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Fragmentations with erasure

Serge Cohen* James Norris� Michel Pain*

Gennady Samorodnitsky�

February 14, 2025

Abstract

We study sequences of partitions of the unit interval into subin-
tervals, starting from the trivial partition, in which each partition is
obtained from the one before by splitting its subintervals in two, ac-
cording to a given rule, and then merging pairs of subintervals at the
break points of the old partition. The nth partition then comprises
n+ 1 subintervals with n break points, and the empirical distribution
of these points reveals a surprisingly rich structure, even when the
splitting rule is completely deterministic. We consider both determin-
istic and randomized splitting rules and study the limiting behavior of
the empirical distribution of the break points, from multiple angles.

Keywords: fragmentation, random walk in random environment, Markov
chain, limit theorems, large deviations
AMS classification (2020): 60J05, 60F05.

1 Introduction

We consider sequences of partitions (Pn)n≥0 of the interval (0, 1], of the form

Pn = {(an,0, an,1], . . . , (an,n, an,n+1]}
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where an,0 = 0 and an,n+1 = 1 and the n break points an,1, . . . , an,n satisfy

0 ≤ an,1 ≤ · · · ≤ an,n ≤ 1.

Thus P0 = (0, 1] and Pn partitions (0, 1] into n+ 1 subintervals

(0, 1] = (an,0, an,1] ∪ · · · ∪ (an,n, an,n+1].

Suppose we are given a family of splitting proportions

ppp = (pn,k : n ≥ 1, 1 ≤ k ≤ n)

with pn,k ∈ [0, 1] for all k. For n ≥ 1, we define the break points of the
partition Pn recursively by

an,k = pn,kan−1,k−1 + (1− pn,k)an−1,k, k = 1, . . . , n. (1)

Thus we split each interval (an−1,k−1, an−1,k] of the partition Pn−1 into two
subintervals, with proportions 1 − pn,k on the left and pn,k on the right,
and then we merge the resulting subintervals at the break points of Pn−1.
We call this process fragmentation with erasure because each interval of the
partition Pn−1 is fragmented by adding a new point inside it, but then the
break points of Pn−1 are erased. The cases where pn,k = 0 or pn,k = 1 for
some n and k are allowed: in such cases some intervals of the partition will
be empty, but we continue to list them ‘with multiplicity’. We use the same
formula (1) for the dynamics of the break points in all cases.

See Figure 1 for an illustration.
We sometimes choose the family of splitting proportions randomly. In

this case, we will use upper-case letters for both the the splitting proportions
PPP = (Pn,k : n ≥ 1, 1 ≤ k ≤ n) and the break points An,k, but their relation
will be the same, namely An,0 = An,n+1 = 0 for all n and

An,k = Pn,kAn−1,k−1 + (1− Pn,k)An−1,k, k = 1, . . . , n. (2)

In this paper, we mainly consider the following three choices for the
splitting proportions.

� Deterministic stratified fragmentation: we choose a determinis-
tic sequence (pn)n≥1 in [0, 1] and set pn,k = pn for all k. An interesting
special case is the choice pn ≡ p ∈ (0, 1).

� Random stratified fragmentation: we set Pn,k = Pn for all k,
where (Pn)n≥1 are i.i.d. random variables in [0, 1].
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Figure 1: Illustration of the iterative definition of (Pn)n≥0.

� Fully random fragmentation: we take (Pn,k : n ≥ 1, 1 ≤ k ≤ n) to
be an array of i.i.d. random variables in [0, 1].

In each of these three cases, the sequence (Pn)n≥0 forms a Markov chain
whose state-space is the set of finite partitions of the unit interval into
subintervals. The motivation for our work comes from an analysis of the
asymptotic behavior, in a certain regime, of a Markov chain on {−1, 1}K
with K large, considered in [6]. This latter Markov chain moves from a
state a ∈ {−1, 1}K to a state b ∈ {−1, 1}K according to the following rule:
choose, uniformly at random, a subsequence J of {1, . . . ,K} from the set
of subsequences j = (j(1), . . . , j(`)) of {1, . . . ,K} such that aj(i+1) 6= aj(i)
for all i. Once a subsequence J is sampled, the Markov chain moves to the
state b ∈ {−1, 1}K defined by bk = ak if k is not in the range of J , and
bk = −ak otherwise. Starting from the initial state a = (1, . . . , 1), the first
transition leads to a state b that has at most one digit equal to −1, and this
b is chosen uniformly among the K + 1 possible choices; furthermore, for
n � logK the behavior of this Markov chain can be approximated by the
fully random fragmentation model we consider in the present paper, where
the proportions have the standard uniform distribution. For more related
results concerning this Markov chain, please refer to [5].

Fragmentation processes generally form an interesting and well studied
class of stochastic processes; see for example [3, 4, 2], but the erasure feature
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prominent in our model does not seem to have been studied yet. Our model
also bears some resemblance to a multiplicative cascade (see e.g. [8]), but
in the latter models the number of points in the nth generation is typically
of the order 2n instead of the order n, as in our model. Our model can be
viewed as a type of a cascade where the points of the previous generation
are erased at each step.

We are interested in the behavior of the empirical distribution of the
break points of the partition Pn as n→∞. We will set

gn =
1

n

n∑
k=1

δan,k
, Gn =

1

n

n∑
k=1

δAn,k
(3)

in the deterministic and random cases respectively. Here δa denotes the unit
mass at point a. Note that, when the splitting proportionsPPP are random, the
empirical distribution Gn is a random probability measure. We will study
both the overall behavior of the empirical distribution and its restriction to
certain parts of the unit interval.

We begin in Section 2 by establishing a key representation of the break
points in terms of the cumulative distribution function of a certain random
walk, whose steps are governed by the splitting proportions. We denote this
walk by (xn)n≥0 when we restrict to the case of deterministic splitting pro-
portions, and by (Xn)n≥0 in the general random case. Of course the walk is
random in both cases. Interestingly, this representation is useful even in the
case of a deterministic fragmentation. In the case of the random stratified
fragmentation, (Xn)n≥0 becomes a random walk with a random environment
in time, where the environment consists of the random splitting proportions
(Pn)n≥1. Similarly, in the case of the fully random fragmentation, (Xn)n≥0

becomes a random walk with a random environment in time and space.
In Section 3, weak convergence of the empirical distribution is estab-

lished, as a consequence of the law of large numbers satisfied by the random
walk (Xn)n≥0. The weak limit turns out always to be supported by the end-
points of the unit interval. Nonetheless, the number of points of Pn in any
given open subset of (0, 1) diverges, and we proceed in Section 4.1 to inves-
tigate the behavior of the empirical distribution away from the endpoints.
This study relies on the central limit theorem satisfied by (Xn)n≥0 and we
will show vague convergence, under suitable renormalization, to an infinite
measure on (0, 1), whose density is the derivative of the quantile function
of a standard normal distribution. The exact scaling is however sensitive
to the specific type of fragmentation. Finally, in Section 4.2, we investigate
more precisely the behavior of the empirical distribution near the endpoints,
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by studying for example the number of break points of Pn in intervals of
the type [0, xn] for 0 < x < 1. This behavior turns out to be related to the
large deviation principle for the random walk (Xn)n≥0.

2 Representation of the break points

Set
I = {(n, k) : n ≥ 1, 1 ≤ k ≤ n}

and fix
ppp = (pn,k : (n, k) ∈ I)

with pn,k ∈ [0, 1] for all n and k. Let (Un,k : (n, k) ∈ I) be a family of
independent random variables, all uniformly distributed on [0, 1]. Set

Yn,k = 1{Un,k≤pn,k}

so that Yn,k is a Bernoulli random variable with success probability pn,k.
Write Ω0 for the set of sequences (yn,k : (n, k) ∈ I) with yn,k ∈ {0, 1} for all
n and k. Denote by Pppp the law of (Yn,k : (n, k) ∈ I) on Ω0. Define a random
process (xn)n≥0 on Ω0 by setting x0 = 0 and then, recursively for n ≥ 1,

xn = xn−1 + yn,xn−1+1. (4)

Note that xn ∈ {0, 1, . . . , n} for all n and (xn)n≥0 is a time-inhomogeneous
Markov chain under Pppp. The following proposition provides a useful formula
for the break points of the deterministic fragmentation-erasure process with
splitting proportions ppp.

Proposition 2.1. For all (n, k) ∈ I, we have

an,k = Pppp(xn ≤ k − 1).

Proof. Define for n ≥ 0 and 0 ≤ k ≤ n+ 1

αn,k = Pppp(xn ≤ k − 1).

Then αn,0 = 0 and αn,n+1 = 1 for all n. For (n, k) ∈ I, we have

αn,k = Pppp(xn ≤ k − 1)

= Pppp(xn−1 ≤ k − 2) + Pppp(xn−1 = k − 1, yn,k = 0)

= pn,kαn−1,k−1 + (1− pn,k)αn−1,k.

The same recursion (1) defines an,k so αn,k = an,k for all n and k.
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We turn now to the more general case where the splitting proportions
PPP are random. By augmenting our probability space (Ω,F ,P) if necessary,
we can assume that Ω supports a family of independent random variables
(Un,k : (n, k) ∈ I) as above, which is moreover independent of PPP . Set

Yn,k = 1{Un,k≤Pn,k}

and define a random process X = (Xn)n≥0 on Ω by setting X0 = 0 and
then, recursively for n ≥ 1,

Xn = Xn−1 + Yn,Xn−1+1.

We note the following straightforward proposition.

Proposition 2.2. Given a bounded measurable function Φ on (Z+)Z
+

, de-
fine φ : [0, 1]I → R by

φ(ppp) = Eppp(Φ(x))

where x = (xn)n≥0 is the time-inhomogeneous Markov chain defined at (4).
Then φ is measurable and we have, almost surely,

E(Φ(X)|PPP ) = φ(PPP ).

It will be convenient sometimes to regard (1) and (3) as defining mea-
surable functions an,k(ppp) and gn(ppp) of ppp, so we can write

An,k = an,k(PPP ), Gn = gn(PPP ).

Note that, on taking Φ(x) = 1{xn≤k−1}, we have φ(ppp) = an,k(ppp) by Proposi-
tion 2.1. Hence, the random break points (An,k : (n, k) ∈ I) associated with
the random splitting proportions PPP satisfy, almost surely,

An,k = an,k(PPP ) = P(Xn ≤ k − 1|PPP )

We remark on two special cases where (Xn)n≥0 takes a simple form.

� In the case where pn,k ≡ p ∈ [0, 1] for all n and k, which is a special
case of the deterministic stratified fragmentation, (Xn)n≥0 is a simple
(biased) random walk. In particular Xn has the binomial distribution
with parameters n and p.

� In the fully random case, the process (Xn)n≥0 is a Random Walk in
Dynamic Random Environment (RWDRE). See for example [10]. We
will be interested not only in its annealed distribution, which is a
simple random walk, but also in its quenched distribution, conditional
on the splitting proportions PPP .
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3 Weak convergence of the empirical distributions

Our first use of the representation of the partitions Pn developed in the
previous section shows that, perhaps somewhat unexpectedly, under quite
general conditions, the sequence of empirical distributions of break points
(gn)n≥0 (or (Gn)n≥0 in the random case) has a weak limit supported on
{0, 1}. This is the content of the main result of this section, Theorem 3.2
below.

We start with a key lemma stating that this weak convergence is a con-
sequence of a law of large numbers for the auxiliary walk (xn)n≥0.

Lemma 3.1. Fix a family of splitting proportions ppp = (pn,k : (n, k) ∈ I)
and consider the associated random process (xn)n≥0 defined on Ω0 by (4).
Assume that, for some p̄ ∈ [0, 1], under Pppp, as n→∞,

xn/n→ p̄ in probability. (5)

Then, as n→∞,

gn ⇒ p̄δ0 + (1− p̄)δ1 weakly on [0, 1].

Proof. It follows from the assumption that, for any fixed α ∈ (0, 1), by
Proposition 2.1,

an,bαnc = Pppp(xn ≤ bαnc − 1)→

{
0 if α < p̄,

1 if α > p̄,

and so gn([0, x]) → p̄ for all x ∈ (0, 1), which implies the claimed weak
convergence.

Theorem 3.2. (a) Deterministic stratified fragmentation. Assume
that the averages 1

n

∑n
m=1 pm converge as n → ∞, with limit p̄ say. Then,

as n→∞,
gn ⇒ p̄δ0 + (1− p̄)δ1 weakly on [0, 1].

(b) Random stratified fragmentation and fully random fragmenta-
tion. Define p̄ = E(P1) or p̄ = E(P1,1) according to the case in hand. Then,
almost surely, as n→∞,

Gn ⇒ p̄δ0 + (1− p̄)δ1 weakly on [0, 1].
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Proof. For part (a), under Pppp, the process (xn)n≥0 is a sum of independent
Bernoulli random variables, with success probabilities p1, p2, . . . . Then, by
Hoeffding’s inequality, for all ε > 0,

Pppp
(∣∣∣∣∣xnn − 1

n

n∑
m=1

pm

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

{
−2nε2

}
.

Hence xn/n→ p̄ in probability and Lemma 3.1 applies.
For part (b), note that, in both cases, the process (Xn)n≥0 is a random

walk with mean step size p̄, so Xn/n → p̄ almost surely by the strong law
of large numbers. Set

Φ(x) = 1{xn/n→p̄ as n→∞}

then
φ(ppp) = Eppp(Φ(x)) = Pppp(xn/n→ p̄ as n→∞).

By Proposition 2.2, almost surely,

φ(PPP ) = P(Xn/n→ p̄ as n→∞|PPP ).

Hence φ(PPP ) = 1 almost surely. Consider the event Ω∗ = {PPP ∈ B}, where

B = {ppp : xn/n→ p̄ in probability as n→∞ under Pppp}.

By Lemma 3.1, for ppp ∈ B, we have gn(ppp)⇒ p̄δ0+(1−p̄)δ1 weakly as n→∞.
Then, since convergence almost surely implies convergence in probability,

P(Ω∗) ≥ P(φ(PPP ) = 1) = 1

and on Ω∗ we have

Gn = gn(PPP )⇒ p̄δ0 + (1− p̄)δ1 ,

weakly as n→∞.

4 Taking a closer look

The main result of the previous section, Theorem 3.2, shows that, under
general conditions, the empirical probability distribution of break points
Gn, defined at (3), converges weakly on [0, 1] (on an event of probability 1
in the random cases) to a limit supported by the endpoints of the interval.
That is, most of the break points An,k ‘move’ either to 0 or to 1 as the
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fragmentation process proceeds. Still, it is clear that this result does not
provide a completely satisfactory picture of the distribution of the break
points, even for large n. For example, as n → ∞, there will be more and
more break points away from the endpoints of the interval. How are these
points distributed? Furthermore, even though most of the mass of Gn moves
towards the endpoints, how fast does this movement happen? We address
these questions in this section.

4.1 Away from the endpoints

The results in this subsection will be expressed in terms of the quantile
function

Q = Φ−1 : (0, 1)→ R

associated with the standard normal distribution function Φ.

Lemma 4.1. Fix a family of splitting proportions ppp = (pn,k : (n, k) ∈ I)
and write (gn)n≥0 for the associated sequence of empirical distributions of the
break points. Consider the probability measure Pppp on Ω0 defined in Section
2 and the random process (xn)n≥0 on Ω0 defined at (4). Assume that there
exist sequences (mn)n≥0 in R and (σn)n≥0 in (0,∞), such that, as n→∞,
we have σn →∞ and, for all t ∈ R,

Pppp
(
xn −mn

σn
≤ t
)
→ Φ(t). (6)

Then, for all x, y ∈ (0, 1) with x ≤ y, as n→∞,

ngn([x, y])

σn
→ Q(y)−Q(x).

That is, the sequence (ngn/σn) of Radon measures on (0, 1) converges vaguely
on that space to a Radon measure with the density Q′ with respect to the
Lebesgue measure.

Proof. For x ∈ (0, 1), define

kn(x) = min{k ∈ {0, 1, . . . , n+ 1} : an,k ≥ x}.

Then
ngn([0, x))

σn
=
kn(x)

σn
. (7)

We now focus on estimating the asymptotic behavior of kn(x).
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By Proposition 2.1, we have

an,kn(x) = Pppp(xn ≤ kn(x)− 1) = Pppp
(
xn −mn

σn
≤ kn(x)− 1−mn

σn

)
.

Moreover, the convergence in (6) actually holds uniformly in t ∈ R by Pólya’s
theorem (because the cumulative distribution functions are non-decreasing).
So we get ∣∣∣∣an,kn(x) − Φ

(
kn(x)− 1−mn

σn

)∣∣∣∣→ 0. (8)

On the other hand, by definition of kn(x), we have x ≤ an,kn(x) ≤ x + `n,
where `n = maxni=0(an,i+1 − an,i) is the length of the longest interval in the
partition Pn. Moreover, by Proposition 2.1 again

an,i+1 − an,i ≤ Φ

(
i−mn

σn

)
− Φ

(
i− 1−mn

σn

)
+ 2 sup

t∈R

∣∣∣∣Pppp(Xn −mn

σn
≤ t
)
− Φ(t)

∣∣∣∣. (9)

Using (6) and that Φ is Lipschitz on R together with σn → ∞, we deduce
that an,i+1 − an,i → 0 as n→∞ uniformly in i, which implies that `n → 0.
In particular, we get that an,kn(x) → x as n → ∞ and, coming back to (8),
this yields ∣∣∣∣x− Φ

(
kn(x)− 1−mn

σn

)∣∣∣∣ −−−→n→∞
0. (10)

Using continuity of Q at x and the fact that Q = Φ−1, we get∣∣∣∣Q(x)− kn(x)− 1−mn

σn

∣∣∣∣→ 0 (11)

and therefore kn(x) = mn + Q(x)σn + o(σn). Coming back to (7), we get,
in the limit n→∞,

ngn([0, x))

σn
=
mn

σn
+Q(x) + o(1) (12)

It follows that, for any x, y ∈ (0, 1) with x ≤ y, we have

ngn([x, y])

σn
→ Q(y)−Q(x).
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Remark 4.2. Consider the following strengthening of (6): there is a constant
C <∞ such that, for all n, we have

sup
t∈R

∣∣∣∣Pppp(xn −mn

σn
≤ t
)
− Φ(t)

∣∣∣∣ ≤ C

σn
(13)

Such an assumption would correspond to a Berry–Esseen bound for the walk
(xn)n≥0 and is known under the assumptions of Theorems 4.3 and 4.4. Then,
the same proof gives a rate of convergence: for any 0 < δ < 1/2,

ngn([x, y])

σn
= Q(y)−Q(x) +O

(
1

σn

)
uniformly in δ ≤ x < y ≤ 1 − δ. The restriction to the interval [δ, 1 − δ] is
required to have Q Lipschitz in the step from (10) to (11). Moreover, (9)
shows that under this stronger assumption `n = O(1/σn).

We now state and prove convergence results for our three main cases of
fragmentation-erasure. The first result addresses the case of a deterministic
stratified fragmentation. Note that the assumptions of this result may hold
even when the assumption in part (a) of Theorem 3.2 does not hold.

Theorem 4.3. Deterministic stratified fragmentation: Set

sn =
n∑
k=1

pk(1− pk)

and assume that sn →∞ as n→∞. Then the sequence (ngn/
√
sn) of Radon

measures on (0, 1) converges vaguely on that space to a Radon measure with
the density Q′ with respect to the Lebesgue measure.

Proof. In this case, under Pppp, xn is a sum of independent Bernoulli random
variables with success probabilities p1, . . . , pn, so (6) holds by Lindeberg’s
central limit theorem, with

mn =

n∑
k=1

pk, σn =
√
sn.

Hence the result follows from Lemma 4.1.

We obtain as a corollary the following result for the random stratified
fragmentation. This can alternatively be shown directly from Lemma 4.1.
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Theorem 4.4. Random stratified fragmentation: Set

s = E(P1(1− P1))

and assume that P(P1 ∈ (0, 1)) > 0. Then, almost surely, the sequence
(
√
nGn/

√
s) of Radon measures on (0, 1) converges vaguely on that space to

a Radon measure with the density Q′ with respect to the Lebesgue measure.

Proof. Condition on the stratified family of splitting proportions (Pn)n≥1

and write
√
nGn√
s

=
nGn√∑n

k=1 Pk(1− Pk)
×
√∑n

k=1 Pk(1− Pk)
ns

.

Theorem 4.3 applies to the first factor on the right, while the second factor
tends to 1 almost surely by the strong law of large numbers.

Our final result in this subsection describes what happens in the case of
fully random fragmentation.

Theorem 4.5. Fully random fragmentation: Set

p̄ = E(P1,1), s = p̄(1− p̄)

and assume that P(P1,1 ∈ (0, 1)) > 0. Then, almost surely, the sequence
(
√
nGn/

√
s) of Radon measures on (0, 1) converges vaguely on that space to

a Radon measure with the density Q′ with respect to the Lebesgue measure.

Proof. Set
mn = np, σn =

√
ns

and consider the event Ω∗ = {PPP ∈ B}, where

B = {ppp : Pppp((xn −mn)/σn ≤ t)→ Φ(t) for all t ∈ R}.

Then
Ω∗ = {P((Xn −mn)/σn ≤ t|PPP )→ Φ(t) for all t ∈ Q}

so, by the almost sure central limit theorem for the RWDRE, which has been
proved in [9], we have P(Ω∗) = 1. In particular, the assumption P(P1,1 ∈
(0, 1)) > 0 implies the ellipticity assumption, Hypothesis (ME), in that
paper. Then, by Lemma 4.1, on Ω∗, for all x, y ∈ (0, 1) with x ≤ y,

√
nGn([x, y])√

s
=
ngn(PPP )([x, y])

σn
→ Q(y)−Q(x),

which concludes the proof.
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Remark 4.6. The limits in Theorem 3.2 depend only on the ‘average’ frag-
mentation proportions. Comparing with Theorems 4.3, 4.4 and 4.5, on the
other hand, shows that the speed of convergence to the limits in Theorem 3.2
depends on other factors. For example:

� choosing pn = 1/2 for all n in the deterministic stratified case, we get
sn = n/4, so the scaling factor in Theorem 4.3 becomes 2

√
n;

� choosing P1 to be uniformly distributed on [0, 1] in the random strati-
fied case, we get s = 1/6, so the scaling factor in Theorem 4.4 becomes√

6n;

� choosing P1,1 to be uniformly distributed on [0, 1] in the fully random
case, we get s = 1/4, so the scaling factor in Theorem 4.5 becomes
2
√
n.

This indicates that there is a smaller residual mass in Gn away from the
endpoints of the unit interval in the random stratified case than in the two
other cases, hence a higher speed of ‘escape’ of the mass to the endpoints,
though not by an order of magnitude. Furthermore, it can look surprising
that the fully random case has exactly the same multiplicative factor as the
case pn = 1/2: this can be explained by the fact that, for later fragmenta-
tion steps, a large number of random variables are involved, resulting in an
averaging effect.

4.2 Near the endpoints

We now look more closely at how the mass of the empirical distribution of
break points moves towards the endpoints of the interval [0, 1]. We make
statements for the behavior close to 0. Analogous statements near 1 can be
obtained by flipping the interval.

Consider the transformed empirical distributions g̃n defined by

g̃n =
1

n

n∑
k=1

δãn,k
, ãn,k = a

1/n
n,k .

As usual, we will change to upper-case and write G̃n when the splitting
proportions are random. Note that g̃n is simply the pushforward of gn by
x 7→ x1/n and the following relation holds, for x, y ∈ [0, 1] with x ≤ y,

g̃n([x, y]) = gn([xn, yn]).

We start with a lemma relating the limiting behavior of g̃n to large deviation
estimates on the lower tail for the associated random walk.
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Lemma 4.7. Fix a family of splitting proportions ppp = (pn,k : (n, k) ∈ I).
Consider the probability measure Pppp on Ω0 defined in Section (2) and the
random process (xn)n≥0 on Ω0 defined at (4). Assume that there exists
p̄ ∈ (0, 1] and a function I : (0, p̄]→ [0,∞), continuous and decreasing with
I(p̄) = 0, and such that, for all α ∈ (0, p̄),

1

n
logPppp(xn ≤ αn)→ −I(α), as n→∞. (14)

Define I(0) ∈ (0,∞] and x∗ ∈ [0, 1) by

I(0) = lim
α→0+

I(α), x∗ = e−I(0).

For x ∈ [x∗, 1], let αI(x) be the unique solution α ∈ [0, p̄] of the equation
I(α) = log(1/x). Write g̃ for the probability measure on [0, 1] with distribu-
tion given by

g̃([0, x]) =

{
0, if x ∈ [0, x∗],

αI(x), if x ∈ (x∗, 1).
(15)

Then, as n→∞, we have

g̃n ⇒ g̃ weakly on [0, 1].

Remark 4.8. Under the assumptions of the lemma, the map I : [0, p̄] →
[0, log(1/x∗)] is one-to-one, which implies that αI(x) is well-defined for x ∈
[x∗, 1]. Moreover, αI is continuous and increasing on [x∗, 1] with αI(x∗) = 0
and αI(1) = p̄. Hence x 7→ g̃([0, x]) is continuous on [0, 1), so g is atomless
on [0, 1), and

g̃({1}) = 1− p̄.

Proof. Since g̃n and g̃ are supported on [0, 1], and αI is continuous on [x∗, 1]
with αI(x∗) = 0, it will suffice to show that g̃n([0, x]) → αI(x) for all
x ∈ (x∗, 1). Fix x ∈ (x∗, 1) and note that

g̃n([0, x]) =
1

n
max

{
k ≥ 0 : a

1/n
n,k ≤ x

}
.

We use Proposition 2.1 and (14), together with continuity of I, to see that,
for all α ∈ (0, p̄), as n→∞,

log a
1/n
n,bαnc =

1

n
log an,bαnc =

1

n
logPppp(xn ≤ bαnc − 1)→ −I(α)

so
a

1/n
n,bαnc → e−I(α).

This implies the desired limit for g̃n([0, x]).
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We now apply this lemma to the case of deterministic stratified fragmen-
tation.

Theorem 4.9. Deterministic stratified fragmentation: Assume that,
for some probability measure H on [0, 1] with H({0, 1}) < 1, the following
weak limit holds on [0, 1] as n→∞,

1

n

n∑
m=1

δpm ⇒ H. (16)

Set

p̄ =

∫ 1

0
tH(dt).

Then p̄ ∈ (0, 1) and, for all α ∈ (0, p̄), there is a unique θ = θ(α) ∈ R such
that ∫ 1

0

teθ

1− t+ teθ
H(dt) = α. (17)

Define, for α ∈ (0, p̄),

I(α) = αθ(α)−
∫ 1

0
log
(
1− t+ teθ(α)

)
H(dt).

Then I is continuous and decreasing on (0, p̄) and I(α) → 0 as α → p̄.
Moreover, in the limit n→∞, we have

g̃n ⇒ g̃ weakly on [0, 1]

where g̃ is defined as in Lemma 4.7.

Remark 4.10. The hypothesis (16) implies in particular that 1
n

∑n
m=1 pm

converges as n→∞ with limit p̄, and hence, by Theorem 3.2, that

gn ⇒ p̄δ0 + (1− p̄)δ1 weakly on [0, 1].

Moreover (16) is also symmetric under flipping the interval [0, 1], so (16)
implies an analogous limiting statement for gn([1− xn, 1]).

Remark 4.11. It is straightforward to check from (17) that as α → 0 we
have θ(α)→ −∞ and αθ(α)→ 0, so

I(α)→ −
∫ 1

0
log(1− t)H(dt).

Hence, in the notation of Lemma 4.7, we have

x∗ = exp

{∫ 1

0
log(1− t)H(dt)

}
∈ [0, 1− p̄]. (18)
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Proof. We check the assumptions of Lemma 4.7. Note that, for θ ∈ R,

Λn(θ) := logEppp(eθxn/n) =
n∑
i=1

log(1− pi + pie
θ/n)

so it follows by the assumption (16) that

1

n
Λn(nθ) −−−→

n→∞

∫ 1

0
log
(
1− x+ xeθ

)
H(dx) =: Λ(θ).

Since Λ is finite and differentiable on R, it follows from the Gärtner-Ellis the-
orem (see e.g. Theorem 2.3.6 in [7]) that, under Pppp, the sequence (xn/n)n≥1

satisfies a large deviation principle with speed n and rate function

Λ∗(α) = sup
θ∈R

(
θα−

∫ 1

0
log
(
1− x+ xeθ

)
H(dx)

)
which is the Fenchel–Legendre transform of Λ. In particular, the function
Λ∗ : R → [0,∞] is convex and has a unique minimum value equal to 0 at
Λ′(0) = p̄. If α ∈ [0, p̄], then the supremum in the definition of Λ∗ is attained
at θ = θ(α) and therefore I(α) = Λ∗(α). It follows that I satisfies the
assumptions of Lemma 4.7: the function I : (0, p̄] → [0,∞) is continuous,
decreasing, and satisfies I(p̄) = 0 and (14) as a consequence of the large
deviation principle mentioned above. Therefore, we can apply Lemma 4.7
which yields the result.

Theorem 4.9 immediately allows us to deduce the following result.

Theorem 4.12. Random stratified fragmentation: Consider a random
stratified fragmentation with splitting proportions (Pn)n≥1. Denote by H the
distribution of P1 and assume that H({0, 1}) < 1. Then G̃n ⇒ g̃ weakly on
[0, 1], almost surely as n→∞, where g̃ is defined as in Theorem 4.9.

Proof. It is enough to note that, by Glivenko–Cantelli theorem, as n→∞,
almost surely,

1

n

n∑
m=1

δPm ⇒ H weakly on [0, 1].

Then Theorem 4.9 applies on the same set of full probability.

We finish this section with a discussion of the fully random fragmen-
tation. The overall picture of the movement of the mass of Gn towards
the endpoints of the interval [0, 1] remains the same as in the deterministic
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stratified fragmentation and the random stratified fragmentation. However,
the assumptions are stronger and less information about the limiting distri-
bution is available.

Theorem 4.13. Fully random fragmentation: Consider a fully random
fragmentation with splitting proportions (Pn,k : (n, k) ∈ I). Assume that for
some p > 2 we have

E(|log(P1,1)|p) <∞ and E(|log(1− P1,1)|p) <∞. (19)

Then, for some probability distribution g̃ on [0, 1], we have G̃n ⇒ g̃ weakly
on [0, 1], almost surely as n → ∞. Moreover g̃ is supported on [x∗, 1] for
some x∗ ∈ (0, 1), g̃ has no atoms in [0, 1) and g̃({1}) = 1− E(P1,1).

Proof. Set p̄ = E(P1,1). It follows from e.g. Corollary 2.3 and Proposition 2.4
in [10] that there is a function Iq : [0, p̄]→ [0,∞), continuous and decreasing
with Iq(p̄) = 0, and such that, almost surely, for all α ∈ (0, p̄) as n→∞,

1

n
logP(Xn ≤ αn|PPP )→ −Iq(α). (20)

We use here the assumption (19). The subscript q here is for ‘quenched’.
Hence, on the same event of full probability, we can apply Lemma 4.7 to
deduce the claimed weak convergence of G̃n. The fact that x∗ > 0 in this
case follows from the finiteness of Iq(0) guaranteed in [10]. Stated properties
of g̃ follow from Remark 4.8.

Remark 4.14. The limit distribution g̃ in Theorem 4.13 is given in Lemma 4.7
in terms of Iq. Since a full description of the rate function Iq is not available,
neither is a full description of g̃. Nonetheless, some information is available
in [10]. Under P, that is in the annealed case, (Xn)n≥0 is a random walk with
i.i.d. Bernoulli(p̄) jumps. So (Xn/n)n≥1 satisfies a large deviation principle
with rate function Ia, and for α ∈ [0, 1],

Ia(α) = α log
α

p̄
+ (1− α) log

1− α
1− p̄

.

Proposition 2.4 in [10] says that Ia(α) ≤ Iq(α) for 0 ≤ α ≤ 1, and that the
two functions share the same unique global minimum, at the point p̄, where
they both vanish. Let

x∗,a = e−Ia(0) = 1− p̄ ∈ (0, 1)
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and define a probability law supported by [x∗,a, 1] by the cumulative distri-
bution function

Fa(x) =
αa(x)

p̄
, x ∈ [x∗,a, 1]

where αa(x) is the unique solution in [0, p̄] of the equation

Ia(α) = log(1/x),

then the law Fa stochastically dominates the limiting distribution in The-
orem 4.13. Furthermore, unless P1,1 is non-random, according to the same
reference we have Ia(0) < Iq(0), and so we have a strict ordering of the left
endpoints of the support: x∗ < 1− p̄.
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vs. quenched large deviations and entropy for random walk in a dynamic
random environment. Electron. J. Probab., 22:Paper No. 57, 47, 2017.

19


	Introduction
	Representation of the break points
	Weak convergence of the empirical distributions
	Taking a closer look
	Away from the endpoints
	Near the endpoints

	Acknowledgment

