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Abstract

We provide a general framework for second-order elliptic problems, which includes a variety of
boundary conditions. We show how one can apply mass-lumped mixed finite element to this problem,
and we provide sufficient conditions for the convergence of such a method. In particular, we exhibit
convergence results assuming two different type of assumptions: on one hand, we show convergence
properties following the standard analysis of mixed finite elements. On the other hand, we provide
conditions on one of the approximation space, which also lead to some convergence properties. We
then formulate Abstract Gradient Discretization method (AGDM) based on these mass-lumped mixed
finite elements, enabling us to apply this type of discretization to a variety of nonlinear problems.
Finally, we illustrate our results by two examples. The first one is a second-order elliptic problem
with homogeneous Neumann boundary conditions, discretized by Raviart-Thomas finite elements.
We show on this example that mass-lumping leads to classical finite volume schemes. The second
one is inspired by the elliptic part of a model of shallow water flows with dispersive terms. We
apply on this example generalized operators, and we prove the convergence of the method used in
the literature.
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1 Introduction

Following the pioneering works by Babuška [6], Mixed Finite Element (MFE) methods have been success-
fully analysed in the seminal Brezzi’s paper [12], and extensively used for the approximation of important
problems such as elasticity and electromagnetism [9] and also the Stokes problem [10], for which a natural
physical framework is the saddle point problem when formulated with velocity and pressure unknowns.
This work focuses on second-order elliptic problems, for which the use of MFE has also been enhanced
by the introduction of the Raviart-Thomas finite element [28].

Let us give the following example of a second-order elliptic problem. We consider a function p : Ω → R
solution to the problem below:

−div(Λ∇p) = r − divF in Ω,

p = 0 on Γd,

(Λ∇p− F ) · n = g on Γn,

(1)

where we assume the following:

• Ω is an open bounded connected subset of Rd (d ∈ N?) with Lipschitz boundary Γ such

that Γ = Γd ∪ Γn with |Γd| > 0, (2a)

• n(x) denotes the outer normal to Γ for a.e. x ∈ Γ, (2b)

• Λ is a measurable function from Ω to the set of d× d symmetric matrices (2c)

and there exist λ, λ > 0 such that, for a.e. x ∈ Ω,∀ζ ∈ Rd, λ|ζ|2 ≤ ζ · Λ(x)ζ ≤ λ|ζ|2,
• r ∈ L2(Ω) , F ∈ L2(Ω)d and g ∈ L2(Γ). (2d)

Remark 1.1 (About the right-hand side). The source term of Problem (1) recovers general cases. Indeed
f ∈ H1(Ω)′ can be decomposed as f = −divF : it suffices to consider, owing to the Riesz Theorem, the
element w ∈ H1(Ω) solution of 〈w, ·〉H1(Ω) = 〈f, ·〉H1(Ω)′,H1(Ω), and to let F = ∇w.

On the other hand, the Gradient Discretization Method (GDM) has been studied since several years as
illustrated by [16]. This method gives a framework in order to simultaneously analyse the mathemati-
cal properties of a variety of numerical methods (since these methods satisfy ad-hoc properties) for the
approximation of some elliptic or parabolic problems. As examples of such methods, we can cite conform-
ing and nonconforming finite elements for instance. An extension of the GDM is the Abstract Gradient
Discretisation Method (AGDM) which has been introduced in [17] with the goal to unify the treatment
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of boundary conditions. The fact that MFE methods are encompassed in the Gradient Discretisation
framework has been studied in [23] and in [16, Chapter 10] where this property has been shown in the
case of an isotropic Poisson problem with homogeneous Dirichlet boundary conditions and right-hand
side in L2(Ω) and RTk mixed finite elements. A first originality of this work is to extend this result and
to deal with a source term in H1(Ω)′ and not only in L2(Ω), see Remark 1.1.

The GDM and AGDM use the weak form of the problem studied. This is why, in order to rewrite Problem
(1) in a weak sense, we introduce the space H1

0,Γd
(Ω) = {q ∈ H1(Ω), γΓdq = 0} where γΓ denotes the

trace mapping on the boundary Γ. We then define the space HG = {(p, γΓp), p ∈ H1
0,Γd

(Ω)}. We then

look for (p, p̂) ∈ HG such that∫
Ω

Λ(x)∇p(x) · ∇q(x) dx

=

∫
Ω

( r(x) q(x) + F (x) · ∇q(x) ) dx+

∫
Γn

g(x) q̂(x) ds(x), ∀(q, q̂) ∈ HG.
(3)

Notice that the notations used here have been chosen in order to be consistent with (and even to serve as
an example) the continuous abstract formalism used in Section 2. The proof that Problem (3) has one and
only one solution is obtained by using the Lax-Milgram theorem. For some applications, a formulation in
which the fluxes are directly computed and approximated can be useful, a such example is fluid flows in
porous media as, for instance, in [2, 4]. In this work, we write the mixed formulation taking inspiration
by [7]. We consider a pressure unknown which simultaneously reconstruct the value inside the domain
and at the boundary, and we introduce the spaces L, L and HD respectively defined by

L = L2(Ω)× L2(Γn), L = L2(Ω)d and HD = {u ∈ L, Du := (div(u),−u · n) ∈ L}. (4)

Let us now define G : HG → L by G(p, p̂) = ∇p. We have the following relation:

∀(p, p̂) ∈ HG, ∀u ∈HD, 〈(p, p̂), Du〉L + 〈G(p, p̂),u〉L = 0,

where 〈·, ·〉L and 〈·, ·〉L are the natural scalar products on L and L. This enables us to consider the
following mixed formulation: find p := (p, p̂) ∈ L and u ∈HD such that

〈Λ−1u,v〉L − 〈p,Dv〉L = 〈Λ−1F ,v〉L, ∀v ∈HD,
〈q,Du〉L = 〈f, q〉L, ∀q := (q, q̂) ∈ L, (5)

with f = (r, g) ∈ L. The fact that Problem (5) is equivalent to Problem (3) is stated in Theorem 2.2.

The application of mixed methods consist in selecting finite dimensional spaces HD
h ⊂ H

D and Lh ⊂ L
which satisfy Ladyzhenskaya–Babuška–Brezzi (LBB) conditions [10, Section 12.5], [12], [19] in order that
the problem find ph ∈ Lh and uh ∈HD

h , such that

〈Λ−1uh,vh〉L − 〈ph,Dvh〉L = 〈Λ−1F ,vh〉L, ∀vh ∈HD
h ,

〈qh,Duh〉L = 〈f, qh〉L, ∀qh ∈ Lh,
(6)

has one and only one solution which converges to the solution (p,u) ∈ L ×HD of Problem (5). The
numerical resolution of (6) leads to large linear systems, which can require a high time computing.
Numerical strategies have been proposed to achieve lower computational costs. In [26], a review of some
mass-lumping methods is proposed, interpreted as quadrature numerical methods. In [1], a mass-lumping
method is used in order to compute the approximation by mixed finite element methods for the elliptic
part of a dispersive model for shallow water flows. Thus, an originality of this work is to introduce
and analyze the convergence of mixed finite element methods coupled with a mass-lumping operator.
This approach of mass-lumping is different from [3, 5, 8] where the mass-lumping is algebraic (i.e. on
the resulting linear system). With our strategy, we obtain convergence results under less regularity
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assumptions (see Hypotheses (19a), (19b) and (19c) done in Theorems 3.5 and 3.7). On our introductory
example, such a method consists in looking for ph ∈ Lh and uh ∈HD

h , such that,

〈Λ−1Πhuh,Πhvh〉L − 〈ph,Dvh〉L = 〈Λ−1F ,Πhvh〉L, ∀vh ∈HD
h ,

〈qh,Duh〉L+ = 〈f, qh〉L, ∀qh ∈ Lh.
(7)

Where in (7), we denote by Πh : HD
h → L an operator, which is the identity operator in the case of (6),

but which can be chosen in some cases as a piecewise constant operator with disjoint supports. Then the
matrix issued from the bilinear form 〈Λ−1Πhuh,Πhvh〉L can be diagonal (see the examples of Section 5).

In Section 3 we analyse the convergence properties of our mixed approach for an extended abstract
problem. Indeed, another originality of our work is to consider a more restricted convergence sense to
the method than the one which is expected in the framework of mixed finite element methods [12,13,24].
The authors prove that, for Πh = IdL (no mass-lumping), the convergence ph → p in L and uh → u in
HD can only occur under full LBB conditions. In this work we show the convergence under two types of
hypotheses:

- An equivalent LBB conditions adapted to our problem is established in section 3.2 leading to the
convergence Theorem 3.5.

- A more regular approximation of the pressure is assumed in section 3.3 leading to the convergence
Theorem 3.7.

In both cases, we obtain the convergence of ph → p in L and Πhuh → u in L. These convergence prop-
erties are then equivalent to the convergence properties obtained by a standard Finite Element Method
(FEM) applied to Problem (3).

In Section 4, we show the equivalence between the mixed scheme (7) and an abstract gradient scheme [17,
(2.6)] in the case of Problems (3) and (5). This enables us to define a discrete setting which can be used
in more complex problems, including nonlinear terms for example, in the spirit of [16] and extending the
results of [23].

The last Section 5 is devoted to two examples, one for each case of convergence. The first one is inspired
from [7], i.e. a mixed problem with homogeneous Neumann boundary condition and RT0 approximation.
We propose an original proof of the inf-sup condition based on results for finite volume schemes. We
prove that the assumptions of Theorem 3.5 are fulfilled to obtain the convergence. The second example is
inspired from [1], where mass-lumped mixed finite element methods are used. This case has been studied
in [18, Chapter 2] in the AGDM framework but using another strategy to obtain the convergence. Here
we prove that the assumptions of Theorem 3.7 are fulfilled to obtain the convergence.

Appendices contain technical results. We can mention Appendix B which establishes a link between our
condition and an LBB condition of the literature.

2 Continuous abstract framework for an elliptic problem

2.1 Spaces and operators

Let us first introduce the notations and assumptions used for writing the studied elliptic problem. The
notations are close to the ones used in [17] in the case of Hilbert spaces and compatible with the ones
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used in the Introduction:

• L and L are two separable Hilbert spaces. (8a)

• The subspace HG ⊂ L is dense in L. (8b)

• The linear operator G : HG → L is such that its graph {(p,Gp), p ∈ HG} is closed in L×L. (8c)

As a consequence HG endowed with the scalar product 〈p, q〉HG = 〈p, q〉L + 〈Gp,Gq〉L
is a Hilbert space.

• V is a closed subspace of L and V ⊥ is its orthogonal in L. (8d)

For any q ∈ L, we write q = qV + q⊥V , where qV is the orthogonal projection of q on V

and q⊥V is the orthogonal projection of q on V ⊥.

The hypothesis that L and L are separable provide the sequential weak compactness properties which
are used in the proof of convergence theorems 3.5 and 3.7. As in [17] and in the introduction, we define
the space HD by

HD = {v ∈ L, ∃w ∈ L, ∀q ∈ HG, 〈v,Gq〉L + 〈w, q〉L = 0}. (9)

Since, for any v ∈HD, there exists at most one w ∈ L satisfying the preceding relation (thanks to (8b)),
we denote it by Dv := w, where D : HD → L is a linear operator. Then HD is a Hilbert space endowed
with the scalar product 〈u,v〉HD = 〈u,v〉L + 〈Du,Dv〉L, and HD is dense in L. Note that, as noticed
in [17], we have as well

HG = {p ∈ L,∃u ∈ L, ∀v ∈HD, 〈Dv, p〉L + 〈v,u〉L = 0},

and then u = Gp. This allows us to generalize the Green formula,

∀q ∈ HG,∀v ∈HD, 〈v,Gq〉L + 〈Dv, q〉L = 0. (10)

2.2 Standard and mixed form of an elliptic problem

Under Assumptions (8), we consider the following data for an elliptic problem.

• The mapping a : L→ L is linear and continuous with norm bounded by α and V -coercive in (11a)

the sense that ∀q ∈ L, α‖qV ‖2L ≤ 〈a(q), q〉L.
• The mapping A : L→ L which is linear, continuous with norm bounded by α, and coercive (11b)

in the sense there exists α > 0 such that for all v ∈ L, α‖v‖2L ≤ 〈A(v),v〉L.
• The functions f ∈ L and F ∈ L. (11c)

We consider the following weak problem:

Find p ∈ HG such that, 〈A(Gp),Gq〉L + 〈a(p), q〉L = 〈f, q〉L + 〈F ,Gq〉L, ∀q ∈ HG. (12)

Thanks to the above definitions of HD and D, see (9)-(10), Problem (12) is then equivalent to:

Find p ∈ HG such that A(Gp)− F ∈HD and

−D
(
A(Gp)− F

)
+ a(p) = f in L.

(13)

Let p ∈ HG the solution of (13), we denote u = −
(
A(Gp)−F

)
∈HD. We can write a mixed version of

(13):

Find p ∈ HG and u ∈HD such that

A−1u + Gp = A−1F in L,

Du + a(p) = f in L.

(14)
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Once again, thanks to (9)-(10), we can rewrite the problem in the following weak mixed formulation:

Find p ∈ L and u ∈HD such that,

〈A−1u,v〉L − 〈p,Dv〉L = 〈A−1F ,v〉L, ∀v ∈HD,

〈Du, q〉L + 〈a(p), q〉L = 〈f, q〉L, ∀q ∈ L.
(15)

The introduction of the space V in assumptions (8) and of the linear mapping a in (11) enable us to
include in this framework a variety of boundary conditions, as shown in [17]. In the case of Problem
(5) in the introduction, which involves Dirichlet boundary conditions on a part of the boundary, one can
let V = {0} and a ≡ 0. On the contrary, in the example handled in Section 5.1, the nonhomogeneous
Neumann boundary condition is handled owing to a suitable choice for V and a.
In the literature the existence and the uniqueness of the solution of a mixed problem is mainly based on a
so-called inf-sup condition. The aim of the following result is to prove the equivalence between (12) and
(15), and to formulate the inf-sup condition which is adapted to our problem. We need a preliminary
result on the properties of the linear operator A−1, as detailed in the following lemma.

Lemma 2.1 (Invertibility of A).
Under Assumptions (8) and (11b) on the mapping A : L→ L (linearity, continuity, coercivity), then A
is invertible and A−1 is also linear, continuous with norm bounded by α−1, and coercive in the sense that
for all v ∈ L, (α/α2)‖v‖2L ≤ 〈A

−1(v),v〉L.

Proof. First of all, we have to prove the bijectivity of A. Let aA(u,v) = 〈A(u),v〉L which is a bilinear
form on L × L, continue and coercive (due to the ones of A). And, for an arbitrary w ∈ L, let
lw(v) = 〈w,v〉L which is linear and continue. Thanks to the Lax-Milgram theorem there exists one and
only one u ∈ L such that aA(u,v) = lw(v) for any v ∈ L which is equivalent to write A(u) = w. Let
v ∈ ker(A), thus we can write, α‖v‖2L ≤ 〈A(v),v〉L = 0. Thus ‖v‖L = 0⇒ v = 0L. Now we study the
continuity and the coercivity of A−1.

− Let u,v ∈ L such that A(u) = v. The coercivity of A allows to write α‖u‖2L ≤ 〈v,u〉L which
implies, thanks to the Cauchy-Schwarz inequality, α‖A−1(v)‖2L ≤ 〈v,A

−1(v)〉L ≤ ‖v‖L‖A−1(v)‖L
and thus the continuity of A−1.

− Let v ∈ L. Owing to the coercivity of A we can write 〈A−1(v),v〉L = 〈A−1(v),A(A−1(v))〉L =
〈A(A−1(v)),A−1(v)〉L ≥ α‖A−1(v)‖2L. Moreover thanks to the continuity of A we can write
‖A(A−1(v))‖L ≤ α‖A−1(v)‖L. Thus we recover the expected result.

Theorem 2.2 (Existence and uniqueness for the abstract weak problems).
Under Assumptions (8) and (11), the following assertions are equivalent:

(i) L = Im(D) + V ,

(ii) Problem (12) has one and only solution, denoted by p, and there exists C > 0 independent of f and
F , such that ‖p‖HG ≤ C(‖f‖L + ‖F ‖L). Then u = −

(
A(Gp)−F

)
∈HD and (p,u) is solution to

(15).

(iii) The following inf-sup condition holds:

∃β > 0 s.t. ∀q ∈ L, sup
v∈HD,‖v‖HD=1

〈q⊥V ,Dv〉L ≥ β‖q⊥V ‖L. (16)

(iv) Problem (15) has one and only one solution (p,u) and p is solution to (12).
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Proof. (i) ⇒ (ii) Applying [17, Theorem 3.2] in the case of a Hilbert space L, we get that the assumption

L = Im(D) + V implies that the norms ‖q‖HG = (‖q‖2L + ‖Gq‖2L)
1
2 and ‖q‖HG,V = (‖qV ‖2L + ‖Gq‖2L)

1
2

are equivalent for any q ∈ HG.
We introduce the bilinear form aLM : HG ×HG → R such that aLM (p, q) = 〈A(Gp),Gq〉L + 〈a(p), q〉L
and the linear one lLM : HG → R such that lLM (q) = 〈f, q〉L + 〈F ,Gq〉L. Thanks to the assumptions on
the operators A and a, we obtain that aLM (p, p) ≥ α‖p‖2HG,V and, due to the equivalence of the norms,
the coercivity of aLM . Using Cauchy-Schwarz inequality and the continuity of the operators A and a,
we have,

|aLM (p, q)| ≤ α(‖Gp‖L‖Gq‖L + ‖p‖L‖q‖L) ≤ α‖p‖HG‖q‖HG ,

which gives the continuity of aLM . Once again the Cauchy-Schwarz inequality leads to the continuity of
lLM : |lLM (q)| ≤ (‖f‖2L + ‖F ‖2L)

1
2 ‖q‖HG . Finally, the Lax-Milgram theorem gives us the existence and

the uniqueness of the solution p ∈ HG to (12). The estimation given is obtain by taking q = p and by
using same arguments as above.

Writing that 〈A(Gp)−F ,Gq〉L = 〈f−a(p), q〉L, we get by definition of D that u = −
(
A(Gp)−F

)
∈HD

and Du = f − a(p). We then have

A−1u + Gp = A−1F in L,

Du + a(p) = f in L.

This yields, for v ∈HD and q ∈ L,

〈A−1u,v〉L + 〈Gp,v〉L = 〈A−1F ,v〉L,
〈Du, q〉L + 〈a(p), q〉L = 〈f, q〉L.

We then conclude that (p,u) is solution to (15) since 〈Gp,v〉L = −〈p,Dv〉L by (10).

(ii) ⇒ (iii) Let q ∈ L. We apply the fact that (12) has one and only one solution in the case where
A = Id, a = PV (the orthogonal projection on V ), F = 0 and f = q⊥V . Note that, for any element
q ∈ HG, the notation qV is a shortcut for PV (q). Thus let p ∈ HG such that we have,

∀q̃ ∈ HG, 〈Gp,Gq̃〉L + 〈pV , q̃〉L = 〈q⊥V , q̃〉L,

which yields, by (10), −D(Gp) = q⊥V − pV . From (ii) we have ‖p‖HG ≤ C‖q⊥V ‖L, which shows that
‖D(Gp)‖L ≤ (C + 1)‖q⊥V ‖L, and ‖Gp‖L ≤ C‖q⊥V ‖L. Hence ‖Gp‖HD ≤ (2C + 1)‖q⊥V ‖L. Letting
q̃ = q⊥V , we deduce −〈D(Gp), q⊥V 〉L = ‖q⊥V ‖2L. If ‖q⊥V ‖L 6= 0, we get that u = − Gp

‖Gp‖HD
is such that

‖u‖HD ≤ 1 and

〈Du, q⊥V 〉L ≥
1

2C + 1
‖q⊥V ‖L.

Hence (16) holds with β = 1
2C+1 .

(iii) ⇒ (iv) In order to apply the Theorem A.1 in appendix, we take H̃
D

:= HD, L̃ := L, still
H = HD × L and we define A(u,v) := 〈A−1u,v〉L and a(p, q) := 〈a(p), q〉L. Then Hypotheses (63)
are satisfied, due to Assumptions (11a) and (11b), and Hypothesis (64) is given by (iii). With these
definitions, we obtain, for any (p,u), (q,v) ∈ H ×H, the following bilinear form

E((p,u), (q,v)) := 〈A−1u,v〉L − 〈p,Dv〉L + 〈q,Du〉L + 〈a(p), q〉L.

We notice that any solution (p,u) to (15) is such that, for any (q,v) ∈ H,

E((p,u), (q,v)) = 〈A−1F ,v〉L + 〈f, q〉L. (17)

We therefore apply Theorem A.1, noticing that in this case PL̃ = IdL. Then thanks to [12, Corollary
0.1], we can say that there exists one and only one (p,u) ∈ H such that (17) holds and therefore (15)
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holds. From the first equation of (15) and using (10), we get that p ∈ HG and that u = −
(
A(Gp)−F

)
.

The second equation shows that u ∈HD and considering q ∈ HG in this equation yields (12).

(iv) ⇒ (i) We consider, for a given q ∈ L, Problem (12) with A = Id, a = PV , F = 0, f = q. Then the
solution (p,u) to (15) in this case is such that q = Du+ pV and thus L = Im(D) + V .

Remark 2.3 (Link with the literature). We notice that the mixed problem (15) contains the additional
term 〈a(p), q〉L compared to the usual literature on mixed problems, see for instance [12, Problem (1.1)]
or [19, Problem (80)]. It is due to this additional term that the inf-sup condition (16) is only written in V ⊥

instead of L. If V = {0} and a ≡= 0, then V ⊥ = L and this inf-sup condition is the standard one (see [12,
Condition (2.2)] or [19, Condition (85)]). We also notice that the bilinear form 〈A−1u,u〉L ≥ α

α2 ‖u‖2HD

for any function u such that Du = 0, which means that Conditions [12, (2.4)− (2.5)] or [19, (88)− (89)]
are satisfied. So in this particular case V = {0}, we find the three standard conditions which ensure the
existence and uniqueness of the mixed problem, see [12, Proposition 2.1] or [19, Lemma 5.2].

3 Mass-lumped mixed finite element approximation

This section is devoted to the study of a mixed Finite Element Method (FEM), possibly mass-lumped,
for the approximation of Problem (15).

3.1 Scheme, estimate and general properties

Considering two finite dimensional spaces Lh ⊂ L and HD
h ⊂ HD, we introduce the following mass-

lumped mixed finite element scheme:

Find ph ∈ Lh and uh ∈HD
h such that,

〈A−1Πhuh,Πhvh〉L − 〈ph,Dvh〉L = 〈A−1F ,Πhvh〉L, ∀vh ∈HD
h ,

〈Duh, qh〉L + 〈a(ph), qh〉L = 〈f, qh〉L, ∀qh ∈ Lh,
(18)

where Πh : HD
h → L is a linear mapping which plays an important role in the numerical method.

In standard mixed finite elements, we let Πh = IdL. Let us observe that the mass matrix resulting
from the bilinear form 〈A−1Πhuh,Πhvh〉L can lead to diagonal matrices, if Πh is a piecewise constant
reconstruction with disjoint supports.
For a sequence of strictly positive reals (hn)n∈N such that hn → 0 as n → +∞, and, for any n ∈ N, we
consider finite dimensional spaces Lhn ⊂ L, HD

hn ⊂ H
D and a linear mapping Πhn : HD

hn → L, such
that the following properties hold.

• The operators Πhn preserve the L-norm in the following sense: there exists ρ > 0, independent of
n, with

∀n ∈ N, ∀vhn ∈H
D
hn ,

1

ρ
‖vhn‖L ≤ ‖Πhnvhn‖L ≤ ρ‖vhn‖L. (19a)

• The following condition is a conformity condition

∀(vhn)n∈N with vhn ∈H
D
hn ,
(

(‖vhn‖L)n∈N bounded
)
⇒
(
∀v ∈ L, lim

n→∞
〈vhn −Πhnvhn ,v〉L = 0

)
,

(19b)
which ensures that vhn and Πhnvhn have the same weak limit (if the limit exists).

• The two conditions below are interpolation conditions

∀v ∈HD, lim
n→∞

inf
vhn∈HD

hn

( ‖v −Πhnvhn‖2L + ‖Dv −Dvhn‖2L ) = 0, (19c)

and
∀q ∈ L, lim

n→∞
inf

qhn∈Lhn
‖q − qhn‖L = 0. (19d)
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• For any qhn ∈ Lhn , we write qhn = q⊥Vhn + qVhn , with q⊥Vhn ∈ V
⊥ and qVhn ∈ V . At the discrete level

the inf-sup condition which is assumed is that there exists β > 0, independent of n, such that

∀n ∈ N, ∀qhn ∈ Lhn , sup
vhn∈HD

hn
,‖vhn‖HD=1

〈q⊥Vhn ,Dvhn〉L ≥ β‖q
⊥V
hn ‖L. (19e)

The following lemma shows that the continuous inf-sup inequality is a consequence of the above assump-
tions.

Lemma 3.1. Under Assumptions (8) and (19d), the discrete inf-sup condition (19e) implies the contin-
uous inf-sup one (16).

Proof. Let q ∈ L with q⊥V 6= 0, and, thanks to (19d), let (qhn)n∈N such that ‖q−qhn‖L → 0 as n→ +∞.
For any n ∈ N, let vhn ∈H

D
hn with ‖vhn‖HD = 1 such that, with (19e),

〈q⊥Vhn ,Dvhn〉L ≥ β‖q
⊥V
hn ‖L. (20)

Since the sequence (vhn)n∈N is bounded, one can extract a subsequence, again denoted (vhn)n∈N, and
v ∈HD, such that vhn ⇀ v for the weak topology of HD (which is separable using (8a)). We have that

‖v‖HD ≤ lim inf
n→+∞

‖vhn‖HD = 1,

and we also have, by letting n→ +∞ in (20) for the subsequence,

〈q⊥V ,Dv〉L ≥ β‖q⊥V ‖L,

which shows that v 6= 0. This yields

〈q⊥V ,D v

‖v‖HD

〉L ≥
β

‖v‖HD

‖q⊥V ‖L ≥ β‖q⊥V ‖L,

which concludes the proof of (16).

Theorem 3.2 (Existence and uniqueness for the mixed abstract finite element scheme).
Under Assumptions (8) and (11), assuming that the discrete inf-sup condition (19e) and that the condition
(19a) hold, then for all n ∈ N, Problem (18) has one and only solution phn ∈ Lhn and uhn ∈ H

D
hn such

that there exists C > 0, only depending on α, α, ρ and β with

‖uhn‖2L + ‖PLhnDuhn‖
2
L + ‖phn‖2L ≤ C(‖F ‖2L + ‖f‖2L), (21)

where we denote by PLhn the orthogonal projection on the closed space Lhn .

Proof. As done in the proof of (iii)⇒(iv) of Theorem 2.2, we apply Theorem A.1 in appendix. We let

H̃
D

:= HD
hn , L̃ := Lhn , we let again H = HD×L and we define A(uhn ,vhn) := 〈A−1Πhnuhn ,Πhnvhn〉L

and a(phn , qhn) := 〈a(phn), qhn〉L. We again deduce (63) from Assumptions (11a) and (11b), using
Hypothesis (19a), and we obtain (64) from (19e).
With these definitions, we obtain, for any (phn ,uhn), (qhn ,vhn) ∈ H ×H, the following bilinear form

E((phn ,uhn), (qhn ,vhn)) := 〈A−1Πhnuhn ,Πhnvhn〉L − 〈phn ,Dvhn〉L + 〈qhn ,Duhn〉L + 〈a(phn), qhn〉L.

We notice that any solution (phn ,uhn) to (18) is such that, for any (qhn ,vhn) ∈ H,

E((phn ,uhn), (qhn ,vhn)) = 〈A−1F ,Πhnvhn〉L + 〈f, qhn〉L. (22)

Then, applying Theorem A.1, we get the existence of θ > 0, only depending on ρ, α, α and β, such that

E((uhn , phn), (vhn , qhn)) ≥ θ
(
‖uhn‖2L + ‖PLhnDuhn‖

2
L + ‖phn‖2L

)1/2

(‖vhn‖2HD + ‖qhn‖2L)1/2.
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Using the preceding equation, a Cauchy-Schwarz inequality on (22), the continuity of A−1 and (19a), we
can write

‖uhn‖2L + ‖PLhnDuhn‖
2
L + ‖phn‖2L ≤

1

θ‖(qhn ,vhn)‖1/2H

(
ρ

α
‖F ‖L‖vhn‖L + ‖f‖L‖qhn‖L

)
.

Using ‖vhn‖L ≤ ‖vhn‖HD and another Cauchy-Schwarz inequality, we obtain (21). Noticing that (18)
provides a square linear system, we get from (21) that the only solution of this linear system with a null
right-hand side is null. This shows the existence and uniqueness of the solution.

Remark 3.3. The proof of Theorem 3.2 cannot be done by applying [12, Theorem 2.1] (as also noticed
in Remark A.2), since Hypothesis (H2) of [12, Theorem 2.1] is not satisfied, and the bilinear form E, in
the proof above, includes the additional term in a. As a consequence, the conclusion of Theorem 3.2 is
also weaker (note the presence of a projection in the left-hand side of (21)).

We then have the following convergence lemma.

Lemma 3.4 (Weak convergence of the solution of the mixed abstract finite element scheme is strong).
Under Assumptions (8) and (11), let (Lhn)n∈N and (HD

hn)n∈N be families of finite dimensional spaces,

let β > 0 and ρ > 0 such that, for any n ∈ N : Lhn ⊂ L and HD
hn ⊂H

D, the condition on linear mapping
(19a), the conformity condition (19b), the consistency condition (19d) and the discrete inf-sup condition
(19e) hold. Let us assume that the solution (phn ,uhn) ∈ Lhn ×H

D
hn of Problem (18) converges to the

solution (p,u) ∈ L×HD of Problem (15) (which is unique owing to Lemma 3.1) in the following sense:
as n → +∞, phn ⇀ p in L, Πhnuhn ⇀ u in L (for the weak topologies). Then, as n → +∞, we have
the convergences phn → p in L, Πhnuhn → u in L (for the strong topologies).

Proof. Firstly, letting v = u and q = p and adding the two equations in (15), we get that

〈A−1u,u〉L + 〈a(p), p〉L = 〈A−1F ,u〉L + 〈f, p〉L. (23)

And letting vhn = uhn and qhn = phn and adding the two equations in (18), we get that

〈A−1Πhnuhn ,Πhnuhn〉L + 〈a(phn), phn〉L = 〈A−1F ,Πhnuhn〉L + 〈f, phn〉L. (24)

Moreover, thanks to (11a), 〈a(phn − p), phn − p〉L ≥ 0, thus we have lim infn→+∞〈a(phn), phn〉L ≥
〈a(p), p〉L. This yields, letting n→ +∞ in (24) and using (23),

lim sup
n→+∞

〈A−1Πhnuhn ,Πhnuhn〉L ≤ 〈A
−1F ,u〉L + 〈f, p〉L − 〈a(p), p〉L = 〈A−1u,u〉L.

We then deduce that
0 ≤ lim sup

n→+∞
〈A−1(Πhnuhn − u), (Πhnuhn − u)〉L ≤ 0,

which provides, using the coercivity of A−1, the convergence of Πhnuhn to u and the convergence
of 〈A−1Πhnuhn ,Πhnuhn〉L to 〈A−1u, u〉L. Then, using (23) and (24), we obtain that 〈a(phn), phn〉L
converges to 〈a(p), p〉L. We have phn = p⊥Vhn + pVhn and p = p⊥V + pV . Hence, thanks to (11a), we can
write

α‖pVhn − p
V ‖2L ≤ 〈a(phn − p), phn − p〉L,

thus we get that pVhn → pV in L. Now we introduce phn ∈ Lhn an interpolation of p, such that, using (19d),

‖p−phn‖L → 0 as n→∞. Notice that we also have ‖(p−phn)V ‖L → 0 and therefore ‖(phn−phn)V ‖L → 0
as n→∞. Using the first equations of (18) and (15) and by introducing 〈phn ,Dvhn〉L on each side, we
can write

〈A−1(Πhnuhn − u),Πhnvhn〉L − 〈phn − phn ,Dvhn〉L
= 〈A−1(Πhnuhn − u),Πhnvhn〉L − 〈(phn − phn)V ,Dvhn〉L − 〈(phn − phn)⊥V ,Dvhn〉L

= 〈A−1(F − u),Πhnvhn − vhn〉L − 〈p− phn ,Dvhn〉L, ∀vhn ∈H
D
hn .
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Owing to (19e), we choose vhn with ‖vhn‖HD = 1 and 〈(phn − phn)⊥V ,Dvhn〉L ≥ β‖(phn − phn)⊥V ‖L
(the extremum is reached in finite dimension). We thus get, from the two above relations,

β‖(phn − phn)⊥V ‖L ≤ 〈A−1(Πhnuhn − u),Πhnvhn〉L − 〈A
−1(F − u),Πhnvhn − vhn〉L

− 〈(phn − phn)V ,Dvhn〉L + 〈p− phn ,Dvhn〉L.

Using the Cauchy-Schwarz inequality, the continuity of A−1, (19a) and the definition of ‖vhn‖HD (im-
plying that ‖vhn‖L and ‖Dvhn‖L are bounded by 1), we can write,

β‖(phn−phn)⊥V ‖L ≤
ρ

α
‖Πhnuhn−u‖L +‖p−phn‖L+‖(phn−phn)V ‖L−〈A−1(F −u),Πhnvhn−vhn〉L.

Using the previous convergence results and (19b) for the last term on the right, we obtain that p⊥Vhn
converges to p⊥V in L and conclude the proof of the lemma.

3.2 Convergence under LBB conditions

We recall that our framework includes two major differences with the standard mixed finite element
theory (on one side, the presence of V and a which leads to a modification in the inf-sup condition, on
the other side, the presence of the mass-lumping operator Πhn). In this section, we obtain convergence
results assuming the following hypothesis: there exists CB > 0 such that

∀n ∈ N, ∀vhn ∈H
D
hn , ‖Dvhn‖L ≤ CB(‖vhn‖L + ‖PLhnDvhn‖L). (25)

We prove in Theorem B.1 in the appendix that this assumption is equivalent to [12, Hypothesis H2]
or [19, Assumptions (97)− (98)] in the case V = {0} and Πhn = Id. Hence completing, together with the
inf-sup condition (19e), the so-called Ladyzhenskaya–Babuška–Brezzi (LBB) conditions. For this reason,
we call Condition (25) an LBB condition. This assumption is satisfied by the example of Raviart-Thomas
finite elements with full Neumann boundary conditions in Section 5.1. We have the following convergence
theorem.

Theorem 3.5 (Convergence under LBB conditions).
Under Assumptions (8) and (11), let (Lhn)n∈N and (HD

hn)n∈N be families of finite dimensional spaces

such that, for any n ∈ N : Lhn ⊂ L and HD
hn ⊂ H

D, conditions (19) hold as well as (25). Then the

solution (phn ,uhn) of (18) converges to the solution (p,u) ∈ L×HD of Problem (15) (which is unique
owing to Lemma 3.1) in the following sense: as n → +∞, phn → p in L, Πhnuhn → u in L and Duhn
weakly converges to Du in L.

Proof. Let us first observe that, owing to (21) and applying (25) (which implies that Duhn remains
bounded if uhn and PLhnDuhn are bounded), and thanks to (8a), we can find (p,u, δ) ∈ L × L × L
and construct a subsequence of (hn)n∈N, again denoted (hn)n∈N, such that as n → ∞, phn ⇀ p in L,
Πhnuhn ⇀ u in L and Duhn ⇀ δ in L (all convergences being weak). From (19b), we get that uhn ⇀ u.
Passing to the limit, for any ϕ ∈ HG, in (given by (10)) 〈uhn ,Gϕ〉L + 〈Duhn , ϕ〉L = 0, we get that

〈u,Gϕ〉L + 〈δ, ϕ〉L = 0,

which proves, using again (10), that u ∈HD and δ = Du.
Then, considering a sequence (qhn)n∈N converging to q in L thanks to (19d), we can let n → ∞ in
the second equation of (18), and we get that (u, p) is solution to the second equation of (15). For any
v ∈HD, we deduce from (19c) the existence of vhn ∈H

D
hn such that Πhnvhn → v in L. Letting v = vhn

in the first equation of (18), we can let n → ∞. By weak/strong convergence, we deduce that (p,u) is
solution of to the first equation of (15). Hence, by uniqueness of the limit, this convergence holds for the
whole sequence. We conclude the strong convergence property using Lemma 3.4.
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Remark 3.6 (Convergence results in the standard LBB framework). The convergence results proved on
Duhn in Theorem 3.5 are weaker than those which are proved in [12, Theorem 2.1] and [19, Theorem
5.3], in which it is proved that the convergence of Duhn to Du is strong and that error estimates are
available. In order to retrieve such results, more hypotheses than (19b) have to be done on Πhn , which
can be the object of further works.

3.3 Convergence under regular approximation of the pressure

In this section, we assume the inf-sup condition (19e) but we no longer assume Condition (25). Hence
we replace the LBB framework by a stronger assumption than (19d) on the interpolation properties of
the spaces Lhn :

∀n ∈ N, Lhn ⊂ HG and ∀ϕ ∈ HG, lim
n→∞

inf
qhn∈Lhn

‖ϕ− qhn‖HG = 0. (26)

This framework corresponds to that which is assumed in [1] as detailed in the example provided in Section
5.2. We have the following convergence theorem.

Theorem 3.7 (Convergence of the solution of the mixed abstract finite element scheme).
Under Assumptions (8) and (11), let (Lhn)n∈N and (HD

hn)n∈N be families of finite dimensional spaces

such that, for any n ∈ N : Lhn ⊂ HG and HD
hn ⊂ H

D, conditions (19) hold as well as the additional
regularity condition on the pressure space (26). Then the solution (phn ,uhn) of (18) converges to the
solution (p,u) ∈ L×HD of Problem (15) (which is unique owing to Lemma 3.1) in the following sense:
as n→ +∞, phn → p in L and Πhnuhn → u in L.

Proof. Let us first observe that, owing to (21), we can find (p,u) ∈ L × L and construct a subsequence
of (hn)n∈N, again denoted (hn)n∈N, such that as n → ∞, phn ⇀ p in L and Πhnuhn ⇀ u in L (both
convergences being weak). From (19b), we get that uhn ⇀ u. Let ϕ ∈ HG and let (ϕhn)n∈N converging
to ϕ in HG thanks to (26). Using (10), we write the second equation of (18) as

−〈uhn ,Gϕhn〉L + 〈a(phn), ϕhn〉L = 〈f, ϕhn〉L.

Using weak/strong convergence for the terms of the left-hand side, we get, letting n→∞,

−〈u,Gϕ〉L + 〈a(p), ϕ〉L = 〈f, ϕ〉L.

Since the above relation holds for any ϕ ∈ HG, we obtain that u ∈HD and that Du = f − a(p). Hence
(p,u) is solution to the second equation of (18). Considering v ∈HD, we deduce from (19c) the existence
of vhn ∈ H

D
hn such that Πhnvhn → v in HD. Letting v = vhn in the first equation of (18), we can

let n→∞ and by weak/strong convergence, we deduce that (p,u) is solution of to the first equation of
(18). Hence, by uniqueness of the limit, this convergence holds letting n→ +∞. We conclude the strong
convergence property using Lemma 3.4.

Remark 3.8 (Convergence results provided by Theorem 3.7). No kind of convergence of Duhn to Du is
provided by Theorem 3.7. Indeed, Assumption (26) is done in order to replace, since ϕ ∈ HG, 〈Du, ϕ〉L
by −〈u,Gϕ〉L in the second equation of (18).

4 An AGDM from the mass-lumped mixed FEM

In this section we firstly define an Abstract Gradient Discretization Method (AGDM) for the approxima-
tion of Problem (12). To do this, as in the references [16, 17], we will define discretization items as well
as the associated properties in order to obtain error estimates. The important objective of this section
will be to show that the mixed Finite Element Methods (FEM), possibly mass-lumped, described by (18)
enter into this AGDM framework.
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4.1 AGDM for an elliptic problem

The following definitions give an open framework which includes a variety of methods (see [16,17]).

Definition 4.1 (Abstract Gradient Discretisation). Under Assumptions (8), an abstract gradient dis-
cretisation is defined by D = (XD, PD,GD) where:

1. The set of discrete unknowns XD is a finite dimensional vector space on R.

2. The “function” reconstruction PD : XD → L is a linear mapping.

3. The “gradient” reconstruction GD : XD → L is, also, a linear mapping.

4. The mappings PD and GD are such that the following quantity is a norm on XD:

‖q‖D :=
(
‖(PDq)V ‖2L + ‖GDq‖2L

)1/2
As in [17], given D an AGD in the sense of Definition (4.1), the Abstract Gradient Scheme (AGS) for the
approximation of Problem (12) is then obtained by replacing the continuous space and operators by the
discrete ones:

Find p ∈ XD such that, 〈A(GDp),GDq〉L + 〈a(PDp), PDq〉L = 〈f, PDq〉L + 〈F ,GDq〉L, ∀q ∈ XD. (27)

Below we recall some key notions to the present abstract setting, see [17, Section 3.2].

Definition 4.2 (Coercivity). If D is a gradient discretisation in the sense of Definition 4.1, let CD be
the norm of PD:

CD = max
q∈XD\{0}

‖PDq‖L
‖q‖D

. (28)

A sequence (Dn)n∈N of gradient discretisations is coercive if there exists CP ∈ R+ such that CDn ≤ CP
for all n ∈ N.

Definition 4.3 (Consistency). If D is a gradient discretisation in the sense of Definition 4.1, let SD :
HG → [0,+∞) be given by

∀ϕ ∈ HG , SD(ϕ) = min
q∈XD

(
‖PDq − ϕ‖L + ‖GDq −Gϕ‖L

)
. (29)

A sequence (Dn)n∈N of gradient discretisations is consistent if

∀ϕ ∈ HG , lim
n→∞

SDn(ϕ) = 0. (30)

Definition 4.4 (Limit-conformity). If D is a gradient discretisation in the sense of Definition 4.1, let
WD : HD → [0,+∞) be given by

∀ϕ ∈HD , WD(ϕ) = sup
q∈XD\{0}

|〈ϕ,GDq〉L + 〈Dϕ, PDq〉L|
‖q‖D

. (31)

A sequence (Dn)n∈N of gradient discretisations is limit-conforming if

∀ϕ ∈HD , lim
n→∞

WDn(ϕ) = 0. (32)

We can comment that the coercivity is a kind of discrete Poincaré inequality, the limit-conformity mimics
at the discrete level the duality relation (10) whereas the consistency is closed to an error interpolation in
the Finite Element formalism. Let us underline that the limit-confirmity property implies the coercivity
property, as stated by [17, Lemma 3.10]. It is not mandatory in our studied case, but notice that, in the
literature of AGDM, additional properties can be requested in the case of some nonlinear problems called
compactness property (see [17, Definition 3.9]) and a piecewise constant property on PD could be useful.
These properties allow us to exhibit the following error estimate theorem [17, Theorem 5.2].
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Theorem 4.5 (Error estimate in the AGDM literature.). Under Assumptions (8) and (11), let p ∈ HG

be the solution of Problem (12) (see Theorem 2.2) and let D be an AGD in the sense of Definition 4.1.
Then there exists one and only one p ∈ XD solution to the AGS (27). This solution satisfies:

‖Gp−GDp‖L ≤
1

α

(
WD(A(Gp)− F ) + (α(1 + CD) + α)SD(p)

)
,

‖p− PDp‖L ≤
1

α

(
CDWD(A(Gp)− F ) + (αCD(1 + CD) + α)SD(p)

)
,

(33)

where CD defined by (28) is the norm of the linear reconstruction operator PD, SD defined by (29)
measures the consistency and WD defined by (31) measures the conformity of the approximation spaces
and operators.

4.2 Construction of the Abstract Gradient Discretisation

Our aim is to construct an AGDM still denoted D = (XD, PD,GD) in the sense of Definition 4.1 using
the mass-lumped Mixed Finite Element framework. In this section, we assume that Assumptions (8) and
(11b) hold.

Definition 4.6 (Abstract mass-lumped Mixed Finite Element Gradient Discretisation (AMFE-GD)).
Under Assumptions (8), let A be a linear operator such that (11b) holds. Let Lh ⊂ L and HD

h ⊂H
D be

finite dimensional subspaces. Let Πh : HD
h → L be a linear mapping such that there exists ρ > 0, with

∀vh ∈HD
h ,

1

ρ
‖vh‖L ≤ ‖Πhvh‖L ≤ ρ‖vh‖L. (34)

Let (ϕi)i∈I be a basis of Lh and
(
ψj
)
j∈J be a basis of HD

h . We define D = (XD, PD,GD) by:

1. XD = {p = (pi)i∈I : pi ∈ R,∀i ∈ I}.

2. ∀p ∈ XD, PDp =
∑
i∈I piϕi.

3. GD : XD → L is defined, for any p ∈ XD, by

GDp := A−1ΠhGh,where, (35a)

Gh ∈HD
h is s.t. ∀vh ∈HD

h , 〈A
−1ΠhGh,Πhvh〉L + 〈PDp,Dvh〉L = 0. (35b)

Let us notice that (35) provides a definition for the discrete abstract gradient GD. Indeed, the bilinear
form A : L × L → R defined by A(u,v) = 〈A−1Πhu,Πhv〉L is continuous and coercive on L owing to
Hypotheses (11b) and (34). Since HD

h ⊂ L is finite dimensional, it is a closed subspace of L. For a
given p ∈ XD, the mapping v 7→ −〈PDp,Dv〉L is a linear form which is continuous since the space HD

h is
finite dimensional. Hence, by Lax-Milgram Theorem, there exists one and only one Gh solution to (35b),
which justifies Definition (35).
In terms of implementation, we look for Gh ∈ HD

h := span
(
ψj
)
j∈J , so we have to find scalars (ωj)j∈J

such that Gh =
∑
j∈J ωjψj . Moreover, (35) yields to

〈GDp,Πhψk〉L + 〈PDp,Dψk〉L = 0, ∀k ∈ J.

Thus we obtain ∑
j∈J

ωj〈A−1Πhψj ,Πhψk〉L = −〈PDp,Dψk〉L, ∀k ∈ J. (36)

These equations (36) lead to a linear system with unknowns the scalars (ωj)j∈J . Thus (36) gives a way
to compute the family (ωj)j∈J which ensures the computation of Gh and at last of GD. The size of the
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linear system is thus linked to the dimension of HD
h , while the linear system resulting from the abstract

gradient scheme (27) is sized to the dimension of Lh. Finally, this is consistent with the size of the linear
systems resulting from the mixed methods.
Note that, in some cases but not all, it is possible to define Πh (generally piecewise constant with disjoint
supports, in the case where A is a local operator) such that the linear system (36) is diagonal, which
corresponds to the term “mass lumping” as shown by the examples given in Section 5.

The following theorem shows the equivalence between the scheme (27) using the AMFE-GD method as
defined by Definition 4.6, and the mass-lumped mixed finite element method presented in Section 3.

Theorem 4.7 (Equivalence between the mass-lumped Mixed Finite Element scheme and the Abstract
Gradient Scheme).
Let Assumptions (8) and (11) hold. Let Lh ⊂ L and HD

h ⊂ H
D be finite dimensional subspaces. Let

Πh : HD
h → L be a linear mapping such that there exists ρ > 0 with (34). Let (ϕi)i∈I be a basis of Lh

and let (XD, PD,GD) be the AGD of Definition 4.6.

In the case F = 0, the following assertions are equivalent:

(i) (ph,uh) ∈ Lh ×HD
h is a solution of the mixed finite element scheme (18).

(ii) ph = PDp and uh = −Gh with

∗ p := (pi)i∈I is a solution of the AGS (27),

∗ GDp = A−1ΠhGh,

For general F ∈ L, and assuming that
A is self-adjoint, (37)

the preceding equivalence remains true with replacing uh = −Gh by uh = F h −Gh with F h ∈HD
h such

that
〈ΠhF h,A

−1Πhvh〉L = 〈F ,A−1Πhvh〉L , ∀vh ∈HD
h . (38)

Proof.
Let us first remark that the existence of F h ∈HD

h such that

〈ΠhF h,A
−1Πhvh〉L = 〈A−1ΠhF h,Πhvh〉L = 〈F ,A−1Πhvh〉L = 〈A−1F ,Πhvh〉L , ∀vh ∈HD

h , (39)

holds true if F = 0 (letting F h = 0) for general A satisfying Hypotheses (11b). It also holds true for
general F ∈ L when A is satisfying both Hypotheses (11b) and (37), which imply that A−1 is self-adjoint
as well. Indeed, the coercivity of A−1 (see Lemma 2.1) and the properties of Πh ensure the existence
and the uniqueness of F h solution to (38), which, together with (37), provides (39).

The proof of the theorem is therefore complete by showing the equivalence of (i) and (ii) with uh =
F h −Gh, assuming (39).
[(i)⇒ (ii)]. Let (ph,uh) ∈ Lh ×HD

h be a solution of scheme (18). Let q ∈ XD and qh := PDq ∈ Lh. We
select this qh as test function in the second equation of (18). Thus we have 〈Duh, PDq〉L+〈a(ph), PDq〉L =
〈f, PDq〉L. Owing to (35), there exists Gh ∈HD

h such that 〈PDq,Duh〉L = −〈GDq,Πhuh〉L and GDq =
A−1ΠhGh. So using (39), we can write 〈ΠhF h,GDq〉L = 〈F ,GDq〉L. This leads to

〈Πh(F h − uh),GDq〉L + 〈a(ph), PDq〉L = 〈f, PDq〉L + 〈F ,GDq〉L. (40)

Let p := (pi)i∈I ∈ XD and let ph = PDp. Again owing to (35), we can write 〈GDp,Πhvh〉L +
〈PDp,Dvh〉L = 0,∀vh ∈HD

h . By combining with the first equation of (18), we obtain

〈A−1Πhuh,Πhvh〉L + 〈GDp,Πhvh〉L = 〈A−1F ,Πhvh〉L, ∀vh ∈HD
h ,
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Thanks to (39), we can write

〈GDp,Πhvh〉L = 〈A−1Πh(F h − uh),Πhvh〉L, ∀vh ∈HD
h .

which allows us to check from (35) that GDp = A−1ΠhGh with Gh = F h − uh. We retrieve the AGS
(27) thanks to (40).

[(i)⇐ (ii)] . Let (XD, PD,GD) the AGD of Definition 4.6 and p ∈ XD the solution of the associated AGS
(27). Using (35a), we write GDp = A−1ΠhGh with Gh ∈HD

h satisfying (35b). We define uh = F h−Gh,
thus uh ∈HD

h and GDp = A−1Πh(F h − uh). We deduce from (35b) that

〈A−1Πh(F h − uh),Πhvh〉L + 〈PDp,Dvh〉L = 0, ∀vh ∈HD
h . (41)

We also define ph = PDp ∈ Lh and by injecting (39) in (41), we recover the first equation (18) of the
mixed abstract element scheme. Now, we inject GDp = A−1Πh(F h − uh) in the AGS (27), thus we
obtain

〈Πh(F h − uh),GDq〉L + 〈a(ph), PDq〉L = 〈f, PDq〉L + 〈F ,GDq〉L, ∀q ∈ XD.

Thanks to (35a), there exists Ĝh ∈HD
h such that GDq = A−1ΠhĜh which involves, also by using (39),

that, −〈Πhuh,GDq〉L + 〈a(ph), PDq〉L = 〈f, PDq〉L,∀q ∈ XD. Thanks to (35b), and since uh ∈ HD
h , we

obtain,
〈Duh, PDq〉L + 〈a(ph), PDq〉L = 〈f, PDq〉L, ∀q ∈ XD.

Finally, by taking qh := PDq, we recover the second equation of (18).

As mentioned in the Introduction 1, in the previous works [16] or [23], a GDM was already built from
discrete spaces involved in a mixed finite element method. But the proof of the equivalence between the
gradient scheme and the mixed finite element scheme is only done in the case where F = 0, for stan-
dard divergence and gradient operators, and RTk mixed finite elements. In this paper, these results are
proved to hold true in the abstract gradient discretization framework and with more general assumptions.

The following result is inspired from [16, Theorem 10.3]. The convergence properties of the mixed finite
element method are then used for proving that AMFE-GD fulfills the required properties for leading as
well to convergence properties.

Theorem 4.8 (Properties of AMFE-GD).
Under Assumptions (8) and (11b), let (Lhn)n∈N and (HD

hn)n∈N be families of finite dimensional spaces

and (Πhn)n∈N be a family of linear operators such that, for any n ∈ N : Lhn ⊂ L and HD
hn ⊂ HD,

conditions (19) hold. We assume one of the two following assumptions:

1. either (25) holds (full LBB hypotheses),

2. or (26) holds (regular interpolation of the pressure: Lhn ⊂ HG).

For any n ∈ N, let Dn = (XDn , PDn ,GDn) be the AMFE-GD defined by Definition 4.6 from the pair of
spaces (HD

hn , Lhn). Then (Dn)n∈N is coercive, limit-conforming and consistent in the sense of Definitions
4.2, 4.4 and 4.3.

Proof.
Although the limit-conformity property (checked on all functions of HD) implies the coercivity property,
since we use the coercivity property to prove the limit-conformity (using approximation spaces), we have
to check separately these properties.

Coercivity. Let n ∈ N and q ∈ XDn . We denote qhn = PDnq with qhn ∈ Lhn , qhn = q⊥Vhn + qVhn . Then

‖q‖Dn =
(
‖(PDnq)V ‖2L + ‖GDnq‖2L

)1/2
=
(
‖qVhn‖

2
L + ‖GDnq‖2L

)1/2
. Using (19e) and the fact that HD

hn

is finite dimensional, we can find ψhn ∈H
D
hn such that ‖ψhn‖HD = 1 and

〈q⊥Vhn ,Dψhn〉L ≥ β‖q
⊥V
hn ‖L.
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By (35), we have 〈GDnq,Πhnψhn〉L = −〈qhn ,Dψhn〉L which can be rewritten as 〈GDnq,Πhnψhn〉L =
−〈q⊥Vhn ,Dψhn〉L − 〈q

V
hn
,Dψhn〉L. Using the Cauchy-Schwarz inequality yields

β‖q⊥Vhn ‖ ≤ ‖Πhnψhn‖L‖GDnq‖L+‖Dψhn‖L‖q
V
hn‖L ≤ ‖ψhn‖HD(ρ‖GDnq‖L+‖qVhn‖L) = ρ‖GDnq‖L+‖qVhn‖L.

Hence we have

‖PDnq‖2L = ‖qhn‖2L = ‖qVhn‖
2
L + ‖q⊥Vhn ‖

2
L ≤ (1 +

2

β2
)‖qVhn‖

2
L +

2ρ2

β2
‖GDnq‖2L

≤ max

(
1 +

2

β2
,

2ρ2

β2

)
︸ ︷︷ ︸

:=C2
P

‖q‖2Dn . (42)

Limit-conformity. Take a sequence (qn)n∈N such that qn ∈ XDn for all n ∈ N, and (‖qn‖Dn)n∈N is
bounded. Let ψ ∈ L. Using (19c), we can choose, for any n ∈ N, ψhn ∈H

D
hn such that ‖ψ−Πhnψhn‖L →

0 and ‖Dψ−Dψhn‖L → 0 as n→ 0. Thanks to (35), we have, 〈GDnqn,Πhnψhn〉L+〈PDnqn,Dψhn〉L = 0.
We can write

〈GDnqn,ψ〉L + 〈PDnqn,Dψ〉L = 〈GDnqn, (ψ −Πhnψhn)〉L + 〈PDnqn,D(ψ −ψhn)〉L.

Applying the Cauchy-Schwarz inequality leads to

|〈GDnqn,ψ〉L + 〈PDnqn,Dψ〉L| ≤ ‖GDnqn‖L‖ψ −Πhnψhn‖L + ‖PDnqn‖L‖D(ψ −ψhn)‖L.

Thanks to (42), we have

|〈GDnqn,ψ〉L + 〈PDnqn,Dψ〉L| ≤ (‖ψ −Πhnψhn‖L + CP ‖D(ψ −ψhn)‖L)‖q‖Dn .

Thus |〈GDnqn,ψ〉L + 〈PDnqn,Dψ〉L| → 0 as n→ 0 which is equivalent to the limit-conformity property,
as shown in [16, Lemma 2.17].

Consistency. Following [16, Lemma 2.16], we prove (29) on a dense subset of HG. We introduce
HS := {ϕ ∈ HG,AGϕ ∈HD}. In Lemma C.1, we prove that HS is dense in HG.
Let ϕ ∈ HS . We notice that p = ϕ and u = −AGϕ is then solution to (15), letting F = 0, f =
−DAGϕ+PV (ϕ) and a = PV (these choices being the simplest ones for applying the above convergence
results). The inf-sup condition (19e) and the interpolation property (19d) allow us to apply Lemma 3.1,
which shows that the continuous inf-sup condition (16) holds, and therefore we can apply Theorem 2.2.
Hence this solution (p,u) is the unique one. On the other hand, we consider (phn ,uhn) ∈ Lhn ×H

D
hn

the solution of the associated discrete problem given by (18). From Theorem 4.7 (which can be applied
in this case for general A since F = 0), we know that pn ∈ XDn , defined by phn = PDnpn, is such
that GDnpn = −A−1Πhnuhn . If (25) holds, we apply Theorem 3.5, otherwise, if (26) holds, we apply
Theorem 3.7. In both cases, we obtain that phn → p in L and Πhnuhn → u in L. This proves that
PDnpn → p in L and GDnpn → Gϕ in L and concludes the proof of the consistency.

5 Examples of application

In this section we consider two examples with Ω ⊂ R2. For each of them, we firstly define a continuous
problem which enters into our abstract framework. We then define a numerical scheme based on mass-
lumped mixed finite elements. The first example illustrates a case of convergence with full LBB conditions,
as in Section 3.2. The second one shows a case where the space Lh ⊂ HG, enabling the application of
the result of Section 3.3.
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5.1 RT0 finite elements on rectangles

In [16, Chapter 10], it is shown that the scheme using RTk mixed finite element applied to a second order
elliptic equation with homogeneous Dirichlet boundary conditions is a gradient scheme, and therefore
convergence results with minimal regularity apply. We focus in this section on two different features.
Firstly, we introduce the mass-lumping operator Πh, which is shown to yield a finite volume scheme on
rectangular grid for the Laplace problem. Secondly, we consider nonhomogeneous Neumann boundary
conditions.
Let us observe that mass-lumping with RT0 mixed finite element can be obtained by the algebraic
condensation of the mass matrix (〈A−1ψk,ψj〉L)j,k, which leads to replacing the matrix by a diagonal
matrix. This technique is used in [3, 5]: an error estimate provides a convergence result for which
the authors assume that p ∈ C3,1(Ω) and u ∈ (C1(Ω) ∩W 2,∞(Ω))d, see [3, 5] for the definition of these
spaces, and they assume that the inf-sup condition holds through the existence of suitable Fortin operator
(see [19, Theorem 5.4]) adapted to the boundary conditions which are done. The technique of algebraic
condensation of the mass matrix is also studied in [8] in the case of triangular meshes and homogeneous
Dirichlet boundary conditions. The authors obtain the convergence result [8, Proposition 5], in which
they assume p ∈ H1(Ω) and u ∈ H1(Ω)d with Du ∈ H1(Ω).
These additional regularity properties are not necessary in our framework designed for handling more
general elliptic problems. The mass matrix (〈A−1Πhψk,Πhψj〉L)j,k in (18), obtained through the use of
the mass-lumping operator Πh, identified as an operator acting on the space L, is diagonal in the examples
provided in this section. We can then prove the convergence of the scheme (as well as the properties
needed for the convergence of the AGS (27)), only assuming the regularity p ∈ H1(Ω) and u ∈ Hdiv(Ω).
Note that this regularity is the one which is obtained, only assuming the regularity f ∈ L2(Ω) and
F ∈ L2(Ω)d for the right-hand-side, and is the minimal regularity for Problem (12).
The proof of the inf-sup condition in the case of nonhomogeneous Neumann boundary conditions on the
whole boundary is studied in [7], where the authors use a regularity result by Grisvard [25]. We propose
below an original method, which can apply to a large variety of problems. This method is based on a
finite volume scheme, which leads to fluxes which can be used for reconstructing an element of Hdiv(Ω)
enabling us to prove the inf-sup condition.

5.1.1 Continuous problem

We consider the problem (1) where we modify the boundary condition. Hence the objective is to approx-
imate a function p : Ω→ R solution to the following nonhomogeneous Neumann problem:

−div(Λ∇p) = r − divF in Ω,

(Λ∇p− F ) · n = g on Γ,
(43)

where we still assume (2) and add the hypothesis that

∫
Ω

r(x)dx+

∫
Γ

g(x) ds(x) = 0. This last condition

is called the compatibility condition in [20] for the purely diffusive Neumann problem, since, if there exists
a solution to (43), integrating the first equation of (43) and using the second one leads to this condition.

In order to provide a weak form for Problem (43), we define the space HG = {(p, γΓp), p ∈ H1(Ω)}, where
γΓ : H1(Ω) → L2(Γ) denotes the trace mapping on the boundary. We then look for (p, p̂) ∈ HG such
that ∫

Ω

Λ(x)∇p(x) · ∇q(x) dx

=

∫
Ω

( r(x) q(x) + F (x) · ∇q(x) ) dx+

∫
Γ

g(x) q̂(x) ds(x), ∀(q, q̂) ∈ HG.
(44)

In fact, if (44) has a solution (p, p̂), then (p + C, p̂ + C), where C ∈ R, is also a solution. Hence we fix
C by modifying the initial bilinear form, in a way which is similar to [16, 3.1.3] or [17]. We consider the
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following formulation: find (p, p̂) ∈ HG such that∫
Ω

Λ(x)∇p(x) · ∇q(x) dx+
(∫

Ω

p(x) dx+

∫
Γ

p̂(x) ds(x)
)(∫

Ω

q(x) dx+

∫
Γ

q̂(x) ds(x)
)

=

∫
Ω

( r(x) q(x) + F (x) · ∇q(x) ) dx+

∫
Γ

g(x) q̂(x) ds(x), ∀(q, q̂) ∈ HG.
(45)

Then the proof that Problem (45) has one and only one solution is obtained by using the Lax-Milgram
theorem, thanks to the following mean value Poincaré inequality: there exists CP > 0 only depending on
Ω such that

‖p‖L2(Ω) ≤ CP
(
‖∇p‖L2(Ω)d +

∣∣∣ ∫
Ω

p(x) dx+

∫
Γ

p̂(x) ds(x)
∣∣∣), ∀(p, p̂) ∈ HG,

which can easily be proved with reasoning by contradiction (see for instance [11, Chapter 8, page 246]).
Letting (q, q̂) = (χΩ, χΓ), where χΩ(x) = 1 for a.e. x ∈ Ω and χΓ(x) = 1 for a.e. x ∈ Γ, we obtain,
owing to the compatibility condition, that (p, p̂) satisfies∫

Ω

p(x) dx+

∫
Γ

p̂(x) ds(x) = 0,

and is therefore also a solution to (44). Note that imposing nonhomogeneous Neumann boundary condi-
tions in mixed formulations can also be done by using penalty methods (see for example [7, 15]).

In order to retrieve the formalism used in Section 2, we define the spaces L = L2(Ω)×L2(Γ), L = L2(Ω)d,
the notation f = (r, g) ∈ L and the operator G : HG → L by Gq = ∇q for all q := (q, q̂) ∈ HG. Then
the Problem (45) can be rewrite as Problem (12) using A = Λ and the mapping

a(q) = 〈q, (χΩ, χΓ)〉L (χΩ, χΓ) for all q ∈ L.

A main point to check that Assumptions (8) and (11) are satisfied in this case is to well define the space
V in order to obtain (11a). We define V = {κ(χΩ, χΓ) , κ ∈ R } and thus a(q) = (|Ω| + |Γ|) qV for any
q ∈ L which implies that 〈a(q), q〉L = (χΩ, χΓ)‖qV ‖2L and thus (11a).

As in Section 2, in order to exhibit the mixed form of the problem, we define

HD = {u ∈ L, Du := (div(u),−u · n) ∈ L}, (46)

and thus we have the following relation, equivalent to (10):

∀(p, p̂) ∈ HG, ∀u ∈HD, 〈(p, p̂), Du〉L + 〈G(p, p̂),u〉L = 0.

Then Hypotheses (8) and (11) are satisfied by the spaces and operators introduced in this section. Since
the study of Problem (45) shows that item (ii) of Theorem 2.2 holds, item (iv) implies that the mixed
weak formulation, given by (15), has one and only one solution.

5.1.2 Definitions of the discrete spaces HD
h , Lh and operator Πh

We define in this section the discrete spaces HD
h , Lh and operator Πh involved in the mixed discrete

Problem (18) and in Definition 4.6 for an AGDM, using the Raviart-Thomas mixed finite elements on a
rectangular grid. We therefore assume that Ω ⊂ R2 is a connected polygonal domain, whose the boundary
is the finite union of segments of the form [a, b]× {c} or {c} × [a, b], as shown in Figure 1.

LetM be a rectangular mesh of Ω, such that there exist two sequences x1 < . . . < xN and y1 < . . . < yM
such that, for any element K of M, there exists i ∈ {1, . . . , N − 1} and j ∈ {1, . . . ,M − 1} with
Ki+ 1

2 ,j+
1
2

= (xi, xi+1) × (yj , yj+1). We denote by MK the set of all L ∈ M such that L is sharing an
edge with K.
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x1 x2 x3 x4 x5
y1

y2

y3

y4

y5

K 7
2 ,
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σ2, 52

σ 5
2 ,2 Πhψσ

4, 3
2

(x, y) = (1, 0)

Πhψσ 3
2
,5

(x, y) = (0, 1)

Figure 1: An example of polygonal domain with edges parallel to the axes which illustrate some notations.
The support of Πhψσ

4, 3
2

is colored in red and that of Πhψσ 3
2
,5

in green.

We then denote by E(y) the set of all σi+ 1
2 ,j

= (xi, xi+1) × {yj} ⊂ ∂K and by E(x) the set of all

σi,j+ 1
2

:= {xi} × (yj , yj+1) ⊂ ∂K for any K ∈ M. We then denote by E = E(x) ∪ E(y), by Eint the set of
interior edges and by Eext the set of exterior edges. We denote by EK,ext the the set of all σ ∈ Eext such
that σ ⊂ ∂K.

The RT0 method consists in defining a basis of functions (ψσ)σ∈E for the velocity approximation space
HD

h , which are piecewise affine. Let us give the expression of these functions ψσ in the cells of the mesh,
together with the definition of Πhψσ.

1. For any σ = σi+ 1
2 ,j

:

• if K = Ki+ 1
2 ,j+

1
2
∈ M, then ψσ(x, y) = (0,

yj+1−y
yj+1−yj ) for a.e. (x, y) ∈ K and Πhψσ(x, y) =

(0, 1) for a.e. (x, y) ∈ (xi, xi+1) × (yj ,
1
2 (yj + yj+1)) and (0, 0) for a.e. (x, y) ∈ (xi, xi+1) ×

( 1
2 (yj + yj+1), yj+1).

• if M = Ki+ 1
2 ,j−

1
2
∈M, then ψσ(x, y) = (0,

y−yj−1

yj−yj−1
) for a.e. (x, y) ∈M and Πhψi+ 1

2 ,j
(x, y) =

(0, 1) for a.e. (x, y) ∈ (xi, xi+1) × ( 1
2 (yj−1 + yj), yj) and (0, 0) for a.e. (x, y) ∈ (xi, xi+1) ×

(yj−1,
1
2 (yj−1 + yj)).

• ψσ(x, y) = (0, 0) and Πhψσ(x, y) = (0, 0) otherwise.

2. For any σ = σi,j+ 1
2
:

• if K = Ki+ 1
2 ,j+

1
2
∈ M, then ψσ(x, y) = ( xi+1−x

xi+1−xi , 0) for a.e. (x, y) ∈ K and Πhψσ(x, y) =

(1, 0) for a.e. (x, y) ∈ (xi,
1
2 (xi + xi+1)) × (yj , yj+1) and (0, 0) for a.e. (x, y) ∈ ( 1

2 (xi +
xi+1), xi+1)× (yj , yj+1);

• if M = Ki− 1
2 ,j+

1
2
∈ M, then ψσ(x, y) = ( x−xi−1

xi−xi−1
, 0) for a.e. (x, y) ∈ M and Πhψσ(x, y) =

(1, 0) for a.e. (x, y) ∈ ( 1
2 (xi−1 + xi), xi)× (yj , yj+1) and (0, 0) for a.e. (x, y) ∈ (xi−1,

1
2 (xi−1 +

xi))× (yj , yj+1);

• ψσ(x, y) = (0, 0) and Πhψσ(x, y) = (0, 0) otherwise.

Let us now define Lh for the pressure approximation. For K ∈ M, we define the basis functions ϕK ∈
L2(Ω) by ϕK(x) = 1 for a.e. x ∈ K, and 0 a.e. in Ω \ {K}. For σ ∈ Eext, we define the basis functions
ϕσ ∈ L2(Γ) by ϕσ(x) = 1 for a.e. x ∈ σ, and 0 a.e. in Γ \ {σ}. Then Lh =: span{(ϕK , ϕσ),K ∈ M, σ ∈
Eext}.
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5.1.3 Verification of assumptions of Theorem 3.5

Lemma 5.1. Conditions (19) hold when defining HD
h , Lh and Πh as in Section 5.1.2, as well as the

LBB condition (25).

Proof. For the sake of brevity, we only focus on the main ideas enabling the proof of the conditions
involving Πh and the LBB conditions under full Neumann boundary conditions.

• The proof of consistency condition (19c) can be found in [19] for the Hdiv(Ω) case. The main
differences here are the convergence of Πh and of the normal trace term. This can be done using a
dense subspace of HD

h and an interpolation operator.

• The consistency condition (19d) is proved using a dense subspace of L and a cell and face constant
interpolation.

• Inequality (25) is obtained with CB = 1 as a consequence of DHD
h ⊂ Lh.

• In order to prove (19a), we decompose any vh ∈HD
h as vh = v

(1)
h e1 + v

(2)
h e2 with e1 = (1, 0)T and

e2 = (0, 1)T . We focus on v
(1)
h since the other term is similar. Following the previous notations

about the discretisation of Ω, for any i ∈ {1, . . . , N}, we introduce ϕi : [x1, xN ] → [0, 1] be the
continuous piecewise affine function such that ϕi(xi) = 1 and ϕi(xj) = 0 for j 6= i. And let ϕ̂i :
[x1, xN ]→ [0, 1] be the discontinuous piecewise constant function such that ϕ̂i(x) = 1 on (xi− 1

2
, xi)

if i > 1 and on (xi, xi+ 1
2
) if i < N and 0 elsewhere and where xi+ 1

2
= 1

2 (xi + xi+1). For a given

j ∈ {1, . . . ,M−1} and y ∈ [yj , yj+1], there exist scalars (αi,j)i such that v
(1)
h (x, y) =

∑N
i=1 αi,jϕi(x)

and Πhv
(1)
h (x, y) =

∑N
i=1 αi,jϕ̂i(x). We have to compare Iϕ :=

∫ xN
x1

(
∑N
i=1 αi,jϕi(s))

2ds and Iϕ̂ =∫ xN
x1

(
∑N
i=1 αi,jϕ̂i(s))

2ds. We notice that for i = 1, . . . , N − 1,

∫ xi+1

xi

(
N∑
k=1

αk,jϕk(s)

)2

ds =
(xi+1 − xi)

3
(α2
i,j + αi,jαi+1,j + α2

i+1,j),

and ∫ xi+1

xi

(
N∑
k=1

αk,jϕ̂k

)2

ds =
(xi+1 − xi)

2
(α2
i,j + α2

i+1,j).

Since
1

2
(α2
i,j + α2

i+1,j) ≤ α2
i,j + αi,jαi+1,j + α2

i+1,j ≤
3

2
(α2
i,j + α2

i+1,j),

we obtain
1

3
Iϕ̂ ≤ Iϕ ≤ Iϕ̂. By integrate over y, we get ‖v(1)

h ‖2L ≤ ‖Πhv
(1)
h ‖2L ≤ 3‖v(1)

h ‖2L. Thus we

obtain (19a) with ρ =
√

3.

• In order to prove (19b), we consider a function v belonging to a dense subspace of L such that, for
a given j ∈ {1, . . . ,M − 1} and y ∈ [yj , yj+1], we have ψy(s) := v(1)(s, y) ∈ C1([x1, xN ]). We reuse,

for any vh ∈HD
h , the above notation v

(1)
h (x, y) =

∑N
i=1 αi,jϕi(x) and we study the quantity

Iy =

∫ xN

x1

( N∑
i=1

αi,j(ϕi(s)− ϕ̂i(s))
)
ψy(s)ds

=

N−1∑
i=1

∫ xi+1

xi

( αi,j(ϕi(s)− ϕ̂i(s)) + αi+1,j(ϕi+1(s)− ϕ̂i+1(s)) ) ψy(s)ds.
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Since
∫ xi+1

xi
(ϕi(s)− ϕ̂i(s))ds = 0 for any i ∈ {1, . . . , N − 1}, we can write,∣∣∣∣∫ xi+1

xi

αi,j(ϕi(s)− ϕ̂i(s))ψy(s)ds

∣∣∣∣ =

∣∣∣∣∫ xi+1

xi

αi,j(ϕi(s)− ϕ̂i(s))(ψy(s)− ψy(xi))ds

∣∣∣∣
≤
∫ xi+1

xi

|αi,j ||ϕi(s)− ϕ̂i(s)| |ψy(s)− ψy(xi)|︸ ︷︷ ︸
≤(xi+1−xi) max(|ψ′y|)

ds.

Since |ϕi(s)− ϕ̂i(s)| ≤ 1, we have∣∣∣∣∫ xi+1

xi

αi,j(ϕi(s)− ϕ̂i(s))ψy(s)ds

∣∣∣∣ ≤ (xi+1 − xi)2 max(|ψ′y|)|αi,j | ≤ h(xi+1 − xi) max(|ψ′y|)|αi,j |.

Using the same computation for
∫ xi+1

xi
αi+1,j(ϕi+1(s)− ϕ̂i+1(s))ψy(s)ds, we thus obtain

|Iy| ≤ hmax(|ψ′y|)
N−1∑
i=1

(xi+1 − xi)(|αi,j |+ |αi+1,j |).

We can notice, using the support of each ϕ̂i, that∫ xN

x1

|Πhv
(1)
h (s, y)|ds =

1

2

N−1∑
i=1

(xi+1 − xi)(|αi,j |+ |αi+1,j |),

which yields |Iy| ≤ 2hmax(|ψ′y|)
∫ xN
x1
|Πhv

(1)
h (s, y)|ds and therefore, since ψ′y(s) = ∂xv(s, y),∣∣∣∣∫ xN

x1

(v
(1)
h (s, y)−Πhv

(1)
h (s, y))v(1)(s, y)ds

∣∣∣∣ ≤ 2h‖∂xv‖∞
∫ xN

x1

|Πhv
(1)
h (s, y)|ds.

Integrating with respect to y, we obtain∣∣∣∣∫
Ω

(v
(1)
h (x)−Πhv

(1)
h (x))v(1)(x)dx

∣∣∣∣ ≤ 2h‖∂xv‖∞
∫

Ω

|Πhv
(1)
h (x)|dx.

Then, using the Cauchy-Schwarz inequality, we obtain∣∣∣∣∫
Ω

(v
(1)
h (x)−Πhv

(1)
h (x))v(1)(x)dx

∣∣∣∣ ≤ 2h‖∂xv‖∞|Ω|
1
2 ‖Πhv

(1)
h ‖L2(Ω).

Considering a sequence hn such that ‖v(1)
hn
‖L2(Ω) remains bounded, we get (19b) using (19a) and

limn→+∞ hn = 0.

• In order to check the inf-sup condition (19e), we firstly remark that Lh ∩ V ⊥ = {q⊥Vh , ∀qh ∈ Lh}
due to the definitions of V and Lh. We consider a given qh ∈ Lh ∩ V ⊥ = {(qh, q̂h) ∈ Lh :∫

Ω
qh(x)dx+

∫
Γ
q̂h(x)ds(x) = 0}. By definitions of Lh and V ⊥, we deduce that qh is cell and face

constant and we have ∑
K∈M

|K|qK +
∑
σ∈Eext

|σ|q̂σ = 0,

where qK and q̂σ denote the constant values of qh in K and in σ. We then consider the element
ωh = (ωh, ω̂h) ∈ Lh, which is such that ∑

K∈M
|K|ωK = 0, (47)
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(hence we don’t assume that ωh ∈ V ⊥) and which satisfies the following finite volume scheme [21,
Chapter III,(10.7)− (10.8)], for all K ∈M:

−
∑

M∈MK

τKM (ωM − ωK)−
∑

σ∈EK,ext

τKσ(ω̂σ − ωK) = |K|qK , (48)

and
−τKσ(ωK − ω̂σ) = |σ| q̂σ,∀σ ∈ EK,ext, (49)

where, for any neighbour M of K, τKM = |∂K∩∂M |
dKM

, with dKM being the distance between the

centers of gravity of K and M , and where for any σ ∈ EK,ext, τKσ = |σ|
dKσ

, with dKσ being the
orthogonal distance between the center of gravity of K and σ. From [21, Chapter III, Lemma 10.1],
we get the existence and uniqueness of (ωK)K∈M solution of (47)-(48)-(49), and therefore that of
(ω̂σ)σ∈Eext thanks to (49). We define

‖ωh‖2h :=
∑
σ∈E

|σ|
dσ

(δσωh)2, (50)

with,

– if σ ∈ Eint is shared by the cells K and M , dσ = dKM and δσωh := ωM − ωK with M,K
oriented in the sens that if σ = σi,j+ 1

2
then K = Ki− 1

2 ,j+
1
2
, if σ = σi+ 1

2 ,j
then K = Ki+ 1

2 ,j−
1
2

and always M = Ki+ 1
2 ,j+

1
2
,

– if σ ∈ Eext belongs to the cell K = Ki+ 1
2 ,j+

1
2
, dσ = dK,σ and δσωh := ω̂σ −ωK if σ = σi+1,j+ 1

2

or σ = σi+ 1
2 ,j+1, δσωh := ωK − ω̂σ if σ = σi,j+ 1

2
or σ = σi+ 1

2 ,j
.

We get, by multiplying (48) by ωK and (49) by ω̂σ (since τKM = τMK), using the Cauchy-Schwarz
inequality,

‖ωh‖2h =
∑
K∈M

|K|qKωK +
∑
σ∈Eext

|σ| q̂σω̂σ ≤ ‖qh‖L2(Ω)‖ωh‖L2(Ω) + ‖q̂h‖L2(Γ)‖ω̂h‖L2(Γ). (51)

We then use (47) and apply [21, Chapter III, Lemma 10.2](Mean Poincaré inequality), which proves
that there exists C1 > 0 only depending on Ω such that

‖ωh‖L2(Ω) ≤ C1‖ωh‖h. (52)

From [21, Chapter III, Lemma 10.5](Trace inequality), defining Kσ ∈M for any σ ∈ Eext such that
σ ∈ EK , we get that there exists C2 > 0 only depending on Ω, such that( ∑

σ∈Eext

|σ|ω2
Kσ

)1/2

≤ C2(‖ωh‖h + ‖ωh‖L2(Ω)). (53)

We then notice that, using the Young inequality and (52)-(53),

‖ω̂h‖2L2(Γ) =
∑
σ∈Eext

|σ|ω̂2
σ ≤ 2

∑
σ∈Eext

|σ|ω2
Kσ + 2

∑
σ∈Eext

|σ|(ω̂σ − ωKσ )2

≤ 2
∑
σ∈Eext

|σ|ω2
Kσ + 2diam(Ω)

∑
σ∈Eext

τKσ(ω̂σ − ωKσ )2

≤
(

2C2
2 (1 + C1)2 + 2diam(Ω)

)
‖ωh‖2h.

Using the previous inequality and the Cauchy-Schwarz inequality on (51) leads to the existence of
C3 only depending on Ω such that

‖ωh‖h ≤ C3(‖qh‖L2(Ω) + ‖q̂h‖L2(Γ)). (54)
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We then define vh ∈HD
h by

vh(x) = −
∑
σ∈EK

Qσψσ(x), with Qσ =
δσωh
dσ

, for all x ∈ K and K ∈M. (55)

We then notice that, for K = Ki+ 1
2 ,j+

1
2

and x ∈ K, divψσ(x) = 1
xi+1−xi = |σ|

|K| if σ = σi+1,j+ 1
2
,

divψσ(x) = − |σ||K| if σ = σi,j+ 1
2
, divψσ(x) = 1

yj+1−yj = |σ|
|K| if σ = σi+ 1

2 ,j+1, divψσ(x) = − |σ||K| if

σ = σi+ 1
2 ,j

. Therefore, dividing (48) by |K| = (xi+1 − xi)(yj+1 − yj) and using that τK,σ = |σ|
dσ

, we
get that

−
∑
σ∈EK

δσωh
dσ

divψσ(x) = qK ,

and, for σ ∈ Eext which belongs to the cell K and for x ∈ σ, dividing (49) by |σ|,

−δσωh
dσ

ψσ(x) · n = q̂σ.

Therefore (55) implies that
Dvh = qh = (qh, q̂h). (56)

Remarking that ‖Πhvh‖2L2(K) =
∑
σ∈EK Q

2
σ|σ|dK,σ, we obtain

‖Πhvh‖2L2(Ω) =
∑
σ∈E

Q2
σ|σ|dσ = ‖ωh‖2h. (57)

Using (56)-(19a) and then (54)-(57), we can write

‖vh‖2HD ≤ ρ2‖Πhvh‖2L2(Ω) + ‖qh‖2Lh ≤ C4‖qh‖2Lh , (58)

where C4 > 0 is only depending on Ω. We introduce ṽh = vh
‖vh‖HD

. Gathering the previous results

leads to

〈q⊥Vh ,Dṽh〉L =
‖qh‖2Lh
‖vh‖HD

≥ ‖qh‖Lh√
C4

,

which concludes the proof of (19e).

Let us observe that using Scheme (7) is then identical to the finite volume scheme used for proving the
inf-sup property.

5.2 Mass lumped mixed finite element for dispersive shallow water flow

We show in this section that one of the schemes introduced in [1] for the approximation of the elliptic
part of dispersive shallow water flows can be analysed through the results given in this work.

5.2.1 Continuous problem

In [1], the authors study a model of shallow water flow, in which a hyperbolic model for the transport
of momentum and mass is coupled with an elliptic model, dedicated to the modelisation of dispersive
effects. We focus in this section on the discretisation of this elliptic model which can be written through
the following functions: the water height H : Ω → R, the bathymetry zb : Ω → R and the function

ζ = H + α2

2 zb, where α > 0 is a parameter tuning the physics of the dispersive effects (various values

are assigned to this parameter in the literature: in the “Green-Naghdi model”, one lets α =
√

3 whereas
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α = 2 in [1], see also [14] for a discussion about the value of α). Specific first order differential operators,
denoted by ∇αsw and divαsw, called shallow-water gradient and divergence in [1, Section 2.4.1], are then
defined in the following way: for ϕ : Ω→ R,

∇αswϕ = (H∇ϕ+ ϕ∇ζ,−αϕ)T , (59a)

and for u = (v, w)T with v : Ω→ R2 and w : Ω→ R, we set

divαswu = div(Hv)− v · ∇ζ + αw. (59b)

Then the problem reads: find p : Ω → R (called in [1] the non-hydrostatic pressure) and u =
(v, w)T : Ω→ R3 (which is the velocity field) such that,

Hu+∇αswp = g in Ω, (60a)

divαswu = f in Ω. (60b)

The functions f and g used in the right-hand-side of Problem (60) represent the coupling effects at
each time step with the hyperbolic part of the model in [1]. We consider a simpler situation than the
mixed Dirichlet and Neumann boundary conditions assumed in [1], by prescribing homogeneous Dirichlet
boundary conditions on the whole boundary:

p = 0 on Γ. (61)

In order to enter into the hypotheses (8) of our paper, we define L = L2(Ω), L = L2(Ω)3, HG = H1
0 (Ω),

HD = {ω ∈ L2(Ω)3 | D(ω) ∈ L2(Ω) }, G = ∇αsw and D = divαsw, V = {0} (and therefore V ⊥ = L).
We enter into hypotheses (11), defining for u = (v, w)T the operator A by Au = H−1u, letting a ≡ 0,
defining the right-hand side by F = H−1g and assuming:

• H ∈ C1(Ω) and there exist α, α > 0 such that, for x ∈ Ω, α ≤ H(x) ≤ α, (62a)

• ζ ∈ C2(Ω), (62b)

• F ∈ L2(Ω)3, f ∈ L2(Ω). (62c)

We notice that the operators G = ∇αsw and D = divαsw fulfill the abstract Green formula (10). Under
these notations, Problem (12) provides a weak sense to Problem (60)-(61), and the existence and the
uniqueness of the solution of the mixed problem is a consequence of Theorem 2.2, since the Lax-Milgram
theorem implies that item (ii) holds.

5.2.2 Definitions of the discrete spaces HD
h , Lh and operator Πh

Following the P1/P1 approximation method described in [1, Section 4.1], we consider the following nu-
merical approximation. The domain Ω is meshed by a conforming triangular mesh of Ω in the sense
of [16, Definition 7.4] or [20, Definition 1.50]. This mesh is denoted by Th = (Mh,Fh, Ch,Vh), whereMh

is the set of triangular cells, Fh of edges, Ch of the cell barycenters and Vh of the vertices of the triangles
and h denotes the mesh size, i.e. the maximal diameter of the cells. We introduce the family (φi)

N
i=1 of

the P1 finite element shape functions associated to the vertices, denoted by xi ∈ Vh ⊂ Ω for i = 1, . . . , N .
The function φi is affine in each K ∈ Mh, satisfies φi(xi) = 1 and φi(xj) = 1 for any j 6= i. For each
i = 1, . . . , N , we denote by Mi ⊂Mh the set of the triangles having xi as a vertex. For each K ∈ Mh,
we denote by FK ⊂ Fh and VK ⊂ {1, . . . , N} the set of its edges and the index of its vertices.

We then define the P1 finite element space Qh = span{φi, i = 1, . . . , N}, and the spaces Lh = Qh∩H1
0 (Ω)

(note that we impose the boundary condition on the elements of Lh) and HD
h = Q3

h.
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If the components of vh = (
∑
i∈I α

(k)
i φi)k=1,2,3 ∈ HD

h are ordered as (α
(1)
i )Ni=1, (α

(2)
i )Ni=1, (α

(3)
i )Ni=1, the

mass matrix (〈A−1ψk,ψj〉L)j,k in (18) without mass lumping operator is given by

Mh 0 0
0 Mh 0
0 0 Mh


with Mh = (

∫
Ω
H(x)φj(x)φi(x)dx)Ni,j=1. An algebraic condensation of this matrix is described in [1,

(4.13)]. Let us retrieve this algebraic condensation by defining a mass lumping operator Πh : HD
h → L.

We first define the dual cells (ωi)
N
i=1 by their interior edges, joining the middle of the edges and the

barycenter of the triangles (see Figure 2). Let (φ̂i)
N
i=1 be the characteristic functions of the cells (ωi)

N
i=1,

which means that φ̂i(x) = 1 if x ∈ ωi, and φ̂i(x) = 0 if x ∈ Ω \ ωi. Then, for any function vh =

(
∑
i∈I α

(k)
i φi)k=1,2,3 ∈HD

h , we define

Πhvh = (
∑
i∈I

α
(k)
i φ̂i)k=1,2,3.

Then the matrix (〈A−1Πhψk,Πhψj〉L)j,k in (18) has the form

M̂h 0 0

0 M̂h 0

0 0 M̂h

, where the matrix M̂h

is diagonal and, for i = 1, . . . , N ,

M̂hii =

∫
ωi

H(x)dx = Hi|ωi| = Hi

∑
K∈Mi

|K|
3
,

where we denote by Hi = 1
|ωi|
∫
ωi
H(x)dx the average value of H in ωi. We then retrieve [1, (4.13)].

K ∈Mh
ωi

xi

ωj xj

ωk

xk

Ω

Γ

Figure 2: Some cells of the triangular mesh (solid blue lines), three cells of the barycentric dual mesh
(dashed lines). The boundary Γ of Ω is the black line.

5.2.3 Verification of assumptions of Theorem 3.7

Lemma 5.2. Conditions (19) hold when defining HD
h , Lh and Πh as in Section 5.2.2 as well as the

consistency condition (26).

26



Proof. As in the proof of Lemma 5.1, we only give the main ideas of the proofs for the sake of brevity.
We first observe that (26) is a standard property of P1 finite elements (see [20, Corollary 1.110]).

• The proof of consistency condition (19c) can be done using a dense subspace of HD
h . The control

of the term with D is obtained using the definition of divαsw, standard property of P1 finite elements
and the regularity assumptions on H and ζ. For the term involving Πh, we use that for vh ∈ HD

h

each component k ∈ {1, 2, 3} satisfies (see for instance [16, (8.18)])

‖v(k)
h −Πhv

(k)
h ‖L2(Ω) ≤ h‖∇v

(k)
h ‖L2(Ω)2 .

• In order to check the inf-sup condition (19e), which reads, in this setting, find β > 0 independent
of n, such that ∀n ∈ N,∀qh ∈ Lh,

sup
vh∈HD

h,‖vh‖HD=1

∫
Ω

(
div(Hv

(1),(2)
h )(x)− v(x) · ∇ζ(x) + α v

(3)
h (x)

)
qh(x) dx ≥ β‖qh‖L2(Ω),

we notice that selecting vh = (0, 0, qh/‖qh‖L2(Ω))
T directly provides the relation with β = α.

• We prove (19a) on each coordinates of any vh = (v
(1)
h ,v

(2)
h ,v

(3)
h )T ∈ HD

h . Let k ∈ {1, 2, 3}, as

above, we write v
(k)
h (x) =

∑N
i=1 α

(k)
i φi(x) and Πhv

(k)
h (x) =

∑N
i=1 α

(k)
i φ̂i(x) for all x ∈ Ω. Thus we

can write,

‖v(k)
h ‖

2
L2(Ω) =

∑
K∈Mh

∫
K

( ∑
i∈VK

α
(k)
i φi(x)

)2

dx , ‖Πhv
(k)
h ‖

2
L2(Ω) =

∑
K∈Mh

∫
K

( ∑
i∈VK

α
(k)
i φ̂i(x)

)2

dx ,

where VK = {i ∈ I | xi ∈ K}. But, due to the mass lumping, we can write that, for any K ∈M,∫
K

( ∑
i∈VK

α
(k)
i φ̂i(x)

)2

dx =

∫
K

(
α

(k)
i1
φ̂i1(x) + α

(k)
i2
φ̂i2(x) + α

(k)
i3
φ̂i3(x)

)2

dx =
|K|
3
αTKαK ,

with αK := (α
(k)
i1
, α

(k)
i2
, α

(k)
i3

)T and where VK := {i1, i2, i3} is the set of indices of the vertices of the
triangular cell K. On the other hand we have,∫

K

( ∑
i∈VK

α
(k)
i φi(x)

)2

dx = αTKMKαK ,

where MK =
|K|
12

2 1 1
1 2 1
1 1 2

. The matrix MK is symmetric positive definite and satisfies,

λminα
T
KαK ≤ αTKMKαK ≤ λmaxα

T
KαK ,

where λmin (respectively λmax) is the minimal (respectively maximal) eigen value of MK . We have

λmin =
|K|
12

and λmax =
|K|
3

. Combining the previous results, we obtain,

‖v(k)
h ‖

2
L2(Ω) ≤ ‖Πhv

(k)
h ‖

2
L2(Ω) ≤ 4‖v(k)

h ‖
2
L2(Ω).

This proves (19a) with ρ = 2.

• The proof of (19b) follows the same ideas as that of Lemma 5.1. Let vh ∈HD
h such that v

(k)
h (x) =∑

i∈I α
(k)
i φi(x) for all x ∈ Ω and k ∈ {1, 2, 3}. We study, for any function v ∈ C1(Ω̄)3, the quantity,

Ik =

∫
Ω

(
v

(k)
h (x)−Πhv

(k)
h (x)

)
v(x)(k)dx =

N∑
i=1

α
(k)
i

∫
Ω

(
φi(x)− φ̂i(x)

)
v(x)(k)dx.
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Since, for all i ∈ I,
∫

Ω
φi(x)dx =

∫
Ω
φ̂i(x)dx = |ωi|, we can write,∣∣∣ ∫

Ω

(
φi(x)− φ̂i(x)

)
v(x)(k)dx

∣∣∣ =
∣∣∣ ∫

Ω

(
φi(x)− φ̂i(x)

)(
v(x)(k) − v(xi)

(k)
)

dx
∣∣∣

≤
∫

Ω

|φi(x)− φ̂i(x)| |v(x)(k) − v(xi)
(k)|︸ ︷︷ ︸

≤ h‖∇v(k)‖L∞(Ω)

dx.

Thus we have,

|Ik| ≤ 2h ‖∇v(k)‖L∞(Ω)

( N∑
i=1

|α(k)
i | |ωi|

)
.

Then, using the Cauchy-Schwarz inequality, we obtain,

|Ik| ≤ 2h ‖∇v(k)‖L∞(Ω)

( N∑
i=1

|ωi|
) 1

2

︸ ︷︷ ︸
≤ |Ω| 12

( N∑
i=1

|ωi|(α(k)
i )2

) 1
2

︸ ︷︷ ︸
= ‖Πhv

(k)
h ‖L2(Ω)

.

The preceding inequality immediately implies (19b).

Remark 5.3. In [18, Chapter 2], the convergence has already been established, using a specific method
of proof specific. Whereas our proof based on Theorem 3.7 can be reused easily for other numerical
approaches.

Acknowledgments : The author would like to thank Robert Eymard for his constant help during the
elaboration of this work (particularly on technical aspects) and also the Inria ANGE team for highlighting
of the second example.

A Properties of mixed bilinear forms

In this section, we present and prove a theorem on a general bilinear form. This result is used in the
proofs of Theorem 2.2 (continuous setting) and 3.2 (discrete setting). Thanks to the definitions of HD

and D given by (9)-(10), and under Assumptions (8), we assume the following,

A : L×L→ R, and a : L× L→ R are bilinear forms such that

there exist 0 < α ≤ α with

α‖u‖2L ≤ A(u,u) and |A(u,v)| ≤ α‖u‖L‖v‖L, for all u,v ∈HD, (63a)

α‖pV ‖2L ≤ a(p, p) and |a(p, q)| ≤ α‖p‖L‖q‖L, for all p, q ∈ L. (63b)

Let β > 0 and let L̃ ⊆ L and H̃
D
⊆HD be closed subspaces such that

∀q̃ ∈ L̃, sup
ṽ∈H̃D

,‖ṽ‖HD=1

〈q̃⊥V ,Dṽ〉L ≥ β‖q̃⊥V ‖L. (64)

Theorem A.1. Under Assumptions (8), (63) and (64), we denote by H = L ×HD the Hilbert space
endowed with the norm ‖(p,u)‖2H = ‖p‖2L + ‖u‖2L + ‖Du‖2L. Let E : H × H → R be the bilinear form
defined by

E((p,u), (q,v)) = A(u,v)− 〈p,Dv〉L + 〈q,Du〉L + a(p, q). (65)
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Then there exists θ > 0, only depending on α, α and β such that

∀(q̃, ṽ) ∈ L̃× H̃
D
, sup
(p̃,ũ)∈L̃×H̃D

,‖(p̃,ũ)‖H≤1

E((p̃, ũ), (q̃, ṽ)) ≥ θ
(
‖ṽ‖2L + ‖PL̃Dṽ‖

2
L + ‖q̃‖2L

)1/2

, (66)

and

∀(p̃, ũ) ∈ L̃× H̃
D
, sup
(q̃,ṽ)∈L̃×H̃D

,‖(q̃,ṽ)‖H≤1

E((p̃, ũ), (q̃, ṽ)) ≥ θ
(
‖ũ‖2L + ‖PL̃Dũ‖

2
L + ‖p̃‖2L

)1/2

, (67)

where PL̃ denotes the orthogonal projection on the closed space L̃.

Remark A.2. In the use of Theorem A.1 in the proof of 2.2, we let L̃ = L, H̃
D

= HD and PL̃ = IdL
and then Theorem (A.1) allows to obtain the same existence and uniqueness result as [12, Corollary 0.1].
On the contrary, in the use of Theorem A.1 in the proof of Theorem 3.2, since the right-hand side of
inequalities (66) and (67) include the terms ‖PL̃D · ‖

2
L instead of ‖D · ‖2L, we get a weaker estimate,

leading to weaker convergence properties.

Proof. We remark that E(·, ·) is bilinear continuous on H × H. Let us prove (66) for a given (q̃, ṽ) ∈
L̃× H̃

D
\ {(0, 0)}. In the following proof, for i ∈ {1, 2, 3, 4}, we define quantities (p̃i, ũi) ∈ L̃× H̃

D
such

that ‖(p̃i, ũi)‖H ≤ Ci‖(q̃, ṽ)‖H, with Ci only depending on α, α, β.

• Let (p̃1, ũ1) = (q̃, ṽ). Then

E((p̃1, ũ1), (q̃, ṽ)) = A(ṽ, ṽ) + a(q̃, q̃) ≥ α‖ṽ‖2L + α‖q̃V ‖2L. (68)

• Let (p̃2, ũ2) = (0, û2‖q̃⊥V ‖L) where û2 ∈ H̃
D

is such that ‖û2‖HD = 1 and 〈q̃,Dû2〉L ≥ β
2 ‖q̃
⊥V ‖L

thanks to the (64). This leads to

E((p̃2, ũ2), (q̃, ṽ)) = A(u2, ṽ) + 〈Du2, q̃
⊥V 〉L + 〈Du2, q̃

V 〉L.

By construction of ũ2, using (63a) and the Cauchy-Schwarz inequality, we can write

E((p̃2, ũ2), (q̃, ṽ)) ≥ β

2
‖q̃⊥V ‖2L − α‖q̃⊥V ‖L‖ṽ‖L − ‖q̃⊥V ‖L‖q̃V ‖L.

Thanks to the Young inequality, we can write

α‖q̃⊥V ‖L‖ṽ‖L ≤
β

8
‖q̃⊥V ‖2L +

2α2

β
‖ṽ‖2L,

and

‖q̃⊥V ‖L‖q̃V ‖L ≤
β

8
‖q̃⊥V ‖2L +

2

β
‖q̃V ‖2L.

This leads to

E((p̃2, ũ2), (q̃, ṽ)) ≥ β

4
‖q̃⊥V ‖2L −

2α2

β
‖ṽ‖2L −

2

β
‖q̃V ‖2L. (69)

• Let (p̃3, ũ3) = (−PL̃Dṽ, 0). Then E((p̃3, ũ3), (q̃, ṽ)) = ‖PL̃Dṽ‖
2
L + a(PL̃(Dṽ), q̃). Using (63b) and

the Cauchy-Schwarz inequality, we have

E((p̃3, ũ3), (q̃, ṽ)) ≥ ‖PL̃Dṽ‖
2
L − α‖PL̃Dṽ‖L‖q̃‖L.

The Young inequality again allows to write E((p̃3, ũ3), (q̃, ṽ)) ≥
‖PL̃Dṽ‖

2
L

2
− α2

2
‖q̃‖2L. Using

‖q̃‖2L = ‖q̃⊥V ‖2L + ‖q̃V ‖2L, we deduce

E((p̃3, ũ3), (q̃, ṽ)) ≥
‖PL̃Dṽ‖

2
L

2
− α2

2
( ‖q̃⊥V ‖2L + ‖q̃V ‖2L ). (70)

29



• For θ2, θ3 > 0, we define (p̃4, ũ4) = (p̃1, ũ1)+θ2(p̃2, ũ2)+θ3(p̃3, ũ3). By using (68)+θ2×(69)+θ3×(70),
this leads to

E((p̃4, ũ4), (q̃, ṽ)) ≥ (α− θ2
2α2

β
)‖ṽ‖2L +

θ3

2
‖PL̃Dṽ‖

2
L

+ (α− θ2
2

β
− θ3

α2

2
)‖q̃V ‖2L +

(
β

4
θ2 − θ3

α2

2

)
‖q̃⊥V ‖2L.

By defining θ2 = min

(
βα

4α2 ,
βα

8

)
, θ3 = min

(
βθ2

4α2 ,
α

2α2

)
and θ4 = min

(
α

2
,
θ3

2
,
β

8
θ2

)
, we can

write,

E((p̃4, ũ4), (q̃, ṽ)) ≥ θ4

(
‖ṽ‖2L + ‖PL̃Dṽ‖

2
L + ‖q̃V ‖2L + ‖q̃⊥V ‖2L

)
= θ4

(
‖ṽ‖2L + ‖PL̃Dṽ‖

2
L + ‖q̃‖2L

)
.

Since, by construction, we have ‖(p̃4, ũ4)‖H ≤ ‖(q̃, ṽ)‖H + θ2‖q̃‖L + θ3‖Dṽ‖L ≤ ṽ‖(q̃, ṽ)‖H with θ̃ =

1 + θ2 + θ3, we can define (p̃, ũ) =
(p̃4, ũ4)

θ̃‖(q̃, ṽ)‖H
. We then have ‖(p̃, ũ)‖H ≤ 1 and

E((p̃, ũ), (q̃, ṽ)) ≥ θ4

θ̃

‖ṽ‖2L + ‖PL̃Dṽ‖
2
L + ‖q̃‖2L

‖(q̃, ṽ)‖H
≥ θ4

θ̃

(
‖ṽ‖2L + ‖PL̃Dṽ‖

2
L + ‖q̃‖2L

)1/2

,

which shows (66).

We then deduce (67) from (66) by exchanging the arguments and using −D instead of D.

B Equivalence between (25) and an LBB condition

We notice that Problem (2.1) in [12] or Problem (96) in [19] correspond to Problem (18) in the particular
case V = {0}, a ≡ 0 and Πh = IdL. Therefore we explore in this section the equivalence between condition
(25) and the standard conditions (2.2)-(2.4)-(2.5) in [12] or (97)-(98)-(99) in [19], which correspond to
(19e)-(72)-(73) below. We also remind the definitions of HD and D given by (9)-(10).

Lemma B.1 (Equivalence between (25) and LBB condition).
Under Assumptions (8) (with the additional hypothesis that V = {0}, a ≡ 0) and (11), let (Lhn)n∈N and
(HD

hn)n∈N be families of finite dimensional spaces such that, for any n ∈ N : Lhn ⊂ L and HD
hn ⊂ H

D

and such that the discrete inf-sup condition (19e) holds. Let us denote

Whn = {vhn ∈H
D
hn , ∀qhn ∈ Lhn , 〈Dvhn , qhn〉L = 0}.

Then the following assertions are equivalent.

(i) There exists CB > 0 such that

∀n ∈ N, ∀vhn ∈H
D
hn , ‖Dvhn‖L ≤ CB(‖vhn‖L + ‖PLhnDvhn‖L), (71)

which is similar to (25).

(ii) There exist α > 0 and α? > 0 such that

∀n ∈ N, ∀uhn ∈Whn , sup
vhn∈Whn ,‖vhn‖HD=1

〈A−1uhn ,vhn〉L ≥ α‖uhn‖HD (72)

and

∀n ∈ N, ∀vhn ∈Whn , sup
uhn∈Whn ,‖uhn‖HD=1

〈A−1uhn ,vhn〉L ≥ α?‖vhn‖HD . (73)
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Proof. (i) =⇒ (ii)
Let n ∈ N and uhn ∈Whn . By definition of Whn , we have 〈Duhn , qhn〉L = 0 for an arbitrary qhn ∈ Lhn .
Since 〈Duhn , qhn〉L = 〈PLhnDuhn , qhn〉L, we obtain 〈PLhnDuhn , qhn〉L = 0. The particular choice
qhn = PLhnDuhn leads to PLhnDuhn = 0 and therefore (71) yields ‖Duhn‖L ≤ CB‖uhn‖L. From

Lemma 2.1, we get
α

α2 ‖uhn‖
2
L ≤ 〈A

−1uhn ,uhn〉L. Hence

‖uhn‖2HD = ‖Duhn‖2L + ‖uhn‖2L ≤ (C2
B + 1)‖uhn‖2L ≤ (C2

B + 1)
α2

α
〈A−1uhn ,uhn〉L.

This gives, assuming uhn 6= 0,

‖uhn‖HD ≤ (C2
B + 1)

α2

α
〈A−1uhn ,

uhn
‖uhn‖HD

〉L,

which proves (72), and

‖uhn‖HD ≤ (C2
B + 1)

α2

α
〈A−1 uhn

‖uhn‖HD

,uhn〉L,

which proves (73).
(ii) =⇒ (i)
Let us first remark that, for any uhn ∈ Whn , using (72), we can select vhn ∈ Whn with ‖vhn‖HD = 1
(hence ‖vhn‖L ≤ 1) and 〈A−1uhn ,vhn〉L ≥ α‖uhn‖HD . We then have, again using Lemma 2.1,

α‖uhn‖HD ≤ 1

α
‖uhn‖L‖vhn‖L ≤

1

α
‖uhn‖L. (74)

We now consider any uhn ∈H
D
hn , that we decompose in the orthogonal sum (inHD) by uhn = uWhn+u⊥Whn

where uWhn ∈Whn and u⊥Whn ∈W
⊥
hn

. The assumption V = {0} implies V ⊥ = L and thus (19e) is identical
to [19, (85)], thus we can apply [19, Lemma 5.1]. Together with [19, (87)], for qhn ∈ Lhn such that
‖qhn‖Lhn = 1 and

〈Du⊥Whn , qhn〉L = max { 〈Du⊥Whn , q̃hn〉L , q̃hn ∈ Lhn , ‖q̃hn‖Lhn = 1},

this lemma allows us to write,

β‖u⊥Whn ‖HD ≤ 〈Du⊥Whn , qhn〉L = 〈PLhnDu
⊥W
hn , qhn〉L ≤ ‖PLhnDu

⊥W
hn ‖L = ‖PLhnDuhn‖L. (75)

Using the properties of norms, we have

‖Duhn‖L ≤ ‖uhn‖HD ≤ ‖uWhn‖HD + ‖u⊥Whn ‖HD .

Together with (74) and (75), this gives,

‖Duhn‖L ≤
1

αα
‖uWhn‖L +

1

β
‖PLhnDuhn‖L.

Since ‖uWhn‖L ≤ ‖uhn‖L + ‖u⊥Whn ‖L, we obtain again using (75)

‖Duhn‖L ≤
1

αα

(
‖uhn‖L +

1

β
‖PLhnDuhn‖L

)
+

1

β
‖PLhnDuhn‖L,

which gives (71).
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C Density result

This section is devoted to the proof of density used in the consistency step of the proof of Theorem 4.8.

Lemma C.1 (Density of HS in HG). Under Assumptions (8) and (11b), let us define HS := {ϕ ∈
HG,AGϕ ∈HD} where D and HD are defined by (9)-(10). Then HS is dense in HG.

Proof. Let ϕ ∈ HG be given. For a given integer n > 0, we define ϕn ∈ HG such that

1

n
〈AGϕn,Gψ〉L + 〈ϕn, ψ〉L = 〈ϕ,ψ〉L, ∀ψ ∈ HG. (76)

The existence and uniqueness of ϕn is a consequence of the Lax-Milgram theorem, since the coercivity
of the bilinear form 1

n 〈AG·,G·〉L + 〈·, ·〉L in HG is a consequence of Hypothesis (11b). Letting ψ = ϕn
and using (11b), we get

1

n
α‖Gϕn‖2L + ‖ϕn‖2L ≤ ‖ϕ‖L‖ϕn‖L. (77)

We therefore obtain that ‖ϕn‖2L ≤ ‖ϕ‖L‖ϕn‖L, yielding

‖ϕn‖L ≤ ‖ϕ‖L. (78)

Owing to the separability hypothesis (8a), equation (78) implies the existence of a subsequence of (ϕn)n>0,
again denoted (ϕn)n>0, which weakly converges in L to some function ϕ.
We deduce from (77)-(78) that

‖Gϕn‖L ≤
√
n
√
α
‖ϕ‖L. (79)

For a given ψ ∈ HG, we have, using (79), that

1

n
|〈AGϕn,Gψ〉L| ≤

α√
n
√
α
‖ϕ‖L‖Gψ‖L.

This provides

lim
n→∞

1

n
〈AGϕn,Gψ〉L = 0,

and enables us to let n→∞ in (76). We thus obtain 〈ϕ,ψ〉L = 〈ϕ,ψ〉L. The density of HG in L implies
that ϕ = ϕ. By uniqueness of the limit, we deduce the weak convergence of the whole sequence to ϕ.
Moreover, since (78) implies

‖ϕn − ϕ‖2L = ‖ϕn‖2L − 2〈ϕn, ϕ〉L + ‖ϕ‖2L ≤ 2(‖ϕ‖2L − 〈ϕn, ϕ〉L),

we get, by letting n→∞ in the preceding inequality, that

lim
n→∞

‖ϕn − ϕ‖2L = 0,

hence showing the convergence of ϕn to ϕ in L and not only its weak convergence.

From (76), we deduce by definition (10) that DAGϕn = n(ϕn−ϕ) ∈ HG ⊂ L, which proves that ϕn ∈ HS

and that DAGϕn ∈ HG. We can therefore let ψ = −DAGϕn in (76). We thus obtain by applying three
times (10) that

1

n
‖DAGϕn‖2L + 〈Gϕn,AGϕn〉L = 〈Gϕ,AGϕn〉L.

Hence we obtain that
〈Gϕn,AGϕn〉L ≤ 〈Gϕ,AGϕn〉L, (80)

leading, owing to (11b), to
α‖Gϕn‖2L ≤ α‖Gϕ‖L‖Gϕn‖L.
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This provides,

‖Gϕn‖L ≤
α

α
‖Gϕ‖L.

Applying again the separability hypothesis (8a), this implies the existence of a subsequence of (ϕn)n>0,
again denoted (ϕn)n>0, such that (Gϕn)n>0 weakly converges in L to some function G. Letting n→∞
in the relation

〈Gϕn,u〉L + 〈ϕn,Du〉L = 0, ∀u ∈HD,

we obtain
〈G,u〉L + 〈ϕ,Du〉L = 0, ∀u ∈HD,

which shows that G = Gϕ. Here again, the uniqueness of the limit implies the weak convergence of the
whole sequence. Since (11b) and (80) imply

α‖G(ϕn − ϕ)‖2L ≤ 〈AG(ϕn − ϕ),G(ϕn − ϕ)〉L
= 〈AGϕn,Gϕn〉L − 2〈AGϕn,Gϕ〉L + 〈AGϕ,Gϕ〉L

≤ 〈AGϕ,Gϕ〉L − 〈AGϕn,Gϕ〉L,

we get, by letting n→∞ in the preceding inequality, that

lim
n→∞

‖G(ϕn − ϕ)‖2L = 0.

We thus obtain the convergence of Gϕn to Gϕ in L and not only its weak convergence. This concludes
the proof of the density of HS in HG.
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