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ABSTRACT

The size of drops generated by the capillary-driven disintegration of liquid ligaments plays a fundamental role in several important natural
phenomena, ranging from heat and mass transfer at the ocean-atmosphere interface to pathogen transmission. The inherent nonlinearity of
the equations governing the ligament destabilization leads to significant differences in the resulting drop sizes, owing to small fluctuations in
the myriad initial conditions. Previous experiments and simulations reveal a variety of drop size distributions, corresponding to competing
underlying physical interpretations. Here, we perform numerical simulations of individual ligaments, the deterministic breakup of which is
triggered by random initial surface corrugations. The simulations are grouped in a large ensemble, each corresponding to a random initial
configuration. The resulting probability distributions reveal three stable drop sizes, generated via a sequence of two distinct stages of breakup.
Four different distributions are tested, volume-based Poisson, Gaussian, Gamma, and Log-Normal. Depending on the time, range of droplet
sizes and criteria for success, each distribution has successes and failures. However, the Log-Normal distribution roughly describes the data
when fitting both the primary peak and the tail of the distribution while the number of droplets generated is the highest, while the Gamma
and Log-Normal distributions perform equally well when fitting the tail. The study demonstrates a precisely controllable and reproducible
framework, which can be employed to investigate the mechanisms responsible for the polydispersity of drop sizes found in complex fluid
fragmentation scenarios.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0221732

I. INTRODUCTION

Liquid fragmentation is the transformation of a compact volume
into drops. The simplest example is the capillary-driven breakup of a
slender cylindrical structure1 at approximately regular intervals driven
via the growth of long wavelength perturbations.2–4 In more general
atomization problems, the initial liquid mass deforms transitioning to
sheets,5,6 where the inertial expansion opposed by the capillary deceler-
ation of the edges results in the formation of liquid rims, the subse-
quent destabilization of which leads to drops. A similar process
develops when a perforation occurs in the liquid sheets, then, the rapid
capillary-driven expansion of holes7,8 forms an interconnected set of
filaments, which eventually break into drops. The evolution of these
topological changes are also affected by shear stresses,9,10 introducing
the effects of Kelvin–Helmholtz11 instabilities that induce many of the

above-mentioned transitions. Given the turbulent regime for atomiza-
tion, the evolution of liquid structures is chaotic and strongly depen-
dent on initial conditions. The only common feature that unites these
seemingly disparate fragmentation processes is that the topological
stage leading to drop formation is constituted by cylindrical thread-
like structures, called ligaments or filaments.

The size of drops resulting from the breakup of ligaments governs
physical mechanisms underlying a broad range of natural processes
and industrial applications. These processes include the exchange of
heat and mass transfer at the ocean–atmosphere interface,12,13 mixing/
separation in metallurgical applications,14,15 pesticide dispersal and
irrigation in industrial agriculture,16–18 and ever so important, patho-
gen transmission driven by violent respiratory events,19,20 among
many other examples. Therefore, the development of quantitative
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models geared toward statistical predictions of the size and velocity of
drops has drawn considerable scientific interest21 over the recent
decades.

Several experimental and numerical investigations of drop size
statistics have led to the popularization of three distinct classes of prob-
ability density functions, namely the Log-normal, Gamma and Poisson
distributions, as outlined in the review by Villermaux.22 In addition,
distributions such as the Gaussian,6 Weibull,23 Exponential,24 and
Beta25 have also received significant attention. Regarding the interpre-
tation of the underlying physical mechanisms, the Log-normal model26

implies a sequential cascade of breakups (analogous to the
Kolmogorov27 energy cascade in fluid turbulence), the Gamma fam-
ily28 considers the competing effects of fragmentation and cohesion,
and the Poisson model29 entails instantaneous and random splitting of
a volume into smaller fragments. These models have been used in a
diverse range of fragmentation scenarios to varying degrees of predic-
tive success, however, there is a general lack of consensus regarding
their generalization. This is primarily due to the fact that the initial liq-
uid structures follow markedly different dynamical trajectories toward
drop formation, rendering certain models incompatible with the actual
physical mechanism at play (refer to Ref. 6 for a discussion).

A. Modes of ligament breakup

The topological change from the threadlike ligaments to the
(approximately) spherical geometry of drops can proceed along different
paths, depending on the relative importance of viscosity and surface ten-
sion, the aspect-ratio, and the strength of the initial perturbation.30–33

Extremely viscous ligaments are stable against capillary-driven disinte-
gration.34 For intermediate viscosities, the ligament ruptures at
several locations along its length primarily due to the Rayleigh–Plateau
instability.32 In low-viscosity regimes, the ligament might also fragment
from one of its free ends, referred to as the end-pinching mode.30,35

Additionally, if the ligament is free at both ends and not slender enough
(small aspect-ratios), the capillary retraction might dominate and con-
tract the entire volume into a single drop.36 Thus, despite the richness of
end-pinching dynamics and complete contraction, the resulting drop
sizes are extensively documented and well described by robust scaling
laws.30,37 This turns our attention solely toward the drops formed due to
breakups along the ligament length.

The breakup mechanism of liquid threads into droplets is funda-
mentally self-similar,38,39 corresponding to finite-time singularities in
the Navier–Stokes equations. This feature means that the pinching
process itself is largely independent of the initial conditions of the liga-
ment. However, the internal liquid dynamics within the ligament are
highly sensitive to these initial conditions due to the inherent nonli-
nearities in the governing equations. The distribution of liquid vol-
umes just before the thread ruptures is directly related to the volumes
of the resulting droplets. Consequently, precise quantitative control
over the initial conditions of the ligament is crucial for understanding
the polydispersity in the sizes of the droplets formed.

B. Our computational framework

In this context, the main goal of this study is the design and con-
ception of “numerical” experiments that lend themselves to accurate
and repeatable specifications of the initial conditions of the ligaments
in question. Generally in physical experiments, obtaining ligaments

conforming exactly to a specified geometrical shape and velocity field
is extremely challenging. Thus, one often has to employ a posteriori
correlations between the observed dispersion in the final drop sizes
and the “qualitative” descriptions of initial conditions. In contrast, our
present numerical framework allows us to obtain reproducible drop
size distributions, which are purely outcomes of the mathematical
model (Navier–Stokes with surface tension), subject to a chosen set of
parameters, initial and boundary conditions. Furthermore, most of the
reported drop size distributions in experiments incorporate significant
uncertainties, owing to small sample sizes. In our case, we are able to
precisely control the degree of uncertainty in our eventual distribu-
tions, as the rapid calculation times enables us to generate large statisti-
cal samples.

II. METHODOLOGY
A. Mathematical model

We use the one-fluid formulation for our system of governing
equations, thus, solving the incompressible Navier–Stokes equations
throughout the whole domain, including regions of variable density
and viscosity which itself depend on the explicit location of the inter-
face separating the two fluids.40 The interface is modeled as having an
infinitesimal thickness at the macroscopic scales under consideration.
The temporal evolution of the interface is tracked by using an advec-
tion equation for the phase-characteristic function, which is essentially
a Heaviside function that distinguishes the individual phases. The den-
sity and viscosity at each spatial location are expressed as linear func-
tions of the phase-characteristic function.

B. Numerical methods

We use the free scientific computing toolbox Basilisk (see
basilisk.fr),42,43,45,46 which couples finite-volume discretization with
adaptive octree meshes [see Fig. 1(c)] to solve our governing partial
differential equations. The interface evolution is tracked using a
Volume-of-Fluid (VOF) method,44,45 coupled with a robust and accurate
implementation of height-function-based interface curvature computa-
tion.46 The capillary forces are modeled as source terms in the Navier–
Stokes equations using the continuum surface-force47 (CSF) method.

In the present context of ligament destabilization, the trajectory of
the system toward drop formation is governed by nonlinear interactions
between capillary waves, remnants of the internal flow, acceleration of
the liquid into the surrounding medium, localized vorticity production
at the interface, as well as viscous dissipation in the bulk. To accurately
reproduce the above-mentioned multiscale phenomena and ensure suf-
ficient spatiotemporal resolution in the vicinity of breakups and coales-
cence, the dynamically adaptive octree meshes [Fig. 1(c)] are absolutely
essential to carry out computationally efficient simulations. The accuracy
and performance of Basilisk has been well documented and extensively
validated for a variety of complex interfacial flows such as breaking
waves,48–50 bursting bubbles,51,52 and drop splashes.53

C. Computational setup

We conduct direct numerical simulations of air–water systems
consisting of slender ligaments with spatial periodicity along the liga-
ment axis. We use an axisymmetric framework that excludes all azi-
muthal variations in the shape of the ligament and subsequently
formed drops. Figure 1(b) illustrates the schematic of the
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computational setup, where the domain is a square of side L. The bot-
tom side of the box acts as the axis of symmetry for the corrugated lig-
ament [detailed view in the inset of Fig. 1(b)], which has an
unperturbed (mean) radius R. The radial profile RðxÞ along the liga-
ment axis can be written as RðxÞ ¼ Rþ eðxÞ, where eðxÞ is considered
to be a perturbation following a normal distribution with a mean value
of 0 and variance e20. Periodic boundary conditions are imposed for the
primary variables on the left and right faces of the domain. Symmetry
boundary conditions are imposed on the bottom side, with the impen-
etrable free-slip condition applied to the top side.

1. Random surface generation

The random surfaces of our spatially periodic ligaments are gen-
erated using a white noise signal, which is produced by a robust ran-
dom number generator.54 This signal is then filtered to retain only the
longest nc ¼ 25 wavelengths, given that only these are relevant for
hydrodynamic instabilities. resulting in the final radial profile of the
ligament with a variance of e20. The surface profile of each individual
ligament in the ensemble is uniquely determined by the seed of the

random number generator.54 This method allows us to create an
ensemble of ligaments with random but unique surface profiles by
varying the seed values.

For infinitely long ligaments, only perturbations with wavelengths
longer than the ligament circumference are unstable to the Rayleigh–
Plateau type capillary instability.2,3 Due to the discrete nature of
numerical simulations, we can initially excite only a finite number of
discrete modes that lie within the unstable spectrum [see Fig. 1(a)].
The number of these unstable discrete modes is proportional to the lig-
ament aspect-ratio K ¼ L=W (Dk � p=K). In our simulations, we
have 15 discrete unstable modes, including several close to the optimal
Rayleigh–Plateau wavelength.

2. Regime of interest

To isolate the influence of initial geometrical shape on the subse-
quent dynamics and drops formed, we exclude inertial forces (axial
stretching rate) in our initial conditions. The mean radius R of the liga-
ment is the characteristic length scale of the problem. As we are deal-
ing with air-water systems (20 degrees Celsius), the density and

FIG. 1. (a) Variation of the linearized growth rate (x) corresponding to the viscous Rayleigh–Plateau (RP) instability as a function of nondimensional wavenumber kR.41 In our
setup, nc discrete wavelengths are excited as part of the initial condition, which fall within the vertical lines A and D. Only a certain number of these nc discrete modes are
unstable (x > 0) with respect to the RP instability (red curve, between vertical lines A and C). The vertical line B represents the approximate value of kR for which we get the
optimal growth rate. (b) Schematic of the computational setup. An infinitely long and axisymmetric corrugated ligament of mean radius R is placed along a side of a square
domain of size L. The bottom side of the box acts as the axis of symmetry, while spatial periodicity is imposed along the horizontal direction. Inset: A close up view of the corru-
gated profile of the ligament, where the local radius is defined as the sum of the unperturbed (mean) radius R and the local perturbation eðxÞ. The material properties of the liq-
uid and gas phases are denoted with the subscripts l and g, respectively, which in our case corresponds to an air–water system with the surface tension coefficient r. (c)
Dynamically adapted octree meshes near the interface, refined based on limiting second gradients of the volume fraction and velocity fields. The interface is represented by the
white contours, the colormap on the top half is based on the axial velocity component, whereas the one on the bottom corresponds to that of vorticity. The colors red and blue
correspond to the higher and lower end values, respectively, in the case of both colormaps.
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viscosity ratios are given as ql=qg ’ 830 and ll=lg ’ 45, respectively.
Thus, our system is characterized by the Ohnesorge number which is
defined as:

Oh ¼ l=
ffiffiffiffiffiffiffiffiffi
qrR

p
: (1)

The Ohnesorge number is simply the square-root of the ratio of the
viscous-capillary length scale (ll ¼ l2=qr) with the characteristic
length scale of the problem (R). Although the configuration initially
has no kinetic energy, a part of the surface potential is immediately
converted into liquid inertia as soon as the system is released from its
static initial conditions. The geometrical shape of any individual liga-
ment in our ensemble is characterized by a mean corrugation ampli-
tude g ¼ e0=R, and aspect-ratio K ¼ L=W, where W ¼ 2R denotes
the mean width of the ligament. The volume of the corrugated liga-
ment per unit spatial period (L) is controlled by K, which also acts as
the theoretical upper bound to the drop size. Additionally, we rescale
physical time with the capillary timescale such that T ¼ t=tr, where
tr ¼ ðqR3=rÞ�1=2. The material properties used in our adimensional
parameters (q, l) correspond to the liquid phase, i.e., water. In the pre-
sent study, we focus our attention on weakly perturbed (g ’ 0:08) and
sufficiently slender ligaments (K ’ 50) with Oh ’ 10�2, which corre-
spond to water ligaments of a diameter close to a 100 lm, representing
the dynamics of the experiments on Refs. 6 and 33 within a relevant
range of dimensionless parameters.55,56

III. RESULTS

The process of drop formation via ligament breakup is determin-
istic, therefore, it is completely characterized by the initial geometrical
shape of the ligament. Stochasticity is introduced by creating an
ensemble of such corrugated ligaments, where each individual case has
a random and unique surface. The statistical properties of the corru-
gated shape are identical across all ligaments in the ensemble. This key
step allows us to incorporate the effects of the myriad underlying pro-
cesses that determine the exact ligament shape in realistic fragmenta-
tion scenarios, that too in a quantitatively precise and reproducible
manner.

A. Statistics of drop formation

In Fig. 2(a), we illustrate the different stages involved in the
breakup of an individual ligament into drops, where the ligament is
randomly selected from our ensemble of size 10 000. Linear theory
based on the Rayleigh breakup2,3 of infinitely long liquid cylinders in a
quiescent medium predicts the initial destabilization phase [panels
T ¼ 8, T ¼ 9 of Fig. 2(a)] proceeding via exponential growth of the
different (unstable) discrete frequencies that constitute the initial sur-
face perturbation. Beyond this linear growth phase, nonlinearities rap-
idly kick in near the breakup zones,1,57,58 eventually resulting in the
formation of “main” and significantly smaller “satellite” droplets, as
observed in panels T ¼ 11, T ¼ 12 of Fig. 2(a). In our study, we refer
to this as the first stage of breakups (S1), where we find a set of “pri-
mary” and “satellite” drops [orange dashed box in Fig. 2(a)], along
with a collection of strongly deformed elongated structures [purple
dashed box in Fig. 2(a)] which themselves resemble small aspect-ratio
ligaments. This stage is immediately followed by the second stage of
breakups (S2), in which the elongated structures break down into
smaller fragments, while the previously formed primary and satellite
drops remain stable.

The number of drops in our ensemble is measured using average
drop count, defined as the ratio between the total number of drops in
the ensemble to the total length of the ligament ensemble, measured in
critical wavelength (kRP ¼ 2p=kRP ’ 9R), corresponding to the maxi-
mum growth rate of the viscous Rayleigh–Plateau instability.2,3,41 In
Fig. 2(c), we plot the temporal variation of average drop count. The
slope of the graph is determined by the competition between breakup
and coalescence events, thus, delineating the two distinct stages of
breakup (S1 and S2), as well as the dominance of coalescence events
beyond T ¼ 14, leading to a slow decrease in the number of drops.

Coming to the statistics of drop sizes, in Fig. 2(b), we show the
probability density functions (PDF) corresponding to drop size distri-
butions as a function of time. The drop diameters are re-scaled by the
initial width (W) of the ligaments. One can clearly observe the pres-
ence and persistence of three distinct peaks in the size distribution for
all instants of time shown. These stable peaks correspond to drop sizes
given by D=W ’ 0:6 for the satellite drops, D=W ’ 1:9 for the pri-
mary drops, and D=W ’ 2:3 for what we refer to as “secondary”
drops.

Assuming that drops are formed by encapsulating the volume of
liquid contained within one optimal wavelength (2p=kRP), we can
compute the diameterDRP as:

p
6
D3
RP ¼ p

4
W2 2p=kRPð Þ ) DRP=W ’ 1:89: (2)

As we can observe in Fig. 2(b), the statistical estimate of our pri-
mary drop size (values distributed around D=W ’ 1:9) across time is
in excellent agreement with the predictions (2) of linearized stability
theory.

The typical size of satellite drops has a strong dependence on the
initial conditions, as meticulously documented in the seminal work of
Ashgriz and Mashayek59 concerning the capillary breakup of jets. In
that study, the authors report a monotonic decrease in the satellite
drop size as one increases the initial perturbation strength (Fig. 12 in
Ref. 59) At the limit of vanishing perturbation strength (matching our
initial conditions), Ashgriz andMashayek obtain a satellite drop size of
D=W ’ 0:6, which matches quite well with the statistical observations
of our satellite drop size [Fig. 2(b)].

Immediately after the first set of breakups (S1), there are plenty
of elongated structures with free ends (including our “secondary”
drops), which might be subject to the end-pinching mechanism.
Several numerical, experimental and scaling analyses in existing litera-
ture (Schulkes,30 Gordillo and Gekle,37 and Wang and Bourouiba6)
have established that the size of drops generated via the end-pinching
mechanism are deterministically characterized by the width of the liga-
ment of origin, given by a near constant value of D=W ’ 1:5
(although with an extremely weak dependence on inertial stretching
rate). Therefore, the absence of any peak in our drop size statistics
[Fig. 2(c)] after T ¼ 12 (beyond S1) around the value D=W ’ 1:5 is a
striking observation, asserting that negligible breakups occur via the
end-pinching mode. Further investigations must be conducted to
establish the exact cause of this absence.

B. First stage of breakups (S1)

We take a closer look at the probability of the large drop sizes
immediately after the first set of breakups. We start with a simple
model for the ligament pinching-off at several locations, with the
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assumption of a small, uniform, and independent probability of the lig-
ament pinching-off in each small length element dx. Therefore, the
spacing ‘ between any two pinch-off locations [see Fig. 3(a)] follows
an exponential probability distribution:

P1ð‘Þ ¼ f expð�f‘Þ; (3)

where f is the average number of pinch-offs occurring over a unit
length. In other words, the probability that the pinched-off length is
between ‘ and ‘þ d‘ is P1ð‘Þd‘. It is, then, easy to show60 that the
number n of pinch-offs over a length x follows the Poisson
distribution:

PPðn; xÞ ¼ ðfxÞn
n!

expð�fxÞ: (4)

The volume of the drop formed by encapsulating the volume between
two successive pinch-off locations separated by a distance ‘ is clearly
V ¼ pW2‘=4 and the diameter of a spherical droplet with that volume

is d ¼ ½ð3=2ÞW2‘�1=3. Using the change of variable relation for proba-
bility distributions P1ð‘Þd‘ ¼ PdðdÞdd we obtain the expression for
the PDF of the diameters as:

PdðdÞ ¼ P1ð‘Þ d‘dd ¼ 2fd2

W2
exp �2fd3=ð3W2Þ� �

: (5)

Thus, the diameter distribution is identical to a Poisson distribution
with n ¼ 2 and we refer to it as the “volume-weighted” Poisson distri-
bution arising from an exponential distribution of pinch-off intervals.

The pinch-off rate for our numerical experiment is determined
by first observing the number of drops formed: 117 329 drops/10000
ligaments �12 drops per ligament. Since the average number of
pinch-offs is equal to one more than the average number of drops, we
obtain f ’ 0:13 as there are 100 units of length per ligament. In
Fig. 3(b), we plot the PDF of the drop size distribution at T ¼ 12, as
well the volume-weighted exponential PDF using f ¼ 0:13 (no free
parameters). We observe that the tail of the distribution matches the

FIG. 2. (a) Destabilization of a typical ligament through the breakup stages. The interface is represented by black contours. Colormaps of the top and bottom halves in each
plot represent the axial velocity and the vorticity magnitude, respectively. In snapshots T ¼ 8; 9; 11, we observe the formation of drops (orange dashed box) corresponding to
the optimally perturbed wavelength of the Rayleigh–Plateau instability. This leads to the first stage of breakups (S1), where the ligament disintegrates into primary, satellite and
secondary drops, along with some elongated structures. The latter (purple dashed boxes), disintegrate into smaller sizes during the second stage of breakups (S2). (b)
Temporal evolution of the probability density functions of dimensionless drop size (D=W ). Across time, the distribution peaks reveal three stable drop sizes, namely satellite
(D=W ’ 0:6), primary (D=W ’ 1:9), and secondary (D=W ’ 2:3) drops. The number of satellite drops decreases with time due to coalescence with adjacent larger drops.
The number of primary and secondary drops increases with time due to the continuous breakup of the elongated structures with aspect-ratios above the critical threshold
(Kcr=W � ðDcr=WÞ3). (c) The average number of drops in the ensemble as a function of time. Before T ¼ 6, breakup is rare. Starting from T ¼ 8, breakup events occurring
on much faster timescales, leading to a peak in number of drops at T ¼ 14. Beyond T ¼ 14, coalescence dominates, leading to a slower decrease in the average drop count.
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predictions of the volume-weighted exponential model of Eq. (5) quite
satisfactorily, even though it cannot capture the probabilities of the pri-
mary and satellite drops.

We observe that the tail of the distribution at T ¼ 12 contains
small peaks [see Fig. 2(a) at T ¼ 12, Fig. 3(b)], which corresponds to
some typical sizes of the elongated structures, and we seek a simplified
model to predict the size of such drops. As demonstrated in Fig. 3(a),
each “elongated drop,” formed after the Poisson-like pinch-off events,
is assumed to be a connected set of smaller characteristic volumes. We
consider, following the V definition given between Eqs. (4) and (5), a
characteristic volume VRP ¼ p

4W
2ð2p=kRPÞ to model any given elon-

gated structure as composed of integer multiples of the volume encap-
sulated under optimal viscous Rayleigh–Plateau wavelength.

Thus, given Vn ¼ n � VRP, the diameters corresponding to the
peaks in the inset of Fig. 3(b) should simply vary as Dn=W ¼ A � n1=3,

where A ¼ DRP=W is the Rayleigh–Plateau optimal drop size. In
Fig. 3(c), we plot the predictions of this simple model against the statis-
tically observed values of the peaks present in the distribution tail at
T ¼ 12 [inset Fig. 3(b)]. The close agreement of our model with the
statistical observations strongly suggests that the volume of each of the
elongated structures (sizes larger than the primary drops) is close to an
integer multiple of the volume of the typical RP primary drop. The
number of primary drop volumes within one elongated structure is
determined by exponentially distributed pinch-offs along the ligament.

C. Second stage of breakups (S2)

We now turn our attention toward the large (D=W > 1:9) “elon-
gated” drops during the second stage of breakups. Considering these
structures as small aspect-ratio ligaments, they can collapse into a

FIG. 3. (a) Representation of the first stage of breakup dynamics (S1). The green vertical lines on the intact ligament (top figure) denote the possible pinch-off locations, spaced
by an ‘ distance, along the length L of the ligament. After pinch-off, the volume Vn of the “elongated drops” can be modeled as multiple of VRP, which corresponds to one unit
of the optimally perturbed viscous Rayleigh–Plateau instability wavelength. (b) Probability density function of the drop size at T ¼ 12, displaying the peaks corresponding to the
satellite and primary drops, as well as the typical sizes of the elongated drop-like structures in the distribution tail. The volume-weighted Poisson distribution (5) is plotted using
a pinch-off rate (f ¼ 0:13) determined by the average number of drops formed per ligament. Inset: Zoom-up on the peaks representing the typical sizes of the elongated struc-
tures. (c) The predictions of our simplified model (orange dashed line) for the typical sizes of the elongated structures, plotted alongside the statistical observations of the drop
sizes (blue circles) that constitute the peaks within the tail of our distribution at T ¼ 12. Assuming that the elongated structures are generated by encapsulating integer multi-
ples of the characteristic volume VRP, the equivalent diameters should scale according to Dn=W � n1=3, where n is the number of characteristic units of VRP.
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single (or two) drop(s) via the capillary-driven retraction of either the
ends, or breakup into multiple drops along its length through a
Rayleigh–Plateau type instability mechanism. Driessen et al.32 demon-
strate using a combination of analytical arguments and numerical sim-
ulations, the existence of a critical aspect-ratio Kcr, below which, the
structure is entirely stable against the Rayleigh–Plateau instability. This
critical Kcr is determined by equating the time taken by the optimal
Rayleigh–Plateau perturbation to grow to the ligament radius, with the
time taken by the two ends to retract to half the ligament length. The
expression for Kcr provided by Driessen et al.,32 but adapted to our
problem setup is given as:

j logðg0Þj
tr � xmax

þ 6Kcrð Þ1=3 � Kcr ¼ 0; (6)

where g0 indicates the degree to which the surface of the ligament
(elongated drop) is perturbed. The perturbation strength correspond-
ing to our initial condition g acts as the lower bound to g0 simply due
to the fact that the perturbations grow as a function of time. The opti-
mal growth rate xmax is a function of the Ohnesorge number, and is
calculated from the dispersion relation obtained by Weber41 [Fig. 1(a)]
for the capillary instability at the low Reynolds limit of the Navier–
Stokes equations. Using a simple root-finding algorithm for the non-
linear Eq. (6), with g0 ¼ g, we obtain the critical aspect-ratio value for
our setup as Kcr ’ 11:5, which is a slight overestimation due to the
fact the our elongated structures are significantly more perturbed than
g. Computing the equivalent diameter for the volume contained in a
ligament of mean widthW and aspect-ratioKcr, we get Dcr=W ’ 2:5.

Revisiting Fig. 2(b), we observe that the number (or probability)
of drops lying to the right of the Dcr=W mark (orange dashed line)
decreases with time starting from T ¼ 12 to T ¼ 16. In addition, the
“secondary” peak is the only one whose height does not decrease with
time, rather, increases steadily with time. This observation can be

explained by the continuous breakup of the elongated drops into
smaller fragments, till they finally attain aspect-ratios just below the
critical threshold Kcr ’ 11:5, at which point they become immune to
any further capillary instability. Looking at peak representing the “sec-
ondary” drops, we observe that they lie just below the critical threshold
Dcr=W ’ 2:5, therefore, demonstrating a qualitative match between
the statistical observations of our simulations and the predictions of
the “Driessen model”32 [Eq. (6)].

Finally, we study the drop size distributions immediately after the
second stage of breakups S2 at T ¼ 14. In terms of candidate probabil-
ity density functions for the large drop sizes, we use the three most
popular choices in existing literature, namely, the Gaussian, Log-
Normal, and Gamma distributions (definitions in the Appendix).

In Fig. 4, we plot the best fits pertaining to the above-mentioned
candidate functions on a log-linear scale, within different ranges of
interest (vertical dashed lines). The histogram bins are ensemble aver-
aged, where the 95% confidence intervals are computed using a stan-
dard bootstrap re-sampling procedure (refer to the Appendix). Figure
4(a) demonstrates that by including the peak representing the primary
drops, the distribution is roughly described by a Log-Normal distribu-
tion, where significant differences from the Gaussian and Gamma fits
mainly appearing near the tail (D=W > 3). Subsequently, in Fig. 4(b)
we restrict our focus to the tail, therefore, excluding the primary drop
peak. We observe the Log-Normal and Gamma fits appears to describe
the probabilities of large sizes with similar accuracy, better than the
Gaussian. This last fit misses the error bars near the tail, while the
other two fall within range. It is important to note that the upper limit
to the drop size is given by the volume of the entire ligament; for our
considerably slender ligaments (K ’ 50), the largest drop size is given
by Dmax=W ’ 4:2. Thus, even while having converged statistics, suffi-
ciently large samples and robust error bars, there is a fundamental lim-
itation when it comes to distinguishing between the curvatures of our

FIG. 4. Drop size distributions at T ¼ 14, representing the drop ensemble immediately at the highest value of average drop count. Averaged distributions (blue points with error
bars) with 95% confidence intervals are plotted on top of the distribution corresponding to the entire ensemble of size N ¼ 138 693 (green histogram). (a) The best fits corre-
sponding to the Gaussian, Log-Normal, and Gamma distribution functions are plotted within a range (dashed vertical lines) that includes the peak representing the primary
drops. We observe that the Log-Normal fit best describes the distribution over the selected range, and differences comparing the Gamma fit appear only near the tail end of the
distribution. (b) The best fit corresponding to the Gaussian, Log-Normal, and Gamma distribution are plotted while excluding the peak representing the primary drop size. For
this range of sizes, Log-Normal and Gamma fits are still closer to the data, but it is difficult to distinguish between each of the three candidate functions.
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exponential candidate functions near the tail region, simply as a conse-
quence of the restricted range (1:9 < D=W < 4:2) of drop sizes.

IV. CONCLUSIONS AND PERSPECTIVES

The fragmentation of liquid masses in high-speed flows, such as
atomizing jets, breaking waves, explosions, or liquid impacts, is of
utmost practical importance, and of interest for the statistical study of
flows. Although drop size distributions can be inferred from experi-
ments, our high-fidelity numerical approach crucially provides the
direct predictions of the mathematical model, i.e., Navier–Stokes with
surface tension. Here, we explore this distribution for the simplified
case of a liquid ligament, where the simplification allows us to obtain
high-fidelity solutions for ensembles that are so large that the statistical
error is smaller than in most experiments to date. Thus, this study con-
structs a solution to the distribution problem-based directly on the
conventionally accepted mathematical model, that too in a quantita-
tively precise, statistically robust, and reproducible framework.

Our statistical distributions reveal three stable drop sizes, generated
via a sequence of two distinct breakup stages. After the first stage, the
probability of the large sizes are shown to follow a parameter-free vol-
ume-weighted Poisson distribution, but immediately after the second
breeakup stage, the large sizes are best described by a two-parameter
Log-Normal distribution, although the Gamma distribution seems to be
the best fit for the distribution tail. Finally, we also point out that due to
the small range of drop sizes involved, it is inherently difficult to distin-
guish between the curvatures of different exponential curves.

Moving forward, we would like to find a quantitative explanation
concerning the absence of the end-pinching drop formation mode in
our observations. In addition, we would like to verify the consistency of
our findings across a broad span of length scales corresponding to
10�4 < Oh < 1. The essential next steps in our effort toward develop-
ing a higher fidelity picture of realistic fragmentation scenarios would
involve incorporating additional layers of complexity on top of our sim-
plified ligament model, such as a stretching flow, turbulent fluctuations
in both liquid and gas phases, as well as high shear rates at the interface.
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APPENDIX: PROBABILITY DENSITY FUNCTIONS

Our drop population P at T ¼ 14 has a size equal to 138, 693.
From P we draw a random sample of size 10 000, which we denote as
S1. Repeating this sampling procedure (with replacement) 200 times,
we create an ensemble of such samples E j ¼ fS 1;…;S 200gj.
Histograms are generated for all samples in E j, given a fixed set of bin-
ning intervals. An ensemble averaged histogram for E j is obtained by
computing the mean of the corresponding bin heights over all samples
S i, which are plotted in Fig. 4 (blue points with error bars). The stan-
dard error on the ensemble averaged bin heights is computed using
bootstrapping: (i) the ensembling procedure is repeated to construct 50
such ensembles (fE 1;…; E 50g), (ii) ensemble averaged histograms are
computed for each E j as previously described, (iii) the standard devia-
tion of the average bin heights across fE 1;…; E 50g gives us the stan-
dard error. The error bars in Fig. 4 represents a range of 4 standard
deviations, i.e., 95% confidence intervals. The probability density func-
tions are defined as:

Gaussian: P x;A;Bð Þ ¼ 1

B
ffiffiffiffiffi
2p

p exp � 1
2

x � A
B

� �2
" #

;

Log-Normal: P x;A0;B0ð Þ ¼ 1

xB0 ffiffiffiffiffi
2p

p exp � 1
2

log x � A0

B0

� �2
" #

;

Gamma: P x; a; bð Þ ¼ ba

CðaÞ x
a�1 exp �bxð Þ:
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