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ABSTRACT

Synchronization is fundamental for information processing in oscillatory brain networks and is strongly affected by time delays via signal
propagation along long fibers. Their effect, however, is less evident in spiking neural networks given the discrete nature of spikes. To bridge
the gap between these different modeling approaches, we study the synchronization conditions, dynamics underlying synchronization, and
the role of the delay of a two-dimensional network model composed of adaptive exponential integrate-and-fire neurons. Through parameter
exploration of neuronal and network properties, we map the synchronization behavior as a function of unidirectional long-range connection
and the microscopic network properties and demonstrate that the principal network behaviors comprise standing or traveling waves of
activity and depend on noise strength, E/I balance, and voltage adaptation, which are modulated by the delay of the long-range connection.
Our results show the interplay of micro- (single neuron properties), meso- (connectivity and composition of the neuronal network), and
macroscopic (long-range connectivity) parameters for the emergent spatiotemporal activity of the brain.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0158186

The research highlights the significant impact of short-range and
long-range connections on synchronization within spiking neu-
ral networks. By employing computational models, the study
reveals that the delay along these connections plays a crucial role
in modulating synchronization. This finding provides valuable
insights on how structured activity emerges at different scales of
brain organization. Furthermore, this provides an insight into
the dynamics of synchronization in spiking neuronal networks
and its dependence on various network properties, such as noise
strength, balance between excitatory and inhibitory neurons, and
voltage adaptation. Understanding these factors is essential for
deciphering the complex spatiotemporal activity of the brain and
understanding its dynamics, bridging the gap between different
modeling approaches, and offering valuable insights about the
behavior of spiking neural networks.

I. INTRODUCTION

Brain activity is characterized by rich spatiotemporal dynam-
ics across scales. Among these, synchronization1 between rhythms

of neuronal populations2 has been shown to be relevant for
brain function3 and dysfunction.4 Different spatial patterns of
synchronization have been hallmarked both during tasks5 and
rest6,7 and through various neuroimaging modalities such as func-
tional Magnetic Resonance Imaging (fMRI), Magneto-Electro-
Encephalography (MEG/EEG), and Electrocorticography (ECoG).
Similarly, neurons are known to synchronize locally through short-
range connections, as seen in Local Field Potentials (LFPs), which
also bear relevance for the brain function.8 Hence, even if it is estab-
lished that the macroscale rhythms emerge from the microscopic
spiking neuronal activity,9,10 the interplay between the two scales is
often poorly understood.

Generative computational models have been commonly
used11–14 to understand how the brain’s anatomical structure, as
defined by its connectome,15 impacts structured macroscopic pat-
terns of brain activity. Here, we explore how these emergent dynam-
ics depend not only on the weights of the connectome but also on
the time it takes to propagate through the fibers.16–18 Together, they
define a space–time structure that is determinant for the network
behavior, including resonance, synchronization, and emergence of
brain rhythms.19
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The space-invariant short-range cortical connections in the
brain are characterized by negligible delays.13 Alongside these are
heterogeneous links from the connectome, distinguished by their
time delays and weights.20 To investigate the interplay between these
two types of connections, this study simplifies the scenario by focus-
ing on the impact of a single long-range link. Through systematic
alteration of its length, and consequently its delay by keeping a con-
stant transmission velocity, the study aims to elucidate the effects of
these long-range connections on neural interactions.

The effects of network heterogeneity, including that of time
delays, were studied on the macroscopic level,21–23 as well as
for the combined macro- and mesoscopic representations24–28

using a neural field approach, including both global and local
connectivities.13,29,30 However, neural fields in those cases were
either modeled by mean-field representations of the neuronal
masses or by phenomenological neuronal models that correspond
to reduced representations of Hodgkin–Huxley neurons. In the case
of integrate-and-fire neuron models, there is a lack of a precise and
self-consistent mathematical framework to link microscopic and
macroscopic dynamics within neural field theory.31 In particular,
the validation of macroscopic phenomena emerging from spiking
neuronal networks is missing.

In this study, we focus on the emergence of synchronization in
neural fields coupled through long-range connections (LRCs) with
finite transmission velocity.24,26,27,32–35 We use a methodology similar
to Jirsa and Stefanescu32 but with a more detailed and physiologi-
cally grounded model of neurons including adaptation phenomena.
This last aspect is critical since the previously used simpler neuron
model embodied strong slow attractive manifolds known to be the
key determinant in network synchronization. As a consequence, the
synchronization results reported in the literature may not always
translate into real-world brain networks.

To address this, we introduce a detailed description of the
spiking network followed by a description of a reduced analytical
model to capture the observed synchronization. In the results, we
first present the effects of the LRC parameters and noise intensity
on synchronization. Then, we explore the joint effects of neuron
parameters (e.g., adaptation) and LRC delay on the modulation of
synchronization. We then compare the spiking network and the
analytical model, and finally, we describe the parameters (E/I bal-
ance, network size) that tend to break synchronization, always in
relation to the LRC delay and the emergent dynamics.

II. MODELING THE NETWORK OF NEURONS

A. Network of spiking neurons

We consider a two-dimensional grid network consisting of 200
cells (10 × 20), each with a size of 3 × 3 mm2, and two boundaries
with periodic conditions [see Fig. 1(a)] topologically equivalent to
a torus. Neurons are distributed homogeneously on the grid with
the only constraint that each cell contains a fixed number of excita-
tory (160) and inhibitory (40) neurons [see Fig. 1(b)], following the
proportion observed in the cortex.36,37 All neurons were constructed
identically with an adaptive exponential integrate-and-fire model38

with alpha conductance synapses without delay. Only the post-
synaptic weights were different between excitatory and inhibitory

neurons. The following set of equations describes the network:

Cm ×
dVm

dt
= −gL(Vm − EL)+ gL ×1T × e

Vm−Vth
1T

−ge(t)(Vm − Eex)− gi(t)(Vm − Ein)

−w + Ie + N
(

0.0, σ 2
)

,

τw ×
dw

dt
= (a × (Vm − EL)− w,

ge(t) =
∑

t
(f)
j

wj × alpha
(

t − tj, τex

)

with wj > 0.0,

gi(t) =
∑

t
(f)
j

wj × alpha
(

t − tj, τin

)

with wj < 0.0,

alpha(t, τ) =
t

τ
× e1− t

τ × Heaviside(t),

where Vm is the membrane voltage, w the adaptation current, ge

the excitatory synaptic conductance, and gi the inhibitory synaptic

conductance of one neuron. t
(f)
j represents spike-time from pre-

synaptic neurons. When the membrane potential crosses a threshold
Vpeak, the membrane voltage is reset (Vreset), and the adaptive cur-
rent is increased by a value b (for more detail, see Table II D in the
supplementary material). Each neuron has two external inputs: Ie,
corresponding to a constant external current, and N, correspond-
ing to white noise drive. Ie is set to 0.0 pA for all neurons when
simulating a homogeneous population, but it follows a Gaussian dis-
tribution centered around zero when exploring the effect of hetero-
geneity of neurons. The refractory time is not an explicit parameter
in the equations but is included in the simulator. It is a period dur-
ing which the membrane potential of the neuron is clamped to its
resting value, preventing it from generating a new spike. The ini-
tial condition is chosen so that the network is in an asynchronous
irregular state when disconnected. The choice of the well-described
adaptive exponential integrate-and-fire (AdEx) model38–41 is moti-
vated by its capability of reproducing most neural firing patterns.39,42

Other models, such as conductance-based adaptive exponential
model,43 multi-timescale adaptive threshold model, and44 general-
ize integrate-and-fire neuron45 or Hodgkin–Huxley neurons,46 also
express this variety of dynamics, but they are harder to analyze in the
case of our study, either due to a large number of parameters or to
the lack of detailed characterization. On the contrary, models, such
as leaky integrate and fire47,48 or FitzHugh–Nagumo,49,50 are simpler
and have already been studied with a similar network topology32,51

and do not have the same richness in term of dynamical repertoire
as AdEx.

The neurons in the network are divided into excitatory (80%)
and inhibitory (20%) based on the sign of their post-synaptic
weights. Each neuron projects probabilistic short-range connec-
tions around it following a two-dimensional Gaussian distribution
Fig. 1(d):

p
(

dx, dy

)

= e−

(

dx − µx

)2
−

(

dy − µy

)2

2σ 2
,
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FIG. 1. Network topology. (a) The network topology is based on a two-dimen-
sional grid network consisting of 200 cells (10 × 20), each with a size of 3 × 3
mm2. The black arrows represent the ends of the long-range connections between
cells, with uni-directional connections from the center of the source cell to the
target cell. (b) Each cell contains 140 excitatory neurons (red) and 60 inhibitory
neurons (blue), randomly positioned. (c) An example distribution of post-synaptic
neurons. On the left are the local connections to one pre-synaptic neuron. On the
right, all the post-synaptic neurons connected to the source cell through the LRC.
Excitatory neurons are colored in red, and inhibitory neurons in blue. (d) is the pro-
jection of (c) on the torus surface. The gray scale is the two-dimensional Gaussian
probability of local connections with the position of the pre-synaptic neuron rep-
resented by the black star. The probability function on the target of the LRC is not
shown. (e) A sketch of the approximation of the full network synchronized activity
with two coupled phase oscillators.

where (dx,dy) is the distance along the x and y axes between two neu-
rons and mx and my are their position on the grid. Projections of the
excitatory neurons decay faster (σ = 0.8) than those of inhibitory
neurons (σ = 1.2)32 see Fig. 1(c)]. To achieve an asynchronous
irregular state52 in a noise-driven balanced network of neurons, the
weight of the excitatory synapses was set to 10.0 nS and the ratio
(excitatory/inhibitory) to 0.11 after parameter explorations.

The LRC is defined by a source cell and a target cell. In the
source cell, on top of the short-range connections, 40% of the

excitatory neurons project to the distant target following a two-
dimensional Gaussian probability density (σlong = 2.0) [see Figs. 1(c)
and 1(d)] centered in the target cell. The weight of the LRC is inde-
pendent of the local ones (by default: 15.0 nS), and their delay is
uniform between neurons and independent of the distance.

The synchronization of the network due to LRC is quantified
using the coefficient of variation of the firing rate (FR), as proposed
by Brunel.52 This metric is calculated by dividing the standard devi-
ation of the firing rate (number of spikes per time bin of 3 ms) by its
mean throughout 10 s,

CVFR =
σFR

µFR

.

A CVFR value higher than 1.0 between two neurons indicates that
they are synchronized and asynchronous otherwise. To reduce the
bias induced by initial conditions, an initial transient period of 12 s
is discarded in each simulation that is run only once for a specific
parameter set.

Another quantification of the synchronization is based on
the Kuramoto order-parameter.53 Kuramoto introduced a model
to describe and analyze the synchronization of coupled intrinsic
oscillators,53 each described by the following equation:

θ̇i = ωi +
K

N

N
∑

j=1

sin
(

θj − θi

)

, i = 1 . . .N,

for a system composed of N limit-cycle oscillators, with phases θi

and a coupling factor K between them.
This model of oscillators can be applied to neurons by consid-

ering that a phase reset occurs at every spike and that the phase
increases linearly between spikes.54 The instantaneous phase then
becomes proportional to the time elapsed between two spikes,

ψ(t) = 2πm + 2π
t − tm

tm+1 − tm

, ∀t ∈ [tm, tm+1],

where m is the spike index and tm the time when the mth spike
occurs. The synchronization of the population can then be quanti-
fied by the absolute value of the complex Kuramoto order-parameter
defined by the absolute value of the mean phase across neurons,

Reiψ =
1

N

N
∑

j=1

eiθj .

For the case of pairwise synchronization, a commonly used
metric is the Phase Locking Value (PLV),23,55 which is a statistical
measure for similarity between phases of two signals, and is defined
as

cPLVij ≡ PLVije
i1θij =

1

M

M
∑

m=1

ei1θij(m), (1)

where the phase difference1θij(m) = θi(m)− θj(m) is calculated at
times m = 1 . . .M. We used this metric to recover the synchroniza-
tion, PLV = |cPLV|, and the phase difference1θ = angle(cPLV) for
the analytical model with two coupled oscillators.

Chaos 35, 013161 (2025); doi: 10.1063/5.0158186 35, 013161-3

© Author(s) 2025

 14 February 2025 10:52:40

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

B. Mathematical model of the spiking network

Given the topology of the system under study, for the cases
when the network is synchronized, we propose to approximate this
spiking neural network by two oscillators (each representing one
half of the torus) coupled through one local bidirectional connec-
tion that takes into account the homogeneous local connectivity
in the network and one uni-directional link corresponding to the
LRC. Based on the Kuramoto model,53 we arrive with the follow-
ing coupled differential equations to describe the dynamics of each
oscillator:

θ̇1 = ω − Kh sin(θ1 − θ2), (2a)

θ̇2 = ω − Kh sin(θ2 − θ1)− K sin(θ2 − θ1(t − τ)). (2b)

The first equation represents the half of the torus which is the source
of the LRC. This oscillator with natural frequencyω is coupled to the
other oscillator only by the local homogeneous connections through
the torus surface with a homogeneous coupling weight Kh. The sec-
ond equation models the second half of the torus which corresponds
to the target of the LRC. It has the same natural frequency ω and
the same bi-directional coupling parameters Kh due to the homo-
geneity of the neurons and their connectivity on the torus. In this
equation, there is an additional coupling term corresponding to the
uni-directional LRC. This long-range coupling has a specific weight
K and depends on the phase of the first oscillator after a time delay τ .

To solve the equations for parameters ω, Kh, and K, we follow
the assumption that there is always some levels of synchronization
between the two populations of neurons and, therefore,

θ̇1 = θ̇2 = �, (3a)

θ1(t − τ) = θ1(t)− τ�. (3b)

By substituting the definitions of θ̇1 and θ̇2 in the previous
system, we find that when τ = 0 this leads to

ω = �τ=0 = �0. (4)

Next, for any τ , it holds that

ω + Kh sin(1θ) = �, (5a)

ω − Kh sin(1θ)− K sin(1θ +�τ) = �, (5b)

where 1θ is the phase difference between the two oscillators. This
yields

ω = �0, (6a)

Kh =
�− ω

sin(1θ)
, (6b)

K = −
2 ∗ (�− ω)

sin(1θ +�τ)
. (6c)

Here, ω was set by measuring the natural oscillation frequency of
the network in the absence of any LRC. We then selected some
data generated by the spiking network under the following parame-
ters: Qlong = 10 nS, Qe = 10 nS, Qi = 11.0 nS, τlong = [0.0, 200 ms],

FIG. 2. Parameter fitting of the oscillator model (a) and (b) show the values of
K and Kh obtained by injecting values of �, ω, and1θ measured in the spiking
network for different values of τ into Eqs. (6c) and (6b). The horizontal lines cor-
respond to the median values of K and Kh. (c) presents the values of�measured
in the spiking network for different τ (�measured ) and the recalculated values from
Eqs. (3a) (�eq1a

) and (3b) (�eq1b
) using the selected median K and Kh. (d) shows

relative errors between the theoretical values and the measures [from (3a) in blue
and from (3b) in orange].

a = 0.0 nS, I = 0.0 nS. For each value of τ ∈ [0 − 200 ms], we
extracted 1θ and � from the data to calculate the values of Kh and
K (the values in Fig. 2) and selected the median values for the rest
of the analysis. We also recalculated the theoretical values of� from
Eqs. (5a) and (5b) for the recovered Kh and K and compared them
with the measured values in Fig. 2.

In addition, we used this theoretical model to check for co-
existence of multiple stable solutions for �, as it is common in
delay-coupled phase oscillators.23,56–58 To do so, we solved geo-
metrically the system of transcendental Eqs. (5a) and (5b) for the
recovered Kh and K, where the frequency of synchronization in our
system is confined in the interval [ω − kh,ω + kh], as a consequence
of (5a). Next, we calculated the linear stability of the observed solu-
tions by determining the largest real eigenvalue of the Jacobian of
the system.

III. RESULTS

We seek to recover and understand the conditions in which the
network of spiking neurons is synchronized and to characterize its
spatiotemporal dynamics, particularly with respect to the long-range
connection. To this end, we conducted analyses of parameter spaces
of synchronization as a function of global and local network param-
eters, i.e., weight and delay of unidirectional LRC for the former, and
excitatory weights and variance of white noise for the latter.

Overall, time series analysis reveals that different levels of
synchronization are associated with specific spatiotemporal pat-
terns of activity. When the network is asynchronous [Fig. 3(a),
corresponding to mark A in Fig. 4(b)], the activity corresponds to
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FIG. 3. Three characteristic network dynamics. A network of 40 000 neurons was
simulated with white noise, synaptic weights of 10 nS, and different delays of the
uni-directional long-range connections [(a) 40 ms, (b) 80 ms, and (c) 100ms]. The
index is ordered by cells of the grid, with excitatory neurons followed by inhibitory
neurons. Each simulation is represented by spike trains and an associated his-
togram (bin: 1 ms) between 15.0 and 15.5 s. The blue and green arrows indicate
the eight regular snapshots’ start and end. On the histogram and eight snapshots,
blue and purple represent the source and the target population. (a) Traveling
wave; (b) regular bump from the target population with some other bumps; and
(c) multiple bumps at the time.

a traveling wave along the longest axis of the grid. As expected, the
histogram is flat, and the spike trains form a diagonal of spikes due to
the ordering of the neurons. In contrast, when the network is highly
synchronized [Fig. 3(c) corresponding to mark C in Fig. 4(b)], its

FIG. 4. Effects of excitation (short and long range) and noise on synchronization.
Network synchronization is measured by CVFR (window of 3 ms, no overlap) over
10 s of activity. (a) and (b) show the parameter space analysis of CVFR for different
delays and weights of the LRC, without and with noise (1800 pA), respectively.
The white area in (a) corresponds to silent activity where no spikes occur. (c)
displays the CVFR for increasing noise intensity and excitatory synaptic weights
in the absence of LRC. The parameters chosen for the simulations are shown in
Fig. 3 as indicated by (a), (b), and (c).

activity alternates between bursts of activation and quiet periods. In
this case, activity bursts are very short (less than 20 ms) and com-
posed of multiple bumps (locally synchronized firing of neurons)
mainly starting from the target cell, but also from other random
locations due to the noise. The eight snapshots indicate that when
two waves collide, they collapse. Between these two extremes, spa-
tiotemporal patterns present a gradient where synchronization is
linked to shorter activity bursts (on the scale of the whole network)
and a higher number of bumps from random locations [see Fig. 3(b)
corresponding to mark B in Fig. 4(b)].

A. Independent contributions of LRC and noise

When the noise is turned off, the network is generally highly
synchronized, as shown by the coefficient of variation being sys-
tematically higher than 1.0 [Fig. 4(a)]. Time series (Fig. S1 in the
supplementary material) are characterized by periodic bumps start-
ing from the target cell, forming a circular wave, and eventually
colliding with itself. We find an almost proportional relationship
between the level of synchronization and the delay. This relation is
preserved when the weight of the LRC, the number of connections,
and the position of the target cell are varied. However, the network
is silent when the LRC weight is less than 5 nS, when the delay is less
than 70 ms, or when the standard deviation of the Gaussian kernel is
lower than 0.5.

When the LRC are removed, the parameter space [Fig. 4(c)]
shows that the network is synchronized only when the noise is
strong enough (variance greater than 1500 pA) and if the exci-
tatory synaptic weight is sufficiently large (higher than 8 nS).
When these conditions are met, synchronization decreases as noise
increases with little effect of excitatory synaptic weights. A related
phenomenon to this is the appearance of synchronized bumps
displaying chaotic-like behavior59 (see Figs. S2A and S2B in the
supplementary material). When the excitatory synaptic weight is
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too low, below 8 nS, the system remains in an asynchronous regime
(Fig. S2 in the supplementary material).

B. Synergic effect of LRC and noise

Under the combination of noise and the presence of LRC, the
results show that the level of synchronization depends on the delay
along the LRC [Fig. 4(b)], with a regular pattern of higher synchro-
nization occurring at 0, 110, 220, or 330 ms. This indicates inherent
oscillations with a period of 110 ms. The observed impact of the
delay on synchronization is similar to the one found in populations
of oscillators.56,60 The same effect was also observed for continuous
spiking neurons.32

If the weight of the LRC or the number of connections is too
low, this effect is lost, and the network remains synchronized regard-
less of the delay. Like before, we found that the position of the
target cell does not have a substantial impact on synchronization.
In other words, if the contribution of the LRC is too small, then
the noise is the dominant cause for the emergence of synchronized
activity, Figs. 4(b) and 4(c). Otherwise, LRC modulates synchro-
nization through the ratio between the delay and mean firing rate,
determining the increased/decreased synchronization ranges.

When the synchronization is facilitated, e.g., point C in
Fig. 4(b), the wave is homotopic and propagates faster [Fig. 3(b)
compared to Fig. 3(c)], compared to the case when the synchroniza-
tion is decreased, e.g., point B in Fig. 4(b). In certain conditions,
point A in Fig. 4(b), regular traveling waves appear. In this case, the
source and the target cells are anti-phase (close to half of the period),
and the bump does not collapse but continues to travel across the
network.

C. Modulation by adaptation current

The adaptive current is a mechanism that affects the frequency
of the spikes. When adaptation parameters increase, new spikes are
harder to trigger so neurons receive less input from their neigh-
bors. This impacts the mean-firing rate, which serves as a “natural
frequency” of self-sustained network oscillations in the case of syn-
chronization, ultimately leading to a similar effect in synchronized
oscillators as reducing the time delays (Fig. 5).

The adaptation has three main parameters: the time constant
τw, the spike-triggered adaptation b, and the sub-threshold adap-
tation a. As seen in Fig. 5, synchronization can be found for all
ranges of these parameters. The periodic effect of the LRC delay on
synchronization found previously is preserved when adaptation is
varied but tends to fade out as the adaptation increases. The spike-
triggered adaptation and the time constant are associated with a
gradient of CVFR, not found with subthreshold adaptation. Low val-
ues of τw and b induce an increase of the mean firing rate. a also
impacts firing rate but to a lesser degree (details in Fig. S3 in the
supplementary material).

D. Effect of excitability of the voltage membrane

We applied heterogeneous external currents, Ie, distributed
across neurons, to create heterogeneity of excitability within the
population (see Sec. II). The voltage membrane excitability has
opposite effects on adaptation as it facilitates the generation of

FIG. 5. Effects of different properties of current adaptation and LRC delay on net-
work synchronization. Network synchronization is quantified by CVFR (a window
of 3 ms, no overlap) over 10 s of activity. The parameter spaces presented show
the relationship between the LRC delay and the properties of current adaptation
of the neurons, including sub-threshold adaptation (a), spike-triggered adaptation
(b), and adaptation time current (c).

spikes. Therefore, as seen in Fig. 6(a), increasing heterogeneity tends
to reduce the CVFR and the periodic effect of the delay also fades out
for low values, mirroring the effect of adaptation. Although not pre-
sented here, if heterogeneity is too extreme, it affects the balance of
the network and pushes it into an asynchronous irregular state. The
relationship between voltage reset and firing rate can be found in
Fig. S7 in the supplementary material.

Synchronization is mainly present for a voltage reset between
−63 and −45 mV [see Fig. 6(b)], otherwise the network is mostly
asynchronous. In the bottom part of the panel, there is almost no
activity in the network (close to zero mean firing rate and CV,
Figs. S11E and S11F in the supplementary material) except for some
high-frequency bursts for specific values of the LRC delay, yield-
ing narrow stripes of synchronized activity. This separation between
synchronous and asynchronous regimes may be explained by a
strong non-linear relationship between the mean firing rate and the
voltage reset (Fig. S4D in the supplementary material).

FIG. 6. Effects of different membrane voltage properties LRC delay on network
synchronization. Network synchronization is quantified by CVFR (a window of
3 ms, no overlap) over 10 s of activity. The parameter spaces presented show
the relationship between the LRC delay and the voltage membrane properties of
neurons, including heterogeneity (a), voltage reset (b), and refractory time (c).
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When the refractory time is varied [Fig. 6(c)], the parame-
ter space is separable in two subspaces: under and over 1.7 ms,
approximately. For low refractory times, more than 95% of the neu-
rons have irregular burst activities (Fig. S7 in the supplementary
material). In this case, reducing refractory time increases the vari-
ation of the CVFR proportionally to the delay. However, large values
of CVFR (above 3) capture the presence of large waves (see Fig. S5A
in the supplementary material). When the refractory period exceeds
1.7 ms, neurons regularly spike with few bursts with little to no effect
of the delay along the LRC. In this scenario, very low values of CV
(below 0.5) capture traveling wave activity (shown in Fig. S5C in the
supplementary material).

E. Comparison with the approximation of two phase

oscillators

In this section, we compare synchronization results obtained
in the spiking network and the analytical model derived for two
uni-directionally delay-coupled phase oscillators. We now char-
acterize the synchronization for the spiking neurons using the
Kuramoto order parameter (R) instead of the CVFR, while for
the pairwise coherence of the phase oscillators, we use the abso-
lute value of the phase locking value (PLV). Specifically, we select
[Figs. 7(a)–7(c)] the LRC weight, sub-threshold adaptation, and het-
erogeneity between neurons for a range of the LRC delay as the
parameters to be compared with K, ω, Kh, and τ of the analytical
model [Figs. 7(d)–7(f)]. We find that the model of phase oscillators
consistently reproduces the activity of the spiking neuronal network.
The weight of the LRC has the same effect on synchronization in the
network as K (long-range coupling) between the oscillators, despite
the changes in the frequency of synchronization. The pattern of
synchronization found when varying the sub-threshold adaptation
parameter is also retrieved when decreasing the natural frequency
(ω) of the oscillators. Lastly, decreasing the heterogeneity of the neu-
rons in the network tends to facilitate synchronization by increasing
the probability of simultaneously having a greater number of neu-
rons close to the firing threshold. Hence, this has the same effect
as increasing the local coupling Kh that also brings neurons closer
to synchrony and we find a similar pattern of synchronization for
different values of τ .

Additionally, solving geometrically the system of transcenden-
tal Eqs. (5a) and (5b) for the recovered values of Kh and K, allowed
us to calculate the linear stability of the observed solutions. Even
though we observed a small range in the values of τ where two sta-
ble fixed points coexist (see Fig. S6A and S6B in the supplementary
material), we always observed only one of them in the numerical
simulations of the phase oscillators. It is, thus, likely that this co-
existence is a numerical artifact of the method for geometrically
solving the transcendental equations since the range of co-existence
is within the margins of the numerical error for the solver. How-
ever, another possibility is that the other solution was not observed
because it is less stable than the one that was observed (see Fig. S6C
in the supplementary material).

F. Network effects: Balanced network

As seen in previous studies,61 synchronizations occurs in a net-
work of spiking neurons for a specific balance between excitation

FIG. 7. Kuramoto synchronization of the spiking network and the oscillator model.
(a), (b), and (c) are the results from the spiking networks, measured by the
Kuramoto order parameter, varying the LRC weight, sub-threshold adaptation,
and heterogeneity of neurons for different values of the LRC delay. In (a), the red
line points to the range of data used for solving the analytical model. (d), (e), and
(f) present synchronization results between the two oscillators of the analytical
model varying K, Kh, ω, and τ .

and inhibition that allows for wave propagation. Other factors, such
as the number of neurons and the synaptic weights also affect net-
work synchronization.32 Plots in Fig. 8 show the effect of the relative
strength between excitatory and inhibitory synaptic weights on syn-
chronization for different noise intensities (0, 1800, and 2600 pA).
Without noise, only the LRC delay has a significant effect on syn-
chronization, similarly to the previous results of Fig. 4 with the same
characteristic proportional relationship. The main difference is that
for a low E/I ratio (approximately under 0.06) asynchronous activity
is seen [but no activity at all for low k in the plot (a)]. This regime
is also independent of noise intensity and simulations always have a
firing rate over 50 Hz.

When noise is introduced, there appears a specific range of E/I
balance that generates synchronization and the parameter space is
divided into two regimes: one asynchronous regime, either domi-
nated by excitation (top) or by inhibition (bottom), and a synchro-
nized “balanced” regime in the middle.62,63 The increase in noise
intensity narrows this range of synchronization by pushing the
upper limit down to a lower E/I balance.

G. Network effects: Network size

To explore the effect of the number of neurons on synchroniza-
tion, we varied the percentage of active neurons in the network. As
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FIG. 8. Network synchronization analysis of ratio excitatory/inhibitory synaptic
weight in relation to the LRC delay for different values of noise. Network synchro-
nization is quantified by CVFR (window of 3 ms, no overlap) over 10 s of activity.
The three panels correspond to different values of noise: 0.0 pA in (a); 1800.0 pA
in (b); and 2600.0 pA in (c).

seen from left to right in Fig. 9, the sparsening of neurons is asso-
ciated with an increase in the lower bound of excitatory synaptic
weights needed to reach synchronization. However, when the num-
ber of neurons is too low [plot (d)] increasing excitation can no
longer compensate for the loss of activity. This balance between the
number of neurons and excitatory synaptic weights is also reflected
in the firing rate as the increase of synaptic weights can compen-
sate for the reduction in the number of neurons to keep it constant64

(Fig. S8 in the supplementary material).
In addition, we explored different grid sizes without changing

the density of the neurons and found invariant results except for very
small grids (less than five cells) (see Fig. S14 in the supplementary
material).

FIG. 9. Effects of synaptic weights and LRC delay of network synchronization for
different sizes of the network. Network synchronization is quantified by CVFR (a
window of 3 ms, no overlap) over 10 s of activity. The parameter spaces presented
show the relationship between the delay of the long-range connection and the
synaptic weight for different percentages of active neurons [(a) 100%, (b) 75%,
(c) 50%, and (d) 25%].

H. Topology effects: Bi-directional long-range

connections

In the previously shown results with unidirectional LRC [see
Figs. S10A and 4(b)] , varying the weights had very little or no
effect on the synchronization for any fixed delay. However, when the
LRC becomes bidirectional, synchronization is lost for LRC weights
higher than 4 nS (Fig. S10B in the supplementary material).

In the absence of synchronization, activity resembles that of
Fig. 3(a) with an unstable traveling wave across the network. When
tuned near synchronization, we again find bumps of activity, but
this time originating from both sides of the LRC, Figs. S12B and
S12C in the supplementary material. If the weight of the LRC
is increased above 4 nS (from point C to D in Fig. S10C in the
supplementary material), bumps of activation appear with origins
alternating between both ends of the LRC, with roughly one-third of
them never propagating through the network. The principal cause
of the disappearance of the periodic dependence on the delay in
the case of bidirectional LRC is that regardless of the noise level,
the network is not synchronized. Still, a traveling wave occurs (see
Fig. S9A in the supplementary material), while the same condition
for a unidirectional LRC would have caused synchronization instead
(see Fig. S9B in the supplementary material).

IV. DISCUSSION

The present study demonstrates the conditions necessary for
synchronization in a two-dimensional surface comprised of adap-
tive exponential integrate-and-fire neurons,38 incorporating long-
range connections (LRC) with transmission delays. In particular, we
have identified how the global synchronization is affected by the
delay along the LRC. This relationship typically follows a regular
pattern, contingent upon other parameters that we have exam-
ined. These results align with earlier works, confirming this phe-
nomenon in a neural field derived from spiking neural networks,32

as well as with broader literature illustrating Arnold’s tongues for
synchronization.65 This relationship is contingent upon the ratio
between natural frequencies and time delays.22,56 Based on the latter,
we also introduced a reduced analytical model. Besides its simplicity,
it omits all the higher-order terms in the Fourier series of the phase-
interaction function, and it still qualitatively captures and describes
the observed synchronization phenomena, thus strengthening the
validity of the numerically observed results.

We identified four key conditions that influence synchroniza-
tion modulation by the LRC in the network. First, the network with
LRC naturally tends to synchronize at a frequency that is depen-
dent on the delay along the LRC. Adding an external input (here
in the form of random noise) is also crucial for achieving syn-
chronization and revealing a more intricate relationship between
synchronization and delay. Second, the LRC must be sufficiently
strong (measured by the weight and width of the kernel) to affect the
network. However, synchronization no longer occurs if the LRC are
bidirectional and their influence is too strong. The third condition
is that the network must maintain a balance between inhibition and
excitation61–63 for the LRC to modulate the synchronization effec-
tively. Finally, the number of neurons must be large enough34 or
sufficiently interconnected for this phenomenon to take place.
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Through investigating the parameters space, we have done
thorough parametrizations that correspond to various neuron sub-
types. We started with values corresponding to adapting neurons in
sub-threshold activities.42 It corresponds to type II neuron models
(as shown in Fig. S4C in the supplementary material) exhibiting res-
onator regimes39 and type I Phase Response Curve (PRC).41 When
modifying neuronal properties, we changed firing rate dynamics,
neuron type (I/II), voltage membrane regime, and PRC (as shown
in Figs. S4 and S17 in the supplementary material). For instance,
when the sub-threshold is shifted to low values, the adapting neuron
in sub-threshold activities becomes a type I neuron with integra-
tor regimes. Interestingly, we found that the type of neuron is not
a significant condition for the effect of the LRC on synchronization.
Moreover, when setting the spike-triggered adaptation to 0 pA, the
neuron model becomes equivalent to an exponential integrate-and-
fire neuron without adaptation. We observed that the results remain
consistent for this neuron type as well. This indicates that mean field
models derived from various neuron types would still conform to
our findings. Additionally, considering that for every delay value
along the LRC, there exists at least one set of neuron parameters (i.e.,
a neuron type) enabling network synchronization, it would be pos-
sible to deduce neuron properties from knowledge about the LRC,
under certain conditions about the spiking activity.

In terms of generative mechanisms, we identified that the
bumps are the main cause of synchronization captured by the coef-
ficient of variation of the firing rate CVFR, and that the bumps
correspond to a burst of activity where many neurons are collec-
tively triggered in a short period of time. These bursts are generated
periodically and their generative process resembles the one of action
potentials by following a sequence of voltage accumulation, thresh-
old crossing, spike triggering, and a refractory period. When the
noise drive is high enough to trigger a spike at the single neu-
ron level, the synaptic currents will accumulate locally through the
synaptic weights (mediated by the local E/I balance). If the local volt-
age becomes large enough, it generates circular waves that propagate
through the network. In the case of a homogeneous network, the
probability of these events forming anywhere on the grid is uniform,
potentially generating multiple waves from different locations at the
same time. The collapsing of waves is followed by a silent period due
to the refractory time ensuing collective firing of neurons. Indeed,
the local increase of adaptation current prevents neurons from gen-
erating new spikes. The adaptation current then decays until new
events occur. As a result, the frequency of bursts depends on a
complex interaction between the adaptive current, synaptic current,
voltage reset, refractory time, E/I balance, and noise.

Finally, the characteristics of both, neurons and the network,
influence how emergent phenomena like synchronization and waves
develop as spatiotemporal patterns in the population. This study
establishes connections between these emergent dynamics and the
properties of long-range fiber-like connections. Understanding and
describing this self-organization is crucial for understanding com-
plex systems like the brain. In particular, both the delay and the
weights of the fibers play crucial roles in network synchroniza-
tion, alongside neuronal properties. Specifically, variations in adap-
tive current and voltage reset can affect the synchronization of
certain neurons, impacting the emergent rhythm of the neuronal
population.66 Furthermore, wave propagation, as demonstrated in

this study, is crucial for synchronization as an emergent dynamic.
Our results corroborate previous findings by showing that local
modifications such as a change in the E/I balance or a loss of neu-
rons can disrupt higher-order phenomena (e.g., wave propagation
and synchronization) and, thus, could potentially be responsible for
altered brain activity observed in pathology.

One major limitation of our work lies in the choice of the syn-
chronization metrics. Here, synchronization is quantified using the
coefficient of variation of firing rate (CVFR), which is less precise
in the case of bursts (the cause of variation can be the high activi-
ties of a sub-population). Nevertheless, we were able to reproduce
some of the main results using the time-averaged Kuramoto order-
parameter,53 when we compared the analytical model to the network
activity. The time-averaged Kuramoto order-parameter has the par-
ticularity to be robust to the bursting effect, as shown by Borges
et al.54 Finally, for the analytical model, a better fit would have been
obtained by a more detailed model containing higher-order terms
in the Fourier series of the coupling function.67 Together with the
higher-order network interactions68 these play an important role
in brain activity,69,70 but the current parsimonious parametrization
strengthens the universality of the observed phenomena.

Among other limitations, we can note that each network
configuration was only tested once, thus bringing nuances to the
conclusions that can be drawn about multiple regimes potentially
coexisting for the same set of parameters. Indeed, some simu-
lations showed transitions between regimes (see Fig. S13 in the
supplementary material), making it difficult to determine if the sim-
ulation represents a complete stationary regime or only one regime
in a more complex landscape. However, simulations were run long
enough to reach a steady regime whenever it existed. Moreover, the
analysis and especially the simulations of the reduced model did
not give a strong indication for the coexistence of different solu-
tions, and hence we did not pursue a more thorough exploration
of dynamical regimes, since it would have been tedious and beyond
the focus of this study.

Lastly, the analysis was not fully exhaustive; synaptic param-
eters such as Gaussian connectivity profiles,71 time-constants, or
reversal potentials, for example, were not explored because we
chose to focus on neuronal properties important for mean field
derivations.

In summary, the synchronization of a network of biological
neurons with long-range connections and finite transmission veloc-
ities is modulated by the delay of these connections. The main
conditions for this effect are the pre-existence of spontaneous activ-
ity driven by an external input (or noise), a significant contribution
of the LRC, a balanced network (excitation/inhibition), and a large
number of neurons. Given that our objective was to provide evi-
dence for the validity of neural field models, future work could
include testing the relaxation of neural field model assumptions
(e.g., plasticity, delays, and weight distributions) and using multiple
heterogeneous neuron models. Additionally, further analysis with
bidirectional LRC is needed to understand spatiotemporal patterns
in this case. This analysis should consider larger grids or modi-
fied connectivity, as recent findings suggest that traveling waves are
based on a fraction of neurons in a population.66 Validation of this
phenomenon with more recent neural field models (e.g., Zerlaut
et al.72 or Augustin et al.73) is also recommended.
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SUPPLEMENTARY MATERIAL

See the supplementary material for additional information
about other network metrics that we provide in open-source
databases and details of the network simulation for the repro-
ducibility of the results. The two supplementary notes describe the
databases and the additional metrics applied to the network. The
supplementary table is based on the proposition of a table by Nordlie
et al.74 for the reproducibility of the neural network model. The fig-
ures show the network topology, selection of different time series,
and parameter explorations with selected additional metrics.
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