obviously an important gain but this transformation
comes with a new “big” denominator (j+1)a. By a careful p-adic analysis of the summand
(see Proposition 1 in §2), we shall prove that δn+1φn ∈ Z for all n ≥ 0 for some integer
δ ≥ 1. The proof of this arithmetic property, which is weaker than what seems to be true, is
much more complicated than what one might expect at first sight. On the other hand, this
yields a better result for fn than the upper bound (1.2), i.e., we have δn+1n! (n+a)! fn ∈ Z
for all n ≥ 0, and it even proves Mahler’s conjecture in this case in a stronger form. This
also makes the upper bound for |f |v by Sibuya and Sperber explicit.

1Assume on the contrary the existence of such integers. Then, any prime divisor p of dn divides either δ
or (νn+µ)!, hence p ≤ max(δ, νn+µ). But it is widely believed, because it is an instance of Bouniakovsky’s
conjecture, that there exist infinitely many primes of the form m2+1 where m ∈ N, so that we would have
(n− 1)2 + 1 ≤ max(δ, νn+ µ) for infinitely many n. This is not possible. See [22] and references therein
for estimates of the p-adic valuation of products of the form

∏
1≤k≤n |q(k)|, where q is a polynomial of

degree ≥ 2, irreducible over Q, and taking integer values at integer arguments.
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To explain our contribution towards Mahler’s denominator conjecture, we start by re-
viewing properties proved by Mahler in [15, Chapter 8]. We assume that the differential
equation (1.1) has a solution f(x) :=

∑∞
n=0 fnx

n ∈ Q[[x]]. Then, by [15, p. 186, §120], the
differential equation can be assumed to have coefficients in Q without loss of generality.
Mahler proved in [15, p. 194] that the sequence of Taylor coefficients (fn)n≥0 satisfies a
non-linear recurrence

fn+1 =
1

M(n)

σ2∑
σ=σ1

k0∑
k=1

∑
j1+···+jk=n−σ

0≤j1,...,jk≤n

Pσ,k(n, j1, j2, . . . , jk)fj1fj2 · · · fjk , for n ≥ N, (1.4)

where N is some non-negative integer, M(X) ∈ OQ[X] vanishes for no n ≥ N , the co-
efficients Pσ,k(n, j1, j2, . . . , jk) are in OQ, the constants σ1, σ2 are integers, s and k0 are
positive integers. More precisely, the Pσ,k(n, j1, j2 . . . , jk) are piecewise polynomials in
n, j1, j2, . . . , jk with coefficients in OQ. The initial values f0, f1, . . . , fN are algebraic num-
bers with common denominator D. It should be observed that the restriction j1, . . . , jk ≤ n
can be safely ignored for non-negative σ, while it has an effect for negative σ. The process
to determine explicitly the recurrence (1.4) from the polynomial Q can be complicated in
general but it is effective; it is a task that can be performed easily for simple examples.
Following Pólya in the rational case, Mahler then proved the upper bound on the denom-

inator of fn as follows: he showed by induction on n that ∆n :=
∏n

j=N |A(j)|⌊
(m−1)n+1
(m−1)j+1

⌋ is

a denominator of fn for n ≥ N , where A(X) ∈ Z[x] vanishes for no integer n ≥ N and
is constructed from M in [15, p. 202], and where the integer m ≥ 1, which depends only
on Q and is defined in [15, p. 187], is equal to 1 if and only if Q is linear in Y0, . . . , Yk.
The denominator dn of fn divides ∆n, which then has to be bounded. When m = 1, the
exponent of each A(j) in the product for ∆n is always 1 and thus independent of n, while
if m ≥ 2 it depends on n. This explains the difference between the upper bounds for dn in
the linear and non-linear cases.

In this paper, we shall consider the particular situation where the polynomial M in (1.4)
is split over Q, i.e., the sequence of Taylor coefficients (fn)n≥0 satisfies a non-linear recur-
rence of the form

fn+1 =

1

C
∏s

i=1(ain+ bi)

σ2∑
σ=σ1

k0∑
k=1

∑
j1+···+jk=n−σ

0≤j1,...,jk≤n

Pσ,k(n, j1, j2, . . . , jk)fj1fj2 · · · fjk , for n ≥ N, (1.5)

where N is some non-negative integer, the coefficients Pσ,k(n, j1, j2, . . . , jk) are in OQ (2),
C is a non-zero integer, σ1, σ2 are integers, s and k0 are positive integers, the bi’s are

2Due to the normalization adopted in (1.5), the coefficients Pσ,k in (1.5) might differ from the Pσ,k

in (1.4) by a common non-zero algebraic factor (independent of σ and k). The important point for us is
that we can still assume without loss of generality that they are in OQ; indeed, this can always be achieved

by changing C to mC for a suitable integer m ≥ 2 if necessary.
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integers, the ai’s are positive integers such that gcd(ai, bi) = 1 and ain + bi ̸= 0 for
all i ∈ {1, . . . , s} and all n ≥ N . The initial values f0, f1, . . . , fN are algebraic numbers
with common denominator D. In this situation, our main result is a proof of Mahler’s
denominator conjecture in a much stronger form, i.e., a divisibility property of dn which
in particular implies that log(n) can be replaced by O(1), not just log log(n).

Theorem 1. Let f ∈ Q[[x] be a solution of a non-trivial algebraic differential equation
Q(x, y(x), . . . , y(k)(x)) = 0, where Q ∈ Q[X, Y0, . . . , Yk]. More specifically, we assume that
the sequence (fn)n≥0 of Taylor coefficients of f satisfies a non-linear recurrence of the
form (1.5).

Then there exist two positive integers δ and ν such that the denominator of fn divides
δn+1(νn + ν)!2s for all n ≥ 0, where s is the degree of the denominator polynomial on the
right-hand side of (1.5).

As a consequence, we obtain an explicit version of the v-adic upper bound of Sibuya and
Sperber in this particular situation, which seems to be new.

Corollary 1. In the setting of Theorem 1, for all finite places v of Q over any given
rational prime number p, we have

|fn|v ≤ p(vp(δ)+
2sν
p−1)(n+1), n ≥ 0, (1.6)

where we take the standard normalization |p|v := 1/p.

(On the right-hand side of (1.6), vp denotes the usual p-adic valuation, and the exponent
involves ν and not the place v.) The proof of Theorem 1 provides completely explicit, albeit
complicated, formulas for δ and ν in terms of C,D, k0, a1, a2, . . . , as and b1, b2, . . . , bs. When
σ1 ≥ 0, these formulas, in a refined form, are given by Theorem 2 in §2; they are not always
sharp. When σ1 < 0 for a sequence (fn)n≥0 defined for all n ≥ N by a recurrence like (1.5),
we shall prove in a constructive way (Lemma 1) that we can always find another recurrence

for (fn)n≥0 like (1.5) in which now σ1 ≥ 0, but for n ≥ Ñ which may differ from N . We
shall explain in §2.1 that Lemma 1 is a variant of [23, p. 382, Lemma 2.2]. The latter also
provides in principle another way of finding a recurrence of type (1.5) from a recurrence of
type (1.4), even though it seems not to be entirely constructive, as we explain at the end
of §2.1.

The arithmetic assumption on the polynomial M implies in particular the rationality
of all the roots (known as the local exponents) of the indicial polynomial at 0 when Q is
linear in Y0, . . . , Yk. The procedure in [23, p. 382] has the theoretical interest of explaining
why M can be viewed as a natural generalization to the non-linear case of the indicial
polynomial at the origin in the linear case. A similar assumption appears in [23, p. 400,
(ii)], where Popken’s lower bound is then improved to |fn| ≥ αn−βn for some non-explicit
positive constants α and β. It does not seem that the stronger and more precise divisibility
properties in Theorem 1 and Theorem 2 below are also proven. It turns out that the
arithmetic assumption holds in many interesting situations. We shall elaborate on these
examples in §3.
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In the next section, we present our proof of Theorem 1. It consists in several steps.
In Lemma 1 we show that, if in the sum on the right-hand side of (1.5) negative σ’s
contribute, then one can find an equivalent recurrence of the same type without negative σ’s
contributing; we also compare it with Lemma 2.2 in [23]. We then restate Theorem 1 in a
more precise, but also more general form, see Theorem 2. The key arithmetic part of its
proof is taken care of separately in Proposition 1. In the last section, Section 3, we discuss
many examples in which our theorems apply, amongst which are Gregory coefficients,
tangent numbers, Bernoulli numbers, Taylor coefficients of the Weierstraß elliptic function,
of solutions to Painlevé equations, of modular forms, of solutions to Kepler’s equation, of
the compositional inverse of the dilogarithm. We conclude the paper with a discussion of
Mahler’s conjecture on a simple example of a recurrence for which M is non-split over Q.

2. Proof of Theorem 1

2.1. An effective procedure to remove negative σ’s. In this subsection, we show
that, if there are negative σ’s contributing to the right-hand side of (1.5), then there is an
equivalent recurrence with all the characteristics of (1.5) but which avoids negative σ’s,
i.e., it satisfies σ1 ≥ 0. By equivalent recurrences of type (1.5), we mean that the given
sequence (fn)n≥0 satisfies both recurrences for all n large enough, but “large enough”
is different in each recurrence. At the end of this subsection, we shall also mention a
non-constructive variant of Lemma 1, due to Sibuya and Sperber, which nonetheless has
important theoretical consequences for us.

Lemma 1. For any recurrence of the form (1.5) in which negative σ’s appear, there is an
equivalent one with only non-negative σ’s.

The proof of Lemma 1 is constructive, and free of any indeterminacy. As an inspection
of the proof reveals, the conclusion of Lemma 1 holds more generally also for a recurrence
of type (1.4).

Proof. We consider a recurrence (1.5) in which σ1 is negative. Let N̄ := max{N, σ2−k1σ1}.
(The background for this choice will become clear later on.) We assume the fj’s with
j < N̄ as initial conditions, meaning that fj with N < j < N̄ has been computed via the
recurrence (1.5).

Now, in the sums over jt’s, we isolate terms containing fj’s with j < −σ1 (recall that
−σ1 > 0) in separate sums. This converts (1.5) into

fn+1 =
1

C
∏s

i=1(ain+ bi)

σ2∑
σ=σ1

k0∑
k=1

k∑
ℓ=0

(
k

ℓ

) ∑
0≤j1,...,jℓ<−σ1

fj1 · · · fjℓ

·
∑

jℓ+1+···+jk=n−σ−j1−···−jℓ
−σ1≤jℓ+1,...,jk≤n

Pσ,k(n, j1, j2, . . . , jk)fjℓ+1
· · · fjk
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=
1

C
∏s

i=1(ain+ bi)

σ2∑
σ=σ1

k0∑
k=1

k∑
ℓ=0

(
k

ℓ

) ∑
0≤j1,...,jℓ<−σ1

fj1 · · · fjℓ

·
∑

jℓ+1+···+jk=n−σ−j1−···−jℓ+(k−ℓ)σ1

0≤jℓ+1,...,jk≤n+σ1

Pσ,k(n, j1, . . . , jℓ, jℓ+1 − σ1, . . . , jk − σ1)fjℓ+1−σ1 · · · fjk−σ1 .

The binomial coefficient arises since the ℓ terms fj with j < −σ1 might appear at any of
the k possible positions.

Now we write gm = fm−σ1 . In this notation, the above recurrence reads

gn+1+σ1 =
1

C
∏s

i=1(ain+ bi)

σ2∑
σ=σ1

k0∑
k=1

k∑
ℓ=0

(
k

ℓ

) ∑
0≤j1,...,jℓ<−σ1

fj1 · · · fjℓ

·
∑

jℓ+1+···+jk=n−σ−j1−···−jℓ+(k−ℓ)σ1

0≤jℓ+1,...,jk≤n+σ1

Pσ,k(n, j1, . . . , jℓ, jℓ+1 − σ1, . . . , jk − σ1)gjℓ+1
· · · gjk ,

or, after performing the shift n 7→ n− σ1,

gn+1 =
1

C
∏s

i=1(ain− aiσ1 + bi)

σ2∑
σ=σ1

k0∑
k=1

k∑
ℓ=0

(
k

ℓ

) ∑
0≤j1,...,jℓ<−σ1

fj1 · · · fjℓ

·
∑

jℓ+1+···+jk=n−σ−j1−···−jℓ+(k−ℓ−1)σ1

0≤jℓ+1,...,jk≤n

Pσ,k(n− σ1, j1, . . . , jℓ, jℓ+1 − σ1, . . . , jk − σ1)gjℓ+1
· · · gjk ,

for n ≥ N̄ . (2.1)

Define σ̄ := σ + j1 + · · · + jℓ − (k − ℓ− 1)σ1. If k > ℓ + 1, we have σ̄ ≥ σ − σ1 ≥ 0. This
implies that in this case the inner sum in (2.1) runs over non-negative integers jℓ+1, . . . , jk
with jℓ+1+ · · ·+jk = n− σ̄, where σ̄ ≥ 0. The case k = ℓ+1 does not need to be considered
since then the inner sum consists of just one (or no term). The equality k = ℓ produces
an empty sum since the condition on the summation indices in the inner sum in (2.1) (the
empty sum being equal to zero) becomes

0 = n− σ − j1 − · · · − jℓ + (k − ℓ− 1)σ1 = n− σ − j1 − · · · − jk − σ1 (2.2)

in this case, but

n− σ − j1 − · · · − jk − σ1 > N̄ − σ + kσ1 − σ1 ≥ σ2 − σ − σ1 > 0

by the definition of N̄ , a contradiction with (2.2).
In summary, the recurrence (2.1) for

(
gn
)
n≥0

=
(
fn−σ1

)
n≥0

is indeed a recurrence of the

form (1.5) without negative σ’s; in other words, it is of the form (1.5) with σ1 = 0. □

As mentioned before, Sibuya and Sperber proved an important lemma that leads to
the same conclusion as our Lemma 1. Starting from a solution f =

∑∞
n=0 fnx

n ∈ Q[[x]]
of a non-trivial differential algebraic equation Q(x, y, . . . , y(k)) = 0 with coefficients
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in Q, they first consider a non-trivial differential equation Q̃(x, y, . . . , y(ℓ)) = 0 with

Q̃ ∈ Q[X, Y0, . . . , Yℓ] of which f is still a solution. They require that ℓ ≥ 0 is minimal

amongst all differential algebraic equations satisfied by f , and that the degree of Q̃ in Yℓ
is also minimal. Notice that ℓ is the transcendence degree of the field generated over Q(x)
by f and all its derivatives. This in particular ensures that

∂Q̃

∂Yℓ
(x, f, . . . , f (ℓ)) ̸= 0,

which is crucial. However, Sibuya and Sperber give no way to effectively compute ℓ and

to minimize the degree in Yℓ starting from f and Q above. They canonically attach to Q̃
and f a linear operator L0 ∈ Q[[x]][ d

dx
] of order ℓ and then consider the indicial polynomial

P0 at the origin of L0. Then [23, Lemma 2.2] says the following:

For any c ≥ 0, there exist integers N ′ ≥ 0, N ≥ N ′, N ′′ ≥ c such that u :=
∑∞

n=N fnx
n−N ′ ∈

Q[[x]] is a solution of a differential equation L(u) = xN
′′
F (x, u, u′, . . . , u(ℓ)) where F ∈

OQ[X, Y0, . . . , Yℓ] and L is a linear differential operator in OQ[x][
d
dx
] of order ℓ and whose

leading coefficient is independent of N ′′.

Moreover, the indicial polynomial P (X) at the origin of L is simply P0(X + N ′); in
particular, if P0 is split over Q, then P is as well. From the particular form of the equation
satisfied by u, Sibuya and Sperber deduce a recurrence for (fn)n≥0 which is of the form
(1.4) with σ1 ≥ 0 (provided N ′′ is large enough, which is possible because c is arbitrary)
and with M(X) = P0(X +N ′ + 1). Therefore, this gives an interpretation of M in terms

of the indicial polynomial P0 attached to Q̃ and f . It is important to observe that P0 may
be different for another solution in Q[[x]] of the differential equation Q(x, y, . . . , y(k)) = 0.

Sibuya and Sperber also drew a few consequences from their lemma in [23, p. 384]
(encompassed by our Theorem 1) when P0 is a constant, when 0 is an ordinary point of

L0, and when F (x, u, u′, . . . , u(k)) = F (x) (which happens when Q̃ is linear in Y0, . . . , Yk).
In the latter case, they recovered Popken’s upper bound for the denominator of fn in the
linear case; this is in fact equivalent to what Mahler had done in [15, p. 205].

2.2. The main result. We are now in the position to state our main result, Theorem 2
below, which together with Lemma 1 immediately implies Theorem 1. Indeed, the de-
nominator dn(C,D, a,b, k0) in (2.5) below obviously divides δn+1(νn+ ν)!2s for all n ≥ N
for suitable positive integers δ and ν. We can also take δ large enough to ensure that D
divides δ. Hence, the denominator dn of fn divides δn+1(νn+ ν)!2s for all n ≥ 0.
To prove Corollary 1, let v be a place of Q over a rational prime number p. From the

divisibility in Theorem 1, we deduce that

|fn|v ≤ pvp(δ
n+1)+vp((νn+ν)!2s) ≤ pvp(δ)(n+1)+ 2sν

p−1
(n+1),

because by Legendre’s formula [12, p. 10] for the p-adic valuation of factorials, i.e.,

vp(n!) =
∑
ℓ≥1

⌊
n

pℓ

⌋
, (2.3)
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we have

vp((νn+ ν)!2s) ≤ 2s
∞∑
ℓ=1

νn+ ν

pℓ
=

2sν(n+ 1)

p− 1
.

This proves (1.6).

The proof of Theorem 2 requires a technical auxiliary result which is established sep-
arately in Proposition 1 below. We emphasize that Theorem 2 applies to more general
situations than the differential context behind Theorem 1. Indeed, the only assumption
we make below on the coefficients Pσ,k(n, j1, j2, . . . , jk) is that they are algebraic integers;
they need not necessarily be piecewise polynomials in n, j1, j2, . . . , jk as they are when they
come from a solution of an algebraic differential equation.

Theorem 2. Let us consider a recurrence of the form (1.5) without negative σ’s, that is,

fn+1

=
1

C
∏s

i=1(ain+ bi)

σ2∑
σ=0

k0∑
k=1

∑
j1+···+jk=n−σ

0≤j1,...,jk≤n

Pσ,k(n, j1, j2, . . . , jk)fj1fj2 · · · fjk , for n ≥ N,

(2.4)

where Pσ,k(n, j1, j2, . . . , jk) are algebraic integers, σ2 is a non-negative integer, C, s and
k0 are positive integers, b = (b1, b2, . . . , bs) is a vector of integers, a = (a1, a2, . . . , as) is
a vector of positive integers such that gcd(ai, bi) = 1 for i = 1, 2, . . . , s, and N is some
non-negative integer such that aiN + bi − ai ≥ 0 for i = 1, 2, . . . , s. The initial values
f0, f1, . . . , fN are algebraic numbers with common denominator D ≥ 1.
Then, for all n ≥ N , the denominator of fn divides

dn(C,D, a,b, k0) := CnD(k0−1)n+1Πn

s∏
i=1

(ain)! (ain+ bi − ai)!, (2.5)

where

Π =
s∏

i=1

((
max{bi − ai, 0}

)
!k0−1

∏
p<2max1≤j≤s(bj−aj)

p prime

p⌈logp max{bi−ai,1}⌉
)
. (2.6)

Proof. The assertion is certainly true for n = N . For, by assumption, the denominator
of fN is D, which trivially divides dN(C,D, a,b, k0) due to the term D(k0−1)N+1 in its
definition.

For n > N we are going to argue by induction. Put

φn = dn(C,D, a,b, k0)fn = CnD(k0−1)n+1Πn

(
s∏

i=1

(ain)! (ain+ bi − ai)!

)
fn, for n > N.

(2.7)
and

φn = CnD(k0−1)n+1Πnfn, for 0 ≤ n ≤ N.
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By multiplying both sides of the recurrence (2.4) by

dn+1(C,D, a,b, k0) = Cn+1D(k0−1)(n+1)+1Πn+1

s∏
i=1

(ain+ ai)! (ain+ bi)!,

we obtain

φn+1 =

σ2∑
σ=0

k0∑
k=1

CσD(k0−1)σ+k0−kΠσ+1
∑

j1+···+jk=n−σ

0≤j1,...,jk≤n

(
s∏

i=1

(ain+ ai)! (ain+ bi − 1)!
k∏

t=1
jt>N

(aijt)! (aijt + bi − ai)!

)

· Pσ,k(n, j1, j2, . . . , jk)φj1φj2 · · ·φjk , for n ≥ N, (2.8)

where (as indicated) the product over t is taken only over those t between 1 and k for
which jt > N .

We claim that the recurrence (2.8) is one with algebraic integer coefficients throughout.
Obviously, by induction, this claim would imply that all φn’s — including those with
n > N — are algebraic integers. Going back to the definitions (2.7) of φn and (2.5) of
dn(C,D, a,b, k0), it follows that the denominator of fn divides dn(C,D, a,b, k0) for all
n ≥ 0.

Clearly, the only problem concerning our claim could arise from the product over i, a
product of factorial ratios. It is Proposition 1 below which addresses this product. In order
to apply the proposition, we need to reorder the jt’s in increasing order (so that the τi in
the proposition are well-defined). Then Proposition 1 says that the product of factorial
ratios is “almost” an integer, except for some prime divisors p with p < 2max1≤i≤s(bi−ai).
However, their product is a divisor of Π (compare its definition in (2.6) with the right-hand
side of (2.10)), which in turn divides Πσ+1 which appears as a factor in (2.8). This proves
our claim and completes the proof of the theorem. □

We now proceed with the proof of the last missing step in the proof of Theorem 2. This
is the most complicated part.

Proposition 1. Let n, k, s and a1, a2, . . . , as be positive integers with k ≥ 2, let
b1, b2, . . . , bs be integers, and let σ, τ1, τ2, . . . , τk, and j1, j2, . . . , jk be non-negative inte-
gers with j1 + j2 + · · · + jk = n − σ and such that aijt + bi − ai < 0 for 1 ≤ t ≤ τi and
1 ≤ i ≤ s, while aijt + bi − ai ≥ 0 for τi + 1 ≤ t ≤ k and 1 ≤ i ≤ s, In particular, if
bi − ai ≥ 0, then necessarily τi = 0.
(1) For prime numbers p ≥ max1≤i≤s 2(bi − ai), we have

vp

(
s∏

i=1

(ain+ ai)! (ain+ bi − 1)!

(aijτi+1)! (aijτi+1 + bi − ai)! · · · (aijk)! (aijk + bi − ai)!

)
≥ 2

s∑
i=1

vp
(
(ai−1)! (aiσ)!

)
.

(2.9)
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(2) For prime numbers p < max1≤i≤s 2(bi − ai), we have

vp

(
s∏

i=1

(ain+ ai)! (ain+ bi − 1)!

(aijτi+1)! (aijτi+1 + bi − ai)! · · · (aijk)! (aijk + bi − ai)!

)

≥
s∑

i=1

(
−
⌈
logpmax{bi − ai, 1}

⌉
− (k − 1)vp

(
max{bi − ai, 0}!

)
+ 2vp

(
(ai − 1)! (aiσ)!

))
.

(2.10)

Proof. For this proof, we drew inspiration from our previous work [9], in which we also
proved another denominator conjecture in the context of zeta values, and not related to
Mahler’s denominator conjecture studied in the present paper.

By Legendre’s formula recalled above in (2.3), we have

vp

(
s∏

i=1

(ain+ ai)! (ain+ bi − 1)!

(aijτi+1)! (aijτi+1 + bi − ai)! · · · (aijk)! (aijk + bi − ai)!

)

=
∑
ℓ≥1

s∑
i=1

(⌊
ain+ bi − 1

pℓ

⌋
+

⌊
ain+ ai

pℓ

⌋
−
⌊
aijτi+1

pℓ

⌋
− · · · −

⌊
aijk
pℓ

⌋
−
⌊
aijτi+1 + bi − ai

pℓ

⌋
− · · · −

⌊
aijk + bi − ai

pℓ

⌋)
. (2.11)

We put Ni =
{

ain
pℓ

}
, Jt,i =

{
aijt
pℓ

}
, for t = 1, 2, . . . , k − 1 (sic!), Ai =

{
ai−1
pℓ

}
and

Bi =
{

bi−ai
pℓ

}
for i = 1, 2, . . . , s, and Si =

{
aiσ
pℓ

}
. The reader should keep in mind

that Ni, Jt,i, Ai, Bi, Si also depend on ℓ. We do not indicate this in the notation for better
readability.

Using the above notation, the summand of the sum over ℓ on the right-hand side of (2.11)
can be rewritten as

s∑
i=1

(
⌊Ni + Ai +Bi⌋+

⌊
Ni + Ai +

1
pℓ

⌋
−

k−1∑
t=τi+1

(
⌊Jt,i⌋+ ⌊Jt,i +Bi⌋

)
− ⌊Ni − J1,i − · · · − Jk−1,i − Si⌋ − ⌊Ni − J1,i − · · · − Jk−1,i +Bi − Si⌋

+ 2

τi∑
t=1

⌊
aijt
pℓ

⌋
+ 2

⌊
ai−1
pℓ

⌋
− (k − 1− τi)

⌊
bi−ai
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋)

=
s∑

i=1

(
⌊Ni + Ai +Bi⌋+

⌊
Ni + Ai +

1
pℓ

⌋
−

k−1∑
t=τi+1

⌊Jt,i +Bi⌋

− ⌊Ni − J1,i − · · · − Jk−1,i − Si⌋ − ⌊Ni − J1,i − · · · − Jk−1,i +Bi − Si⌋

+ 2

τi∑
t=1

⌊
aijt
pℓ

⌋
+ 2

⌊
ai−1
pℓ

⌋
− (k − 1− τi)

⌊
bi−ai
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋)
. (2.12)
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(1) Concerning the summand, we claim that

⌊Ni + Ai +Bi⌋+
⌊
Ni + Ai +

1
pℓ

⌋
−

k−1∑
t=τi+1

⌊Jt,i +Bi⌋

− ⌊Ni − J1,i − · · · − Jk−1,i − Si⌋ − ⌊Ni − J1,i − · · · − Jk−1,i +Bi − Si⌋

+ 2

τi∑
t=1

⌊
aijt
pℓ

⌋
+ 2

⌊
ai−1
pℓ

⌋
− (k − 1− τi)

⌊
bi−ai
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
≥ 2

⌊
ai−1
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
. (2.13)

For a fixed i, we consider first the case where bi < ai. Then we have

k−1∑
t=τi+1

⌊Jt,i +Bi⌋ ≤ k − 1− τi ≤ −(k − 1− τi)
⌊
bi−ai
pℓ

⌋
(2.14)

and

⌊Ni + Ai +Bi⌋ ≥ ⌊Ni − J1,i − · · · − Jk−1,i +Bi − Si⌋ , (2.15)

which establishes (2.13) in this case.
Now let bi ≥ ai. We note that then necessarily τi = 0. Without loss of generality

we assume that, for fixed i with 1 ≤ i ≤ s, we have Jt,i + Bi ≥ 1 for 1 ≤ t ≤ mi and
Jt,i +Bi < 1 for mi + 1 ≤ t ≤ k − 1, for some non-negative integer mi.

Since by assumption p ≥ 2(bi − ai), we have
⌊
bi−ai
pℓ

⌋
= 0 and

Bi =

{
bi − ai
pℓ

}
=
bi − ai
pℓ

≤ bi − ai
2(bi − ai)

=
1

2
.

It should be observed that the same conclusions also hold for bi − ai = 0.
The case of mi = 0 of our claim follows from (2.15).
Let now mi ≥ 1. If Ni +Bi < 1, then

Ni +Bi − J1,i − · · · − Jk−1,i − Si < 1− mi

2
.

This implies

⌊Ni +Bi − J1,i − · · · − Jk−1,i − Si⌋ ≤ −
⌈
mi−1

2

⌉
.

Since in the current case Ni +Bi < 1 ≤ J1,i +Bi, we obtain that Ni < J1,i. Hence

Ni − J1,i − · · · − Jk−1,i − Si < −J2,i − · · · − Jk−1,i − Si ≤ −mi−1
2
,

and therefore

⌊Ni − J1,i − · · · − Jk−1,i − Si⌋ ≤ −
⌈
mi

2

⌉
.

If one uses these findings in (2.13), the left-hand side can be bounded from below by

−mi +
⌈
mi−1

2

⌉
+
⌈
mi

2

⌉
+ 2

⌊
ai−1
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
= 2

⌊
ai−1
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
,

as we claimed.
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Now let Ni +Bi ≥ 1. Then

Ni +Bi − J1,i − · · · − Jk−1,i − Si <
3
2
− mi

2
,

which implies

⌊Ni +Bi − J1,i − · · · − Jk−1,i − Si⌋ ≤ 1−
⌈
mi

2

⌉
.

On the other hand, we have

Ni − J1,i − · · · − Jk−1,i − Si < 1− mi

2
,

and hence

⌊Ni − J1,i − · · · − Jk−1,i − Si⌋ ≤ −
⌈
mi−1

2

⌉
.

If one uses these findings in (2.13), the left-hand side can be bounded from below by

1−mi − 1 +
⌈
mi

2

⌉
+
⌈
mi−1

2

⌉
+ 2

⌊
ai−1
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
= 2

⌊
ai−1
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
,

again as we claimed.

(2) Let p < max1≤i≤s 2(bi − ai). As in Case (1), if bi − ai < 0 for some i, then, since
τi ≤ k − 1, we have again (2.14) and (2.15), and then the subsequent arguments show
that (2.13) holds.

If bi − ai > 0, consider an ℓ with ℓ ≥ logp(bi − ai) + 1. We then have
⌊
bi−ai
pℓ

⌋
= 0 and

Bi =

{
bi − ai
pℓ

}
=
bi − ai
pℓ

≤ bi − ai
(bi − ai)p

=
1

p
≤ 1

2
.

Again, it should be observed that the same conclusions also hold for bi − ai = 0, even
regardless of the value of ℓ. The arguments of Case (1) then show that (2.13) holds again.
On the other hand, if ℓ < logp(bi − ai) + 1, then there is no restriction on Bi (except

the trivial strict upper bound of 1). We claim that the relevant summand in (2.12) (in
particular, with τi = 0) satisfies the estimation

⌊Ni + Ai +Bi⌋+
⌊
Ni + Ai +

1
pℓ

⌋
−

k−1∑
t=1

⌊Jt,i +Bi⌋

− ⌊Ni − J1,i − · · · − Jk−1,i − Si⌋ − ⌊Ni − J1,i − · · · − Jk−1,i +Bi − Si⌋

+ 2
⌊
ai−1
pℓ

⌋
− (k − 1)

⌊
bi−ai
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
≥ 2

⌊
ai−1
pℓ

⌋
− (k − 1)

⌊
bi−ai
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
− 1. (2.16)

Using the same notation as before, if mi = 0 then one sees that (2.16) holds.
If Ni +Bi < 1, then we have

Ni +Bi − J1,i − · · · − Jk−1,i − Si < 1− mi

2
.

This implies

⌊Ni +Bi − J1,i − · · · − Jk−1,i − Si⌋ ≤ −
⌈
mi−1

2

⌉
.
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Since in the current case Ni +Bi < 1 ≤ J1,i +Bi, we obtain that Ni < J1,i. Hence

Ni − J1,i − · · · − Jk−1,i − Si < −J2,i − · · · − Jk−1,i − Si ≤ −mi−1
2
,

and therefore

⌊Ni − J1,i − · · · − Jk−1,i − Si⌋ ≤ −
⌈
mi

2

⌉
.

If one uses these findings in (2.16), the left-hand side can be bounded from below by

−mi +
⌈
mi−1

2

⌉
+
⌈
mi

2

⌉
+ 2

⌊
ai−1
pℓ

⌋
− (k − 1)

⌊
bi−ai
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
= 2

⌊
ai−1
pℓ

⌋
− (k − 1)

⌊
bi−ai
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
,

which is even slightly better than (2.16).
If Ni +Bi ≥ 1, then

Ni +Bi − J1,i − · · · − Jk−1,i − Si < 2− mi

2
,

which implies

⌊Ni +Bi − J1,i − · · · − Jk−1,i − Si⌋ ≤ 1−
⌈
mi−1

2

⌉
.

Furthermore, we have

Ni − J1,i − · · · − Jk−1,i − Si < 1− mi

2
,

and hence

⌊Ni − J1,i − · · · − Jk−1,i − Si⌋ ≤ −
⌈
mi−1

2

⌉
.

If one uses these findings in (2.16), the left-hand side can be bounded from below by

1−mi − 1 + 2
⌈
mi−1

2

⌉
+ 2

⌊
ai−1
pℓ

⌋
− (k − 1)

⌊
bi−ai
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
≥ −1 + 2

⌊
ai−1
pℓ

⌋
− (k − 1)

⌊
bi−ai
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋
,

as we claimed.
If we use all this in (2.11) for fixed i (with bi − ai > 0), we obtain

vp

(
(ain+ ai)! (ain+ bi − 1)!

(aijτi+1)! (aijτi+1 + bi − ai)! · · · (aijk)! (aijk + bi − ai)!

)

≥
⌈logp(bi−ai)⌉∑

ℓ=1

(
−1 + 2

⌊
ai−1
pℓ

⌋
− (k − 1)

⌊
bi−ai
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋)
+

∞∑
ℓ=⌈logp(bi−ai)⌉+1

s∑
i=1

(
2
⌊
ai−1
pℓ

⌋
+ 2

⌊
aiσ
pℓ

⌋)
≥ −

⌈
logp(bi − ai)

⌉
− (k − 1)vp(max{bi − ai, 0}!) + 2vp

(
(ai − 1)! (aiσ)!

)
.

Upon summation of both sides over 1 ≤ i ≤ s, this yields the claimed result in Case (2).

This completes the proof of the proposition, and thus of Theorem 2. □



15

3. Examples

In this section, we present various examples of classical DA functions to which our
results apply; many more examples of algebraic differential equations can be found in [8],
for instance “Abel’s equation” on page 199 that we do not treat here. Due to the general
nature of Theorems 1 and 2, the divisibility properties they imply in such or such situation
are not always sharp. Better divisibility properties have often been obtained by different
means, in particular when the Taylor coefficients are also known to satisfy combinatorial
properties from which alternative formulas equivalent to those of type (1.5) can be deduced.

3.1. The linear case. The material in this subsection is well-known. We recall it for the
reader’s convenience and also because it provides a simple interpretation of the condition
that M is split over Q in terms of an indicial polynomial of a linear differential equation.
In the general non-linear case, the interpretation of M along a similar line is given in §2.1.
The situation we consider here is when Q in (1.1) is a linear polynomial in Y0, . . . , Yk, i.e.,
an inhomogeneous linear equation for f . Differentiating enough time, we then obtain a
homogeneous differential equation for f .
A linear differential equation L :

∑n
k=0 pk(x)f

(k) = 0, p0, . . . , pn ∈ K[X], pn ̸= 0 and K
any subfield of C, can be rewritten as

∑m
j=0 x

m−jqj(θ)(f) = 0, where q0, . . . , qm ∈ K[X],

qm ̸= 0, and θ is Euler’s operator x d
dx
. The polynomial qm(X) is the indicial polynomial

at the origin of L; see [5, §4.1, Lemma 1], the proof of which holds in fact verbatim in this
general setting. Let us assume that f(x) =

∑∞
n=0 fnx

n ∈ K[[x]] is a solution of L. It is
immediate that (see [2, §4.1])

m∑
j=0

qj(n+ j)fn+j = 0

for all n large enough, say n ≥ N . Up to increasing the value of N , we can assume that
for all n ≥ N we have qm(n+m) ̸= 0. Then

fn+m = − 1

qm(n+m)

m−1∑
j=0

qj(n+ j)fn+j, n ≥ N.

Let us now assume that K = Q. We may rewrite the above equation as

fn+1 :=
1

am(n)

m−1∑
j=0

aj(n)fn−j, n ≥ N +m− 1,

where a0, . . . , am ∈ OQ[X] and the leading coefficient of am is a positive integer. This
recurrence is of the type in (1.5) with k0 = 1. By induction on n, we obtain that

Dn := D
n−1∏

j=N+m−1

am(j)

is a denominator of fn for all n ≥ N +m, where D is a common denominator of fN , . . . ,
fN+m−1.
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Now, am is split over Q if and only if the indicial polynomial at the origin qm is split
over Q. Assuming this is the case, we have am(X) = C

∏d
i=1(uiX + vi) with C a non-

negative integer, u1, . . . , ud positive integers and v1, . . . , vd integers. It follows that Dn

divides DCn+1(νn+ ν)!d for some positive integer ν.

3.2. Roots of power series. Let f(x) =
∑∞

n=0 fnx
n ∈ Q[[x]] be a solution of a linear

equation with coefficients in Q[x] and with rational exponents at the origin. We have seen
in §3.1 that the sequence (fn)n≥0 is then solution of a recurrence of type (1.5), which in
this case reads

d∑
k=0

pk(n)fn+k = 0, (3.1)

with pk(X) ∈ OQ[X] for k = 0, . . . , d− 1, and pd(X) ∈ Q[X] and split over Q.
For simplicity, let us assume without loss of generality that f0 ̸= 0. Let m ≥ 2 be an

integer and let g(x) =
∑∞

n=0 gnx
n ∈ Q[X] be such that f = gm. In particular, g0 ̸= 0

because f0 = gm0 . Substituting gm for f in the differential equation satisfied by f readily
implies that g is a DA function. We claim that the sequence (gn)n≥0 is also solution of a
recurrence of type (1.5).

Indeed, we have

fn =
∑

j1+j2+···+jm=n

gj1gj2 · · · gjm = mgm−1
0 gn +

∑
j1+j2+···+jm=n

j1,...,jm≤n−1

gj1gj2 · · · gjm ,

so that from (3.1) we deduce that

mgm−1
0 pd(n)gn+d

= −
d−1∑
k=0

(
pk(n)

∑
j1+j2+···+jm=n+k

gj1gj2 · · · gjm
)
− pd(n)

∑
j1+j2+···+jm=n+d

j1,...,jm≤n+d−1

gj1gj2 · · · gjm . (3.2)

Since pd(n) ̸= 0 for all n large enough, it follows that (3.2) can be rearranged into a
recurrence of type (1.5) as claimed.

3.3. Generating functions of special sequences. We now illustrate our method with
three classical series solutions of Riccati equations.

The function x/ log(1 + x) =
∑∞

n=0 gnx
n is solution of x(1 + x)y′ + y2 − (1 + x)y = 0.

This differential equation provides the recurrence relation

gn+1 = − 1

n+ 2

(
(n− 1)gn +

n∑
j=1

gjgn+1−j

)
, n ≥ 0, (3.3)

with g0 = 1. The gn are known as the Gregory coefficients or Cauchy numbers of the first
kind. It is known that n! gn =

∑n
k=0 s(n, k)/(k+1), where s(n, k) ∈ Z are Stirling numbers

of the first kind, so that lcm{1, 2, . . . , n+ 1}n! gn ∈ Z for all n ≥ 0. See [4, pp. 293–294].
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Let us explain what divisibility could be obtained with our result. The recurrence (3.3) is
an example for which σ1 = −1, and thus this necessitates to transform it into a recurrence
with σ ≥ 0. Following the procedure in the proof of Lemma 1, let g̃n = gn+1, substitute
this in (3.3), and finally replace n by n+ 1. In this manner, we obtain

g̃n+1 = − 1

n+ 3

(
ng̃n +

n∑
j=0

g̃j g̃n−j

)
, n ≥ 0, g̃0 = 1/2.

We can apply Theorem 2 with s = 1, a1 = 1, b1 = 3, C = 1, D = 2, σ1 = σ2 = 0, k0 = 2,
N = 0 and Π = 12, so that 24n(n− 1)! (n+ 1)! gn ∈ Z for all n ≥ 1.

Next we consider the function x
ex−1

=
∑∞

n=0 bnx
n. We have b0 = 0, b1 = −1/2, b2n+1 = 0

for n ≥ 2. Let us write b2n = B2n/(2n)! for n ≥ 1. The numbers B2n are the Bernoulli num-
bers. The Clausen–von Staudt Theorem says that the denominator of B2n is the product of
the prime numbers p such that p−1 divides 2n; this quantity divides lcm{1, 2, . . . , 2n+1}.
The above power series is solution of xy′+ y2+(x− 1)y = 0, from which we deduce that

bn+1 = − 1

n+ 2

(
bn +

n∑
j=1

bjbn+1−j

)
, n ≥ 0, b0 = 1. (3.4)

This is again an example of a recurrence with σ1 = −1, and it is completely similar to (3.3).

We let b̃n := bn+1, substitute in (3.4), and then change n to n+ 1. We obtain

b̃n+1 = − 1

n+ 3

(
b̃n +

n∑
j=0

b̃j b̃n−j

)
, n ≥ 0, b̃0 = 1/2.

Exactly as with the Gregory coefficients, we can apply Theorem 2 with s = 1, a1 = 1, b1 =
3, C = 1, D = 2, σ1 = σ2 = 0, k0 = 2, N = 0 and Π = 12, so that 24n(n−1)! (n+1)! bn ∈ Z
for all n ≥ 1.

The function tan(x) =
∑∞

n=0 tnx
n is solution of y′ − y2 − 1 = 0, which translates into

the recurrence

tn+1 =
1

n+ 1

n∑
j=0

tjtn−j, n ≥ 1,

with t0 = 0, t1 = 1. We can apply Theorem 2 with C = 1, D = 1, s = 1, a1 = 1, b1 = 1,
σ1 = σ2 = 0, k0 = 2, P0,1 = 0, P0,2 = 1, N = 1 and Π = 1. It follows that n!2tn ∈ Z, n ≥ 0.
It is known that t2n = 0 while t2n−1 = (−1)n−14n(4n − 1)B2n/(2n)!, where the B2n are
again the Bernoulli numbers. See [4, p. 88].

These examples show why Theorem 2 is not always sharp: quantities like lcm{1, 2, . . . , n}
or
∏

p : p−1|n p are “incorporated” into an n! factor, because even though they are less
than 3n, they do not divide δn for some δ. At the cost of a complicated p-adic analysis
that we do not reproduce here, we have been able to prove that for the sequence (fn)n≥0

defined in the introduction by (1.3) with a = 1, the denominator of fn divides (n +
1)!2/ lcm{1, 2, . . . , n + 1}, which improves on n! (n + 1)! given by Theorem 2. We did not
try to prove such refinements in the general case.
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3.4. Elliptic differential equation. The Weierstraß elliptic function ℘ with modular
invariants g2, g3 ∈ C (such that g32 ̸= 27g23) satisfies the algebraic differential equation

℘′2 = 4℘3 − g2℘− g3. (3.5)

The function ℘(x) is a doubly-periodic meromorphic function on C, and it can be expanded
in a Laurent series at 0 (3). We have

℘(x) =
1

x2
+

∞∑
n=2

pnx
2n−2,

where the coefficients pn satisfy the recurrence

pn =
3

(2n+ 1)(n− 3)

n−2∑
j=2

pjpn−j, n ≥ 4, (3.6)

with p2 = g2/20, p3 = g3/28; see [1, p. 635, Eq. (18.5.3)]. Eq. (3.6) is easily obtained not
from (3.5) but from the simpler equation

12℘2 − 2℘′′ − g2 = 0,

which follows at once from differentiating (3.5). To apply Theorem 2, we define un := pn+2

for n ≥ 0: we have

un+1 =
3

(2n+ 7)n

n−1∑
j=0

ujun−j−1, n ≥ 1,

with u0 = g2/20 and u1 = g3/28. It is obvious that un is a polynomial in g2 and g3 with
rational coefficients. Assuming that g2, g3 are in Q, let D denote a common denominator
of g2/20 and g3/28. We are in the situation of Theorem 2 with C = 1, s = 2, a1 = 1,
b1 = 0, a2 = 2, b2 = 7, k0 = 2, σ2 = 1, N = 1, P0,1 = P0,2 = P1,0 = 0 and P1,1 = 3 and
Π := 23 · 32 · 5 · 7 = 2520. It follows that

Dn+1Πn(n− 1)!n! (2n)! (2n+ 5)! pn+2 ∈ OQ, n ≥ 1.

We have not been able to find a divisibility of this nature in this generality in the
literature, but would be surprised if it were a new result. For instance, Hurwitz obtained
a much better result when g2 = 4 and g3 = 0 (the lemniscate case). Using his notations,
let

℘(x) =
1

x2
+

∞∑
n=1

24nEn

4n
· x4n−2

(4n− 2)!
∈ Q[[x]],

which is a solution of y′2 = 4y3 − 4y. Then he showed in [7, p. 208] the following result,
which is an analogue of the Clausen–von Staudt Theorem for the Bernoulli numbers.

Let dn denote the denominator of En: (1) there is no prime number ≡ 3 mod 4 that
divides dn; (2) if a prime number p ≡ 1 mod 4 divides dn, then p − 1 divides 4n and p2

does not divide dn.

3Our results hold for DA Laurent series f , because xmf is a DA power series for some suitable integer m.
A non-linear recurrence of type (1.4) for the coefficients of xmf obviously provides one for those of f .
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Moreover, it follows from the partial fraction expansion of En in [7, p. 219, Eq. (78)] that
v2(En) = −1. Hence, (

∏
p : p−1|4n p)En ∈ Z. Moreover, letting

1

2℘(x)
=

∞∑
n=0

en
x4n+2

(4n+ 2)!
,

he also proved that en ∈ Z for all n ≥ 0; see [7, p. 224]. Finally, let us mention that

−1/℘(x) is curiously also a solution of y′2 = 4y3 − 4y, and that
√

1/℘(x) is a solution of
y′′ + 2y3 = 0.

3.5. Painlevé equations. Painlevé equations produce a lot of interesting examples. (We
refer the reader to [3] for an introduction.) In this subsection, we only consider the family
of algebraic differential equations known as Painlevé PII’:

y′′ = δ(2y3 − 2xy) + γ(6y2 + x) + βy + α,

where it is assumed that α, β, γ, δ are in Q. It is a simple task to check that u(x) :=∑∞
n=0 unx

n is a solution of PII’, where the sequence (un)n≥0 is given by

un+1 =
1

n(n+ 1)

(
2δ

∑
j1+j2+j3=n−1
0≤j1,j2,j3≤n−1

uj1uj2uj3 +6γ
∑

j1+j2=n−1
0≤j1,j2≤n−1

uj1uj2 − 2βun−1− 2δun−2

)
, n ≥ 2,

with u0, u1 arbitrary in Q, and u2 = −δu30−3γu20−βu0/2−α/2. This is a situation where
Theorem 2 with s = 2, a1 = a2 = b1 = 1, b2 = 0, k0 = 3, σ1 = 1, σ2 = 2, N = 2, Π = 1,
and C the common denominator of 2δ, 6γ, 2β, applies. Letting D ≥ 1 denote the least
common denominator of u0, u1, u2, we have

CnD2n+1(n− 1)!n!3 un ∈ Z, n ≥ 2.

3.6. Kepler’s equation. Kepler’s equation from Celestial Mechanics is E − e sin(E) =
M, where E,M, e are the eccentric anomaly, the mean anomaly, and the eccentricity,
respectively. Inventing for the purpose of solving this equation what is now known as
Lagrange’s inversion formula, Lagrange [11] found the well-known expansion

φ(e) := E −M =
∞∑
n=1

( d
dt

)n−1(
sin(t)n

)
t=M

· e
n

n!
, (3.7)

which is an odd and 2π-periodic function of M , and which converges in the disk |e| < e0
for all M . Here, e0 = 2

√
ρ(1− ρ)/(1− 2ρ) ≈ 0.6627, where ρ ≈ 0.0832 satisfies 1/ρ− 1 =

exp(2/(1− 2ρ)); see the details in [21].
It is easy to prove that (sinn(t))(n−1) = Pn

(
sin(t), cos(t)

)
, where Pn(X, Y ) ∈ Z[X, Y ] is

of degree ≤ n in X and ≤ 1 in Y . Therefore, when sin(M) ∈ Q (hence cos(M) ∈ Q as
well), there exists a positive integer δ such that, for all n ≥ 1,

δn+1
( d
dt

)n−1(
sinn(t)

)
t=M

∈ OQ.
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Hence, from (3.7), we deduce in this case that the denominator of the n-th Taylor coefficient
of φ at the origin divides δn+1n!.

We now want to use this example to show how to effectively determine a recurrence
like (1.5) in a more complex situation than in the previous examples. We change e to x
and let φ(x) = E −M . Kepler’s equation reads sin(φ +M) = φ/x, with φ(0) = 0 and
φ′(0) = sin(M). Differentiating this equation with respect to x and squaring both sides,
we find

φ′2(1− (φ/x)2) = ((φ/x)′)2, (3.8)

or, in expanded form,

x2(x2 − 1)φ′2 − φ2 + 2xφ′φ− x2φ′2φ2 = 0. (3.9)

Let φ(x) =
∑∞

n=0 ϕnx
n. We have ϕ0 = 0, ϕ1 = sin(M), and ϕ2 = sin(M) cos(M). We

shall assume below that ϕ2 ̸= 0, which a fortiori implies that ϕ1 ̸= 0. From the algebraic
differential equation (3.9), we deduce that, for n ≥ 5, we have∑

j1+j2=n−4
0≤j1,j2≤n−4

(j1 + 1)(j2 + 1)ϕj1+1ϕj2+1 −
∑

j1+j2=n−2
0≤j1,j2≤n−2

(j1 + 1)(j2 + 1)ϕj1+1ϕj2+1 −
∑

j1+j2=n
0≤j1,j2≤n

ϕj1ϕj2

+
∑

j1+j2=n−1
0≤j1,j2≤n−1

2(j1 + 1)ϕj1+1ϕj2 −
∑

j1+j2+j3+j4=n−2
0≤j1,j2,j3,j4≤n−2

(j1 + 1)(j2 + 1)ϕj1+1ϕj2+1ϕj3ϕj4 = 0,

which can be rewritten as∑
j1+j2=n−2
0≤j1,j2≤n−3

j1j2ϕj1ϕj2 −
∑

j1+j2=n
0≤j1,j2≤n−1

j1j2ϕj1ϕj2 −
∑

j1+j2=n
0≤j1,j2≤n

ϕj1ϕj2

+
∑

j1+j2=n
0≤j1≤n,0≤j2≤n−1

2j1ϕj1ϕj2 −
∑

j1+j2+j3+j4=n
0≤j1,j2≤n−1,0≤j3,j4≤n−2

j1j2ϕj1ϕj2ϕj3ϕj4 = 0.

This is equivalent to∑
j1+j2=n−2
0≤j1,j2≤n

P1(n, j1, j2)ϕj1ϕj2 +
∑

j1+j2=n
0≤j1,j2≤n

P2(n, j1, j2)ϕj1ϕj2

+
∑

j1+j2+j3+j4=n
0≤j1,j2,j3,j4≤n

P3(n, j1, j2, j3, j4)ϕj1ϕj2ϕj3ϕj4 = 0,

where
P1(n, j1, j2) = j1j21{0≤j1,j2≤n−3},

P2(n, j1, j2) = −j1j21{0≤j1,j2≤n−1} + 2j11{0≤j2≤n−1} − 1,

P3(n, j1, j2, j3, j4) = −j1j21{0≤j1,j2≤n−1,0≤j3,j4≤n−2}.

This is an algebraic relation between ϕ0, ϕ1, . . . , ϕn. A simple analysis shows that neither
ϕn nor ϕn−1 appear in this relation. Indeed, in the three sums, ϕn can appear only in terms



21

involving ϕnϕ0 or ϕnϕ
3
0, which are equal to 0 because ϕ0 = 0. The coefficient ϕn−1 does not

appear in the first sum, appears in the second as (P2(n, n−1, 1)+P2(n, 1, n−1))ϕ1ϕn−1 = 0
because P2(n, n − 1, 1) + P2(n, 1, n − 1) = 0, and in the third sum in terms of the form
ϕn−1ϕ1ϕ0ϕ0 = 0. The coefficient ϕn−2 does not appear in the first sum, appears in terms
involving ϕn−2ϕ

2
1ϕ0 = 0 and ϕn−2ϕ2ϕ

2
0 = 0 in the third sum, and in the second sum, ϕn−2

appears in the expression (P2(n, n − 2, 2) + P2(n, 2, n − 2))ϕ2ϕn−2 = −2(n + 1)ϕ2ϕn−2.
Therefore, since we have assumed that ϕ2 ̸= 0, we finally obtain the recurrence (after
changing n to n+ 3)

ϕn+1 =
1

2ϕ2(n+ 4)

( ∑
j1+j2=n+1
0≤j1,j2≤n

P1(n+ 3, j1, j2)ϕj1ϕj2 +
∑

j1+j2=n+3
0≤j1,j2≤n

P2(n+ 3, j1, j2)ϕj1ϕj2

+
∑

j1+j2+j3+j4=n+3
0≤j1,j2,j3,j4≤n

P3(n+ 3, j1, j2, j3, j4)ϕj1ϕj2ϕj3ϕj4

)
, n ≥ 2.

This is a recurrence of the form (1.5) (with negative σ1), to which we can apply Theorem 1
becauseM(X) ∈ Q[X] is linear. We do not provide the details of the explicit result, which

is of the form δ̃n+1(νn + ν)!2 for some integers δ̃, ν ≥ 1, because it is weaker than the
already obtained divisibility of δn+1n! by the denominator of ϕn.

Finally, instead of φ, we could consider ψ(x) := φ(x)/x =
∑∞

n=0 ϕn+1x
n. The differential

equation (3.8) becomes (xψ)′2(1− ψ2) = (ψ′)2 or, in expanded form,

(1− x)ψ′2 + 2xψ′ψ3 + x2ψ′2ψ2 − 2xψ′ψ + ψ4 − ψ2 = 0.

This would lead to an a priori different recurrence for the sequence (ϕn)n≥0.

3.7. The compositional inverse of the dilogarithm. The dilogarithm is Li2(x) :=∑∞
n=1 x

n/n2, with derivative − log(1 − x)/x, and it admits a power series ℓ as inverse for
the composition:

ℓ(x) :=
∞∑
n=0

ℓnx
n = x− 1

4
x2 +

1

72
x3 − 1

576
x4 − 31

86400
x5 − 149

1036800
x6 − · · · .

The function ℓ is DA, for it satisfies

ℓ′′ℓ− ℓ′′ℓ2 + ℓ′3 + ℓ′2ℓ− ℓ′2 = 0. (3.10)

Indeed, we have 1 = (Li2(ℓ))
′ = −ℓ′ log(1 − ℓ)/ℓ, so that, by multiplying by ℓ and then

differentiating both sides, we obtain

ℓ′ = −ℓ′′ log(1− ℓ) +
ℓ′2

1− ℓ
=
ℓ′′ℓ

ℓ′
+

ℓ′2

1− ℓ
,

which gives the above differential equation after some rearrangement. The situation is a
little simpler than with Kepler’s equation because (3.10) is autonomous, i.e., its coefficients
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are independent of x. For all n ≥ 0, we have

[xn](ℓ′′ℓ) =
∑
i+j=n

(i+ 1)(i+ 2)ℓi+2ℓj, (3.11)

[xn](−ℓ′′ℓ2) = −
∑

i+j+k=n

(i+ 1)(i+ 2)ℓi+2ℓjfk,

[xn](ℓ′3) =
∑

i+j+k=n

(i+ 1)(j + 1)(k + 1)ℓi+1ℓj+1ℓk+1, (3.12)

[xn](ℓ′2ℓ) =
∑

i+j+k=n

(i+ 1)(j + 1)ℓi+1ℓj+1ℓk,

[xn](−ℓ′2) = −
∑
i+j=n

(i+ 1)(j + 1)ℓi+1ℓj+1, (3.13)

where in the summations all the indices run between 0 and n, and where as usual [xn](f)
denotes the n-th Taylor coefficient of a power series f . Proceeding as in §3.6, we see that
ℓn+2 appears in none of these sums because it is always multiplied by ℓ0 = 0. The term ℓn+1

appears only in (3.11), (3.12), and in (3.13), with the coefficients n(n + 1)ℓ1, 3(n + 1)ℓ21,
and −2(n+1)ℓ1, respectively. This is ℓ1(n+1)(n+3ℓ1− 2) = (n+1)2 in total. Therefore,
we have

ℓn+1 =
1

(n+ 1)2

(
−

∑
i+j=n

i≤n−2,j≤n

(i+ 1)(i+ 2)ℓi+2ℓj +
∑

i+j+k=n
i≤n−2,j,k≤n

(i+ 1)(i+ 2)ℓi+2ℓjℓk

−
∑

i+j+k=n
i,j,k≤n−1

(i+ 1)(j + 1)(k + 1)ℓi+1ℓj+1ℓk+1 −
∑

i+j+k=n
i,j≤n−1,k≤n

(i+ 1)(j + 1)ℓi+1ℓj+1ℓk

+
∑
i+j=n
i,j≤n−1

(i+ 1)(j + 1)ℓi+1ℓj+1

)
, n ≥ 0.

It follows that, for all n ≥ 0, δn+1(νn+ν)!4ℓn ∈ Z for some positive integers δ, ν. Numerical
experiments suggest that the exponent 4 could be replaced by 2. This would be true if it
could be proved for instance that

(
ℓn
)
n≥0

satisfies a non-linear recurrence of type (1.5) like

above but with (n+ 1)2 replaced by an+ b for suitable integers a and b.
As a side remark, we point out that it is possible to determine the asymptotic behaviour

of ℓn. By Lagrange’s inversion formula [6, p. 732, Theorem A.2], we have

ℓn =
1

2iπn

∫
C

dz

Li2(z)n
, n ≥ 0,

where C is a circle centred at 0 and of sufficiently small radius. This circle can be deformed
to a suitable Hankel-type contour to which the saddle point method can be applied (see [6]
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for similar computations). We obtain that

ℓn ∼ − ζ(2)−n

n2 log(n)2
, n→ +∞. (3.14)

Hence, the radius of convergence of ℓ at x = 0 is π2/6, and (ℓn/ℓn+1)n≥0 is a sequence of
rational numbers that converge to π2/6, but not especially quickly. The proof of (3.14) is
given in our note [10].

3.8. Examples related to modular forms. Various automorphic functions, including
certain classical modular forms, are known to satisfy algebraic differential equations of
order at least 3 and of the form Q(y)(y′)2 = {y;x}, where {y;x} := y′′′/y′ − 3

2
(y′′/y′)2 is

the Schwarzian derivative with respect to x, and Q is a rational function with poles of
order at most 2. For instance, Mahler proved in [13] that the elliptic modular invariant

F (q) := J(q2) = q−2
(
1 + 240

∞∑
n=1

n3q2n(1− q2n)−1
)3 ∞∏

n=1

(1− q2n)−24

= 1/q2 + 744 + 196884q2 + 21493760q4 + 864299970q6 + · · · ,

satisfies the order 3 equation

F ′′′ =
3q2F ′′2 − 4qF ′F ′′ − F ′2

2q2F ′ − F ′3
( 4

9F 2
+

3

8(F − 123)2
− 23

72F (F − 123)

)
, (3.15)

where the derivatives are taken with respect to q. He also proved that F cannot satisfy
an algebraic differential equation of order ≤ 2. Since the degree in F ′′′ of (3.15) is 1, this
equation is of the standard form to which we can apply the procedure described in [23,
p. 382]. The indicial polynomial P0 of the associated differential operator L0 ∈ Q[[x]][ d

dx
]

is P0(X) = X3 + 8X2 − 10X + 64, which has no rational root. Lemma 2.2 of [23, p. 382]
then provides a non-linear recurrence of type (1.4) for the coefficients of F with M(X) =
P0(X+m) for some integerm ≥ 0. This recurrence is not of type (1.5), and our Theorems 1
and 2 cannot be applied to it. We do not know if there exists a recurrence of type (1.5) for
the coefficients of F (which are well-known to be integers), i.e., with M split over Q. Let
us also mention that a vast algebraico-geometric generalization of modular forms, known
as mirror maps, are shown to be DA functions in [25, Proposition 1].

3.9. A simple example with M non split over Q. We conclude with an example for
which M is non-split over Q, and for which it is possible to make numerical experiments.
The differential equation x2y′′ + (x − 1)y′ + y − xy2 = 1 has as solution the power series∑∞

n=0 fnx
n with

fn+1 =
1

n2 + 1

n∑
k=0

fkfn−k, n ≥ 0, f0 := 1.
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Numerical experiments for values of n up to 2000 suggest that the denominator dn of fn
is such that log(dn)/(n log(n)

2) converges to a constant close to 0.566. Moreover,

log(d2n)

2n log(2n)
− log(dn)

n log(n)

seems to converge to a constant close to 0.39, which tends to confirm that log(dn)/(n log(n))
behaves more like log(n) than like log log(n).

Moreover, it seems that
∏⌊n/2⌋

k=0 (k2 + 1) divides 2ndn for all n ≥ 0. If true, this conjec-
turally implies that there exist no integers δ, ν, µ, s ≥ 0 such that dn divides δn+1(νn+µ)!s

for all n ≥ 0. Indeed, on the contrary, this would imply the same type of divisibility for∏n
k=0(k

2+1), and we have explained in the introduction why this is not true conjecturally.
All these computations do not point towards a positive solution to Mahler’s denominator

conjecture, but these experiments should be conducted for more values of n on this sequence
and others in the non-split case to be more affirmative.
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