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1 Introduction

In many economies, trade credit—in the form of deferred payments to suppliers—
serves as a critical driver for short-term financing. However, the prevalence of
late invoice payments often leads to interlocking debts: a company can be simul-
taneously a creditor to some businesses and a debtor to others. Over time, these
unpaid invoices accumulate into a network of obligations.

Such a networked build-up poses significant liquidity risks. If some companies
cannot collect what is owed to them, they may be unable to fulfil their own
payment obligations, triggering a domino effect of financial stress or defaults [4].

To mitigate these risks, netting procedures (i.e., mutual debt compensations)
have been explored, particularly in the banking sector [6]. Notably, some existing
work focuses on partial netting, wherein invoices are split to settle only part of
the debt [3], or on more complex methods involving external liquidity such as
integral netting [2,8]. Our objective here is integral netting in a global B2B
context : we aim to cancel entire invoices fully by using an external financer who
injects liquidity at strategically chosen points in the B2B network that is a large
economic system.

The integral debt reduction approach simplifies accounting operations. In-
deed, compared to partial netting where the amount of the invoices can be
reduced, here invoices are either left untouched or are completely settled and re-
moved. Yet, finding an optimal selection of invoices to reduce is NP-complete [2],
requiring efficient heuristics for large-scale networks.

In this paper, we concentrate on the purely static version of the integral
netting procedure, that is, we focus on a single state of the network of all unpaid
invoices (i.e. debts) at a given time. Our main contributions are:

– a formal representation of debts as a weighted directed multi-graph;
– a more complete set of metrics (amplification factor, settlement inclusion,

gain, etc.) to evaluate the efficiency of the netting procedure;
– a new algorithm for integral debt reduction, relying on an external financer

whose capital is deployed to trigger chains of debt settlement;
– illustrative experiments on small synthetic data to compare with optimal

solutions;
– results on larger graphs extracted from real-world data.
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This work is a first step before working on more evolved frameworks, for
example in the case where invoices dynamically arrive and expire.

The rest of the paper is organized as follows. In Section 2, we define the
multi-directed graph structure to represent debts. Section 3 provides our main
metrics for assessing netting quality. In Section 4, we present our static netting
algorithm. Then, we show experimental results on small graphs in Section 5,
including a comparison with the optimal solutions. Finally, experimental results
on large graphs extracted from real data are provided in Section 6.

2 Model of B2B debt as a multi-directed graph

We represent invoices between companies using a weighted directed multi-graph,
allowing multiple edges from one company to another.

Definition 1 (B2B Invoice Graph). Let V represent a set of companies ex-
changing invoices in a specific context. A B2B invoice graph is a weighted directed
multi-graph G = (V,E), where each edge e ∈ E is a tuple (s, d, w):

– s ∈ V is the debtor (source),
– d ∈ V is the creditor (destination),
– w > 0 is the amount owed from s to d.

Since multiple invoices between the same pair of companies can occur, G
may contain multiple edges with the same parameters. For each edge e ∈ E, we
define the functions w(e), s(e), and d(e) associated with each element of e.

2.1 Internal metrics of an invoice graph

An invoice graph G can be measured by different metrics that are defined specif-
ically for it and are useful later for the integral reduction process.

We denote by DG the total amount of debt in a graph G. Formally, DG is
defined as the sum of the weights of all edges in the graph G:

DG =
∑
e∈E

w(e). (1)

Next, we define the financing required to reduce all the debt in the network
represented by G. This financing is defined as the sum of the negative net posi-
tions of its nodes, where the net position of a node v is the difference between
the total incoming edge weights and the total outgoing edge weights.

For a node v, we define in graph G the sets of outgoing edges OG(v) and
incoming edges IG(v) as follows:

OG(v) = {e ∈ E | s(e) = v}, IG(v) = {e ∈ E | d(e) = v}, (2)
The net position of node v (or the balance of v) in graph G is given by:

BG(v) =
∑

i∈IG(v)

w(i)−
∑

o∈OG(v)

w(o). (3)
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The minimal external financing required to eliminate all debts in G is the
positive sum of negative net positions across all nodes:

φG =
∑
v∈V

max (0,−BG(v)) . (4)

3 Evaluation metrics for integral debt netting

In this section, we introduce the metrics that are used in our reduction process
to choose the reduced edges. Some of these metrics are also used to evaluate the
global quality of the reduction process.

The evaluation of a given reduction is crucial inside the reduction algorithm
in order to choose the best reduction candidates, and also for comparing the
quality of the results between different approaches. To facilitate this evaluation,
we define a subgraph R of the initial network G = (V,E), where R = (V, S)
corresponds to the selection of edges S ⊆ E to be integrally settled. We define
several metrics to evaluate the effectiveness of selecting R. DR and φR are pri-
mary metrics for our reduction process, in particular φR since it gives us the
total amount required to perform the reduction.

The efficiency of the reduction algorithm is evaluated using two main param-
eters:

– the amplification factor captures how much total debt is cleared per unit of
financing:

α(R) =
DR

φR
. (5)

– the settlement inclusion factor measures the ratio of the debt cleared over
the total weight:

IG(R) =
DR

DG
. (6)

The higher α(R) is, the higher the efficiency of using an external funding for
the debt reduction process. However maximizing α alone is not sufficient as we
also want to maximize the quantity of debt cleared. Also, using the inclusion
factor alone presents some limitations as, at some point, it degrades the amplifi-
cation factor. So, the netting problem can be seen as a multi-criteria optimization
where a good trade-off must be obtained between those two metrics.

For instance, the reduction process may arrive in situations where the re-
maining possibilities consist in financing low-weight invoices with no significant
subsequent reduction. Such small invoices slightly enhance the inclusion factor
but also decrease the amplification factor. Indeed, while one might argue that
financing low-weight invoices has a negligible cost due to their small influence,
our primary objective is to facilitate netting between companies. Therefore, it is
undesirable to include invoices that do not contribute meaningfully to the overall
reduction process.
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To propose a more relevant metrics than the inclusion, we define a gain
measure that is the netted “surplus” over the maximum netted surplus:

gG(R) =
DR − φR

DG − φG
. (7)

This measure reflects the proportion of netted debt (i.e. the surplus of debt
eliminated beyond the financing itself) captured in R. It can be shown that the
gain measure is a normalized metric (see Appendix for a short proof). A value
of 1 means that R captures all the nettable debt in G, while 0 means none. It is
worth noticing that a value of 1 does not imply that we have an optimal solution
according to the amplification.

4 Static reduction algorithm

We now present an algorithm which acts on static graphs, or a static algorithm
for short. Our goal is to find a subgraph R with the largest inclusion according
to a given minimal amplification factor. This algorithm shares some similarities
with a first approach that was developed to tackle the integral debt reduction
problem [2], but its core components are fundamentally different.

4.1 Integral debt reduction

The key concept of this method is to introduce an external financer that allows
for monetary contributions at certain points in the system to enable the integral
reduction of some invoices. Our algorithm relies on the propagation of debt
reduction through the network and on the creation of subsequent debts to the
financer.

4.2 Needed measurement

We define the potential of an edge as the total amount of debt that can be cleared
when injecting in the graph exactly the value of the considered invoice. Formally,
we define the outward potential of the edge e as :

U−
G (e) = w(e) + max

L⊆OG(d(e))∑
o∈L w(o)≤w(e)

∑
o∈L

U−
G (o), (8)

where :
– w(e) is the weight (debt) of edge e;
– OG(d(e)) is the set of all edges leaving the destination node d(e);
– L is any subset of OG(d(e)) whose total weight does not exceed w(e).

Intuitive explanation : If the financer pays edge e, then the destination node
d(e) receives the amount w(e) and can pay some of its own debts with this
amount. Then we aim to chose a combo of edges that pays the most invoices
possible in total using only the money coming from edge e. In addition, those
edges are chosen in order to maximize the sum of their respective potentials.



Integral B2B Debt Netting: Model and Static Algorithm 5

Computing the exact value of U−
G (e) is computationally intensive due to the

combinatorial nature of the maximization (exhaustive search). In practice, de-
pending on the problem size, it is either computed using dynamic programming
or approximated with a greedy method.

We extend this notion of outward potential to the inward potential U+
G (e)

of an edge, by replacing the set OG(d(e)) by the set IG(s(e)) in Eq. 8. It corre-
sponds to a set of upstream edges converging towards e, whose total financing
does not exceed w(e). This allows us to redirect the initial financing of e to
some of its upstream edges. We respectively name L−

e the subset of edges that
maximizes U−

G (e) and L+
e the subset of edges that maximizes U+

G (e).

If we consider a path p = (e1, e2, . . . , ek) ⊂ E, a sequence of edges of
G = (V,E), where k > 1 and ∀i ∈ {1, . . . , k − 1}, d(ei) = s(ei+1), we define
the potential of a path as the total debt reducible associated with the edges in
the path p:

Up =
∑
e∈p

w(e). (9)

4.3 Overview of the algorithm

Our reduction algorithm can now be defined as follows:

1. Identify trivial 2-cycles: If G has pairs of edges e1 = (s, d, w) and
e2 = (d, s, w), both can be cancelled outright with zero external financing.
We directly remove these edges from G and do not include them in our re-
duction process. Indeed, such a bilateral settlement can be realised directly
by the companies themselves.

2. Search for “germs”: These germs are short paths in the graph with high
potential-to-cost ratio. Each path p is financed by its first (highest-weight)
edge only, and subsequent edges become self-financing if they have lesser
weights. We build a set of non-overlapping germs by iteratively choosing
candidates with maximal value of ratio ρ(p) = Up/φp over a given threshold.
Those selected paths form the base of the reduction graph R 1. It is worth
mentioning that perfect cycles of length greater than two are found in this
step, inducing ρ(p) = ∞ for such path p.

3. Extend the selected germs: We iteratively add edges with high potential.
Specifically, from each node that is part of a germ, we look for outward and
inward edges that can attach if they present a potential-to-cost ratio above
ρmin. We select the edge e with the highest ρ(e), i.e. ρ+(e) = U+

G (e)/φL+
e

or ρ−(e) = U−
G (e)/φL−

e
(depending on which is higher) and the associated

edges in L+
e or L−

e depending on the direction with highest potential-to-cost-
ratio. This extension process is iterative and continues until no further edges

1 Another method for finding germs consists in focusing on interesting cycles [1]. How-
ever, this method is quite demanding in terms of computations and such cycles do
not necessarily provide much leftover net positions to improve the expansion process.
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can be added without violating ρmin. Doing this we aim to maximize gG(R)
while controlling φR. This ensures that only edges contributing significantly
are included in the reduced graph R (sub-graph of G).

4.4 External financer and resulting financing

Once R is fixed, the external financing φR (Eq. 4) must be injected into the
network onto the negative-net position nodes to settle all edges in R. In practice,
the financer is introduced as a special node v∗. For each node v with BR(v) < 0,
we add an edge (v, v∗,−BR(v)) denoting the debt of v toward the financer. This
money is then used by v to pay the edges in R for which it is the debtor.

5 Experimental results on small synthetic graphs

As a first experiment, we work on small random synthetic graphs of 20 edges.
Indeed, for such small size, exact optimum can be found for our metrics, allowing
us to evaluate the capacity of our process to find optimal solutions.
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Figure 1 displays the normalized amplification as a function of the gain for
a typical example of graph. In this plot, the best solutions are those which are
the closer to the upper-right corner (100% normalized amplification and gain),
assuming an equal weight granted for each parameter. As there exists trade-off
between these parameters, the optimal points form a kind of Pareto distribution.
Our algorithm picks a sub-graph that achieves the best gain possible. However,
the obtained amplification does not coincide with the best amplification for that
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gain. Indeed, our method can sometimes require injecting slightly more financing
since we work with ρ+(e) or ρ−(e), while the best solution may be a more
complex construction.

Similarly, if we look at settlement inclusion IG(R) vs. amplification α(R) in
Figure 2, our algorithm is on the Pareto frontier, meaning that for a given inclu-
sion, the amplification is maximized. This induces that the algorithm presents a
good trade-off between the graph coverage and the efficiency per euro financed.

For larger graphs, the Pareto frontier cannot be found in reasonable time as
the problem is NP-complete [2]. Hence, it is likely that our algorithm will be
suboptimal. Despite this limitation, we observed that the results obtained on
large graphs are of a rather good quality, as we examine in the next section.

6 Algorithm for static graphs on a real-world dataset

6.1 B2B invoice graphs debt data

We work on a set of 22 million invoices above 200 euros, emitted between 2
million companies from Italy over the span of the 2019 year, for a total amount
of 89 billion euros. This dataset is provided by InfoCert, an Italian electronic
invoices operator and was explored in details in a previous article [7]. Each
invoice is composed of the following data:

– unique identifier to register the invoice;
– unique identifier of the debtor company;
– unique identifier of the creditor company;
– due debt in euros;
– date of the invoice emission.

This data is partial since it presents only B2B invoices given to InfoCert and
not whole set of the existing invoices. The weight limitation also adds to this
partiality, however the breadth and depth of this dataset are adequate to validate
our approach. In this context, breadth refers to the extent of edges distribution
within the network, indicating that the network is not overly concentrated on a
small subset of nodes, but rather well spread across various entities; and depth
relates to the capacity of the dataset to capture long paths of invoices.

We observe that when we consider the complete year of data, there is a con-
centration of net positions around zero, which confirms a phenomenon already
remarked by Fleischman et al. [5]. However, our network presents much more
imbalances, with some companies having large negative or positive net posi-
tions, as highlighted in Figure 3. Contrary to the data used by other authors [5],
our data has a lower percentage of overlapping cyclic structures, meaning that
we cannot apply their techniques to have a fair comparison. Those differences
probably come from the fact that both data sets are subparts of the complete
economic networks whose selection is based on different criteria.

Indeed, as shown in a previous work, our economic dataset presents log-
normal and scale-free distributions for the amounts and the node degrees respec-
tively [7]. A bias towards an in-degree higher than the out-degree is observed and
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Fig. 3. Repartition of the net position on the overall year for companies in our data

we used it to our advantage in Section 4 when looking for germs, diminishing the
computational need by working with outgoing paths. Furthermore, we observe
patterns over the volume and number of invoices inside weeks and months [7].
Typically, the last day of each month concentrates a large percentage of the
total exchanges within a month. Such days should allow for more reduction as
they contain much more invoices than other days, and the more data, the more
flexible and efficient the reduction can be.

6.2 Analysis of the results

Measuring the effect of reducing the debt of a network is mandatory in order to
assess the usefulness of our algorithm. We applied our reduction algorithm to
daily data to get a first insight about the capacity of our algorithm to reduce
debts in actual data.

It is interesting to compare graphs of different sizes and see how the reduction
algorithm applies on them. Figure 4 presents our algorithm’s results through the
iterations of the reduction process on three different days of representative sizes.
Day 26 is a small day in terms of edges and volume, day 25 is a mid one and
day 212 is one of the 12 largest one as it is the end of July. The graphs do not
imply the same amount of iterations since they don’t have the same size and
are also dependant on their germs. For all three graphs, the amplification factor
stays above 2 through the iterations of the process and the final gain is between
65% and 72%. An inclusion factor of at least 20% is also obtained. It can be ob-
served that when restricting the addition of edges with an amplification factor
above ρmin = 1.95, all the reducible debt inside the graphs is not cleared. It is
important to recall that clearing all the reducible debt is not our goal as it leads
generally to very low amplification factors (close to 1).

An important observation is that larger days generally yield better results
than small ones. Nevertheless, the structure of the graph plays a role too, and
the best results are not systematically obtained with the largest graphs.

Moreover, the computation time of largest graphs is significantly higher (×20)
than middle sized ones. This implies that accumulating invoices from a large span
of time (week, month,...) is not efficient in practice; which means that a good
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strategy consists in processing small periods and applying a divide-and-conquer
approach. This strategy is detailed in the next section.
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6.3 Graph partitioning inside the reduction process

As noticed before, an important issue when processing real data is the large size
of some graphs that induces very large computation times. In order to speed up
the calculation and to obtain acceptable times, we partition the initial graphs in
two parts.

The partitioning used maximises the number of edges in each sub-graph. In
order to preserve all the edges from the initial graph, the edges at the frontier
between the two parts must be placed in one of them. We choose the part with
the lowest overall degree to ensure an almost even repartition of the invoices.
After reducing each part, we just merge them and recompute the financing. This
is a minimalist approach that has merely no computational cost. However, such
a strategy misses the additional reductions induced by merging both reduced
parts. Finding all those possible reductions is quite expansive. However, some of
them, namely the ones that do not require any additional financing, are easier
to detect with an iterative greedy algorithm applied on the nodes.

This strategy has been tested over a representative set of graphs and scored
an average acceleration around 54. Figure 5 presents the results of our experiment
and highlights how important the time saved is for large graphs. Figure 6 shows
that the quality loss of this division strategy is around 17%, in terms of overall
debt cleared. By adding the simple greedy mechanism discussed above, we keep
a similar acceleration (52.5) while reducing the loss to only 12%.
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Although these results are already quite good, we think that these partition-
ing and merging strategies deserve a deeper analysis for additional optimization
and will be the subject of a future work.
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7 Conclusion

In this work, a static model of B2B invoice networks was presented together
with an algorithm for integral debt netting. The presence of an external financer
that injects some capital at strategic points in the network allows the complete
settlement of a great number of invoices, simplifying accounting processes and
lowering the need for liquidity of companies.

Through our proposed methodology, we defined a multi-directed graph rep-
resentation of invoice obligations and introduce or redefine key metrics, like the
amplification factor and gain, to evaluate the efficiency of debt reduction algo-
rithms. Our algorithm identifies high-impact invoices and sub-graphs, ensuring
a good balance between debt clearance and minimal external financing. This
allows for the settlement of high-impact debts.

Experimental evaluations on both synthetic and real-world datasets allowed
us to estimate the performance of our method. On real invoice data, we achieve
a significant amplification factor above 2.0 with a gain of at least 65%, and an
inclusion of minimum 20% demonstrating the efficiency of our method. While our
static model successfully mitigates debt in individual time frames, it also provides
a foundation for future extensions incorporating dynamic and temporal aspects.
For practical use, a first graph partitioning strategy was presented, which allows
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a significant reduction of the computation time, at the cost of a slight quality
reduction.

Our next step consists in extending this static framework to dynamic set-
tings, where invoices are issued and settled continuously over time. By iteratively
applying our reduction strategy across multiple periods, we aim to develop a
liquidity-saving mechanism that optimally manages debt clearance. Other ma-
jor goals consist in exploring other optimization heuristics to enhance the process
of reductions, as well as other graph-partitioning strategies.
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Appendix: Proof that gG(R) is bounded by 1
The aim is to prove that ∀ G = (V,E) such that DG 6= FG (meaning that some
reduction by netting is possible), ∀R = (V, S), S ⊆ E :

gG(R) =
DR − FR

DG − FG
≤ 1

⇔ DR − FR ≤ DG − FG (DG ≥ FG ≥ 0)
⇔ FG − FR ≤ DG −DR︸ ︷︷ ︸

DG\R

( DG = DG\R +DR)

Note that DG\R ≥ FG\R. If we prove that FG\R ≥ FG − FR then the proof
is complete. We use the definitions of financings, we need to prove :

∑
v∈V

max
(
0,−BG\R(v)

)
≥

∑
v∈V

max (0,−BG(v))−max (0,−BR(v))

We will prove that ∀v ∈ V :

max
(
0,−BG\R(v)

)︸ ︷︷ ︸
X

≥ max (0,−BG(v))−max (0,−BR(v))︸ ︷︷ ︸
Y

Note that :

BG\R(v) =
∑

e∈IG\R(v)

w(e)−
∑

e∈OG\R(v)

w(e)

=

 ∑
e∈IG(v)

w(e)−
∑

e∈IR(v)

w(e)

−

 ∑
e∈OG(v)

w(e)−
∑

e∈OR(v)

w(e)


=

 ∑
e∈IG(v)

w(e)−
∑

e∈OG(v)

w(e)

−

 ∑
e∈IR(v)

w(e)−
∑

e∈OR(v)

w(e)


= BG(v)−BR(v)

By case disjunction on BG(v) and BR(v) :

Case BG(v) < 0, BR(v) < 0 : Y = −BG(v) +BR(v) = −BG\R(v) ≤ X
Case BG(v) ≥ 0, BR(v) < 0 : Y = BR(v) ≤ 0 ≤ X
Case BG(v) ≥ 0, BR(v) ≥ 0 : Y = 0 ≤ X
Case BG(v) < 0, BR(v) ≥ 0 :

Y = −BG(v) ≤ −BG(v) +BR(v) = −BG\R(v) ≤ X (BG(v) < 0 ≤ BR(v))
⇔ ∀v ∈ V, and in every possible case of net positions, Y ≤ X
�
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