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Abstract—This article presents a novel approach that automates
part of the work of network security architects, enabling
them to design fine-grained secure network architectures. We
have developed a methodology that, starting from high-level
security requirements, called intents, and an initial unprotected
network architecture, computes the optimal security zones and
integrates security functions to protect both inter- and intra-
zone communications. We implemented this methodology as
a proof-of-concept framework, leveraging the flexibility and
expressivity of Answer Set Programming, a form of declarative
logic programming.

Index Terms—Network security architecture, Intent-based
security, Security automation, Micro-segmentation, Zero-trust
architecture, Answer set programming.

I. INTRODUCTION

Modern security strategies, such as defense-in-depth or zero-
trust architecture, commonly recommend network zoning, also
known as network segmentation. It enhances asset control
and minimizes the impact of a cybersecurity breach. For
instance, the last version of NIST SP800-160 [1] requires
the definition of enclaves, segments, micro-segments, or other
restricted types of resource sets based on criticality and
trustworthiness. Segmentation is one of the six domains of
the Cisco Secure Architecture for Everyone framework [2]
and, in general, zero-trust architecture aims to achieve dynamic
micro-segmentation [3].

As modern networks evolve increasingly in complexity, de-
signing network security architectures isf becoming a significant
challenge. According to Cisco [4], the estimated number of
connected devices in 2023 was 29.3 billion, with network
traffic growing exponentially yearly. This rapid evolution
makes it extremely difficult for human security architects to
manually oversee the entire landscape, especially when securing
critical systems. Protecting such networks requires precision
and comprehensive visibility into all network components, yet
manual approaches fall short of addressing these demands.
While the literature includes several works on network security
zoning, [5], [6], [7], [8], these primarily offer general guidelines
that often require manual adaptation by security architects.

This work was partially supported by ICO, Institut Cybersécurité Occitanie,
funded by Région Occitanie, France, and by the European research projects
H2020 LeADS (GA 956562), Horizon Europe DUCA (GA 101086308), ARN
TrustInClouds, and CNRS IRN EU-CHECK.

To address these challenges, we propose an approach
using intent-based modeling. Intents are high-level security
requirements from the human operator’s perspective, such as
“guarantee a high level of confidentiality between entity 𝑥 and
entity 𝑦”, which are then automatically translated into specific
security functions integrated into the network. While we adhere
to the original definition of intent as a goal, existing intent-based
languages [9], [10] work at lower levels and fail to capture the
abstraction required for effective network security management.
These languages are imperative and used to describe low-level
technological constraints (e.g., they are used to explicitly force
some security protocol or function). Therefore, we designed
our intent-based meta-model to bridge this gap.

Translating goal-oriented intents into actionable security
implementations is far from trivial since it requires intelligence
and expertise. Our approach provides an automated security
engineering framework capable of suggesting optimal network
zoning and security functions. We implemented our method-
ology in Answer Set Programming (ASP) [11], a form of
logic programming, to ensure that the generated solutions meet
all specified intents and are also explainable1. Our proof-of-
concept tool leverages Python2, clingo3 as the ASP grounder
and solver, offers an interactive Dash4 front-end, and supports
models written in cuddly Document Language (KDL)5. Most of
the rules (described in Section V) were written in ASP, while a
minority in Python for convenience. We based the writing of our
logic rules on best practices for critical systems recommended
by experienced security architects [12] and consulted with them
to obtain feedback and validate our results.

The contributions of our article are:
1) an approach for describing the security requirements of a

network as goal-oriented intents;
2) a methodology for automatically computing secure net-

work architectures able to suggest security zones and place
security functions;

3) a tool based on Answer Set Programming (ASP) that
implements the whole methodology.

1Several open-source tools exist to generate an explanation for a solution to
an ASP problem. For instance, viasp (https://github.com/potassco/viasp).

2https://www.python.org/
3https://potassco.org/
4https://dash.plotly.com/
5https://kdl.dev/



The remainder of the article is structured as follows. We
introduce a motivation example in Section II. Section III gives
an overview of our approach. In Section IV, we describe the
mathematical formalism of our meta-model, while Section V
details our methodology. Section VI discusses the related works,
and finally, we conclude with some future research directions
in Section VII.

II. MOTIVATING EXAMPLE

To clarify some key concepts, we will introduce a realistic,
simple, yet not trivial example that will be used throughout
this paper. Fig. 1 contains a graphical representation of our
example’s landscape. We define as landscape the network
(or networks) we want to configure and, potentially, their
neighboring networks, such as the Internet.

In this scenario, a company has two separate branches (𝐴
and 𝐵) in two distinct geographical locations. Every branch
has its network, and they communicate via the Internet. These
two networks have no security (yet), and our goal is to redesign
them both, injecting a proper level of security.

The two networks are almost identical, and both contain:
∙ some clients used by the local employees;
∙ a web server containing the company website;
∙ an app server used by the local employees to perform

some accounting operations;
∙ a DataBase (DB) server leveraged by the app server to

store the accounting data;
∙ a Dynamic Host Configuration Protocol (DHCP) and

Domain Name System (DNS) servers.
For performance reasons, the branch 𝐴 network also has

a load balancer that dispatches the external visitors’ web
traffic between the web servers located in the two branches.
In addition, the two DB servers communicate constantly to
synchronize their data. The landscape alone does not contain
enough information to generate a secured version of itself since
it is only a network topological description. In our approach, the
intents provide this additional security-related semantics. An
intent is a high-level descriptive policy declaring the security
requirements over a connection. Our approach is flexible enough
to accommodate a variety of security requirements, but in our
example, we are interested only in three:

∙ authorization, which specifies that two end-points can
(bidirectionally) exchange data;

∙ confidentiality, which restricts the access to the exchanged
data to only the two communication end-points;

∙ integrity, which ensures that the exchanged data is not
altered during its transmission.

In our scenario, we can split all the intents into three groups.
Website-related intents: These intents authorize the em-

ployees and the visitors to access the website (reachable via
the load balancer and the two web servers). They require low
confidentiality and integrity since the website is public and
does not contain critical data.

Infrastructure-related intents: These intents enable access
to the DHCP and DNS servers for all the nodes in their
respective networks. Access to these network functions is
essential to the correct functioning of the network, so we
want a higher level of integrity to avoid data corruption
or manipulation. On the other hand, they only require low
confidentiality since the exchanged data is not sensitive.

Accounting-related intents: These intents relate to the
company’s core accounting functions. They allow access to
the app server by the employees and the DB servers but also
authorize the synchronization operations between these two
DB servers. These intents require maximum confidentiality and
integrity since the transmitted information is critical to the
company.

Knowing all this information, albeit written more formally,
our approach can automatically reconfigure the two branch
networks by reorganizing the topology and strategically deploy-
ing the most appropriate security functions in the right place
while respecting the security requirements expressed by the
intents. The following sections will detail how our approach
can automatically produce a new secured network architecture.

III. OVERVIEW OF OUR APPROACH

The core concept we leverage in securing a network is the
notion of zone, which is a group of (security) functions with
equivalent security requirements (expressed by the intents).

Our approach exploits the zone paradigm, and Fig. 2 shows
its high-level workflow. The input of our logic-based engine is
a structure we call realm. An input realm combines an initial
unprotected landscape, describing a topology where we want to
inject security, and an intent Knowledge Base (KB), containing
the intents expressing the security requirements. Our engine
analyzes the unprotected landscape and the intent KB, and
it generates a new realm containing a protected landscape
satisfying all the security constraints expressed by the intents
in a (potentially new) intent KB. Note that the output intent KB
might differ from the input one; we will explain the reasons in
Section V. This process runs in multiple consecutive stages:

I) micro-segmentation: the network functions are grouped
into security zones;

II) intra-zone design: the internal architecture of each zone
is computed;

III) inter-zone design: the zones are topologically sorted from
the highest to the lowest critical and connected.

In Section IV, we will describe the meta-model containing all
the information the system needs to operate, while in Section V,
we will discuss in detail how the logic engine works and its
three stages.

IV. META-MODEL

This section describes the mathematical formalism of our
meta-model, which can express realms, landscapes, intents, and
all their sub-structures.

A realm 𝑅 represents both the input and output of our
system (see Fig. 2). A realm is a tuple 𝑅 = (𝐿,𝐾 ) containing
two elements: a landscape 𝐿, a model of the network (or
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networks) to analyze and protect, and an intent knowledge base
𝐾 , containing information about the intents.

A landscape 𝐿 =
(

{

𝐷𝑖
}

𝑖 ,
{

𝐶𝑗
}

𝑗

)

represents a generic
system of interconnected networks, such as graphically shown
in Fig. 1. A landscape not only contains the networks to be
secured but can also contain other networks, such as the Internet
or some subnet outside our control, such as some external
website visitors. It is a tuple containing a set of domains
{

𝐷𝑖
}

𝑖 and channels
{

𝐶𝑗
}

𝑗 .

A domain 𝐷 =
(

𝑑,
{

𝑍𝑖
}

𝑖 ,
{

𝐹𝑗
}

𝑗

)

represents a network
under the control of a single administrative entity (e.g., a
company, an institution, or a private individual). For instance,
in Fig. 1, there are three domains: branch 𝐴, branch 𝐵, and
world. Each domain is considered an independent entity from
the others. All domains have a type 𝑑 that can be internal 𝑑int ,
indicating that we have control over that network (e.g., the
branch 𝐴 and 𝐵 domains), or external 𝑑ext , indicating a domain
outside our jurisdiction (e.g., the world domain). In addition, it
contains a set of zones

{

𝑍𝑖
}

𝑖 and network functions
{

𝐹𝑗
}

𝑗 .
A security zone 𝑍 =

{

𝐹𝑖
}

𝑖 represents a subset of a domain
and is just a collection of network functions with equivalent
security requirements. In an unprotected landscape, there are
no security zones; they are added later by our engine.

A network function 𝐹 = ( 𝑓, 𝜆 ) represents a network node,
physical or virtual. A function is a pair of a type 𝑓 and a
unique identifier 𝜆. We have six types of functions:

∙ business functions 𝑓 bus, which represent a node with

predictable and well-defined behaviors, such as most of
the servers — they are the green circles in Fig. 1 (i.e.,
the load balancer, web, app, and DB servers);

∙ environment functions 𝑓 env model an entity that is either
uncontrollable or with undefined behaviors, such as clients
or the Internet itself — Fig. 1 depicts them as yellow
circles (i.e., the Internet, the visitors, and employees);

∙ infrastructure functions 𝑓 inf are similar to business
functions; that is, they too have well-defined behavior,
but in addition, these functions can be replicated and
split into smaller copies, such as a DNS server and other
common networking facilities — they are blue circles in
Fig. 1 (i.e., the DHCP and DNS servers);

∙ connector functions 𝑓 con represent a network node that
can redirect the traffic to multiple destinations such as
routers, switches, and hubs — they are the gray circles
in Fig. 1 (i.e., the connectors 𝐴 and 𝐵);

∙ split functions 𝑓 spl are automatically generated by our
system, and they do not appear in the input landscape
and represent the split version of an 𝑓 inf function (see
Section V);

∙ security functions 𝑓 sec, finally, are the security functions
themselves, and our logic-based approach deploys them
automatically in the right places. By writing the appro-
priate logic rules, our approach can support any security
function; in this paper, we are only interested in:
– Packet Filter (PF) functions 𝑓 pf such as iptables;
– Application Layer Filter (ALF) functions 𝑓 alf such as

ModSecurity for web servers;
– Virtual Private Network (VPN) terminator functions
𝑓 vpn such as strongSwan.

Besides domains, zones, and functions, a landscape also
contains a set of channels. A channel 𝐶 =

{

𝐹1, 𝐹2
}

represents
a bidirectional connection between two functions 𝐹1 and 𝐹2,
such as a cable. In Fig. 1, they are shown as solid gray lines.

An intent KB 𝐾 =
(

{

𝑃𝑖
}

𝑖 ,
{

𝐼𝑗
}

𝑗

)

contains all the
information needed to inject the desired security into a
landscape. It is a tuple of profiles

{

𝑃𝑖
}

𝑖 and intents
{

𝐼𝑗
}

𝑗 .
An intent profile 𝑃 =

{

𝑟𝑖
}

𝑖 is a tuple of security re-
quirements

(

𝑟𝑖
)

𝑖 and represents a way of organizing and
giving a more meaningful structure to the intents themselves.



For instance, in Section II, we grouped the intents into
three categories (website, infrastructure, and accounting-related
intents). Each category is a profile. A security requirement
𝑟 ∈ ℕ≥0 is simply an integer value where 0 means that we do
not care about that requirement, and the higher the value, the
more critical the requirement. Our approach can accommodate
any security requirement; however, we are only interested in
confidentiality 𝑟con and integrity 𝑟int in this context, so that
𝑃 =

(

𝑟con, 𝑟int
)

. Table I shows the profiles in our example.

NAME 𝑟con 𝑟int

website access 1 1
infrastructure access 1 2
accounting access 3 3

TABLE I
PROFILES OF OUR EXAMPLE.

Finally, an intent 𝐼 =
(

𝑃 ,
{

𝐹1, 𝐹2
} )

associates a profile 𝑃
to a pair of functions 𝐹1 and 𝐹2, acting as the endpoint of the
communication. The two network functions effectively specify
the authorization requirement of the communication while the
associated profile expresses all the other security requirements.
In our meta-model, we assume that all the intents specify a
bidirectional connection. The difference between a channel and
an intent is that channels are low-level transmission media
without requirements. On the other hand, intents have security
constraints and are about reachability so that an intent can use
multiple channels at a lower level. Table III in Appendix A
contains all the intents we defined in our example.

We will introduce the notation of recursive membership ⋆∈
to simplify some formulas. The notation 𝑥 ⋆∈𝑋 indicates that 𝑥
is either a direct member of 𝑋 or a member of its recursive
elements if 𝑋 is a set or tuple. Formally:

𝑥 ⋆∈𝑋 ⟹

{

𝑥 ∈ 𝑋 if 𝑥 is a direct member of 𝑋
∃𝑋𝑖 ∶ 𝑥 ⋆∈𝑋𝑖 if 𝑋 =

{

𝑋𝑖
}

𝑖 or 𝑋 =
(

𝑋𝑖
)

𝑖
.

For instance, 𝐹1
⋆∈𝐾 is true when 𝐹1 is an endpoint of an

intent 𝐼 =
(

𝑃 ,
{

𝐹1, 𝐹2
} )

and that, in turn, 𝐼 is contained in
an intent KB 𝐾 =

( {

𝑃𝑖
}

𝑖 ,
{

𝐼1,…
} )

.

V. OUR APPROACH

Our logic-based engine has three consecutive stages, which
we will explain in detail in the following paragraphs. For
brevity’s sake, we will omit some formula definitions when they
are trivial or well-known in the scientific literature. Fig. 3 shows
the protected sample landscape generated by our approach. We
will indicate with an empty circle accent an object related to
the input unprotected realm, such as

⚬

𝑅,
⚬

𝐿, and
⚬

𝐼 . On the other
hand, we will denote with a filled circle accent a newly created
structure related to the output protected realm that each stage
will incrementally build, such as

⦁
𝑅,

⦁
𝐿, and

⦁
𝐼 .

Stage I: micro-segmentation
This stage computes the security zones (see Section IV). Its

output will be a realm
⦁
𝑅 consisting of a landscape

⦁
𝐿 with the

functions grouped into zones. However,
⦁
𝐿 only contains the

channels inside the external domains; the subsequent stages
will deploy the channel involving the internal domains.

Preparation

First, the system computes the function (graph) reachability
on

⚬

𝐿. We denote
⚬

𝐹1⇿
⚬

𝐹2 to indicate that the functions
⚬

𝐹1
and

⚬

𝐹2 are mutually reachable, indicating that a sequence
of channels connecting them exists. Our approach computes
these relationships to maintain the function reachability in
the protected landscape

⦁
𝐿 to avoid breaking the unprotected

landscape functionalities.
In addition, this stage also computes the security require-

ments for every function
⚬

𝐹 . We will denote this with the symbol
req

(

⚬

𝐹
)

=
(

{ ⚬𝑟𝑖,𝑗
}

𝑗

)

𝑖
, that is the result of this function is a tu-

ple of integer sets. In our scenario, we are only interested in con-

fidentiality and integrity, so req
(

⚬

𝐹
)

=
(

{ ⚬𝑟con𝑖
}

𝑖 ,
{

⚬𝑟int𝑗

}

𝑗

)

.
The key idea for computing the function requirements is
propagating the profile requirements to the intent endpoints.
For instance, five intents involve the function web server 𝐴 (see
Table III), and these intents use all three profiles (see Table I).
By collecting all the profile requirements, we can deduce that
the web server 𝐴 requirements are ( { 1, 3 } , { 1, 2, 3 } ). We
can then perform a reduction operation on each integer set to
simplify them; this choice will impact the zone generation. We
defined three (user-selectable) approaches:

∙ the strict approach uses the identity function (i.e., is no
reduction at all): this method tends to generate smaller
security zones, favoring high security and penalizing the
network throughput;

∙ the range approach computes the minimum and maximum
value for each integer set: this strategy creates bigger
zones than the strict approach — for instance, in the case
of web server 𝐴, it will return ( { 1, 3 } , { 1, 3 } );

∙ the max approach calculates the maximum value for each
integer set: it generates even larger zones, decreasing the
security in favor of network speed — for the web server
𝐴, it will produce ( 3, 3 ).

Our approach can now create the security zones; the function
types dictate the method.

Connectors

Connectors will not become part of any zone since we
completely rewire the protected landscape’s topology.

Business and environment functions

Business and environment functions are grouped into newly
created zones using the following logic rules. Since these
functions are ‘moved’ into a zone,

⦁
𝐹 =

⚬

𝐹 holds. This stage
computes a series of inZone(

⚬

𝐹1,
⚬

𝐹2) atoms, indicating that
⚬

𝐹1
and

⚬

𝐹2 belong to the same zone. We want to generate the
most extensive zones possible since having two zones with
the same requirements in the same domain does not increase
the security but only decreases the network throughput. We
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can model this as an optimization problem with the following
objective function:

max
|

|

|

|

{

inZone
(

⚬

𝐹1,
⚬

𝐹2

)

∶
⚬

𝐹1,
⚬

𝐹2
⋆∈

⚬

𝑅
}

|

|

|

|

.

The following paragraphs introduce the constraints.
Internal domain constraint: All the functions in a zone

must belong to the same internal domain.

inZone
(

⚬

𝐹1,
⚬

𝐹2

)

∧
⚬

𝐹1,
⚬

𝐹2
⋆∈

⚬

𝐷 ∧ 𝑑int ∈
⚬

𝐷.

Reachability constraint: All the functions in a zone must
be reachable in the original unprotected landscape.

inZone
(

⚬

𝐹1,
⚬

𝐹2

)

∧
⚬

𝐹1⇿
⚬

𝐹2.

Type homogeneity constraint: All the functions in the same
zone must have the same type, which can be 𝑓 bus or 𝑓 env. This
strategy ensures that business and environment functions are
not mixed. We consider environment functions less trustworthy
since they are not predictable. In other words, this ensures that
clients and servers live in separate zones.

inZone
(

⚬

𝐹1,
⚬

𝐹2

)

∧
((

𝑓 bus ∈ 𝐹1 ∧ 𝑓 bus ∈ 𝐹2
)

∨
(

𝑓 env ∈ 𝐹1 ∧ 𝑓 env ∈ 𝐹2
))

.

Security homogeneity constraint
All the functions in a zone must have the same security

requirements.

inZone
(

⚬

𝐹1,
⚬

𝐹2

)

∧ req
(

⚬

𝐹1

)

= req
(

⚬

𝐹2

)

.

We can find the zones by gathering all the inZone atoms.
For instance, on our sample network with the strict approach,
the system groups the business and environment functions into
the zones listed in Table II.

ID FUNCTIONS 𝑟con 𝑟int

⦁
𝑍𝐴1

employees 𝐴 1, 3 1, 3
⦁
𝑍𝐴2

load balancer 𝐴 1 1
⦁
𝑍𝐴3

web server 𝐴 1, 3 1, 2, 3
⦁
𝑍𝐴4

app server 𝐴 and DB server 𝐴 1, 3 2, 3
⦁
𝑍𝐵1

employees 𝐵 1, 3 1, 3
⦁
𝑍𝐵2

web server 𝐵 1, 3 1, 2, 3
⦁
𝑍𝐵3

app server 𝐵 and DB server 𝐵 1, 3 2, 3

TABLE II
ZONES IN OUR EXAMPLE.

Infrastructure functions
Treating infrastructure functions like business and environ-

ment functions and moving them into a zone is risky. If they get
compromised, an attacker can indirectly taint all their connected
functions, potentially affecting the entire domain. To enhance
security, we clone and split these functions for each zone so
that if a split infrastructure function is compromised, only its
containing zone will be compromised.



Split infrastructure function generation rule: We will
create a new function

⦁
𝐹 of type 𝑓 spl every time the following

condition applies:

𝑓 inf ∈
⚬

𝐹1 ∧
(

𝑓 bus ∈
⚬

𝐹2 ∨ 𝑓 env ∈
⚬

𝐹2

)

∧
⚬

𝐹2 ∈
⦁
𝑍2∧

⚬

𝐹1,
⚬

𝐹2
⋆∈

⚬

𝐼 ⟹ 𝑓 spl ∈
⦁
𝐹 spl
( ⚬
𝐹1,

⚬
𝐹2

) ∧
⦁
𝐹 spl
( ⚬
𝐹1,

⚬
𝐹2

) ∈
⦁
𝑍2.

A split infrastructure function links an infrastructure function
(hence denoted as the source function) to a non-infrastructure
function (the target function) via an intent. Note that a split
infrastructure function is located in the zone of its target
function. For instance, in our example,

⦁
𝑍𝐴1

will contain three
DHCP servers: one for the web server, and the other two for the
app and DB servers. Once we find all the split infrastructure
functions, we can do a quick optimization pass and merge all
functions in the same zone and with the same source. For
instance, in

⦁
𝑍𝐴4

we will have two clones of DHCP server
𝐴: one for managing the app server 𝐴 and another one for
managing the DB server 𝐴. We can merge these two functions
since it will not impact the system’s security and simplify
its deployment. We can then delete the original infrastructure
version of an infrastructure node since they are no longer
needed. Since the new landscape

⦁
𝐿 will not contain any

infrastructure function (only split ones), we need to update all
the original intents by replacing the deleted endpoints with their
new split infrastructure counterparts (we omit the formulas for
brevity), thus producing a new intent KB

⦁
𝐾 .

Stage II: intra-zone design
In the second stage, our approach restructures each zone

independently by adding the security functions and the internal
channels.

Preparation

As a preparatory step, we compute req
( ⦁
𝑍
)

, denoting the

security requirements of a zone
⦁
𝑍. It can be formally defined

as: req
( ⦁
𝑍
)

= req
(

⚬

𝐹
)

where
⚬

𝐹 ∈
⦁
𝑍.

Security functions
The following paragraphs show the rules for placing the

security functions.
PF placement rule: PF functions are helpful and cheap, so

we put one in each zone with at least one non-null requirement.

min
(

req
( ⦁
𝑍
))

> 0 ⟹ 𝑓 pf ∈
⦁
𝐹 pf
𝑍 ∧

⦁
𝐹 pf
𝑍 ∈

⦁
𝑍.

ALF placement rule: We create an ALF function for
each business function to protect them against data exfiltration
towards other zones (i.e., when the confidentiality requirement
is positive), but also for corruption when the data arrives from
other zones (i.e., when the integrity requirement is positive).

𝑓 bus ∈
⚬

𝐹 ∧
⚬

𝐹 ∈
⦁
𝑍 ∧ ∃⚬𝑟con > 0 ∶ ⚬𝑟con ⋆∈ req

( ⦁
𝑍
)

∧

∃⚬𝑟int > 0 ∶ ⚬𝑟int ⋆∈ req
( ⦁
𝑍
)

⟹ 𝑓 alf ∈
⦁
𝐹 alf

⚬
𝐹

∧
⦁
𝐹 alf

⚬
𝐹

∈
⦁
𝑍.

VPN terminator placement rule: VPNs terminators create
a sort of distributed zone spanning multiple domains. We create
two VPN terminators between two zones if they have the same
security requirements and at least one intent connects them
with some positive integrity requirement.

⚬

𝐹1
⋆∈

⦁
𝑍1 ∧

⚬

𝐹2
⋆∈

⦁
𝑍2 ∧𝑍1 ≠ 𝑍2∧

⚬

𝐹1,
⚬

𝐹2
⋆∈

⚬

𝐼 ∧
⚬

𝑟int > 0 ∧
⚬

𝑟int ⋆∈
⚬

𝐼 ∧ req
( ⦁
𝑍1

)

= req
( ⦁
𝑍2

)

⟹

𝑓 vpn ∈
⦁
𝐹 vpn

⦁
𝑍1,

⦁
𝑍2

∧
⦁
𝐹 vpn

⦁
𝑍1,

⦁
𝑍2

∈
⦁
𝑍1 ∧

⦁
𝐹 vpn

⦁
𝑍2,

⦁
𝑍1

∧
⦁
𝐹 vpn

⦁
𝑍2,

⦁
𝑍1

∈
⦁
𝑍2

For instance, in our example, we can create two VPN
terminators to connect the zones

⦁
𝑍𝐴4

and
⦁
𝑍𝐵4

. These zones
have the same security requirements, and the two DB servers
will use this tunnel to communicate.

Connectivity

After the system places the security functions, the next
task is to insert some channels to allow communication. The
channel placement inside a zone is relatively unimportant from
a security point of view since all the functions inside a zone
trust each other. The following paragraphs describe how we
create the channels:

1) we create a channel between each ALF function and the
function they protect;

2) if there is more than one business or environment function,
we create a connector and link it with all the ALF functions
and all the non-ALF-protected functions;

3) if there is a PF function, we create a channel between it
and: a) the connector, if it exists; b) otherwise the only
ALF function, if it exists; c) otherwise the only business
or environment function;

4) if there is a VPN terminator function but no PF, we follow
the same strategy described in Item 3;

5) if there is both a PF function and a VPN terminator, create
a channel between them.

Fig. 3 depicts the final design of the zones.

Stage III: inter-zone design
The final stage consists of topologically sorting the zones

in increasing order of criticality and connecting them. More
formally, the objective of this stage is to construct a zone
forest (a set of zone trees) where the vertexes are the zones
and the edges are the channels connecting the zones. In this
context, we define a DeMilitarized Zone (DMZ) as a zone with
a channel spanning multiple domains. In a zone tree, the root
is always a DMZ. A domain might contain multiple trees since
our approach can suggest using multiple DMZs to increase
its security. Since we are dealing with graphs, we will use
the notations depth(𝑍) and parent(𝑍) to indicate respectively
the depth of a zone 𝑍 and its parent. As a rule of thumb,
each domain does not trust the others, so the closer a zone
is to another domain, the less protected it is. That means that
DMZs are the unsafest zones, while the tree leaves are the
most protected ones.



Preparation

Before creating the tree forests, the system computes the
domain adjacency of

⚬

𝐿. We indicate that
⚬

𝐷1 and
⚬

𝐷2 are
adjacent with the notation

⚬

𝐷1 ∼
⚬

𝐷2, that is, at least one channel
connects the two domains. The protected landscape must respect
the unprotected domain adjacencies. This behavior is essential
to avoid situations such as placing a channel directly connecting
the two branches and bypassing the Internet.

Zone precedences

Before effectively establishing an order of the zones, we
compute the allowed precedences. We will indicate with
⦁
𝑍1 ≻

⦁
𝑍2 the fact that

⦁
𝑍1 can be preceded by

⦁
𝑍2, that is

⦁
𝑍1

has higher security requirements than
⦁
𝑍2. That also means that

⦁
𝑍1 can have

⦁
𝑍2 as a parent. We can use the CANPRECEDE

function (see Algorithm 1) to check the precedences between
two zones.

Input: two zones
⦁
𝑍1 and

⦁
𝑍2

Output: a boolean value stating if
⦁
𝑍1 ≻

⦁
𝑍2

1
(

�̄�1,1,… , �̄�1,𝑛
)

← req(
⦁
𝑍1)

2
(

�̄�2,1,… , �̄�2,𝑛
)

← req(
⦁
𝑍2)

3 for 𝑖 ← 1 to 𝑛 do
4 𝑖𝑛 ← �̄�1,𝑖 ∩ �̄�2,𝑖
5 𝑜𝑢𝑡 ← �̄�2,𝑖 ∖ �̄�1,𝑖
6 if |𝑖𝑛| > 0 then 𝑙𝑖𝑛 ← min(𝑖𝑛) = min(�̄�1,𝑖)
7 else 𝑙𝑖𝑛 ← ⊤
8 if |𝑜𝑢𝑡| > 0 then 𝑙𝑜𝑢𝑡 ← max(𝑜𝑢𝑡) < min(�̄�1,𝑖)
9 else 𝑙𝑜𝑢𝑡 ← ⊤
10 if �̄�1,𝑖 ≠ �̄�2,𝑖 ∧ (𝑙𝑖𝑛 ∨ 𝑙𝑜𝑢𝑡) then return ⊥
11 end
12 return ⊤

Algorithm 1: The CANPRECEDE function.

In Algorithm 1, we denote the false and true atoms with
⊥ and ⊤. Intuitively, the CANPRECEDE function iterates over
all the requirement sets for the two zones and performs some
parallel comparisons (e.g., it compares the confidentiality and
integrity pairs of the two zones). For each integer set pair, it
checks if we are in one of the following cases:

∙ the two sets are identical;
∙ the two sets are disjoint, and one set is strictly lower than

the other one (e.g., { 1, 2 } and { 3, 4, 5 });
∙ the sets are not disjoint, and they overlap without gaps if

we treat them as sorted tuples — for instance, { 1, 2, 3 }
and { 2, 3, 4 } overlap without gaps, but { 1, 3 } and
{ 2, 3, 4 } do not perfect overlap (there is a spurious 2).

For instance,
⦁

𝑍𝐴4
≻

⦁
𝑍𝐴3

. The confidentiality requirements
of the zones are both { 1, 3 }, while the integrity requirements
are { 2, 3 } and { 1, 2, 3 }, which overlap without gaps. Note
also that the zones with the lowest number of precedences
are candidate DMZs since the lower the number of preceding
zones, the less stringent the security. We will indicate that a
zone

⦁
𝑍 is a candidate DMZ with candidateDMZ(

⦁
𝑍).

Zone distances
Given two zones

⦁
𝑍1 and

⦁
𝑍2 and their requirements

req
( ⦁
𝑍1

)

=
(

�̄�1,𝑖
)

𝑖 and req
( ⦁
𝑍2

)

=
(

�̄�2,𝑖
)

𝑖, we can compute
the zone distance as the value:

distance
( ⦁
𝑍1,

⦁
𝑍2

)

=
∑

𝑖

(

𝜔𝑖
|

|

|

∑

�̄�1,𝑖 −
∑

�̄�2,𝑖
|

|

|

)

.

Our formula is a Manhattan-weighted distance where the 𝜔𝑖
coefficients are the user-defined weights for the requirements.
The bigger the distance between two zones, the more different
their security requirements. In our scenario, for example, if we
assume to have a confidentiality weight of 1 and an integrity
weight of 2, we can compute the distance between

⦁
𝑍𝐴4

and
⦁

𝑍𝐴3
as 1 ⋅ |(1 + 3) − (1 + 3)| + 2 ⋅ |(2 + 3) − (1 + 2 + 3)| = 2.

Forest construction
We model the problem of topologically sorting the zones

and building the forests as a lexicographic multi-objective
optimization problem. In our approach, we aim to minimize
three functions. Their order can be customized, but we present
them here in the default order:

lexmin−𝑓bus
( ⦁
𝐿
)

, 𝑓dis
( ⦁
𝐿
)

, 𝑓env
( ⦁
𝐿
)

.

Maximize business zone depth: We want to maximize the
tree depth of the zones with some business functions. This
behavior ensures that the business functions are well protected
since the deeper a zone in a tree, the safer it is.

𝑓bus
( ⦁
𝐿
)

= max
{

depth
( ⦁
𝑍
)

∶

∃
⚬

𝐹 ∈
⦁
𝑍 ∧ 𝑓 bus ∈

⚬

𝐹 ∧
⦁
𝑍 ⋆∈

⦁
𝐿
}

.

Minimize adjacent zone distances: We want adjacent zones
to have similar requirements to avoid too many security jumps.

𝑓dis
( ⦁
𝐿
)

= min
{

distance
( ⦁
𝑍1,

⦁
𝑍2

)

∶

∃
⦁
𝐹1 ∈

⦁
𝑍1 ∧ ∃

⦁
𝐹2 ∈

⦁
𝑍2 ∧

⦁
𝐹1,

⦁
𝐹2 ∈

⦁
𝐶 ∧

⦁
𝐶 ⋆∈

⦁
𝐿
}

.

Minimize environment zones depth: We place the zones
with some environment functions closer to the tree roots.
Environment functions are nonpredictable, hence untrustworthy,
so we want them closer to the DMZs.

𝑓env
( ⦁
𝐿
)

= min
{

depth
( ⦁
𝑍
)

∶

∃
⚬

𝐹 ∈
⦁
𝑍 ∧ 𝑓 env ∈

⚬

𝐹 ∧
⦁
𝑍 ⋆∈

⦁
𝐿
}

.

To simplify some formulas, we will use the function
endpoint(𝑍) or endpoint(𝐷) to indicate a suitable function
as the endpoint of a new channel. For external domains, the
suitable endpoints are the endpoints used by the inter-domain
channels. In the case of zones, this function will return in order
the VPN terminator, PF function, connector, ALF function, or
the sole function, depending if one of these functions exists.

The following paragraphs describe the constraints.
DMZs selection constraint: This constraint ensures that

DMZs are selected from the candidate DMZs.
∀DMZ

( ⦁
𝑍
)

∶ candidateDMZ
( ⦁
𝑍
)

.



DMZs separation constraint: DMZs in the same domain
must not connected by a channel since they are the roots of
separate trees.

∄
⦁
𝐶 ∶

⦁
𝐹1,

⦁
𝐹2 ∈

⦁
𝐶 ∧

⦁
𝐹1 ∈

⦁
𝑍1 ∧

⦁
𝐹2 ∈

⦁
𝑍2 ∧

⦁
𝑍1 ≠

⦁
𝑍2∧

⦁
𝑍1,

⦁
𝑍2

⋆∈
⦁
𝐷 ∧ DMZ

( ⦁
𝑍1

)

∧ DMZ
( ⦁
𝑍2

)

.

DMZ existence constraint: If there is a channel between
two domains and at least one is internal, this channel must
have an endpoint in a DMZs.

⦁
𝐹1,

⦁
𝐹2 ∈

⦁
𝐶 ∧

⦁
𝐹1 ∈

⦁
𝑍1 ∧

⦁
𝑍1

⋆∈
⦁
𝐷1 ∧

⦁
𝐹2

⋆∈
⦁
𝐷2 ∧

⦁
𝐷1 ≠

⦁
𝐷2∧

DMZ
( ⦁
𝑍1

)

.

Intra-domain channel constraint: A non-DMZ can only
have channels inside its domain.

⦁
𝐹1,

⦁
𝐹2 ∈

⦁
𝐶 ∧

⦁
𝐹1 ∈

⦁
𝑍1 ∧

⦁
𝐹2 ∈

⦁
𝑍2 ∧

⦁
𝑍1 ≠

⦁
𝑍2∧

⦁
𝑍1,

⦁
𝑍2

⋆∈
⦁
𝐷 ∧ ¬DMZ

( ⦁
𝑍1

)

∧ ¬DMZ
( ⦁
𝑍2

)

.

Authorization requirement constraint: The endpoints of
an intent must be reachable.

⦁
𝐹1,

⦁
𝐹2

⋆∈
⦁
𝐼 ∧

⦁
𝐹1⇿

⦁
𝐹2.

Endpoint constraint: New channels are created only
between unauthorized endpoints.

⦁
𝐹1,

⦁
𝐹2 ∈

⦁
𝐶 ∧

⦁
𝐹1 ∈

⦁
𝑍1 ∧

⦁
𝐹1 = endpoint

( ⦁
𝑍1

)

∧
⦁
𝐹2 ∈

⦁
𝑍2 ∧

⦁
𝐹2 = endpoint

( ⦁
𝑍2

)

.

Domain adjacency constraint: The unprotected land-
scape’s domain adjacency must be preserved.

⚬

𝐷1 ∼
⚬

𝐷2 ∧
⦁
𝐷1 ∼

⦁
𝐷2

Zone precedence constraint: A security zone can only be
preceded by a lower security zone in its tree.

⦁
𝐹1,

⦁
𝐹2 ∈

⦁
𝐶 ∧

⦁
𝐹1 ∈

⦁
𝑍1 ∧

⦁
𝐹2 ∈

⦁
𝑍2 ∧

⦁
𝑍1 ≠

⦁
𝑍2 ∧

⦁
𝑍1 ≻

⦁
𝑍2.

Forest constraint: The zone graph must be a forest; all
the zones must have at most one parent.

∄ parent(
⦁
𝑍) ∨ ∃! parent(

⦁
𝑍).

VI. RELATED WORKS

Several researchers [13], [14] emphasized the potential
of intent in driving security automation. Nevertheless, a
recent survey [15] concluded that “most of the automated
methodologies for configuring network security services focus
on a single function type, with packet filtering firewall being
the most dominant one”.

Governmental agencies and industrial forums have published
guidelines for building secure networks. The Canadian Centre
for Cyber Security [5] has developed a network security zone
reference model, which proposes seven generic zone categories
(public zone, public access zone, operations zone, restricted
zone, highly restricted zone, restricted extranet zone and man-
agement zone) which are interconnected through dedicated inter-
face points. The guidelines include a generic model and specify

the requirements for zones. The British Columbia model [6]
proposes also 7 zones and allows communication inside the
zones and only between adjacent zones. Secure Arc [7] defines
8 zones and introduces a cross-zone segmentation concept
called "silos". Communication is only allowed between adjacent
zones and within the same silo or between adjacent silos
within the same zone to restrict inter-zone interaction. Finally,
ISA/IEC 62443 [8] specifies requirements for secure industrial
automation and control systems. It introduces the concept
of zone and conduit, a logical grouping of communication
channels between zones sharing common security requirements.
These guidelines provide general zoning strategies but require
manual customization prone to human error.

The academic community has published few works on
network security segmentation. Gontarczyk et al. [16] proposed
a standard blue-print that includes three classes of security
zone (no physical measures, limited physical measures, and
strong physical measures). It also provides a classifier to guide
the deployment of systems/applications. However, these are
high-level guidelines that must be manually customized by
security architects. Li et al. [17] have presented an algorithm
for micro-segmentation in cloud data centres based on VLAN
and VxLAN mapping. Kwon et al. [18] focused on inter-zone
communication and described a unified security gateway called
Zone Translation Point. This research has been extended by
Furrer et al. [19] to adapt to industrial networks and comply
with ISA/IEC 62443 [8]. Some researchers also proposed a
bottom-up approach [20] or risk analysis on existing network
security zone models [21], [22]. The closest work to ours is
by Laborde et al. [11], where the authors express integrity
as integers on nodes to generate high-level network security
architectures. Our methodology instead, also considers confiden-
tiality and implements a more comprehensive modeling based
on industrial best practices and intents for better flexibility.

VII. CONCLUSIONS

We presented a logic-based approach capable of automati-
cally secure a network starting from a set of intents, high-level
security requirements without technological constraints. Our
approach implements various logic rules based on a set of
best practices used by real-world security architects. We imple-
mented a proof-of-concept in Python and clingo to leverage
the flexibility and expressiveness of ASP, a declarative logic
programming methodology, particularly efficient in solving
complex search and combinatorial problems.

Our future work will involve integrating our tool with a
Software-Defined Networking (SDN) infrastructure, which
will allow us to suggest a secure architecture, deploy it, and
dynamically adjust security policies in real-time. We also want
to automatically configure the security functions appropriately
and, to achieve this, we are exploring the use of the OASIS
OpenC2 standard [23].
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APPENDIX A
INTENTS

Table III lists all the intents used in our example scenario.

ENDPOINT 1 ENDPOINT 2 PROFILE

visitors load balancer 𝐴 website access
employees 𝐴 web server 𝐴 website access
employees 𝐵 web server 𝐵 website access
load balancer 𝐴 web server 𝐴 website access
load balancer 𝐴 web server 𝐵 website access

web server 𝐴 DHCP server 𝐴 infrastructure access
web server 𝐴 DNS server 𝐴 infrastructure access
app server 𝐴 DHCP server 𝐴 infrastructure access
app server 𝐴 DNS server 𝐴 infrastructure access
DB server 𝐴 DHCP server 𝐴 infrastructure access
DB server 𝐴 DNS server 𝐴 infrastructure access
web server 𝐵 DHCP server 𝐵 infrastructure access
web server 𝐵 DNS server 𝐵 infrastructure access
app server 𝐵 DHCP server 𝐵 infrastructure access
app server 𝐵 DNS server 𝐵 infrastructure access
DB server 𝐵 DHCP server 𝐵 infrastructure access
DB server 𝐵 DNS server 𝐵 infrastructure access

employees 𝐴 app server 𝐴 accounting access
employees 𝐵 app server 𝐵 accounting access
web server 𝐴 DB server 𝐴 accounting access
web server 𝐵 DB server 𝐵 accounting access
app server 𝐴 DB server 𝐴 accounting access
app server 𝐵 DB server 𝐵 accounting access
DB server 𝐴 DB server 𝐵 accounting access

TABLE III
INTENTS IN OUR EXAMPLE.


