YMTHE, Volume 32

Supplemental Information

Dual CRALBP isoforms unveiled: iPSC-derived

retinal modeling and AAV2/5-RLBP1 gene

transfer raise considerations for effective therapy

Krishna Damodar, Gregor Dubois, Laurent Guillou, Daria Mamaeva, Marie Pequignot, Nejla Erkilic, Carla Sanjurjo-Soriano, Hassan Boukhaddaoui, Florence Bernex, Béatrice Bocquet, Jérôme Vialaret, Yvan Arsenijevic, T. Michael Redmond, Christopher Hirtz, Isabelle Meunier, Philippe Brabet, and Vasiliki Kalatzis

Figure S1: Quality controls of RPA1, RPA2 and RPA3 iPSCs. A) RT-PCR analysis of the clearance of the Sendai virus (SeV) reprogramming vectors in iPSCs at P12 (RPA2) and P16 (RPA1 and RPA3) using primers specific to the transgene cassettes (KLF4, c-MYC, KOS) or viral backbone (SeV). C-, control without cDNA; Fibroblasts, negative control; SeV-transduced fibroblasts (+ SeV), positive control. B) qPCR analysis of the relative expression of host pluripotency genes *NANOG*, *OCT3/4* and *LIN28A* in control iPSCs (positive control) and iPSCs of RPA1, RPA2 and RPA3 patients; Fibroblasts (Fibros), negative control. **C**) Teratoma assay showing the differentiation of RPA1, RPA2 and RPA3 iPSCs into: ectoderm, as determined by the presence of neural tubes (row 1); mesoderm, as determined by the presence of cartilage (row 2); endoderm, as determined by the presence of intestinal epithelium with typical mucous cells (row 3). Scale bar = 50 µm (ectoderm and endoderm) and 100 µm (mesoderm). **D**) Karyotype analysis of RPA1 iPSCs with a normal 46, XX karyotype at P16, and RPA2 and RPA3 iPSCs with a normal 46, XX karyotype at P16, and RPA2 and RPA3 iPSCs with a normal 46, XX karyotype at P16, and RPA2 and RPA3 iPSCs with a normal 46, XX karyotype at P16, and RPA2 and RPA3 iPSCs with a normal 46, XX karyotype at P16, and RPA2 and RPA3 iPSCs with a normal 46, XX karyotype at P16, and RPA2 and RPA3 iPSCs with a normal 46, XX karyotype at P16, and RPA2 and RPA3 iPSCs with a normal 46, XY karyotype at P14 and P19, respectively.

Figure S2: *RLBP1* in iPSC-derived RPE and CRALBP expression from proviral plasmids. A) gPCR analysis of RLBP1 expression in control iPSCs, and in control, RPA1, RPA2 and RPA3 iPSC-derived RPE using a forward primer spanning the exon 6 to 7 junction and a reverse primer in exon 7 (situated in the deletion carried by RPA3). Data are represented as mean ± SEM and expressed relative to control: *p < 0.05: n = 3. B) Western blot analysis of CRALBP using a mouse monoclonal antibody in COS-7 cells non-transfected (NT), or transfected with a GFP-expressing plasmid or pKL-RLBP1, and scraped and collected in different combinations of protein inhibitor cocktails (PIC) and buffers: 1. Roche PIC and resuspension in Laemmli buffer (standard conditions); 2. Roche PIC and lysis in RIPA buffer; 3. Cell signalling PIC and lysis in Cell signalling lysis buffer; 4. Cell signalling PIC and lysis in RIPA buffer; 5. Roche PIC and lysis in Cell Signalling buffer; β -actin was used as loading control and GFP as a positive transfection control. **C**) Western blot analysis of CRALBP using a mouse monoclonal antibody in COS-7 cells NT or transfected with a GFP-expressing plasmid or pKL-RLBP1, and collected in Laemmli or RIPA buffer: B-actin was the loading control. D) Western blot analysis of CRALBP using a mouse polyclonal antibody in COS-7 cells NT or transfected with a GFP-expressing plasmid or with pKL-RLBP1, collected in Biorad Native sample buffer or lysed in RIPA (without SDS) buffer, and migrated under nondenaturing conditions; β -actin was the loading control.

Figure S3: Proteomic and western blot analysis of control or mutant CRALBP isoforms. Alignment of the CRALBP peptides identified by mass spectrometry in the different gel fractions on the full length CRALBP sequence. The light blue square indicates the differing N-terminus between the two isoforms. **B**) Western blot analysis of CRALBP in 30 μ g lysate of control, RPA1 and RPA2 iPSC-derived RPE cultured in 24-well plates. **C**) Western blot analysis of the CRALBP isoforms in 15 μ g lysates of HEK-293 cells transfected with the control pKL-RLBP1 plasmid and the plasmids mutated in the ATG start codons (Met1Ala, Met10Ala) or carrying the missense variants present in patients RPA1 (Arg234Trp) and RPA2 (Arg9Cys); β -actin was the loading control in B and C.

Figure S4: CRALBP production and scotopic ERG recordings post-AAV-RLBP1 administration. Western blot analysis of CRALBP in the eyes of wild-type (WT) and non-injected (NI) or AAV-RLBP1-injected *Rlbp1*^{-/-} mice; β -actin represents the loading control. Baseline a-wave (**B**) and b-wave (**C**) ERG amplitudes (in μ V) in dark-adapted WT and NI, DPBS-injected, AAV-GFP-injected and AAV-RLBP1-injected *Rlbp1*^{-/-} mice following stimulation at increasing light intensities expressed in log candela second/metre². Recordings were performed up to 8 weeks post-injection. Data are represented as mean ± SEM; *n* = 9 (WT), 10 (NI), 9 (DPBS), 7 (AAV-GFP) and 8 (AAV-RLBP1). a-wave (**D**) and b-wave (**E**) ERG amplitudes post-photobleaching of the same wild type (WT) and *Rlbp1*^{-/-} mice recorded up to 10 weeks post-treatment. Data are represented as mean ± SEM.

Target	Experiment	Sequence (5' to 3')			
Mlul-RLBP1	Vector production	F: ACG CGT ATG TCA GAA GGG GTG GGC AC			
RLBP1-Xhol		R: CTC GAG TCA GAA GGC TGT GTT CTC AG			
pKL backbone	Sanger	F: AAT CTG TGC GGA GCC GAA AT			
RLBP1 exon 5	sequencing cDNA	F: CGC GCA CGG AAG TTC AAC GT			
RLBP1 exon 7		F: CAA GGG CTT TAC CAT GCA GC			
RLBP1 exon 5		R: GAA GCC GCT GTC CTT CTC TT			
RLBP1 exon 6		R: AGG CTG TCA AAG AGC TCA GG			
RLBP1 exon 7-8		R: TCC TGG AGC ATG TCC ACC AT			
Rlbp1	Genotyping	F: TTA GAC TCA CAG GGG CCA ACA			
		R1: ATG ATC CTT GGT TGT GAG CTG CTC			
		R2: TAA AGC GCA TGC TCC AGA CT			
c 14TG>GCG	Site directed				
n Met1Ala	mutagenesis				
p.iviet iAia	mutagenesis				
c.28ATG>GCG	Overlapping PCR	F1: TGA TTA ATT CGA GCG AAC GCG T AT G TC AGA AGG GGT GGG CAC GTT			
p.Met10Ala		CCG			
		R2: CAG TTG GGC ACG GAG CTC CTG TTC CTC TTC AGG TAC CGC GCG GAA			
		CGT GCC CAC C			
		F3: GCT CCG TGC CCA ACT GGA GCA GCT CAC AAC CAA GGA CCA TGG ACC			
		TGT CTT TGG CCC			
		R4: CTT GGC CTT CTG CAA GGT GTG GCG GGG CAG CTG GCT GCA CGG			
		GCC AAA GAC AGG TCC			
		F5: ACC TTG CAG AAG GCC AAG GAT GAG CTG AAC GAG AGA GAG GAG			
		ACC CGG GAG GAG GC			
		R6: TGC GCC TGC ACC ATC TCC TGC AGC TCT CGC ACT GCC TCC TCC CGG			
		G			
	Flanking PCR	F: TGA TTA ATT CGA GCG AAC GCG			
		R: TGC GCC TGC ACC ATC			
c.25C>T	Site directed	F: GGG TGG GCA CGT TCT GCA TGG TAC CTG AAR'			
p.Arg9Cys	mutagenesis	R: 5'TTC AGG TAC CAT GCA GAA CGT GCC CAC CC3			
c.700C>T	Site directed	F: GAT TCC TTC CCA GCC TGG TTC AAA GCC ATCC			
p.Arg234Trp	mutagenesis	R: GGA TGG CTT TGA ACC AGG CTG GGA AGG AAT C			
c.25C>T in exon 4	Sanger	F: GAC CCC ACA AAA GGA GGA GG			
(p.Arg9Cys; RPA2)	sequencing gDNA	R: GCT GGA CCC TTT TCA CAG GA			
c.333T>G in exon 5	Sanger	F: CCT CAC CCG CAC CTA AGT TT			
(p.Tyr111X; RPA1 and	sequencing gDNA	R: GGG GGT CTG GAG GGG AAA TT			
RPA2)					
c.700C>T in exon 8	Sanger	F: TTG CTG GCC TGG AAA TAG GA			
(p.Arg234Trp; RPA1)	sequencing gDNA	R: GGT GCC CTA AGG ATG AGG GT			
Exons 7-9del (RPA3)	Long-range PCR	F: TGT GAA GCT GAG CAC GTC AGA T			
	(gDNA)	R: TTG GGA GAA CTT TGG CAT G			

Table S1. PCR, sequencing, genotyping and mutagenesis primers

F - forward, R - reverse

Table S2. RT-PCR and qPCR primer sequences

Target	Experiment	Forward primer	Reverse primer	Efficacity
RLBP1	qPCR exons 6-7	GAA ATC ACC TTT GAT GAG AT	TCT TCC TGA GAT CTG AAG TC	2.18
RLBP1	qPCR exon 6	ACC CTG AGC TCT TTG ACA GC	TGA AGA GCA TGA CCA CTC GG	2.02
SeV	RT-PCR	GGA TCA CTA GGT GAT ATC GAG C	ACC AGA CAA GAG TTT AAG AGA TAT	N/A
			GTA TC	
KOS	RT-PCR	ATG CAC CGC TAC GAC GTG AGC	ACCTTGACAATCCTGATGTGG	N/A
		GC		
KLF4	RT-PCR	TTC CTG CAT GCC AGA GGA GCC C	AAT GTA TCG AAG GTGCTC AA	N/A
c-MYC	RT-PCR	TAA CTG ACT AGC AGG CTT GTC G	TCC ACA TAC AGT CCT GGA TGA	N/A
			TGA TG	
NANOG	qPCR	CAA AGG CAA ACA ACC CAC TT	TCT GCT GGA GGC TGA GGT AT	2.06
OCT3/4	qPCR	GTA CTC CTC GGT CCC TTT CC	CAA AAA CCC TGG CAC AAA CT	1.94
LIN28A	qPCR	GGG GAA TCA CCC TAC AAC CT	CTT GGC TCC ATG AAT CTG GT	2.16
GAPDH	qPCR	AAC CAT GAG AAG TAT GAC AAC	CTT CCA CGA TAC CAA AGT T	2.02
L27	qPCR	ACG CAA AGC CGT CAT CGT GAA G	CTT GGC GAT CTT CTT CTT GCC	2.09

N/A – non-applicable

Table S3: Primary antibodies

Primary antibodies	Host	Clonality	Dilution	Company	Cat #
anti-ARL13B	Rabbit	Polyclonal	1/3000	Proteintech	17711-1-AP
anti-β-actin, clone AC-74	Mouse	Monoclonal	1/10000	Sigma-Aldrich	A5316
anti-BEST1	Mouse	Monoclonal	1/500	Abcam	Ab2182
anti-CRALBP, clone B2	Mouse	Monoclonal	1/1000	Abcam	ab15051
anti-CRALBP	Rabbit	Monoclonal	1/1000	Abcam	ab183728
anti-CRALBP	Mouse	Polyclonal	1/1000	AgroBio	Directed against recombinant human CRALBP
anti-GFP	Rabbit	Polyclonal	1/2000	Invitrogen	A6455
anti-LRAT	Rabbit	Polyclonal	1/250	Abcam	ab166784
anti-MERTK, clone Y323	Rabbit	Monoclonal	1/250	Abcam	ab52968
anti-Perilipin-2	Guinea pig	Polyclonal	1/2000	Progen	GP47
anti-RPE65	Mouse	Monoclonal	1/1000	Abcam	ab13826
anti-ZO-1	Rabbit	Polyclonal	1/100	ThermoFisher Scientific	40-2200

Table S4: Secondary antibodies

Secondary antibodies	Host	Dilution	Company	Cat #
anti-Mouse IgG-HRP	Sheep	1/10000 (WB)	Jackson ImmunoResearch	515-035-003
anti-Guinea Pig-HRP	Goat	1/10000 (WB)	Jackson ImmunoResearch	106-035-003
anti-Mouse IgG IRDye 680RD	Donkey	1/20000 (WB)	LI-COR Biosciences	926-68072
anti-Rabbit IgG IRDye 800CW	Donkey	1/20000 (WB)	LI-COR Biosciences	926-32213
anti-Mouse IgG Alexa Fluor 488	Donkey	1/500	ThermoFisher Scientific	A-21202
anti-Mouse IgG Alexa Fluor 594	Donkey	1/500	ThermoFisher Scientific	A-21203
anti-Rabbit IgG Alexa Fluor 488	Donkey	1/500	ThermoFisher Scientific	A-21206
anti-Rabbit IgG Alexa Fluor 594	Donkey	1/500	ThermoFisher Scientific	A-21207
anti-Mouse IgG Alexa Fluor 546	Goat	1/500	ThermoFisher Scientific	A10036
anti-Mouse IgG Alexa Fluor 594 AffiniPure	Donkey	1/500	Jackson ImmunoResearch	715-585-150
anti-Rabbit IgG Alexa Fluor 594 AffiniPure	Donkey	1/500	Jackson ImmunoResearch	711-585-152
anti-Mouse IgG Alexa Fluor 488 AffiniPure	Donkey	1/500	Jackson ImmunoResearch	715-546-151
anti-Rabbit IgG Alexa Fluor 488 AffiniPure	Donkey	1/500	Jackson ImmunoResearch	711-545-152