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Local explainability, an important sub-field of eXplainable AI, focuses on describing the decisions of AI models
for individual use cases by providing the underlying relationships between a model’s inputs and outputs.
While the machine learning community has made substantial progress in improving explanation accuracy and
completeness, these explanations are rarely evaluated by the final users. In this paper, we evaluate the impact
of various explanation and representation techniques on users’ comprehension and confidence. Through
a user study on two different domains, we assessed three commonly used local explanation techniques—
feature-attribution, rule-based, and counterfactual—and explored how their visual representation—graphical
or text-based—influences users’ comprehension and trust. Our results show that the choice of explanation
technique primarily affects user comprehension, whereas the graphical representation impacts user confidence.
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→ Artificial intelligence.
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1 Introduction
Artificial Intelligence (AI) algorithms have become ubiquitous for decision-making, including in
high-stakes domains such as law [5, 71] and healthcare [12, 24]. This has raised numerous critical
questions and concerns. One of these concerns arises from the fact that current AI algorithms can be
incredibly complex, making algorithmic decision-making opaque—i.e., the algorithms behave like
black boxes [63]. One approach to tackling this challenge is to make AI algorithms more explainable.
This is the main goal of the field of eXplainable AI (XAI). By improving the transparency of AI
systems, the XAI research community aims to increase people’s comprehension [28, 58] and
trust [39, 54] in AI systems, thereby facilitating their adoption.
Over the last five years, the XAI community has focused primarily on developing methods

to compute local explanations for AI models. These approaches explain the reasoning of an AI
system when applied to a single case, i.e., a target instance, and can be categorised into three
broad ‘explanation families’: feature-attribution, rule-based, and counterfactual [8, 25, 27, 33]. There
are a large number of explanatory methods, some of which have been widely adopted by data
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practitioners [26, 43, 58, 59]. Despite this plethora of XAI methods, much work has pointed to a lack
of end-user involvement in the evaluation of such methods [1, 4, 23, 60]. For example, Adadi et al. [1]
found that across 381 XAI articles, only 5% of articles explicitly evaluated the proposed methods
through a user study. This implies that novel explanation techniques are introduced without a clear
understanding of how the intended end-users perceive or interpret these explanations.

In contrast to the XAI and ML communities, user studies on AI explanations are commonplace
within the wider Human-Computer Interaction (HCI) and CSCW communities [14, 39, 72]. This line
of work underscores the importance of evaluating the impact of explanations on comprehension
(i.e., do users understand the AI system better thanks to the explanation?) and confidence (i.e.,
to which extent explanations increase or decrease users’ confidence in AI recommendations?).
However, existing studies typically focus on specific use cases, for example in a particular domain,
with a single explanation technique, or with a small and very specific cohort (e.g., CS students).
Furthermore, these studies tend to rely on human-generated explanations rather than explanations
generated by real-world AI systems. This creates a barrier to extrapolating these results to other
XAI scenarios, and is also unable to provide comparative evidence on the suitability of different
explanation techniques used in the real world. In this paper, we seek to address this limitation
by studying the impact of feature-attribution, rule-based, and counterfactual explanations on
users’ comprehension and confidence in AI-based recommendations. Given the known effect of
visual representations on human information perception [14, 72], our investigation also includes a
comparison of the effect of the visual representation of the explanation on user comprehension
and confidence.
Our investigation consists of a user study involving 280 crowd-workers, who were given an

AI-assisted prediction task across two use cases: prediction of the risk of obesity and recidivism.
The AI agents operate on tabular data and provide explanations for their predictions. We compute
these explanations using established explanation techniques, i.e., LIME [58], Anchors [59], and
Growing Fields [20, 41]. The contributions of our work include:
(1) Two user studies evaluating the impact of (a) the three aforementioned explanation techniques,

and (b) two visual representations (graphical vs. text) on users’ comprehension and confidence;
(2) A methodological framework for user studies designed to measure the impact of AI explanations

on users’ comprehension and confidence.
Our results show that the explanation technique primarily affects user comprehension, while

the choice of graphical representation has a greater impact on user confidence. Graphical repre-
sentations are perceived as more trustworthy, while rule-based explanations are most effective at
conveying the relevant features of an AI’s decision process. The results of our studies provide a set
of recommendations for AI practitioners and researchers.

2 Related Work
Our work lies at the intersection of XAI, HCI, and data visualisation. Thus, we first review the most
prominent local XAI techniques that motivate this research. Next, we discuss user evaluations of
XAI systems.

2.1 XAI Techniques for Local Explanations
An AI model is an agent 𝑓 that takes an instance 𝑥 as input and returns an output 𝑓 (𝑥). The
instance 𝑥 consists of features, e.g., attributes of a person for tabular data, image pixels, or words in
a text. The output 𝑓 (𝑥) can be a class, e.g., low risk vs. high risk, or a number, e.g., a price estimate.
An explanation is an expression that describes the relationships between the input and output of
an AI model 𝑓 [42]. Explanations can be computed via a post-hoc explanation module or, in the
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case of white box algorithms, extracted directly from 𝑓 . When the explanation focuses on a single
instance, it is called a local explanation. Local explanations have recently received more attention
from machine learning (ML) researchers [33]. Based on prominent XAI surveys [8, 27], we can
categorise these explanations into three main types:
Feature-attribution explanations. These explanations provide the contribution of the input

features to the output of a black box on a target instance. Here, the magnitude of a feature’s
contribution informs us of its importance for a particular prediction outcome, while the sign
denotes a positive or negative correlation with that outcome. As well as classic white-box methods
such as linear regression, there are a number of methods that can compute such scores from
black-box models in a post-hoc fashion. Some of these work for specific models, such as neural
networks [65, 69], while others, such as LIME [58] and SHAP [43], are model-agnostic. This has
made them popular among researchers and practitioners. We use LIME in our study, but SHAP
could have been a viable alternative.

Rule-based explanations. Approaches such as Anchors [59] and LORE [26] compute explana-
tions in the form of decision rules on the input features. Anchors is model- and data- agnostic and
relies on bandit exploration to compute a single general and accurate decision rule that mimics
the behaviour of a black box on the target instance [59], while LORE operates on tabular data
and learns a decision tree trained on artificial instances that resemble the target instance [26].
Explanatory rules can, therefore, be extracted from this decision tree. We chose Anchors for our
experiments because it provides a single explanation rule without additional computation.

Counterfactual explanations. These explanations convey the minimum adjustments required
in the target instance to alter the model’s prediction. They, therefore, identify the most sensitive
features within the agent’s decision process. Counterfactuals are similar to adversarial examples in
that they both perturb an instance in order to change a model’s prediction. However, their objectives
differ. Adversarial examples aim to deceive the model to test the robustness of ML models and,
therefore, rely on non-perceptible perturbations in the input data [34]. Counterfactual explanations,
on the other hand, do not have this constraint because they aim to be actionable and understandable.
Methods such as Growing Spheres [41], FACE [56] or DICE [52] perturb the target instance, i.e.,
they create new instances by increasingly changing various attributes in the target instance until
they identify an instance that changes the model’s prediction. Our experiments use the Growing
Fields algorithm [20], an extension of the Growing Spheres algorithm [41] that supports both
continuous and categorical attributes. We chose this algorithm because of its simplicity. Contrary
to other approaches [52, 56], it does not impose additional constraints on the counterfactuals (e.g.,
diversity, likelihood), the evaluation of which is beyond the scope of our study.

2.2 Evaluating Explainable AI Systems
Explainability is an inherently human-centric property. Consequently, Miller argues that the
development of effective explanations requires joint efforts of the XAI and HCI research communi-
ties [49]. While the HCI community has emphasised the need for human-centred evaluations of
XAI systems [23], several surveys have highlighted the scarcity of XAI papers that evaluate novel
explanation techniques through user studies [1, 4, 23]. Among these user studies, most evaluated
either the validity of their novel explanation technique [38, 44, 58, 59, 61, 81] or the impact of
the visual representation of the explanation [14, 53, 55, 80]. A limitation of these works is that
they are typically limited to the evaluation of one type of explanation technique [38, 53, 61] and
one application domain [55, 81]. Some prominent explanation techniques, such as LIME [58] and
Anchors, have evaluated the quality of explanations with a small number of computer science
students already familiar with machine learning [59]. In our work, we set out to compare three
different explanation techniques on two distinct datasets with lay users.
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To study the impact of explanations, prior work has mostly evaluated users’ trust and under-
standing in highly specific settings [14, 35, 39, 66, 74]. For instance, Arora et al. [66] studied the
impact of interactive explanations on user comprehension. The results of this study confirmed that
explanations help users identify key elements for the prediction. Cheng et al. [14] compared the
effect of interactive versus static explanations, as well as black-box versus white-box models, on
users’ trust and understanding. They observe that both white boxes and interactive explanations
are beneficial to users’ comprehension.
Other researchers have studied the influence of the explanation’s representation on users’

perceptions [14, 72]. Van Berkel et al. compared textual and scatterplot representations and showed
that the usage of a scatterplot visualisation led to lower perceived fairness [72]. Other works
have compared the effects of different explanation techniques on users [35, 66, 74]. For instance,
Van der Waa et al. compare hand-crafted example-based and rule-based explanations for the self-
management of diabetes [74]. De Jong et al. explored the use of partial explanations to reduce
user’s overreliance on explanations [17]. Their results show that partial explanations can reduce
overreliance on AI suggestions as compared to ‘full’ explanations.

In this study, we provide a comprehensive evaluation that compares three established explanatory
techniques, generated by LIME, Anchors, and Growing Fields. We compare these explanations
across two visual representations, namely graphical and textual. Following the recent guidelines
for evaluating XAI applications [74], we experiment with a large cohort, on two different datasets,
and collect both perceptual and behavioural metrics of user understanding and confidence.

3 Explanation Techniques and Representations
We first present the two datasets, the ML models, and the explanation techniques used for the
experiments. The explanation representations are subsequently introduced.

3.1 Datasets & AI models
Datasets. Our evaluation is conducted on two datasets widely used by the XAI community [2, 10,
18, 36, 68, 82], namely COMPAS [11] and Obesity [47]. COMPAS is a tabular dataset collected in
the USA and used to train a model that predicts a criminal defendant’s likelihood of re-offending.
The Obesity dataset is used to predict the risk of developing obesity based on an individual’s
body mass index (BMI) and answers to various questions, with data originating from Colombia,
Peru, and Mexico1. Figure 1 displays a snapshot featuring an individual from each dataset. We
selected these datasets as they represent two high-stakes domains that concern everyone and for
which explainability and user confidence are deemed important: justice and healthcare [3, 75].
We chose to include more than one domain following the recommendation that a meaningful
application-agnostic XAI evaluation should include more than one domain [72, 74], and strike
a balance between simplicity—participants should grasp the domain—and plausibility—the task
should be sufficiently challenging to justify the need for AI assistance. Detailed information about
the datasets is available in Appendix A.
AI Model and Explanations.We trained a multi-layer perceptron (MLP) classifier2 on each

dataset. We chose this model because it is a true black-box model with a strong prediction power.
Its decision boundary is too complex to be easily understood by examining the model parameters.
We note that other powerful black-box models, such as random forests or gradient-boosting trees,
would also have been suitable for this task. We trained the MLPs on 70% of the instances and

1We removed weight as a variable from this dataset, which otherwise would have oversimplified the prediction task. The
task, therefore, becomes to predict the risk of obesity given a patient’s eating and activity habits.
2https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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Fig. 1. Example of two cases presented to participants from the Obesity (left) and COMPAS (right) datasets.

evaluated them on the remaining 30%. We obtained accuracies of 67% and 78% for the COMPAS
and Obesity datasets, respectively. Although these accuracy levels may appear low, they are in
line with those observed in the literature [40, 77]. We did not reveal these accuracy scores in the
experiments to avoid any bias on the participants’ confidence in the model. For COMPAS, the AI
agent was trained to predict the risk of recidivism among four classes: ‘very low risk’, ‘low risk’,
‘high risk’, and ‘very high risk’. The original Obesity dataset considers seven weight categories,
which we simplified into four ordinal classes for consistency reasons: ‘underweight’, ‘healthy’,
‘overweight’, and ‘obese’. We then generated three different explanations for each instance in the
test set: a feature-attribution explanation based on LIME [58], a rule-based explanation based on
Anchors [59], and a counterfactual explanation using Growing Fields [20]. The methods were used
with the default parameters except that (a) Anchors used the discretisation proposed by Delaunay
et al. [19], and (b) we computed the attribution of all features in the LIME explanation—contrary to
the default configuration that only picks the top six features.

For each dataset, we selected five individuals from the test set to be presented to the participants—
one for each of the four predicted classes plus an additional individual used as an example. Figure 1
depicts the information of an individual (one per dataset) as shown to the participants. The grey
column contains the various features while the corresponding defendant or patient data are shown
in the second column. The code, the datasets, and the experimental results are available on GitHub3.

3.2 Common Representation for Explanations
Since the studied explanation techniques do not provide the same exact insights into the AI’s
prediction process, the explanations are usually conveyed using different representations, which
furthermore depend on the type of data (e.g., image, tabular, text, etc). For tabular data, existing
XAI toolkits4 opt for a graphical representation based on bars for feature attribution explanations.
Conversely, the most common representation for rule-based and counterfactual explanations is
natural language. To control for this visual representation in our experiments, participants are
presented with common graphical and textual representations for all three explanation techniques,
as illustrated in Figure 2.
Graphical Representation. For each explanation technique, we depict the graphical repre-

sentation through diagrams. As our AI models predict four ordinal target outcomes, we choose a
3https://github.com/j2launay/user_eval
4AI360, Dalex, H2O, eli5, InterpretML, What-if-Tool, Alibi, Captum.
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Explanation Graphical Representation Textual RepresentationTechnique

Feature-attribution

Rule-based

Counterfactual

Fig. 2. Different explanations for a random individual in the Obesity dataset.

common graphical representation that depicts the spectrum of classes on the 𝑥-axis and adds a
different background colour to the region covered by each of the classes.

• As proposed by LIME [58] for feature-attribution explanations, the 𝑥-axis depicts the contribution
of each feature to the predicted class in the form of a directed bar. The length of the bar denotes the
magnitude of the attribution, whereas its direction describes towards which side the feature biases
the AI model’s prediction (underweight vs. obese, low risk vs. high risk). To limit explanation
complexity, our representation groups features with a marginal attribution under ‘Other features’.
Here, the aggregated attribution is the sum of the attribution scores of those features (for more
details read Appendix D.1).

• Rule-based explanations are depicted using stacked bars, as per Molnar [51], where each condition
of the rule is assigned to a bar with a length proportional to the increase in confidence provided
by the condition. Consider the explanation rule in Figure 2, stating that “(a) having family
antecedents of obesity, (b) an age between 23 and 26, (c) and practising no physical activity”
incurs an “obese” prediction with 90% confidence. The blue bar shows that condition (a) on its
own predicts obesity with 50% confidence; adding condition (b) increases the confidence to 71%,
and all three conditions increase the confidence to 90%.

• For counterfactual explanations we also employ stacked bars. Each feature in the explanation
incurs a hypothetical change of value and is associated with a bar. The length of the bar is
proportional to the change incurred in the model’s prediction when the value of the input feature
is changed. For instance, the counterfactual explanation from Figure 2 states that if the patient:
“(a) had family antecedents of obesity, and (b) practised less often physical activity” then the AI
model would have predicted “overweight” (the counterfactual class) instead of “underweight”.
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Text Representation. For all explanation techniques we present the explanation as a bulleted
list of the relevant attributes. The list is a manual transcription of the contents of the graphical
representations, starting from the most impactful feature. This transcription was reviewed and
validated by all authors. Each item from the list describes the effect of one feature on the model’s
answer. This effect can be how much the feature contributes to the model’s prediction (feature-
attribution), how much it boosts the confidence of the prediction (rule-based), or how sensitive the
AI model is to changes in the input features (counterfactual). For feature-attribution explanations,
we used colours to highlight the direction of the impact of each feature. Finally, the AI model’s
outcome (e.g., obesity, high-risk) is highlighted in bold and colour.

4 Method
While the XAI community has proposed multiple post-hoc explanation techniques based on fea-
ture attribution, rules, and counterfactual instances, no prior work has evaluated the impact on
users’ comprehension and confidence for all these techniques. This motivates our first research
question RQ1: “How do local explanation techniques, i.e. feature-attribution, rule-based,
or counterfactuals, affect users’ comprehension and confidence of an AI model?” Existing
works have shown that explanations improve users’ ability to comprehend a model [58, 66]. Hence,
this question underlies our first general hypothesis; (H1) explanations improve participants’
comprehension of and confidence in a model. In addition, we observe that decision rules have
consistently outperformed other techniques in helping users understand the inner mechanisms of
a model [59, 66]. This leads to our second hypothesis; (H2) rule-based explanations contribute
the most to participants’ comprehension of a model. In regards to confidence, existing works
have failed to show significant improvements in the presence of explanations [55, 74]. We, there-
fore, follow a more exploratory approach to study the impact of explanation techniques on user
confidence and do not hypothesise on this aspect.
As highlighted in prior work [14, 72], the visual representation of an explanation impacts the

users’ perception. This leads to our second research question, RQ2: “How does an explanation’s
visual representation impact the users’ comprehension and confidence?” As it is common
to represent feature-attribution explanations graphically and both counterfactual and rule-based
explanations textually, our hypotheses are as follows; for feature-attribution explanations,
graphical representations improve users’ comprehension and confidence (H3), whereas a
textual representation leads to higher comprehension and confidence for rule-based and
counterfactual explanations (H4).

Our study seeks to clarify the relationships between users’ comprehension and confidence in an
AI model (dependent variables), based on (i) the explanation technique—feature-attribution, rule,
or counterfactual—and (ii) the visual representation—graphical or textual (independent variables).

4.1 Task
Our two user studies (Obesity and Recidivism) follow a between-subject design, in which each
participant interacts with one explanation technique and one representation across a total of four
prediction tasks. These tasks aim to predict either the risk of recidivism of a defendant given their
profile or the risk of obesity of a person given some information about their habits. To perform these
predictions, participants rely on an AI recommendation, as described in Section 3.1, complemented
with an explanation. We created individual surveys for each dataset, explanation technique, and
explanation representation. For each dataset, we also defined a control group for which participants
did not receive any explanation. Figure 3 outlines the process of these surveys. Each survey is
composed of three phases:
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Fig. 3. Experimental workflow used to assess participant perception and behaviour when interacting with a
given explanation technique. Behavioural measurements are in green, while self-reported measurements are
in blue. The task round is repeated for four different prediction problems.

Introduction. A description of the tasks assigned to the participant and the information used by
the AI model to make recommendations (cf. Figure 1). We asked participants two multiple-choice
questions to verify whether they understood the task, namely ‘How is Body Mass Index calculated?’
and ‘Why is recidivism risk calculated?’.
Task Round. Participants are presented with four prediction tasks, each comprising two steps. First,
participants assess the risk of either obesity or recidivism based on the provided information and
indicate their confidence on a 5-point Likert item. Following this assessment, the participants have
access to the AI model’s prediction along with an explanation (cf. Figure 2)—excluding participants
on the baseline condition. Based on this explanation, we then asked participants to select the
features, among all possible features, that were used by the AI model to make its recommendation.
Finally, participants can reconsider their initial prediction and answer two questions to report their
understanding of the explanation (‘immediate explanation understanding’, see Figure 3) and their
confidence in their prediction (‘participant prediction confidence’) on a 5-point Likert item.
Post-Questionnaire. After the prediction tasks, the participants answer an 8-question question-
naire to report their understanding of the AI model, as detailed in Section 4.2.

4.2 Scales & Metrics
To assess the impact of our independent variables—explanation technique and representation—, we
employed various metrics to evaluate participants’ comprehension and confidence. These elements
are frequently identified as crucial measurements in human-centred XAI [31, 50, 62]. Several user
studies have shown that perceived comprehension and actual comprehension may differ [14, 15, 30].
Therefore, we distinguish between self-reported and behavioural metrics. Figure 3 shows when
these parameters are measured (a detailed example of the measurement process is provided in
Appendix E).

Comprehension. A widely accepted definition of a good explanation is its capacity to be under-
stood by a human within a reasonable time frame [42]. We thus gauge participants’ comprehension
of the model through four aspects divided into two behavioural and two self-reported metrics.
• Self-Reported Understanding (Immediate and Final):
– Immediate Understanding. Self-reported comprehension of the system prediction on a
five-point Likert item during the explanation review.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 2, Article CSCW113. Publication date: April 2025.
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– Final Understanding. This was obtained from an adapted questionnaire by Madsen and
Gregor [45] on perceived technical competence and comprehension across eight 5-point Likert
items. The questions used and Likert scale are described in Appendix C.1

• Behavioural comprehension (Precision and Recall): Building on the methodology proposed
by Weld and Bansal [79], we assess participants’ behavioural understanding through a simple
quantitative task [67]. We ask participants to identify the features that have the most impact on
the classifier’s prediction according to the explanation. This task evaluates participants’ ability to
interpret the information provided by the explanations. Understanding is a multifaceted process,
with our measures capturing a specific aspect of understanding.
– Precision. Measures the proportion of features correctly identified by the participant among
all the features they selected.

– Recall. Computes the ratio of features correctly identified by the participant among all the
features deemed impactful by the explanation.

Confidence. A common measure of user confidence is the agreement rate between the users
and the AI model [9, 70, 76]. Therefore, we build upon the methodology of Broon and Holmes [9]
to measure users’ behavioural confidence.

• Behavioural Confidence (Following prediction): Proportion of times the participants modi-
fied their prediction in favour of the AI’s prediction (when the participant’s initial prediction
differs from the model’s prediction).

• Self-Reported Confidence (ΔConfidence):Difference between self-reported confidence before
and after seeing the AI-based predictions and explanations.

4.3 Participants
We recruited participants through the Prolific Academic platform. We restricted participation to
crowdworkers with at least a high school degree given the complexity of the task. We chose not to
limit recruitment to a particular geographical location to promote participant diversity. Finally, we
ensured that participants could participate only once. After accepting the task, participants were
redirected to the survey. Based on a pilot evaluation with 20 people, we estimated a completion time
of 15 minutes for the participants in the control group, and 20 minutes for those with explanations.
All participants were paid £9.30 per hour.

To limit Type II errors, we determined the number of respondents on the basis of a power calcu-
lation using G*Power [57]. Given the exploratory nature of our research, we used medium-to-large
effect sizes (𝑓 2 = 0.2), an alpha level of 0.05, and a power of 0.8, in line with established methodolog-
ical recommendations [29]. For an a priori multiple linear regression model with two predictors,
the required minimum group size is 107 participants. We finally recruited 280 participants—140
participants per dataset, or 20 participants per combination of explanation technique and visual
representation. Table 4 in Appendix B presents the demographic information of our participants.
We recruited crowdworkers, as researchers and companies often rely on them for data labelling
tasks [22]. It is therefore vital to investigate their perception and response to AI explanations. We
notice, however, that crowdworkers do not capture the particularities of all users, e.g., domain
experts. We discuss this limitation in Section 6.4.

Following the task introduction, we assessed whether the participants had read and understood
the task through two test questions. Forty participants answered those questions incorrectly and
were therefore replaced by new participants.
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5 Results
We present our findings in three sections. We begin by studying the impact of the domain (i.e.,
dataset), explanation technique, and representation on participants’ comprehension. Then, we
assess the influence of these factors on participants’ confidence in the AI agent. Finally, we explore
the correlation between behavioural and perceived measurements. All the experimental resources
of our study are available on Github5.

Comprehension

Recidivism Obesity

Self-Reported Behavioural Self-Reported Behavioural

Immediate Final Precision Recall Immediate Final Precision Recall
Technique 0.87 1.20 16.24∗∗∗ 1.58 3.75∗ 1.35 31.42∗∗∗ 6.37∗∗∗

Representation 0.96 0.36 0.13 3.00 0.14 0.55 0.05 2.85
Age 1.07 0.01 1.88 0.10 0.16 0.06 6.41∗ 0.02
Education 1.63 0.93 0.94 0.43 0.50 0.34 0.25 1.31
Gender 0.54 1.07 0.35 0.30 0.14 0.03 0.18 0.36
Technique:Representation 0.28 0.87 1.12 0.74 0.48 0.16 0.35 4.99∗∗
∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05

Table 1. F value of the ANOVA table with understanding measurements grouped for each domain by self-
reported and behavioural metrics. ‘Technique:Representation’ denotes the interaction between explanation
technique and visual representation.

To discern the factors that impact participants’ comprehension and confidence, we employed a
linear model and an ANOVA analysis for each application domain (recidivism and obesity). The
linear model includes demographic data (age, gender, education level) along with explanation tech-
nique and visual representation as predictive variables. For each statistically significant predictor,
we conduct a post hoc analysis using t-tests with Bonferroni correction.

5.1 Comprehension
The ANOVA F-scores of each predictor and comprehensionmetric (both self-report and behavioural)
can be found in Table 1. We first observe that the participants’ self-reported understanding of the
AI system—based on a post-questionnaire (Final)—does not vary across the different explanation
techniques, visual representations, and demographic categories. These observations hold for both
domains. Conversely, when we focus on self-reported comprehension right after seeing the expla-
nations (Immediate), we observe a statistically significant effect for the explanation technique in
the Obesity dataset. Concerning behavioural comprehension, Table 1 highlights that precision is
significantly affected by the explanation method in both domains, whereas a significant impact on
recall is only observed in the Obesity dataset.

Figure 4 depicts participants’ perceived comprehension of the AI system across the explanation
methods for both domains. Participants presented with rule-based explanations, , for the obesity
dataset report a better understanding of the model in comparison to the control group.

Figure 5 depicts the precision and recall across domains and explanation methods, revealing that
rule-based explanations yield the highest precision score in the obesity domain (median precision
of 0.9). On the contrary, counterfactual explanations, , resulted in poor performances comparable

5https://github.com/j2launay/user_eval
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Fig. 4. Perceived understanding of participants (Immediate) for both the Obesity and Recidivism domains
based on the explanation technique.

Fig. 5. Precision and recall between the features indicated as important by the participants for the AI’s
prediction and the features indicated in the explanation. Results are shown for each explanation technique
and domain.

to the control group (precision 0.3). Concerning the participants’ recall, we observed that in the
Obesity domain, participants presented with explanations obtained significantly higher recall than
participants without any explanations.

5.2 Confidence
We now assess participants’ confidence in the AI system and report the corresponding F-values in
Table 2. Our ANOVA analysis shows that changes in self-reported confidence before and after seeing
the explanation (Δ Confidence) are significantly impacted by the explanation visual representation
in the Obesity dataset. It is noteworthy that, on average, participants’ predictions aligned with the
AI’s in 56% of the cases in the COMPAS dataset, and in 39% of the cases in the Obesity dataset. Thus,
we limit our evaluation of behavioural confidence to scenarios where participants are prompted to
reconsider their own predictions. We consider these occurrences as ‘initial disagreement’. We find
that for the Obesity dataset, the interaction between explanation technique and visual representation
significantly impacts the behavioural confidence (Follow Prediction) of initial disagreement cases.
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Confidence

Recidivism Obesity

Self-Reported Behavioural Self-Reported Behavioural

Δ Confidence Follow Prediction† Δ Confidence Follow Prediction†
Technique 1.40 0.78 0.12 0.38
Representation 0.04 0.00 8.22∗∗ 0.12
Age 0.46 2.76 0.06 0.00
Education 0.13 0.34 2.14 0.63
Gender 2.16 0.31 0.12 1.11
Technique:Representation 0.35 0.75 0.26 3.55∗
∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05

Table 2. F value of the ANOVA Table with confidence measurements grouped by domain and by self-reported
and behavioural metrics. ‘Technique:Representation’ refers to the interaction between the explanation
technique and representation († = the metric was computed only on the initial disagreement participants).

Fig. 6. Difference between the self-reported confidence in the participants’ prediction after and before seeing
the AI’s prediction and explanation (when provided). Results are shown for each domain and representation.
Values above zero denote an increase in confidence in the model.

Figure 6 shows that in the Obesity domain, participants exposed to a graphical representation
report increased confidence in their predictions after facing the explanation. Further examination
reveals that in the Obesity domain, participants with higher educational attainment, who initially
disagreed, experienced a decrease in confidence. Conversely, in the Recidivism domain, we observed
that the confidence of female participants increased less compared to male participants when the
AI confirmed their initial prediction.

Figure 7 shows the average participants’ behavioural confidence for different explanationmethods
and representations in the Obesity dataset. We observe that for textual representations, participants
with counterfactual explanations are more prone to follow the AI system’s prediction than partici-
pants with rule-based explanations. This suggests that participants with rule-based explanations, ,
have lower confidence in the model’s prediction.
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Fig. 7. Proportion of time the participants change their initial prediction to follow the AI’s prediction. Results
are shown for the Obesity dataset on the combination of explanation technique and representation.

5.3 Perception vs. Behaviour
Finally, we assess the alignment between self-reported and behavioural comprehension and confi-
dence. First, we report the Pearson correlation between perceived and behavioural comprehension.
Our results indicate no correlation between participants’ perceived comprehension (either imme-
diate or final) and their actual comprehension of the model, as measured by the precision and
recall scores. Second, we assess the correlation between self-report and behavioural confidence
in the model. We observe correlation scores of 0.43 and 0.49 between the perceived confidence
when facing an explanation (Δ Confidence) and the proportion of participants following the AI’s
prediction (Follow Prediction) for the COMPAS and Obesity datasets, respectively. This suggests a
moderate positive correlation between these two measurements.

6 Discussion
We now discuss our key findings, draw design lessons for XAI practitioners, highlight limitations,
and outline future research perspectives.

6.1 Impact of Explanation Technique
We assessed the effects of three explanation techniques on participants’ comprehension and confi-
dence of two AI models (RQ1). Our findings support our general hypothesis (H1), namely that
explanations increase both (a) the participants’ comprehension of the AI model and, (b) participants’
confidence in the model’s predictions. The study also confirms H2, i.e., rule-based explanations are
most effective in explaining the workings of an AI system. This also aligns with prior work [59, 66].
We hypothesise that this preference for rules is attributable to two factors: (a) its alignment with
common educational reasoning principles, and (b) the simplicity of rules in comparison with other
explanation techniques. This is supported by our results for both self-reported comprehension
(Fig. 4) and precision (Fig. 5). We observe that the effects of explanations on AI-assisted tasks are
more pronounced for the Obesity dataset than for COMPAS. We hypothesise that this is the result
of (a) the number of features in the datasets (8 for COMPAS and 15 for Obesity), and (b) participants’
prior knowledge of the domain. Having more features to grasp makes explanations more beneficial
for understanding AI agents. Further, participants’ firsthand experience with defendants might be
limited, whereas they are more likely to harbour preconceptions about the causes of obesity.
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On the other hand, our study shows that participants’ precision and self-reported comprehension
are comparable to the control group for counterfactual explanations. This stands in contrast to the
high scores observed for both recall (as illustrated in Figure 5) and behavioural confidence (as shown
in Figure 7). This means that our participants tended to follow the AI model’s prediction and could
accurately identify the features mentioned in the explanation (high recall), but sometimes marked
other features as important (low precision). This means that the counterfactual explanations may
have been perceived as less complete than the other explanation techniques.

6.2 Impact of Representation
The impact of representation on users’ perception has been well-established [14, 72], and our
findings corroborate these prior results (RQ2). In particular, we found that the graphical repre-
sentations induce higher perceived confidence compared to textual representations (Figure 6). We
reckon that these results stem from the elaborate appearance of the graphical presentation, which
may give the impression of a greater underlying effort, thereby increasing users’ confidence.
Our findings corroborate H4, stating that users’ confidence in counterfactual explanation is

higher with textual representations (Figure 7). Similarly, the post-hoc analysis on the interaction
between explanation technique and representation on participants’ recall (Table 1) suggests that
textual representation appears to ease users’ understanding of rule explanations. Our results,
though, do not supportH3; that is, participants’ confidence or comprehension of feature-attribution
explanations is not significantly increased with graphical representations. These results do not
intend to discourage the use of visual representations for such explanations. Rather, they underscore
the need for improved representation techniques, for example by allowing users to interact with
the data and narrow down relevant information [73]. Critically, our experiment studied only one
possible visual representation, i.e., bars, which are widely used for feature-attribution explanations.

6.3 Recommendations for XAI Practitioners & Researchers
Our findings underscore the importance of user evaluations in the responsible deployment of XAI
tools. We draw a set of recommendations for XAI practitioners and researchers conducting user
studies within XAI.
We found that the mere presence of explanations has a positive impact on participants’ self-

reported and behavioural comprehension and confidence. This could be interpreted as support
for consistently augmenting AI-based systems with explanations. However, we argue that this
only holds when the explanations respond to a concrete user need. These needs may include
legal requirements or educational purposes [7, 13]. Our experiments show that pre-conceptions
and prior knowledge can elicit scepticism towards AI systems. This phenomenon has been also
observed in prior work [46], where domain experts seem more prone to challenge AI-based rec-
ommendations than non-expert users. Critically, our results suggest that graphical explanations
can induce automation complacency, resulting in confidence towards an AI explanation for the
wrong reasons [6]. Prior work highlights that even domain experts display an excess of confidence
in AI in the presence of explanation techniques such as feature attribution [32]. Consequently,
we recommend that system designers inform users upfront about the extent and limitations of
the system’s explanations. This could mitigate the potential impact that preconceptions, cognitive
biases, and the limitations of the AI system itself have on users’ comprehension and confidence.

Regarding the selection of an explanation paradigm, our results suggest the use of rule-based
explanations as a first proposal to describe an AI system’s reasoning. Rule-based explanations
provide a clear and concise summary of the necessary conditions for a given outcome. Nevertheless,
rule-based explanations also pose some limitations. They respond to the question of what are some
of the necessary conditions for the system to provide a given outcome and are, therefore, not a
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guarantee of functional causality (i.e., 𝐴 ⇒ Obese is not the same as 𝐴 ⇔ Obese). This suggests
that the choice of an explanation paradigm is better determined by the user’s task. For example,
‘what-if’ tasks may suit counterfactual explanations better. Future work may investigate the effect
of presenting users with a combination of multiple explanation paradigms.
Finally, we argue that system designers should bear in mind both system and explanation

complexity. We hypothesise that additional input features in an AI agent may increase the
perceived benefit of explanations. It has been also documented that comprehensibility decreases
with explanation complexity [16, 48]. Similarly, we argue for initially compact explanations that can
be further detailed or extended upon user request. For example, a feature-attribution explanation
could start by highlighting the top three most influential features, grouping the remaining features
in a single bucket and allowing users to explore the full feature list if desired.

6.4 Limitations & Future Work
We identify several limitations to our study. First, our participants consist of crowdworkers, a
choice motivated by the increasing role of crowdworkers in the training of and interaction with AI
systems. While our participants faced stereotypical decision scenarios, our results may not transfer
to domain experts or computer scientists [21, 50, 60]. Contrary to a general audience, computer
scientists may be familiar with particular explanation styles and representations, while domain
experts may hold stronger preconceptions about their domain of expertise. Furthermore, we did
not assess our participants’ prior knowledge of the chosen domains, which could have affected
participants’ performance.
Third, we acknowledge that the impact of explanation techniques on comprehension may also

vary with the data modality [30]. In our study, the AI models were trained on tabular data. While
the studied explanation techniques also apply to other data types such as text and images, the
visual representations covered in this study may not suit those data types. Our experimental design
required us to control for chart type and, as such, introduce bar types for all explanation techniques.
Bar charts, as used in our experiments, are widely employed for feature-attribution explanations on
tabular data [55], but are less common for rule-based and counterfactual explanations. Therefore,
the effectiveness of various chart styles for representing different explanation types deserves further
investigation.
Further, we evaluated participant comprehension through a relatively straightforward task,

namely, the identification of the most important features in a decision process. Other tasks could
provide additional insights into participant understanding, e.g., use the explanation to reproduce
the AI’s model behaviour, answer what-if scenarios, or generate explanations [7, 37].
Finally, we highlight that the analysis of our post-questionnaire on understanding yielded

unexpectedly non-significant differences across various explanation techniques and representations
in contrast to prior work [74, 78]. This outcome could be explained by the fact that users only
engaged with the model a limited number of times and encountered instances that were classified
differently. This limited interaction might have contributed to the absence of statistical significance
in our findings, as previously suggested by Van der Waa et al. [74]. To gain a more comprehensive
perspective on the model’s performance, a larger number of instances or instances with more
similar classifications could be included in future evaluations. Moreover, as reported in Section 5.3,
we found no correlation between users’ perceived understanding and their actual comprehension
of the model, as measured by the precision and recall scores. These findings are in line with
existing research [15, 30, 64, 77]. Understanding why users elicit confidence without corresponding
behavioural alignment, or why they perceive comprehension without demonstrating it in practice
remains a valuable open research direction.
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7 Conclusion
In this article we report on a study of the impact of explanation technique and visual representation
on users’ comprehension and confidence in XAI systems. Our study covered three types of expla-
nations; feature-attribution, rule-based, and counterfactual, each presented either graphically or as
textual statements. We evaluated these in two domains: the prediction of recidivism and the risk of
obesity. Our results indicate that rule-based explanations with textual representation results in the
highest users’ comprehension. Counterfactual explanations presented as text elicited higher levels
of confidence, while the opposite was observed for feature-attribution and rule-based explanations.
Our results are not entirely consistent across the two evaluated domains. This accentuates the
opportunities and demands for future studies on the effect of user profiles, data types, and domains
on user’s perceptions when interacting with AI systems.
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Supplementary Material
This appendix consists of five sections aimed at providing a comprehensive overview of various
aspects related to our experimental evaluation. In Appendix A, we provide the details of the code,
classifier, and datasets utilised in our experimental evaluation. Appendix B presents a comprehen-
sive table with the demographic information of our participants. Subsequently, in Appendix C, we
provide an overview of the diverse set of questions and surveys used throughout the entire experi-
mental process. To shed light on our approach to representing explanations and communicating
them to participants, we offer insights in Appendix D. Following that, we justify in Appendix D the
choices made to represent explanations and how they are described to the participants. Finally, in
Appendix E, we illustrate the practical application of our various scales and metrics using a specific
participant as an example.

A Code and Data Processing
This section provides useful information to reproduce the presented experimental results. The
source code is available in an anonymous repository on GitHub 6.

Compas: In order to generate explanations meaningful to the users, we removed some features
and kept this subset of features: {Gender, Age, Race, Juvenile felony count, Juvenile misdemeanour
count, Priors count, Charge degree, Charge description}. We also removed 508 individuals having
a charge description that occurred less than 5 times in the whole dataset. The dataset can be
downloaded online7.

Obesity: This dataset is originally composed of 16 features and a target obtained from questions
detailed in [47]. However, we removed the weight since it would be too easy for the model and the
user to predict the BMI with both the height and weight. There are five binary features: Gender,
family history with overweight, does the user smokes, calorie consumption monitoring, and does
the user frequently consumes high-caloric food. The other features were one-hot encoded. The
original data can be downloaded on this link [47]8.

Table 3 contains the final number of features and instances for both datasets as used in our
experiments.

Dataset Features Instances
Numerical Categorical

Compas 1 7 5364
Obesity 2 13 2111

Table 3. Description of the datasets.

6https://github.com/j2launay/user_eval
7https://github.com/propublica/compas-analysis/
8https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+based+on+eating+habits+and+physical+condition
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B Demographic Information
Table 4 outlines the demographic details of our participants, categorised by domain (Obesity or
Recidivism). It is noteworthy that the consent for information from 11 participants in the Obesity
group has been revoked.

Domain Obesity Recidivism

Factor 𝑵 % sample 𝑵 % sample

Gender
Female 66 47.14 66 47.14
Male 62 44.29 74 52.86
Prefer not to say 1 0.71 0 0.0

Consent revoked 11 7.86 0 0.0

Age
< 20 10 7.14 11 7.86
20 < 30 81 57.86 88 62.86
30 < 40 24 17.14 27 19.29
40 > 14 10.0 14 10.0

Nationality
Africa 45 32.14 37 26.43
Asia 2 1.43 2 1.43
Australia 0 0.0 1 0.71
Europe 77 55.0 82 58.57
North America 5 3.57 15 10.71
South America 0 0.0 3 2.14

Ethnicity (simplified)
Asian 2 1.43 2 1.43
Black 37 26.43 30 21.43
Mixed 10 7.14 9 6.43
Other 3 2.14 8 5.71
White 77 55.0 91 65.0

Highest education
Doctorate degree 3 2.14 1 0.71
Graduate degree 27 19.29 24 17.14
High school diploma 47 33.57 37 26.43
Technical college 3 2.14 14 10.0
Undergraduate degree 49 35.0 64 45.71

Table 4. Overview of participants’ demographic factors.
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C Questionnaire
In our survey, we ask the participants to complete two various questionnaires, each one evaluating
a given criteria. In this section we present the question and where each questionnaire comes
from.

C.1 Understanding Scale
We now present the questions to evaluate the users’ perceived understanding of the system from
Madsen and Gregor [45]. This questionnaire is originally :
(1) The system uses appropriate methods to reach decisions.
(2) The system has sound knowledge about this type of problem built into it.
(3) The advice the system produces is as good as that which a highly competent person could

produce.
(4) The system makes use of all the knowledge and information available to it to produce its

solution to the problem.
(5) I know what will happen the next time I use the system because I understand how it behaves.
(6) I understand how the system will assist me with decisions I have to make.
(7) Although I may not know exactly how the system works, I know how to use it to make

decisions about the problem.
(8) It is easy to follow what the system does.

For each of these questions, Madsen and Gregor [45] recommended this 5 Likert scale:
1 2 3 4 5

I disagree strongly I disagree somewhat I’m neutral about it I agree somewhat I agree strongly

C.2 Question to verify user’s validity
We ask the user two questions in order to verify that they understand and will try efficiently to
complete the questionnaire.
Following the task introduction, we assessed whether the participants had actually read and

understood the task through two questions: ‘How is Body Mass Index calculated?’ for the Obesity
dataset and ‘Why is recidivism risk calculated?’ for COMPAS. We found 10 and 30 incorrect answers
for the first and second questions, respectively. This question had the form ‘The algorithm calculates
the risk of obesity (resp. recidivism) for an individual by;’. We asked additional users to participate in
our study until we had 20 responses for each group that validated our two understanding questions
resulting in a final set of 280 participants.
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(a) (b)

Fig. 8. Detailed presentation of the two verifying questions at the end of the Compas dataset survey.

(a) (b)

Fig. 9. Detailed presentation of the two verifying questions at the end of the obesity dataset survey.
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D Explanation Techniques and Representations
In this section, we first elaborate on the representation of each explanation technique and then the
manner in which these explanations were conveyed to the participants.

D.1 Explanation Techniques
For the graphical representation of feature-attribution explanations, we made specific choices
to enhance clarity and manage complexity. Unlike standard methods that focus on a limited number
of features, we sorted features in decreasing order based on the absolute value of their attribution.
Features with attributions less than half the absolute value of the preceding feature were considered
marginal and grouped together. For example, in Appendix D.2, features impacting less than 2% are
grouped into the last bar, and their cumulative attribution score equals 1% toward the obesity class.
In the representation of rule-based explanations, we utilised stacked bars, starting with the

rule’s condition that induced the highest initial confidence in the model’s prediction. Subsequently,
we iteratively added conditions that improved the most the model’s confidence, given that existing
conditions were validated. Additionally, we omitted the background colour representing ordinal
classes due to the nature of rule-based explanations. Decision rules signify the minimum require-
ment for the model’s prediction toward one class, offering no information on the model’s behaviour
in other classes.
Consistency in representation was maintained for counterfactual explanations, employing

stacked bars. The length of each bar indicates the extent to which changing a feature’s value is
necessary to shift the model’s answer from one predicted class to another (the counterfactual
class). We begin by displaying the feature that most impacts the prediction, then, with this feature
changed, we identify the second most impactful feature, continuing until the prediction shifts
between classes.

D.2 Explanation Paragraph in Example Round
During the introduction step, specifically when participants were exposed to an explanation for
the first time, a detailed description of the visual representations was provided. This paragraph
underwent a thorough review by 20 individuals, including 9 computer scientists and 11 laypeo-
ple, to ensure comprehensiveness and effectiveness in conveying the explanation. The resulting
explanation paragraphs are detailed below.
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Rule-based. Counterfactual.

Linear.

Fig. 11. Detailed presentation of the three graphs presentation in the introduction and more precisely the
first time the participant had access to an explanation in the survey.
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E Scales & Metrics (Illustration for One Participant)
In this section, we provide a detailed example of howwe employed the scales and metrics introduced
in Section 4.2 for one participant from the rule-based explanation group. This example is designed
to provide the reader with a detailed explanation of how we assessed various facets of participants’
behaviour and perception. We recall that Figure 3 shows the times at which these parameters are
measured. For this illustration, let us refer to this participant as “User J.” User J participated in
predicting the risk of obesity in response to four distinct scenarios, and their responses are reported
in Figure 12.

Fig. 12. Example of answers from participant “User J” from the rule-based explanation group. The values
within the columns “1st User’s Confidence”, “2nd User’s Confidence”, and “Perceived Understanding” are on
a 5-Likert scale.

E.1 User’s Initial Prediction and Confidence
In Figure 12, User J’s initial predictions, scaled from 1 (no risk) to 4 (high risk), are accompanied
by their initial confidence levels, measured on a 5-point Likert scale. The Likert scale spans from
“strongly disagree” to “strongly agree.” User J’s initial predictions are shown in the “1st User’s
Prediction” column, and their initial confidence is recorded in the “1st User’s Confidence” column.

E.2 AI Model Predictions and Explanations
User J’s predictions are followed by the AI model’s predictions and associated explanations, pre-
sented as depicted in Figure 2. These explanations comprise lists of the most influential features
considered by the AI model for each prediction scenario. For example, in Figure 2, the most impor-
tant features for the feature attribution are Family member has overweight, Consumption of food
between meals, Consumption of high caloric food, Transportation used, and Calories consumption
monitoring. In contrast, for counterfactual, this is only the Family member has overweight and
Physical activity frequency while rule-based also includes the Age feature.

E.3 User’s Final Prediction and Confidence
During the task round, User J was asked to select, from the list of features, which features they
considered most important for the AI model’s prediction. Subsequently, User J was given the
opportunity to reevaluate their prediction in the “2nd User’s Prediction” column and provide their
final confidence in their prediction in the “2nd User’s Confidence” column.

E.4 User’s Perceived Understanding
User J was also asked to rate their “Perceived Understanding” on a 5-point Likert scale to indicate
their understanding of how the model made the prediction.
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E.5 Metrics Calculation
The metrics for User J’s responses were calculated as follows:

• Δ-Confidence: The Δ-Confidence was computed by subtracting the initial confidence from
the final confidence for each scenario. User J’s Δ-Confidence values are 1, 1, 2, and -1 for the
four scenarios. The average Δ-Confidence for User J is thus 3/4.

• Behavioral Trust (Follow Pred.): We assessed behavioural trust by tracking instances
where the user modified their initial prediction to match the AI model’s prediction. It is
important to note that we only considered scenarios where the user’s initial prediction
differed from the AI model’s prediction. Thus, User J modified their initial prediction to align
with the AI model’s prediction in 2 out of 3 such scenarios, resulting in a behavioural trust
score of 2/3.

• Immediate Understanding: User J’s immediate understanding is the average value of their
Likert-scale ratings for understanding across all four scenarios. In this case, it is (3 + 4 + 5 +
1) / 4, which equals 13/4.

• Behavioral Understanding (Precision and Recall.): To measure User J’s precision and
recall, we compared the list of features they identified as important to those highlighted in
the explanation for each scenario. The precision and recall values for each scenario were
calculated as follows:

Scenario Q1: • Precision = 1/3 (User identified three features, one matched AI explanation),
• Recall = 1/2.

Scenario Q2: • Precision = 1 (User and AI explanation lists are identical),
• Recall = 1.

Scenario Q3: • Precision = 1 (User identified 2 features, both matched AI explanation),
• Recall = 2/3.

Scenario Q4: • Precision = 1/3 (User identified 1 feature, which matched AI explanation),
• Recall = 1/3.

Please note that these are simplified examples, and in practice, the lists of important features in
explanations are typically longer.

Fig. 13. Example of answers from one participant to the Understanding survey. We measure the users’
perceived comprehension of the AI system on a scale from 1 to 5.

E.6 Post-Questionnaires
In Figure 13, we present an example of a survey measuring User J’s perceived comprehension of
the AI system. This survey was adapted from Madsen and Gregor [45] and employed a Likert scale
ranging from 1 to 5. The average of User J’s responses to the eight survey questions provides a
representation of their perceived understanding, which, in this case, is 3.5 out of 5.
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