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Debugging consists in understanding the behavior of a program to identify and correct its defects. Breakpoints
are the most commonly used debugging tool and aim to facilitate the debugging process by allowing developers
to interrupt a program’s execution at a source code location of their choice and inspect the state of the program.

Researchers suggest that in systems developed using object-oriented programming (OOP), traditional
breakpoints may be a not effective method for debugging. In OOP, developers create code in classes, which
at runtime are instantiated as object—entities with their own state and behavior that can interact with one
another. Traditional breakpoints are set within the class code, halting execution for every object that shares
that class’s code. This leads to unnecessary interruptions for developers who are focused on monitoring the
behavior of a specific object. As an answer to this challenge, researchers proposed object-centric debugging, an
approach based on debugging tools that focus on objects rather than classes. In particular, using object-centric
breakpoints, developers can select specific objects (rather than classes) for which the execution must be
interrupted. Even though it seems reasonable that this approach may ease the debugging process by reducing
the time and actions needed for debugging objects, no research has yet verified its actual impact.

To investigate the impact of object-centric breakpoints on the debugging process, we devised and conducted
a controlled experiment with 81 developers who spent an average of 1 hour and 30 minutes each on the study.
The experiment required participants to complete two debugging tasks using debugging tools with vs. without
object-centric breakpoints. We found no significant effect from the use of object-centric breakpoints on the
number of actions required to debug or the effectiveness in understanding or fixing the bug. However, for one
of the two tasks, we measured a statistically significant reduction in debugging time for participants who used
object-centric breakpoints, while for the other task, there was a statistically significant increase. Our analysis
suggests that the impact of object-centric breakpoints varies depending on the context and the specific nature
of the bug being addressed. In particular, our analysis indicates that object-centric breakpoints can speed up
the process of locating the root cause of a bug when the bug can be replicated without needing to restart the
program. We discuss the implications of these findings for debugging practices and future research.
Data and materials: https://doi.org/10.5281/zenodo.14844897
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1 Introduction
Debugging is known to be a tedious and time-consuming part of the development and software
maintenance process [39, 55, 56, 59, 64]. It consists in reproducing the behavior of a program,
understanding how it came to be and implementing the best possible solution to rectify failures [64].
Among the debugging tools provided by Integrated Development Environments (IDEs), break-

points are the ones most commonly used by developers [2], particularly to initiate an analysis of a
program’s behavior [21]. These debugging breakpoints are flags allowing developers to interrupt
the execution of a program at any point in the source code. First, developers examine the source
code to determine where to place a breakpoint. After placing a first breakpoint, they start the
execution of the program. The program execution system stops the program execution when it
reaches a breakpoint and displays the execution context in a debugger. Usually, to present the
execution context, debuggers display the stack of executed operations (e.g., method calls) from
the beginning of the program execution up to the breakpoint location. This enables developers to
inspect and analyze the program’s state and behavior and possibly set additional breakpoints in
the source code [2, 43, 44, 64].
Even though breakpoints are a widely used debugging tool [2], research suggests that they are

not suitable for debugging object-oriented programs [36, 49]. These works highlight a conceptual
gap between the perspective of standard debugging breakpoints (i.e., the source code and the
method call stack) and the questions developers ask when debugging object-oriented programs.
When debugging object-oriented programs, developers tend to ask questions about the behavior
of the objects living in the execution context of the program [32, 53], rather than about source
code. Therefore, when debugging a single suspect object, developers may experience unwanted
interruptions because execution is stopped every time an object executes the same code as the
suspect object, on which the breakpoint was set. This does not help developers to reason about the
specific objects they are investigating or reasoning about.
Consequently, Ressia et al. proposed object-centric breakpoints [49] that developers can use on

objects rather than on the source code. With object-centric breakpoints, developers can select
a single object and place a breakpoint on that object. The breakpoint is then active only for
that particular object even if that object shares source code with other objects. The approach of
focusing the debugging perspective on objects has been coined object-centric debugging [36, 49].
Object-centric debuggers are expected to help analysis [35–37, 57, 58], understanding [61, 62], and
debugging [14, 15, 18, 27, 49] of object-oriented programs. We quantify this from two angles: the
debugging time, as they would provide faster ways to observe an object involved in a bug, and the
number of actions with the debugger required to make that observation, which would decrease.
These works showcase innovative debuggers with interesting potential in improving the de-

bugging of object-oriented programs. However, object-centric debuggers do not come with strong
empirical evaluations but only with anecdotal evidence of their benefits. Therefore, we need to
better understand the impact of object-centric debugging before engaging in significant research
and engineering efforts to develop the approach.

In this paper, we present the first empirical evaluation of the impact of object-centric breakpoints
on debugging. We devise and conduct a controlled experiment following a between-participants
design with 81 developers, 54% of whom reported being professional software developers and 30%
students. 85% of participants reported having more than three years of programming experience.
Each participant is asked to complete two unrelated debugging tasks that we order randomly. The
first task has to be completed using standard debugging tools (control) and the second using object-
centric breakpoints in addition (treatment). We measured the tasks’ correctness (i.e., participants
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correctly explained/fixed the bugs), the number of debugging actions, and the time needed by our
participants to debug each bug.
We found that, whenever a bug can be repeated without requiring the restart of the program,

object-centric breakpoints seem to lower the time needed to find the root cause. However when
the bug cannot be reproduced without a program restart, object-centric breakpoints seem to be
inefficient and can even slow down the process of debugging. Additionally, we found no significant
correlation between object-centric breakpoints and the number of actions required to debug, nor
with the correct understanding of the bug. Overall, our investigation suggests that the effect of
object-centric breakpoints depends on the nature of the observed bug. It confirms the potential of
the approach, yet more research is needed to learn about the exact scenarios where object-centric
debugging applies.

2 Background
In this section, we provide information on object-centric debugging and object-centric breakpoints—
a central implementation of the approach. We highlight the differences between object-centric
breakpoints and conditional breakpoints.

2.1 Object-Centric Debugging
Object-centric debugging is an approach aiming to address the discrepancy between the conven-
tional representation of a software execution as a linear control flow (with the stack of method calls)
and the abstraction of such a flow that is offered by object-oriented programs [49]. These programs
represent the execution as a directed graph, wherein the nodes are objects (representing a concept
with a state and behavior) and the edges are messages and commands that are sent from one object
to another. Therefore, we qualify as object-centric solutions those that aim to help developers
follow the interactions and state transitions of objects, tasks that would otherwise be challenging
using standard debugging tools, potentially demanding a greater number of actions [49] or leading
to program crashes [27]. Some of these solutions enhance standard debuggers with object-centric
operations such as breakpoints [14, 17, 27, 49], run-time behavioral adaptation [15, 42, 48], and
support for object-centric operators [18]. Others enhance back-in-time and time-travel debuggers
with new object-centric views and operators [8, 9, 35–37, 57, 58, 61–63]. Yet only Willembrinck et
al. includes an empirical evaluation related to object-centric debugging [61]. They set to investigate
a time-travel debugger using 14 program comprehension tasks; two of the tasks require to use the
object-centric options of the time-travel back end. Even though their evaluation shows significant
results when considering all tasks, no conclusions could be drawn about the two object-centric tasks
in isolation. Our work focuses on the evaluation of object-centric breakpoints as they represent the
most researched object-centric debugging solution with a stable implementation.

2.2 Object-centric Breakpoints
Object-centric breakpoints [14, 17, 27, 49] provide operations and APIs to interrupt a program
execution when an object specified by the developer gets called or modified. Implementing object-
centric breakpoints is challenging, as it requires the creation of a back end to intercept all method
invocations on the object, as well as all accesses and assignments to its instance variables (object
attributes). To do so in the most efficient way (i.e., without a condition to filter the targeted object),
solutions such as Aspect-Oriented Programming (AOP) [31] and the setup of object Proxies [16]
must be employed. It requires virtual-machine support to exchange the target object references
with a proxy. Such a switch is possible in Python [45] and in Smalltalk variants, such as Squeak [5]
or Pharo [6] thanks to their metaprogramming capabilities. We focus on the Pharo IDE [6] for
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the presentation of breakpoints and the realization of our contribution, since it is the only object-
oriented programming environment with object-centric breakpoints in its production version, since
2019.

A

B
C

Fig. 1. The Pharo Inspector opened on a collection object, showing the integration of different object-centric
breakpoints. Developers can install: (A) object-centric method breakpoints on the objects’ methods, (B) object-
centric field breakpoints on the objects’ variables, and, from the top menu, (C) general field breakpoints.

To apply a breakpoint on a given object, the Pharo environment relies on another debugging
tool—the inspector. The latter allows a developer to observe any object in the memory of the
executed program, in terms of its state (i.e., the content of the instance variables, Figure 1 B) and
the methods it can execute (Figure 1 A). The inspector is embedded in the debugger and displays
the values of variables in use within the currently interrupted method. Developers can place the
following object-centric breakpoints on the inspected objects:
Method-specific breakpoint. This breakpoint interrupts the execution before the target object
executes a specific method. Ressia et al. [49] have proposed it as way to help when many instances
of the same class execute the same method (e.g., in a loop), but developers are interested in
interrupting the execution only when a particular object executes that method. Developers install
an object-centric method breakpoint through the contextual menu of a method, by selecting Halt
on call (Figure 1 A) of the Meta pane.

Field breakpoint. This breakpoint interrupts the execution when one of the instance variables,
attributes of a particular object, is accessed or modified. It is intended to help whenmany instances
of the same class are modified during the execution, but developers are interested in tracking
state changes in only one target object [49]. Developers install an object-centric field breakpoint
through the contextual menu of an instance variable, by selecting Halt on read/write (Figure 1 B)
of the Raw pane. The Halt on state access (Figure 1 B) interrupts the execution when the selected
instance variable is being either read or written to.

General field breakpoint. This breakpoint is a generalization of the field breakpoint. It interrupts
the execution when any attribute of a target object is accessed or modified. In Pharo, these
breakpoints can be activated using the top menu of the inspector (Figure 1 C).

2.3 Object-centric Breakpoints Versus Conditional Breakpoints
Common competing arguments against the use and implementation of object-centric breakpoints
is that most IDEs provide conditional breakpoints that can achieve the same feature. Conditional
breakpoints offer the possibility to define conditions under which breakpoints interrupt execution.
Developers can write conditions that check for the identity of the executing object to decide if
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the breakpoint should interrupt execution or not, thus implementing an object-centric breakpoint.
However, writing conditionals is done rarely [2], can be difficult [2], error-prone [19] and can induce
undesirable performance overheads [2, 19], especially if lots of instances execute the condition
just to filter out one single object. Additionally, the system must provide a reliable way to refer to
objects, such as a reference or an identifier (e.g., a hash), which they must use to write an identity
check (e.g., hash == my_object_hash). Overall, object-centric breakpoints are expected to be
more efficient and to require less debugging code (i.e., conditionals) from developers when tracking
object interactions and modifications.

3 Research Methodology
Our overarching goal is to make a step towards understanding whether and how object-centric
debugging improves the debugging of object-oriented programs. Towards this goal, we aim to
study, through a controlled experiment, the impact of object-centric breakpoints on (1) the ability
of developers to fix bugs, (2) the number of interactions/actions with the debugging tools required
to fix bugs, and (3) the time taken to fix bugs.

3.1 ResearchQuestions
We structured our investigation around three research questions.

RQ1. How do object-centric breakpoints affect developers’ ability to fix bugs?

For object-centric breakpoints to be beneficial to the process of debugging, it is essential not to
hinder the ability of developers to fix bugs. Since object-centric breakpoints are claimed to improve
debugging [49], we formulate the following null hypothesis:
H01 object-centric breakpoints do not affect the ability of developers to fix bugs.

RQ2. How do object-centric breakpoints affect the number of debugging actions?

Current evaluation scenarios [49] suggest that debugging with object-centric breakpoints reduces
the number of actions that developers perform with debugging tools. Since we want to evaluate
the effect of object-centric breakpoints, whether positive or not, we formulate the following null
hypothesis:
H02 Object-centric breakpoints do not affect the number of debugging actions developers per-

form to fix bugs.

RQ3. How do object-centric breakpoints affect the time taken to debug?

If object-centric breakpoints are expected to reduce the number of debugging actions, we also
expect they shorten the time needed for debugging. Therefore, we formulate the following null
hypothesis:
H03 Object-centric breakpoints do not affect the time developers take to fix bugs.

3.2 Experiment Flow
To study our hypotheses, we conducted an empirical experiment with 81 participants. Figure 2
presents the sequence of the seven steps we asked our participants to follow within the Pharo
IDE in autonomy, using their own computer, operating system, and work environment of choice.
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The steps are carried out in order by a wizard tool [54], and material is available in the replication
package.

GROUP 1

Lights OutAmmolite

Lights Out Ammolite

Control
task

Treatment
task

Welcome
instructions

Experiment
questions

Task
questions

Tutorial and
exercises

Task
questions

GROUP 2

1 3 4 6 752

Fig. 2. Sequence of the seven steps followed by the experiment participants.

(1) Welcome instructions. We inform our participants about the objective of the experiment and
announce its estimated duration to be approximately one hour and thirty minutes. We provide the
instructions needed to setup the experimental environment (i.e., the wizard), detail the steps and
explain how to use the experiment wizard tool [54]. When starting the experiment, the participants
are asked to consent to their data being collected (with a default opt-out). If they accept, they can
proceed with the experiment and are randomly assigned to one of the groups (Figure 2). To ensure
that participants only use standard tools, they are explicitly instructed not to import advanced
tools, such as plugins or libraries into the IDE. Finally, the participants were informed that they
had flexibility to work at their own pace and according to their own schedule. However, to ensure
the accuracy of the results, we requested that they try to complete the experiment in a single
uninterrupted session whenever possible.

(2) Control task. The wizard presents the participants with a description of their first bug, either
in Ammolite or Lights Out, depending on the participants’ group (step 1). They are asked to fix
the bug using the standard debugger, inspector, and code navigation and modification tools. After
completing the task, participants are asked to explain the cause of the bug and how they resolved it.

(3) and (6) Post-task questions. After control (step 2) and treatment (step 5) tasks we ask partici-
pants a set of questions. The poll of questions comprises open questions (asking for complementary
information on participants’ understanding of the bug), questions with multiple choices (e.g., to
evaluate how long participants were interrupted while performing the task), and Likert scale
questions to get feedback on the task and on the user experience the tool offers.

(4) Tutorial and exercises. As soon as a participant starts this step of the experiment, the wizard
activates the object-centric breakpoints. Participants are then presented with a tutorial explaining
with text and video support the concepts behind object-centric breakpoints and how to use them
in Pharo, as presented in subsection 2.2. We ask participants to complete two exercises to apply the
knowledge gained from the tutorial.

(5) Treatment task. The wizard provides the description for the second bug of the experiment.
As for the control task (step 2), the bug assigned in treatment depends on the participants’ group
(step 1). Participants are encouraged to try using the object-centric breakpoints, using the object-
centric version of the inspector (Figure 1) in addition to the standard debugging and source code
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modification tools. Similarly to the control task (step 2), participants are asked to explain the cause
of the bug and how they resolved it.

(7) Post-experiment questions. Once both tasks are completed, we ask participants to provide
demographic information and any additional feedback on the experiment.

3.3 Experimental Design
Every participant underwent a control condition using standard Pharo tools to debug a task and a
treatment condition using object-centric breakpoints to debug another task (Figure 2 steps 2 and 5).
Although this resembles a within-participants design [12], comparing each participant under

different conditions presents risks related to the unknown impact of object-centric breakpoints and
to the difficulty of assessing task complexity [47]. First, object-centric breakpoints are uncommon
tools and we do not know what effect they might have on debugging. The tasks must be complex
enough: if they are too trivial, the object-centric breakpoints may not show any difference from
standard tools. This limits the number of tasks that participants can perform, as adding too many
tasks risks making the experiment excessively long. Second, in a within-participant design with a
limited number of tasks, the tasks have to be different enough to minimize learning effects, yet
similar enough to allow for meaningful comparisons across different conditions.

Given our current understanding of the impact of object-centric breakpoints, we cannot ensure
that two different tasks, even if similar in some aspects, would be comparable under different
conditions. We therefore opted for a between-participants design [12] where independent measures
(control and treatment) are then compared per task.

3.4 Experimental Tasks
We designed the control and treatment tasks to mirror the object-centric breakpoints scenarios [49]
described in subsection 2.2. To ease the presentation of the tasks, we label these scenarios as follows:
Scenario I corresponds to the Object-centric debugging field breakpoint scenario, while Scenario
II encompasses both the Object-centric debugging method-specific breakpoint and Object-centric
debugging general field breakpoints scenarios.

(a) Ammolite (b) Lights Out

Fig. 3. Ammolite (a) and Lights Out (b) applications with the bug symptom highlighted in red.

Object-centric debugging assumes that developers can access the problematic object within
the program execution [18, 49]. To ensure this assumption is met, we selected applications with
graphical user interfaces, and bugs with a single problematic object. We made these problematic
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objects accessible by right-clicking on the graphical interface. Figure 3 presents the applications of
the tasks.

Ammolite (a). It is a real application for teachers to create balanced groups of students based on
their grades, indicated by markers (+ for above average and - for below average). To generate and
display the groups, the user clicks the "Generate" button on the graphical interface.
A bug was discovered in the production version, where a student’s marker was missing in the

generated groups display. This bug matches an object-centric debugging scenario because it requires
accessing the problematic object’s marker attribute, to observe its updates. This observation is
challenging to do using a standard debugger due to the attribute’s declaration in multiple methods
(Scenario I). Additionally, fixing this bug requires understanding how the problematic object
is displayed on the graphical interface and therefore identifying the methods executed by the
problematic object and their caller. The latter is complicated by the presence of identical student
names and markers in the promotion (Scenario II).

Lights Out (b). Originally a training exercise for learning Pharo, participants may have seen an
implementation of this game before the experiment. However, they were unaware of the bug we
introduced since we devised it from scratch. The game features a grid where each tile represents
a light, on when yellow and off when gray. Clicking on a tile turns it on along with the adjacent
lights (top, right, bottom, and left). The goal is to turn all lights on.

The bug symptom is that one of the corner lights is not switchable, its color never changes. The
symptom shifts to a new corner each time the application is restarted. Similarly to Ammolite, this
bug corresponds to an object-centric debugging scenario as it demands accessing the problematic
object’s color attribute to monitor its usage and updates (Scenario I). In addition, it requires
comprehension of how the switch feature of the lights operates, which involves identifying the
methods executed by the problematic object. This bug is complicated by the 100-tile grid, where
each corner has an equal chance of exhibiting the bug (Scenario II).

Task differences. We designed the tasks so that one should not take significantly longer than the
other to solve using standard debugging tools, and ensured the bugs were of a type commonly
encountered in Pharo. However, the tasks differ in how the bug is reproduced. In Ammolite, each
click on the "Generate" button re-executes the section of code containing the bug. In contrast,
Lights Out requires restarting the entire application to re-execute the erroneous code. In Lights
Out, the fault may lie deep within the initialization of the application, requiring a combination of
object-centric breakpoints to understand the symptom and standard debugging tools to locate the
root cause.

3.5 Experimental Variables
Table 1 presents the variables we use for our analysis of the data. We consider object-centric
breakpoints as the single independent variable of the experiment. We seek to measure the impact
of object-centric breakpoints on three dependent variables, the correctness of participants answers
to the tasks as a proxy to study 𝐻01, the debugging actions performed by participants as a proxy
to study 𝐻02, and the debugging time spent by participants to complete a task as a proxy to study
𝐻03. We qualify as debugging actions the absolute number of debugging-related actions performed
by each participants to complete a task. These actions are: the number of added and removed
breakpoints, of added, modified and removed methods, of custom code execution (scripts), of call
stack navigation and of step-by-step code execution action.

To control participants’ development experience which could influence the dependent variables,
we assign randomly participants to the different groups (Figure 2). To control interruptions, i.e.,
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Table 1. Variables used for the statistical analysis model.

Variables Description

Independent variables
Treatment The introduction of object-centric breakpoints to standard debugging tools.
Dependent variables
Correctness Whether the participant correctly or incorrectly explained the root cause of the bug or fixed it.
Debugging actions The number of actions the participant performed with the debugger during the task.
Debugging time The total time the participant took to complete the task.
Control variables
Experience The participant’s development experience, measured in years.
Interruptions Duration of interruptions participants experienced while debugging.

time anomalies due to participants being interrupted during a task, we correct the time measures
using automatic computation from logs and participants’ feedback on interruptions.

3.6 Data Collection, Selection, and Correction
Participants used the Pharo 9 IDE [6] for the experiment. Our experimental framework instruments
the IDE immediately after theWelcome instructions (Figure 2, step 1) so that the IDE immediately
starts generating usage logs. For the data analysis, we collect the logs to reconstitute every partici-
pation. We automatically extract information from the usage logs and compute from them the time
and debugging actions metrics. We delete incomplete participations (e.g., incomplete tasks) without
processing the related data. To ensure the accuracy of the measurements, we screen-recorded two
pilot participations and manually verified that the logs matched the video recordings. Metrics such
as the Correctness and the Interruptions are extracted from the questionnaires answers. The data
are transmitted to, processed and stored on an institutional server. The aforementioned process,
in addition to the nature of the data collection through the use of logs and questionnaires, was
approved by the ethical committee of our research institution.

Once extracted and computed, metrics data have to be adjusted to cope with inconsistencies (e.g.,
time anomalies) and for information that require a human decision (e.g., deciding if a task’s answer
is correct). We devised protocols for manual data adjustment [10], which we followed to select data,
assess tasks’ correctness and correct time anomalies. Each time, one of the authors first performed
the time anomalies analysis and correction and a second author double-checked the decisions.

Data selection. We excluded the treatment tasks from our analysis where object-centric break-
points were not used, as comparing control and treatment is only valid if the treatment condition
is met. To do so, we created a script to automatically scan the logs and reject tasks where no
object-centric breakpoint events were detected. In the process, we also rejected the tasks with
incomplete data (e.g., due to a data collection error) which we also consider as invalid.

Correctness assessment. For each task, we manually analyzed participants’ answers and compared
them against our knowledge of the bug. We considered a task correct if the bug was fixed or when
the provided answer explained the bug root cause (i.e., the participant understood the bug). For
both Ammolite and Lights Out, we believe it’s enough to explain the root cause, because once
understood, bug fixing is trivial.

Correction of time anomalies. We determined manually the amount of interruption time for each
task (from participants’ interruptions declared in surveys and from computed time gaps from the
logs), then we subtracted this interruption time from the total time of the corresponding task. For
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example, if we computed a time gap of 20 hours and the time declared by the participants in the
questions was "more than 10 minutes", we simply removed these 20 hours from the task time.

3.7 Required Number of Participants and Their Recruitment
To estimate howmany participants we should recruit, we performed an a priori power analysis using
the G-Power software [20]. We chose a large effect size of 0.7 with a target statistical power of 0.8
because of the examples presented in the literature [49] suggesting that object-centric breakpoints
have a strong potential for facilitating debugging. For instance, in one scenario [49] understanding
a bug would require 48 debugging operations with standard tools but only two operations with
object-centric breakpoints. Other scenarios highlight the considerable effort required to scope
breakpoints to one specific object among many of the same kind, and the implications of failing to
do so (system crashes [27], massive debugger noise (unwanted interruptions) [18]). Each example
suggests a significant impact on the number of debugging actions needed to understand a bug,
and consequently, on the time spent debugging. We employed a two-tailed Mann-Whitney U test
(suitable for normal and non-normal distributions), with a significance threshold of 0.05 and a
balanced number of participants between control/treatment groups. Under the assumption that our
dependent variables would follow a normal distribution, the results of the analysis showed that we
needed to recruit at least 70 participants, 35 in each group.
To recruit participants, we sent invitation letters by email to our professional contact lists, to

the Pharo community users channels (mailing lists and Discord servers) and to public channels
(Twitter). In addition, we contacted people directly from the community who have a public Pharo
development activity. To convince people to participate, we told them beforehand that the goal was
to evaluate the (yet unknown) impact of a Pharo tool, and that they will be manipulating that tool
during the experiment. Participants were not compensated. We ran a pilot with 11 participants,
developers and researchers from our research group. They reported problems and instabilities. We
took all this feedback into account in the actual design and proceeded with the experiment. The
results of the first participants were not included in our study.

4 Results
The experiment involved 81 participants. After data selection, we obtained 76 valid participants
for Ammolite (42 in control, 34 in treatment) and 72 valid participants for Lights Out (38 in
control, 34 in treatment). Overall, participants described their role as full-time developers (37),
part-time developers (7), students (25), self-employed (3), unemployed (2), and other (7). Participants
were evenly distributed across tasks in both conditions (Figure 4), based on their self-reported
programming experience. Statistical tests on demographic data comparing both conditions yielded
no significant results. In this section, we report the results of our investigation by research question.

Fig. 4. Programming experience for Lights Out (left) and Ammolite (right) for each condition.
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4.1 Statistical Tests
In this section, we conduct a preliminary analysis of the data to ensure that we chose appropriate
statistical tests. For every statistical test we performed in the experiment, we considered a level of
significance 𝛼 = 0.05 which is the common threshold used to mitigate type I errors.
The time and the number of debugging actions performed are continuous variables. To test if

their distribution follows a normal distribution and to choose appropriate statistical tests for our
analysis, we performed Shapiro-Wilk tests for both tasks. All tests output p-values <= 0.001 except
for time metric under the treatment condition (Ammolite: 𝑝 = 0.011, Lights Out: 𝑝 = 0.105). These
results suggest that the data has little chance to be normally distributed.
The H01 hypothesis concerns the correctness, which is a categorical variable. To search for

associations of this variable with the conditions of the experiment (control and treatment), we
propose to use contingency tables and 𝜒2 tests. The H02 and H03 hypotheses concern the time
and debugging actions which are continuous variables. Since normality tests suggest that they do
not follow a normal distribution, we propose to analyze the differences between the control and
treatment measures of these variables using Mann-Whitney U tests.
We report the Vovk-Sellke maximum p-ratio (VS-MPR) to help minimize the risks for type I

errors. VS-MPR represents the maximum odds of obtaining a given p-value under the alternative
hypothesis (as opposed to under the null hypothesis) [52]. It gives an idea of how confident we can
be when rejecting a null hypothesis based on a p-value, especially when the p-value is close to the
0.05 threshold.
We report the rank-biserial correlation coefficient 𝑅𝑟𝑏1 as an appropriate measure of the effect

size for the Mann-Whitney U test [29], i.e., the magnitude of the difference between the control
and treatment groups. We interpret 𝑅𝑟𝑏 as the arithmetic difference between the proportion of
data supporting the hypothesis that the values in control are greater than in treatment and the
proportion suggesting the opposite [30]. For example, for the time variable, an effect size 𝑅𝑟𝑏 = 0.2
(𝑟 = 0.6 − 0.4) would indicate that 60% of participants’ results suggest that it takes more time to
debug using standard tools compared to object-centric breakpoints, while 40% suggest otherwise.
We consider that such a 60% proportion of data in the context of our experiment would constitute
evidence that the tool is worthy of more research efforts. Therefore, and following the most recent
𝑅𝑟𝑏 interpretation guidelines [22], we consider effect sizes to be small when |𝑅𝑟𝑏 | < 0.2, medium
when 0.2 < |𝑅𝑟𝑏 | < 0.3 and large when |𝑅𝑟𝑏 | > 0.3.

4.2 RQ1 - Ability to Fix the Bug—Correctness
We initially assumed that participants from the control and treatment groups would give the same
number of correct answers H01. However, the results include incorrect answers in both groups.
In control, Ammolite (𝑁 = 42) had 40 correct answers, while in treatment (𝑁 = 34), had 32

correct answers. The 𝜒2 test shows no significant difference (𝑝 = 1) in correctness between control
and treatment conditions for the Ammolite task .

Lights Out shows 32 correct answers in the control group (𝑁 = 38) and 24 correct answers in the
treatment group (𝑁 = 34). The 𝜒2 test shows no significant difference (𝑝 = 0.269) in correctness
between control and treatment conditions for the Lights Out task.

The tests did not reveal a significant association between the object-centric breakpoints and the
number of participants that successfully fixed or explained the bugs, therefore we cannot reject H01.

Finding 1. Object-centric breakpoints did not affect developers’ ability to fix bugs.

1We use the R library effectsize [3] to calculate 𝑅𝑟𝑏 .
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4.3 RQ2 - Number of Actions to Debug
The introduction of object-centric breakpoints reduced Ammolite debugging actions by 49% on
average, while increasing Lights Out actions by 40% on average. The box plots in Table 2 illustrate
the distributions of the results that support these tendencies of a positive effect observed for
Ammolite and a negative effect for Lights Out. Indeed, the number of debugging actions required
to debug Ammolite appears to be lower and varies less when using object-centric breakpoints
compared to without. Conversely, getting Lights Out fixed required a slightly higher (and less
consistent) number of debugging actions from the participants. The distributions of the results in
the control and treatment groups show a striking similarity, particularly in the case of Lights Out.
Therefore, it is not possible to draw statistically meaningful conclusions solely from the distribution
of the results. In the next step, the Mann-Whitney U tests allow us to conclude.

Table 2. Descriptive statistics (1) of debugging actions required to debug Ammolite and Lights Out in control
and treatment, and results of the Mann-Whitney U tests (2) assessing the significance of the differences
revealed by the descriptive statistics.

(1) Group descriptives (2) Mann-Whitney U test

Task Group N Mean Distribution p-value VS-MPR 𝑅𝑟𝑏

Ammolite
C 42 149.238 0

93
427.4

0.130 1.388 0.204
T 34 73.294 0

50.5
246

Lights Out
C 38 157.447 0

86.5
617

0.417 1.000 -0.112
T 34 220.912 0

142
736.4

The difference in debugging actions between the control and the treatment condition is small for
both Ammolite (𝑅𝑟𝑏 = 0.204) and Lights Out (𝑅𝑟𝑏 = −0.112). Moreover, the impact on the debugging
actions for both Ammolite (𝑝 = 0.130) and Lights Out (𝑝 = 0.417) is not statistically significant.
Since the odds for observing such results under an alternative hypothesis is low (VS-MPR: 1.388
and 1.000), we decided not to reject H02.

Finding 2. Object-centric breakpoints did not have a significant effect on the number of
debugging actions required to fix bugs.

4.4 RQ3 - Time to Debug
While debugging Ammolite, participants were on average 41.5% minutes faster in treatment than
in control. In contrast, they were 29.5% slower to complete Lights Out (Table 3). The box plots
in Table 3 present the distributions of the results that support these trends. A positive effect is
evident for Ammolite, while we can observe a negative effect for Lights Out. The time required to
debug Ammolite appears to be reduced and varies less when object-centric breakpoints are added
to the debugger. In contrast, resolving Lights Out’s bug required a longer amount of time from
participants.
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Table 3. Descriptive statistics (1) of the time in minutes required to debug Ammolite and Lights Out in control
and treatment, and results of the Mann-Whitney U test (2) assessing the significance of the differences
revealed by the descriptive statistics.

(1) Group descriptives (2) Mann-Whitney U test

Task Group N Mean Distribution p-value VS-MPR 𝑅𝑟𝑏

Ammolite
C 42 34.238 0

24.5
85.3

0.014 6.262 0.329
T 34 20.014 0

16.9
41.48

Lights Out
C 38 29.352 0

27.1
61.7

0.031 3.412 -0.296
T 34 38.016 0

36.5
96.2

The results of the Mann-Whitney U test performed on the data confirm these observations
(Table 3). In Ammolite, a proportion of 66% of the participants debugged in less time using object-
centric breakpoints than without (𝑅𝑟𝑏 = 0.329 = 0.664 − 0.335). Conversely, a proportion of 65% of
the participants needed more time to debug Lights Out (𝑅𝑟𝑏 = −0.296 = 0.352 − 0.648) when using
the object-centric breakpoints. The effect sizes are large (close to 0.3) and statistically significant
for both Ammolite (𝑝 = 0.014) and Lights Out(𝑝 = 0.031). Since there are 6.262 and 3.412 more
chances for observing such results under the alternative hypothesis that our expectations about
object-centric breakpoints are correct than under H03, we take the decision to reject H03.

Finding 3. Object-centric breakpoints decreased the time needed to fix Ammolite and
increased the time needed to fix Lights Out.

4.5 Participants’ Perception
According to post-experiment feedback responses (Figure 2, step 7), 45% respondents described the
experiment as easy, while 30% were neutral and 25% reported the experiment as difficult. A similar
proportion of 45% respondents described the experiment as long, the other stayed neutral (30%) or
disagreed (25%). 76% of respondents found object-centric breakpoints easy to learn and 94% that it
would be useful to improve the process of debugging. 90% of respondents anticipated using the
object-centric breakpoints in the future.

Task easiness and length. Respondents to the post-task questions (Figure 2, step 3 and 6) perceived
Ammolite as an easy task (54% in control and 63% in treatment) and Lights Out as a difficult task
(37% in control and 47% in treatment). Similarly, in treatment participants perceived Ammolite as
short (59% of the answers) and Lights Out as long (61% of the answers). As pointed out by some
participants, the randomness in the object presenting the bug in Lights Out might be one of the
reasons for its perception: “However, the cell that can not be turned on changes randomly. It is
hard to find which will be the faulty cell.”. Additionally, the complexity of the task seems to be
increased by the fact that the bug is injected through the initialization of the graphical components:
“Sadly, the complexity of black-box frameworks [...] doesn’t really make debugging much easier
even if we know the object.”, “It was difficult to find because the method that cause this behavior
was injected in the morph package.” (morph and framework refer to Pharo’s graphical components
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system). Lastly, it seems that participants encountered unexpected behaviour, possibly due to the
randomness aspect of the bug: “I got stuck because of a bug which meant that sometimes my 4
sides were colored and sometimes not, whereas there should always have been only 3 of them
colored”, “I cannot get the game bug anymore so this is difficult to debug it.”.

Debugging experience. After debugging Ammolite or Lights Out using object-centric breakpoints,
the majority of participants perceived the debugging experience as enjoyable, efficient, intuitive,
and the new breakpoints easy to use and learn. Over 63% of the post-task questions repondents
(Figure 2, step 3 and 6) agreed with these statements for Ammolite and over 57% for Lights Out.

Object-centric breakpoints were highly valued by participants working with Ammolite, with 82%
finding them helpful including 72% considering them extremely helpful. For Lights Out, participants
were less enthusiastic, with 61% finding the tool helpful including 35% describing it as extremely
useful. In their feedback several participants gave reasons for this difference: “I was surprised at the
Lights Out task, as object-centric breakpoints does not particularly help there. Once you have the
object in question, it is too late to set any breakpoint as the damage has been done.” “Because the bug
occurs at initialization of the game, it’s not easy to use object-centric debugger. The ’wrong’ state
is already here when one can install a breakpoint [...] when one understands this, the object-centric
is not useful anymore and one needs to switch to standard debugging and static analysis.”

4.6 Analysis of the Difference between Ammolite and Lights Out
We found that object-centric breakpoints have contradictory effects on debugging, benefiting
Ammolite and hindering Lights Out (subsection 4.3 and subsection 4.4).

Task difficulty. Participants perceived Lights Out as harder to debug than Ammolite (subsec-
tion 4.5) because of the random appearance of the symptom on one of the corner lights. However,
we designed the tasks so that they would require a similar number of debugging actions and time
to complete. Since the pilot run confirmed this (no difference in task difficulty was reported), we
tested the task difficulty aspect with the following null hypotheses 𝐻𝑒𝑞10 : the tasks require the
same number of debugging actions to complete and𝐻𝑒𝑞20: the tasks take the same time to complete.
Overall, the data distribution for time and debugging actions for both tasks (𝑁𝐴𝑚𝑚𝑜𝑙𝑖𝑡𝑒 = 42,

𝑁𝐿𝑖𝑔ℎ𝑡𝑠𝑂𝑢𝑡 = 38) appears to be part of the same population which is in favor of 𝐻𝑡𝑒𝑞0 and 𝐻𝑎𝑒𝑞0.
We tested 𝐻𝑒𝑞10 and 𝐻𝑒𝑞20 using Mann-Whitney U tests to compare time and action data under the
control condition with Ammolite and Lights Out. We cannot reject 𝐻𝑒𝑞10 (𝑝 = 0.919, 𝑅𝑟𝑏 = −0.014)
nor 𝐻𝑒𝑞20 (𝑝 = 0.962, 𝑅𝑟𝑏 = 0.007). The observed data does not support the hypothesis of a different
difficulty level between the tasks, and the high p-values even suggest that to debug Ammolite and
Lights Out developers need a similar number of debugging actions and a similar amount of time.

Task characteristics. Participants reported that the characteristics of Lights Out bugs may con-
tribute to the perceived difficulty in debugging Lights Out (subsection 4.5). Notably, reproducing
the bug in Ammolite requires to press a button on the graphical interface, whereas restarting the
application is necessary to reproduce the Lights Out bug. As highlighted by participants, it implies
that to identify the problematic code in Lights Out developers have to go through an additional step.
They first need to understand the symptoms of the bug and realize that the bug occurs during the
initialization process. Following this, developers must switch to the code browser and analyze the
source code specific to that initialization process. Therefore, we analyzed their tool usage behavior
to further understand the differences between the tasks and conducted appropriate tests to find the
differences, if there are any.

As a proxy to measure the tool usage, we recorded the number of tool activation and amount of
time spent in all the tools of the Pharo IDE, such as browser, wizard, and debugger. Then for each
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Table 4. Results of the Mann-Whitney U tests for significant changes in the usage of the development tools
in control and treatment when debugging Ammolite (1) and Lights Out (2).

(1) Ammolite tools usage

Tool p VS-MPR 𝑅𝑟𝑏

Task app time 0.020 4.781 0.302
Browser time 0.006 11.520 0.356
Debugger time 0.023 4.282 0.307
Wizard time 0.006 12.215 0.448
Implementors active 0.019 4.798 0.377
Senders time 0.028 3.722 0.449

(2) Lights Out tools usage

Tool p VS-MPR 𝑅𝑟𝑏

Inspector time 0.005 13.211 -0.375
Inspector active 0.009 8.763 -0.351
Spotter active 0.008 9.951 0.630

Task app: the application window of the task to debug, i.e., Ammolite (1) or Lights Out (2).
Wizard: the tool presenting the experiment tasks and surveys to participants during the experiment, cf., subsection 3.2.
Active: the number of times participants activated (opened or entered) a given tool window to use it.

tool we performed a Mann-Whitney U test to compare its usage in control and treatment, for both
tasks. Since we are conducting multiple tests, the likelihood of finding a statistically significant
result purely by chance increases. We applied the Benjamini-Hochberg procedure [4] to control for
false discovery rate using 10% as an acceptable threshold, adjusting the significance levels for the
Mann-Whitney U tests to 𝑝 ≤ 𝛼 = 0.028 for Ammolite and 𝑝 ≤ 𝛼 = 0.009 for Lights Out. Table 4
presents only the results for which Mann-Whitney U tests’ results satisfied this requirement.

Overall for Ammolite, the introduction of object-centric breakpoints seems to lower the usage of
all the IDE tools (𝑅𝑟𝑏 > 0). In particular, the results suggest a notable decrease in the time spent in
the code browser 𝑉𝑆 −𝑀𝑃𝑅 = 11.520 and in the wizard tool 𝑉𝑆 −𝑀𝑃𝑅 = 12.215. In contrast, with
Lights Out, the usage of the inspector is significantly higher with the object-centric breakpoints
than without (𝑅𝑟𝑏 < −0.296 and 𝑉𝑆 −𝑀𝑃𝑅 > 8). Conversely, the usage of the spotter, a static tool
for code exploration, has significantly decreased (𝑅𝑟𝑏 < 0.630 and𝑉𝑆 −𝑀𝑃𝑅 = 9.951). Lastly, while
we observe a decrease in the usage of the debugger when debugging Ammolite with object-centric
breakpoints (𝑅𝑟𝑏 = 0.307), for Lights Out under the same condition, the Mann-Whitney U test
reveals a decrease 𝑅𝑟𝑏 = −0.296. Although, this last result (𝑝 = 0.035) is above the false discovery
rate of 10%, it is consistent with our previous observations that the usage of dynamic tools is
more intensive with Lights Out in treatment. These results show that depending on the bug being
addressed, Ammolite or Lights Out, object-centric breakpoints alters how developers utilize IDE
tools in a different manner.

Finding 4. Even though Ammolite and Lights Out can be fixed with similar amount of time
and actions using standard IDE tools, depending on the bug, introducing object-centric
breakpoints has changed how developers use the IDE tools.
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5 Discussion
In this section, we discuss the implication of our findings.

Influence of object-centric breakpoints on debugging actions. We did not measure any significant
impact caused by the use of object-centric breakpoints on the number of debugging actions our
participants performed. This result might indicate that the actual effect size is smaller than what
Ressia et al. [49] expected. Indeed, we calibrated our statistical power analysis to determine the
necessary sample sizes for detecting large effects (details in subsection 3.7). Future research can
be devised and conducted to test whether the potential for debugging improvement showcased
by Ressia et al. holds for smaller effect sizes, or if the expected large effect size can be observed in
other debugging scenarios.

Influence of object-centric breakpoints on the time to debug. We measured a statistically significant
impact caused by the use of object-centric breakpoints on time to debug. Specifically, we measured
decreased debug time for Ammolite, but increased debug time for Lights Out. As mentioned in
subsection 4.6, the nature of the bugs could be the root cause for this difference. Object-centric
breakpoints appear to be beneficial when bugs can be reproduced without restarting the application;
conversely, they seem to lead developers to spend more time within the dynamic tools of the IDE
(i.e., the debugger, the object inspector) when fixing bugs requiring to restart the application to be
reproduced (subsection 4.6).
Research has shown that developers who are debugging spend in average 14% [2] and 16% [1]

of their time in the debugger itself. We observe about twice the time spent in the debugger, with
30% (control) and 29% (treatment) in average for Ammolite, and 30% (control) and 38% (treatment)
for Lights Out. We attribute this difference from the literature to the nature of Pharo and live
programming, where emphasis is placed on dynamic tools. Alaboudi et al. also observe that “source
code remains the central anchor point in debugging tasks” [1]. Our results show that participants
navigate the source code for, in average, 45% (control) and 22% (treatment) of their time for Ammolite,
and 40% (control) and 21% (treatment) for Lights Out. While for both task in control and consistently
with [1], navigating source code seems to be the prominent activity, it becomes a less important
activity after the introduction of object-centric breakpoints. This could indicate that object-centric
breakpoints may succeed in swapping the debugging perspective from the IDE standards to an OOP
perspective, with the impact that we observed on the debugging time. This opens new questions on
the design and implementation of debugging tools: can we shape our tools to adopt the underlying
programming languages perspective and how does that impact the debugging activity?

Do object-centric breakpoints improve the debugging of object-oriented programs? The diverging
results in terms of debug time in one case (faster for Ammolite) vs. the other case (slower for
Lights Out) open a new research discourse. Compared to Lights Out, Ammolite presents several
technical points that may have played a role in the observed effectiveness of the object-centric
breakpoints. While past work considered strategies and techniques for debugging [7, 34], no
study yet investigated whether a tool is best suited for applying a specific strategy. Literature on
bug classification focuses on categorizing the type, source, cause and technical characteristics of
bugs in a large variety of contexts, such as bug classification in general [11], in Java [40, 41] and
Javascript [25], for performance [51], security [60], and compilers [46]. These studies aim at helping
to identify bugs and understand their consequences, but further research is needed to investigate
and provide insights on how to choose appropriate debugging tools and techniques. From the
perspective of studying object-centric breakpoints, a first step would be to identify bug types and
technical context that can be productively debugged with object-centric breakpoints.
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Technical differences observed between Ammolite and Lights out. In Ammolite, the defective object
is deterministically initialized and remains constant throughout the execution. This presents two
advantages: participants always observe the same buggy object when reproducing the bug and
breakpoints set on that object remain active until uninstalled. In Lights Out, because participants
lose the buggy object when restarting the program for reproducing the bug, they lose all breakpoints
set on that object and have to set them again on a different object. This might have advantaged
participants using the object-centric breakpoints to debug Ammolite (treatment), as they were not
slowed down by this technical limitation.

A single object-centric debugging step is enough to identify the root cause of the Ammolite bug.
The bug is a parsing error of the buggy object’s properties held into a field of the object (i.e., an
instance variable). This root cause can be directly observed by setting an object-centric method
breakpoint on the property’s getter method, or a field breakpoint on the instance variable holding
the property. It seems reasonable to think that in this case, the object-centric breakpoints helped by
minimizing the gap between the bug’s symptom (a property not displaying correctly) and its root
cause (improper parsing of the property). In contrast, in Lights Out, the object-centric breakpoints
only serve to understand that something happened during initialization, then participants have to
switch back to standard tools to find the root cause. The necessity to recognize when to switch
between object-centric breakpoints and standard tools may contribute significantly to slower
debugging times in scenarios like Lights Out. While we did not explore this aspect in this study,
further studies could be conducted to determine if recognizing the need for this switch impacts
developers’ effectiveness. If this is the case, additional training and tool support could be developed
and assessed to help participants better identify when a switch is necessary.

6 Threats to Validity
Internal validity. To avoid self-report biases when removing the interruption times declared

by participants and deciding on the correctness of each task, we devised a decision protocol and
conducted a double-checking process with two authors to ensure accuracy and consistency.

External validity. Our study is specific to the Pharo language and environment which threatens
the generalization of our results. First, we selected our participants from the Pharo community
which could prevent the generalization of our results to developers in general. However, the results
show that our participants have various programming experience and backgrounds, including
students, researchers, and industry professionals, mitigating this bias. Second, it is known that
Pharo developers frequently use the inspector to learn about the structure of the objects in the
program [33]. This may have influenced the actions performed by participants during the experi-
ment, potentially differing from those that would be performed in other object-oriented languages
or environment. However, future work could recreate our bugs in other similar programming
languages and environment and extend the results.
We acknowledge that the tasks we used in our experiment may not be representative of com-

mon bugs encountered by developers. However, the Ammolite bug was a real bug of Ammolite’s
application, and we created the Lights Out bug to match with scenarios of UI development where
one component does not behave as expected which was illustrated in Ressia’s research [49]. Fur-
thermore, one participant mentioned after the experiment that they frequently work on the Pharo
codebase and found both the Ammolite and Lights Out bugs to be similar to those they regularly
encounter in the Pharo system.
The study’s focus on evaluating a new Pharo tool and the way it was presented to participants

may have unintentionally influenced participant selection and responses. Specifically, it may have
attracted individuals who are naturally more enthusiastic about new tools (self-selection bias [26]),
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making them more inclined to favor object-centric breakpoints. Additionally, some participants
may have responded in ways they believed the researchers expected rather than providing fully
candid reflections on their experiences (moderator acceptance bias [23]). This bias could lead to an
overestimation of the benefits and adoption likelihood of object-centric breakpoints.

However, our analysis of participant feedback aligns with the experimental results. Participants
expressed appreciation for object-centric breakpoints when they seemed useful based on our
findings, such as in the Ammolite bug scenario. Conversely, they showed less interest when these
breakpoints seemed less suitable for the task, as observed in the Lights Out bug scenario. This
consistency of the responses with our experimental results suggests that, despite potential biases,
participants provided meaningful insights into the practical value of the tool.

Another limitation is that we did not control participants’ work environments, meaning external
factors (such as computer hardware, software versions, network stability, or surrounding noise)
could have influenced their experience. To mitigate this, we provided detailed guidance on the
expected setup and clear instructions on how to complete the experiment. Additionally, we remained
available whenever possible to assist with technical issues, particularly those related to the preset
environment (e.g., the Pharo image), rather than the tasks themselves.

Construct validity. Our findings are limited to the breakpoints described in subsection 2.2. We
provided five out of the eight breakpoints proposed by Ressia [49]. Future work could implement
and re-evaluate the impact of object-centric breakpoints with the missing ones and verify the
consistency with our findings.

All participants went through the treatment task after the control task. This could induce learning
and fatigue effect. However, given the negative results we observe for Lights Out in treatment, we
believe that the information participants gathered from Ammolite in control did not help them in
treatment. Moreover, the bug differences highlighted in the paper are also a mitigating factor to
the learning effect between Lights Out in control and Ammolite in treatment. Even though Lights
Out was perceived as difficult, the results of the treatment group for Ammolite are better than
those of the control group, mitigating the fatigue effect induced by Lights Out. However, since
the treatment group was less effective when debugging Lights Out than the control group, the
possibility of a fatigue effect induced by Ammolite in control on Lights Out in treatment remains.
Prior to using object-centric breakpoints under the treatment condition, participants went

through a tutorial (subsection 3.2, step 4) to learn how to use them. This step was essential for
conducting the experiment, but it might have introduced a learning effect that may amplify the
effect size of our statistical tests.

In the design, we strongly encouraged participants to debug using the object-centric breakpoints
under the treatment condition (subsection 3.2, steps 4-5), which might be a factor for the results we
obtained with Lights Out in treatment. There is a possibility that because of this instruction, partici-
pants stayed stuck in the debugger trying to use the object-centric breakpoints before realizing they
should switch back to the standard tools at some point (as reported in section subsection 4.5). How-
ever, this instruction was necessary so that participant use the object-centric breakpoints, allowing
us to measure a difference between standard tools with and without object-centric breakpoints.

Conclusion validity. Even though we reached the number of participants required by our a
priori statistical power analysis, it is possible that the tests we performed were of low statistical
power, preventing us from detecting the expected effect. We assumed normal distributions and
used a standard Cohen’s d effect size estimate corresponding to a large effect size [13]. Since
the results yielded non-parametric distributions (subsection 4.1), we used the non-parametric
Mann-Whitney U test for which we chose the rank-biserial correlation as an appropriate effect
size measure [29]. These violated assumptions and the different statistical tests we used make it
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difficult to assess if we detected the predicted effect size. Since we detected no significant effect
for the debugging actions subsection 4.3 we must consider being underpowered. Because we ran
identical tests for debugging action and time to debug, it is also possible that our tests for time
are underpowered despite detecting a large significant effect size. In this case, we could suffer
from effect size inflation [24, 28, 38, 50]. This could imply that the true effect of object-centric
breakpoints is actually smaller than the one we detected. We recommend to perform future studies
with increased sample sizes to enable the detection of smaller effects.

7 Conclusion
We investigated the effect of object-centric breakpoints on the debugging process, focusing on the
time and actions required to fix two bugs in two distinct tasks. Contrary to our initial expectations
based on past literature [49], we could not measure a significant impact of object-centric breakpoints
on debugging actions. However, in one of the two tasks (Ammolite) we could measure a statistically
significant reduction of debugging time for participants who used object-centric breakpoints
vs. those using traditional debugging tools. Conversely, for another task (Lights Out) we found
an increased debugging time for participants using object-centric debugging. Based on further
analysis of the data, including the feedback of our participants, it seems reasonable to attribute this
divergence to the different nature of the tasks and the distinct steps necessary to reproduce the bugs.
Overall, our findings suggest the need for additional research to gain a deeper understanding of
object-centric debugging and breakpoints, particularly to identify the scenarios where they are most
effective. Meanwhile, we recommend that developers use object-centric breakpoints when they
have access to faulty objects and can reproduce the bug without needing to restart the application.

8 Data Availability
All data, software, and scripts used for analysis are available in our replication package [10].
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