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1 Université Lyon 1, LIRIS,
UMR CNRS 5205, F-69622, France

mohand-said.hacid@univ-lyon1.fr

Abstract—Multi-target regression (MTR) aims at designing
models able to predict multiple continuous variables simultane-
ously. The key for designing an effective feature selection model
for MTR is to develop a framework under which the feature
importances are measured using the correlation between features
and targets in a natural way. So far, feature importances in
MTR problems were evaluated in a global sense where proposed
approaches generate a single ordered list of features common for
all the targets. In this work, we adapt the Ensemble of Regressor
Chains algorithm in tandem with the random forest paradigm
to appropriately model both dependencies among features and
targets in a target-specific (localized) feature ranking process.
We provide empirical results on several benchmark MTR data
sets indicating the effectiveness of our strategy to perform better
than selecting one global ranking for all targets with existing
state-of-the-art algorithms.

Index Terms—Multi-Target Regression, Feature Importance,
Local variable selection.

I. INTRODUCTION

The purpose of a Single-Target Regression (STR) model is
to predict the value of a continuous target given a set of input
features. STR can be generalized to predict multiple targets at
the same time from the same set of features, this generalization
is called Multi-Target Regression (MTR). While STR has been
widely studied by the machine learning community, MTR has
received a more moderate interest.

MTR is a challenging problem that emerges in several
modern applications such as : medicine, for example with
time-series prediction of drug efficacy [8], ecology, with
vegetation condition modeling [6] or soil properties prediction
[16], computer vision, with vegetation recognition [18], or data
streaming, with time series forecasting [2].

On the other hand, Feature ranking FR is another significant
task in machine learning. Often looked as a preprocessing

step, the purpose of this task is to estimate the importance
of each feature in the input space regarding the prediction
of a target, resulting in a ranking. This allows to reduce the
dimensionality of the input space of the model, by selecting
only the most significant variables, thus decreasing the amount
of time and computing power needed to train a model, as
well as reducing the potentiality of introducing noise and bias
via the use of moderately to non-significant and redundant
variables. Furthermore, the less variables the model uses, the
easier it is to understand, an important aspect when working
with domain experts.

Numerous feature ranking approaches has been developed
for single-target prediction [4], [5], however it is far more
limited for MTR. As far as we know, the only tangible study
relies on Random Forest Predictive Clustering Tree (RFPCT)
[14]. This approach is based on a global variable selection:
the feature ranking is determined over all predicted targets.

In this paper, we present a feature ranking method, termed
as Ensemble of Regressor Chains guided Feature Ranking
ERCFR, based on a combination of Ensemble of Regressor
Chains ERC [19] and random forest permutation importance
measure [3]. The main advantage of our approach is its ability
to lead a local feature ranking per target by appropriately
modeling both dependencies among features and targets in
the feature ranking process. It simultaneously estimate the
importance for each feature regarding each target individually
and the intrinsic inter-target relevance as well.

The inquiry here revolves around the improvement of the
predictive abilities of a multi-target regressor using our feature
ranking method, especially confronting global variable selec-
tion. To assess the relevance of our method, we compare it with
the existing RFPCT approach on several benchmark datasets.
We test several uses of feature ranking with different MTR



predictive contexts: Binary Relevance (BR), Regressor Chain
(RC) and Ensemble of Regressor Chains (ERC). Experiment
shows that our method demonstrates better overall results,
highlighting that local variable selection is more efficient than
global variable selection.

The rest of the paper is organized as follows: Section II
briefly reviews recent studies on Multi-target regression tech-
niques. Section III presents the details of proposed ERCFR
approach. Section IV reports the results of our comparative
studies on different real-world data sets. We raise several
issues for future work in Section V and conclude with a
summary of our contribution.

II. RELATED WORK

A. Multi-Target Regression

In Multi-Target Regression, a set of features is associated
to a set of multiple continuous target variables. The issue is
to design a model able to exploit relations between these sets,
the correlations, using variables from the feature set to predict
the ones of the target set.

Let X and Y be two random vectors where X consists
of d input variables X1, . . . , Xd and Y consists of m target
variables Y1, . . . , Ym. More formally, given a set D= [X,Y ] =
{(x1, y1), . . . , (xn, yn)} of n training instances (xi, yi) such
as, xi = {xi

1, . . . , x
i
d} ∈ Rd is a feature vector and yi =

{yi1, . . . , yim} ∈ Rm indicates its affected targets, the objective
in multi-target regression task is to find a function h : Rd 7−→
Rm that assigns to each input vector xi an output vector of
m continuous values ŷi = h(xi) [1].

h : Rd 7−→ Rm

xi = {xi
1, . . . , x

i
d} 7−→ ŷi = {ŷi1, . . . , ŷim}

The aim of model h is to better approximate the true target
vector yi with ŷi.

MTR methods are usually separated in two groups [1]:
Problem Transformation and Algorithm Adaptation. The for-
mer consists in deconstructing the problem into several less
complex single-target problems, and build a model for each
of them. The latter focuses on extending common single-target
approaches into predicting several targets at once, exploiting
the correlations between targets.

The most basic approach of problem transformation is the
Binary Relevance (BR) [1], also know as Single Target (ST)
approach. It consists in viewing each target as a simple single-
target problem, in which the target variables are predicted
independently and the potential inter-correlation between them
is ignored. In order to improve prediction performance, ad-
ditional approaches in this category try to model the target
relationships. To do so, they rely on building models that treat
other targets as additional input variables (meta-inputs). In
this context, the Regressor Chain (RC) method is proposed
in [19] based on the idea of chaining single-target models.
RC involves m regressors linked along a chain (given by a

random permutation of the set of m target variables) where
each regressor deals with the single target regression problem
associated with one target. The feature space of each link in
the chain is augmented with the values of previous targets
in the chain. RC is naturally very sensitive to the order of
prediction. To mitigate this issue, the Ensemble of Regressor
Chain (ERC) [19] generalizes the concept of RC in applying
ensemble training. Several chains of prediction are trained with
different random target orders, and the predictions for each
target is obtained by averaging the prediction of each chain for
the target in question. This method has proved quite successful
in MTR contexts and inspired subsequent works [10], [12].

On the other hand, Algorithm adaptation methods use exist-
ing standard regression algorithms and adapt them to deal with
MTR. To illustrate this first category, we can quote Predictive
Clustering Trees (PCT) [7] which are an adaptation of decision
trees capable of MTR. PCT considers the decision tree as a
hierarchy of clusters where multi-target data is partitioned.
The induction process in PCT is a top-down generation of
clusters. It uses the sum of the variances throughout all targets
to identify the best separation at each node which lead the tree
to predict multiple targets at once. Kocev et al. [14] presented
a random forest based multi-target regression model named
Random Forest Predictive Clustering Tree (RFPCT). The RF-
PCT approach is developed on the top of the PCT algorithm.
In RFPCT, each tree makes multi-target regressions, and then
predictions are combined by averaging the values for each
target. Furthermore, RFPCT exploits different properties of
the ensemble learning mechanism to estimate a global feature
selection relevant to all the targets in MTR problems [14].

B. Performance metrics

Performance evaluation in a multi-target regression context
is different from traditional single target models. The metrics
can be associated with multiple targets simultaneously. The
following performance metrics were used to analyze our
experiments:

The average Relative Root Mean Square Error (aR-
RMSE): The aRRMSE of a model h generated from a
training data set Dtrain is resulting from averaging the relative
root mean squared errors (RRMSE) estimated for each target
variable on the test data set Dtest. RRMSE is equal to the
Root Mean Squared Error (RMSE) for that target divided by
the RMSE of predicting the average value of that target in the
training set Dtrain. Calculation is summarized in equation 1,
where ŷj is the predicted values of h on the target variable
Yj , Ȳj is the mean value of Yj over the training set Dtrain,
n is the number of instances and m is the number of target
variables. It is worth noting that the value of the aRRMSE
ranges from 0 to 1, thus comparing it between datasets is
relevant. As it is an error, the smaller the value, the better the
algorithm performance.

aRRMSE =
1

m

m∑
j=1

√√√√∑
((xi,yi)∈Dtest)

(yij − ŷij)
2∑

((xi,yi)∈Dtest)
(yij − Ȳj)2

(1)



aCC =
1

m

m∑
j=1

∑
((xi,yi)∈Dtest)

(yij − Ȳj)
2(yij − ŷij)

2√∑
((xi,yi)∈Dtest)

(yij − Ȳj)2 ×
∑

((xi,yi)∈Dtest)
(yij − ŷij)

2
(2)

The Relative Performance (RP): RP results from dividing
the aRRMSE of the MTR approach A by the corresponding
of another MTR method B (3). In other words, it measures
the reduction in error of an MTR approach B over another A.
By Definition, an RP greater than one means that B is better
than A in the evaluated problem and vice-versa [9].

RP =
aRRMSEA

aRRMSEB
(3)

III. ENSEMBLE OF REGRESSOR CHAINS GUIDED MTR
FEATURE RANKING

In this section, we discuss in details our ensemble of
regressor chains guided feature ranking (ERCFR) algorithm.

Our approach adapt the ensemble of regressor chains algo-
rithm in tandem with random forest (RF) paradigm, contribut-
ing a new feature selection method for MTR. Indeed, the way
internal estimates are used to measure variable importance in
the random forest paradigm [3] have been influential in our
thinking. The key idea consists to use random forest as the base
models in ERC to calculate the variable importance. RF has
several characteristics that make it ideal for features selection
(robust with high-quality predictive performance, does not
over fit, handle simultaneously categorical and continuous
feature [3], [15]). Furthermore, RF have proved to be efficient
for features selection in different application domains.

Before introducing our ERCFR framework, we describe in
the sequel how RF provide measures of feature importance.
The RF method creates multiple trees using regression trees
(CART) [3]. The variable importance measure in RF is based
on the decrease of predictive performance when values of a
descriptive variable in a node of a tree are permuted randomly.
Basically, decision trees in the forest are developed using a
random selection of data (bootstrapping) and random selection
of variables. Each bootstrap replicate is used as training set to
create trees in the forest. In each bootstrapped data set, almost
33% are left out of bag (oobi), i.e., they are not used for the
construction of the ith corresponding tree ti (i ∈ {1, . . . , T}
where T is the size of the forest). Thus, these patterns can be
used to estimate unbiased feature relevance. Once a tree ti is
grown, the algorithm evaluates the performance of ti in terms
of mean squared error (MSE) by using its corresponding oobi
examples. This results in the predictive error MSE(oobi). To
assess the importance of an input feature f for the tree ti, we
randomly permute the values of f in the set oobi resulting in
the set oobfi . Then, the tree ti is used to predict the targets
of the new out of bag patterns and the mean squared error
MSE(oobfi ) is computed. The importance of the variable f is
then calculated as the relative increase of the MSE after its
values are randomly permuted. The random forest importance
of the feature f is given by the average of its importance

values across all T trees in the forest (c.f. Equation. 4). We
note that the greater the value of the importance measure, the
more relevant is the feature.

I(f) =
1

T

T∑
i=1

MSE(oobfi )−MSE(oobi)

MSE(oobi)
(4)

In our ERCFR approach, the multi target feature selection
problem is handled using the Ensemble of Regressors Chain
strategy (ERC). As mentioned before, ERC works by building
a set of L random regressor chains RC1 . . . , RCL.

In the training of a Regression Chain model RCk, a random
chain, of the set of target variables is selected and for each
target in the chain, models are built sequentially by using the
output of the previous model as input for the next. Assuming
that the random chain Ck = {y1, y2, . . . , ym} is selected,
new m separate regression models are induced. Each model
deals with the single target regression problem associated
with one target yj (1 ≤ j ≤ m) . In our approach, each
regressor is created using the RF algorithm. The first random
forest model concerns the prediction of y1, has the form
RF1 : X → R. The subsequent models RFj,j>1 are learned
on modified training sets Dj = {(x∗1

j , y1j ), . . . , (x
∗n
j , ynj )},

where the original input vectors xi (i ∈ {1, . . . , n}) of the n
training examples have been augmented by the actual values of
all previous targets of the chain to form expanded input vectors
x∗i
j = {xi

1, . . . , x
i
d, y

i
1, . . . , y

i
j−1}. Thus, the Random forests

built for targets yj (j > 1) have the form RFj : X×Rj−1 →
R. Each Random forest RFj (1 ≤ j ≤ m) in the chain allows
us to assess the relevance of each feature in the expanded
space (containing both original features and previous targets)
to the individual target yj . The procedure is repeated for all L
regressor chains (RC1, . . . , RCL). Finally, the average values
of the scores of both features and targets across all targets is
considered. The main advantage of our approach is its ability
to appropriately modeling both dependencies among features
and targets in the target-specific feature ranking process.

Thus, our approach relies on a local variable selection. The
importance value for each feature towards each target and the
importance between the targets are considered, as it allows
to apply MTR approaches that use targets as features, like in
RC or ERC. Algorithm 1 gives a formal description of the
ERCFR training procedure.

IV. EXPERIMENTAL EVALUATION

This section presents the experimental protocol used to
assess the effectiveness of our proposed ERCFR feature
ranking approach. We first establish the questions driving the
approach. Next, we summarize the MTR datasets used for
the experiment, as well as the evaluation metrics. We finally
develop the established evaluation procedure.



Algorithm 1 Training of ERCFR

Require: A multi-target regression training Data set Dtrain =
[Xtrain, Ytrain], number of targets (m), ensemble size of
ERC (L), number of trees performed by the base random
forest learner (T ).

1: Local Importance Initialization
2: for f ∈ columns(XtrainUYtrain) do
3: for target ∈ columns(Ytrain do
4: imp(f, target)← 0
5: end for
6: end for
7: Models building and Feature Relevance estimate
8: for i = 1→ L do
9: Ci ← {y1, ..., ym} a chain of targets in a random order

10: RCi ← Ø
11: X ′

train ← Xtrain

12: for j = 1→ m do
13: D′

train ← [X ′
train, yi]

14: Train a random forest RFj of T trees on D′
train

to predict yi
15: RCi ← RCiURFj

16: for f ∈ columns(X ′
train do

17: imp(f, yj) ← imp(f, yj) +
FeatureImportance(RFj , D

′
train)

18: end for
19: ŷj ← predict(RFj , yi)
20: X ′

train ← (X ′
train U ŷj)

21: end for
22: end for
23: for f ∈ columns(XtrainUYtrain) do
24: for target ∈ columns(Ytrain do
25: imp(f, target)← imp(f, target)/L
26: end for
27: end for
28: return RC, imp

A. Experimental questions

This study is driven towards answering the following ques-
tions:

1) Can feature importance bring improvement to the pre-
dictive abilities of a multi-target regressor ?

2) Is local variable selection more relevant than global
variable selection in a MTR context ?

3) Can importance between target variables bring addi-
tional improvement to the performance of a multi-target
regressor ?

B. Datasets

To evaluate the performance of our approach, we test it on
several MTR datasets from the Mulan Repository [17]. These
datasets encompass real information from various domains:
water quality (andro, enb), airline ticket pricing (atp1d, atp7d),
occupational employment survey (oes10, oes97), etc. The
number of features per dataset ranges from 7 to 411, all

TABLE I: Description of the Multi-target regression data sets
used in the experiments.

Data #Examples #Features #Targets
atp1d 337 411 6
atp7d 296 411 6
oes97 334 263 16
oes10 403 298 16
edm 154 16 2
wq 1060 16 14
enb 768 8 2
slump 103 7 3
andro 49 30 6

being numeric. The number of target varies from 2 to 16, and
the number of examples ranges between 49 and 1060. The
statistics of these data are summarized in the Table I.

C. Performance evaluation

The quality of the feature ranking returned by ERCFR on
all data sets were evaluated through executing three multi-
target regression approaches on them: the single-target (de-
noted by STERCFR) approach which transforms the multi-
target regression task into a series of single learning problems,
the Regressor chain approach (denoted by RCERCFR) and its
ensemble variant denoted by ERCERCFR. These algorithms
were used here as they have shown considerable performance
in training multi-target models in the literature [1], [11].

Feature importances given by ERCFR are incorporated in
STERCFR, RCERCFR and ERCERCFR by adopting the same
methodology in [14]. In [13], the authors propose to use the
weighted distance-based k-nearest neighbor algorithm (kNN)
as a base learner when inducing the MTR approaches. kNN is
a simple and most intuitive technique that has been widely
considered as a powerful tool to evaluate the effectiveness
of feature importance approaches. In the case of regression
problems, the target of a test instance is predicted with the
traditional kNN by averaging the targets associated to the
k nearest neighbors in the training set. Following [14], we
propose to directly use the feature relevance values, produced
by ERCFR, in a weighted version of the Euclidean distance
instead of the original one in the process of finding the closest
instance to the new test observation. The weighted distance dw
between two instances x1 and x2 is simply formulated as:

dw(x
1, x2) =

√√√√ d∑
j=1

wj(x1
j − x2

j )
2 (5)

where wj is the feature importance of feature j produced by
ERCFR.

The idea behind using weighted distance-based kNN is to
measure of how the usage of the feature ranking methods can
benefit performances of multi-target regression methods.

To better assess the feature relevance given by our ERCFR
approach in the RC context, we propose the use of a Regressor-
based Importance Chain (RCI) that builds a unique chain
of targets, capturing the maximum relevance among target
outputs. To bypass the problem of randomly selected chain



order with RC, RCI uses the inter-targets importance matrix
returned by ERCFR and forms a maximum importance chain,
which is used to build a single chained regression model.
To determine this optimal order, the importance of a target
towards the other ones are summed for each target, and the
order is given by decreasing sum. Consequently, the most
impactful target will be predicted first, then becoming a
significant variable in the prediction of the following targets.
This order must demonstrate that the target ranking obtained
thanks to ERCFR further improve performance. The Feature
importance given by ERCFR are also incorporated in RCI
leading to RCIERCFR

To better assess the quality of our ranking, we built the
above MTR methods using all Features (i.e., without feature
ranking). We refer to them respectively as ST, RC and ERC
in the remaining of the paper.

In the sequel, we also compared our feature ranking given
by ERCFR with the recently proposed ensemble feature
ranking method RFPCT [14]. Compared to ERCFR which
leads specific feature pertinence for each target (including both
predictive features and targets), RFPCT generates only a single
ordered common list of predictive features toward all targets.
It is worth noting that this property is convenient for only
executing the single target regression approach (denoted by
STRFPCT) and not for RC and ERC approaches.

We evaluated the performance of the methods using a 10-
fold cross validation. Specifically, around 90% of instances
randomly chosen from the complete data set were used for
the training process (Dtrain), and the remaining 10% were
used as a test data set (Dtest) for measuring the performance
of all compared methods. This process was repeated 10 times.
The overall performance measures was computed by averaging
over those 100 iterations.

The ensemble size in ERC is set to L = 20. The random
forest algorithm used in ERCFR and RFPCT are tuned
similarly. The number of variables to split on at each node and
the number of trees T are set to

√
d and 100, respectively [14].

To make fair comparisons, the number of nearest neighbors for
KNN was set to 5 as suggested by the authors in [14].

D. Discussion

1) Feature Importance evaluation: In this subsection, the
comparative results between the proposed methods STERCFR,
RCERCFR, RCIERCFR, ERCERCFR and the others classic MTR
approaches ST, RC and ERC as well as STRFPCT are pre-
sented.

Detailed performances in terms of aRRMSE and aCC of
each MTR algorithm for all datasets are reported in Tables II,
III and IV. They also presents the obtained Relative perfor-
mance (RP) in terms of aRRMSE when comparing standard
MTR approaches with the one incorporating feature relevance
values given by ERCFR in the last column of each Table.

Several conclusions may be drawn from these results:
• First, as stated in [14], the results indicate that the use

of Feature Ranking tends to increase the predictive
performance of an approach. Indeed, for each MTR

method without feature ranking, their FR-based coun-
terparts, whether RFPCT or ERCFR, outperform the
former by a noticeable margin.

• We found feature ranking given by ERCFR to be remark-
ably effective at improving the performance of multi-
target regression methods including single target (ST as
well as Regressor chain based methods (RC and ERC
over all the metrics. STERCFR, RCERCFR and ERCERCFR
respectively outperform the ST, RC and ERC approaches
(without feature ranking) by a noticeable margin.

• ERCFR exhibits the highest performances in terms of
aRRMSE and aCC measures than the other state-of-the-
art feature ranking method RFPCT. As may be observed
in Table II, the incorporation of feature relevance values
produced by ERCFR in STERCFR has a stronger effect on
significantly improving the predictive performance for all
datasets, compared to RFPCT in STRFPCT. The strategy
proposed in ERCFR to lead a separate feature ranking
per target seems to perform better than selecting one
global ranking for all targets in RFPCT.

• Regarding the Regressor Chain approaches in Table III,
the use of the importance as weights for the prediction
offers little advantage when the target order is randomly
determined. However, the order of prediction is key to
an accurate prediction for a Regressor Chain. The real
strength of the local variable importance appears when
considering the importance of the targets between
each other. These importance allows to determine an
optimal order, thus achieving a more significant relative
performance.

2) Feature ranking evaluation: At a later stage, we want
to confront our approach to RFPCT once again, to observe
if the usage of local variable selection appears more relevant
than global variable selection in terms of performance.

In the sequel, we evaluate the feature ranking of our
ERCFR approach in comparison to RFPCT. To do so, we
perform a new Single target approach, with a standard KNN
as a base predictor. The base predictor is not really important
in this context, as it does not use feature importance directly,
as so the predictor could be any standard simple regression
algorithm, but we stick to kNN for consistency and simplicity.
The feature variables must first be ordered by decreasing
relevance towards the predicted target. As RFPCT achieves
variable selection in a global way, the order will never change,
whatever the target. Conversely, ERCFR is considered locally:
each feature has an importance value regarding each target. As
so, ERCFR appears to be more flexible and more adaptable
to the prediction context. To assess the performance of each
paradigm, we track the evolution of aRRMSE and aCC for
each method as the number of variables used for prediction
increases.

Figures 1 and 2 plot the performance of the standard single
target approach (ST) in terms of aRRMSE and aCC averaged
over the 100 runs against different numbers of selected features
obtained by the above compared approaches. Blue curves rep-
resent the ERCFR approach, and red curves are for RFPCT.



TABLE II: Performance metrics for Single Target approaches

Dataset
Average aRRMSE Average aCC RP

ST STERCFR STRFPCT ST STERCFR STRFPCT STERCFR / ST STRFPCT / STmean std.dev. mean std.dev. mean std.dev. mean std.dev. mean std.dev. mean std.dev.
atp1d 0,456 0,081 0,408 0,080 0,444 0,079 0,883 0,060 0,904 0,050 0,889 0,056 1,118 1,027
atp7d 0,621 0,122 0,546 0,105 0,610 0,128 0,782 0,094 0,828 0,069 0,788 0,092 1,137 1,018
oes97 0,631 0,122 0,595 0,113 0,655 0,144 0,770 0,132 0,798 0,125 0,770 0,135 1,061 0,963
oes10 0,442 0,042 0,406 0,036 0,430 0,043 0,909 0,040 0,922 0,033 0,913 0,036 1,089 1,028

wq 0,930 0,014 0,928 0,014 0,931 0,014 0,375 0,027 0,380 0,025 0,375 0,026 1,002 0,999
enb 0,210 0,059 0,125 0,020 0,144 0,017 0,975 0,013 0,989 0,004 0,989 0,004 1,680 1,458

slump 0,740 0,136 0,684 0,131 0,736 0,131 0,630 0,196 0,685 0,167 0,644 0,187 1,082 1,005
andro 0,543 0,299 0,486 0,256 0,506 0,269 0,783 0,214 0,830 0,152 0,808 0,189 1,117 1,073
edm 0,824 0,182 0,798 0,166 0,798 0,174 0,626 0,126 0,655 0,110 0,654 0,118 1,033 1,033

mean 0,600 0,117 0,553 0,102 0,584 0,111 0,748 0,100 0,777 0,082 0,759 0,094 1,146 1,067

TABLE III: Performance metrics for Regressor Chain approaches

Dataset
Average aRRMSE Average aCC RP

RC RCERCFR RCIERCFR RC RCERCFR RCIERCFR RCERCFR / RC RCIERCFR / RCmean std.dev. mean std.dev. mean std.dev. mean std.dev. mean std.dev. mean std.dev.
atp1d 0,544 0,091 0,548 0,100 0,502 0,087 0,837 0,076 0,830 0,079 0,860 0,069 0,993 1,084
atp7d 0,764 0,150 0,749 0,150 0,740 0,160 0,665 0,141 0,676 0,122 0,699 0,113 1,020 1,032
oes97 0,631 0,122 0,651 0,144 0,628 0,124 0,770 0,132 0,774 0,129 0,773 0,132 0,969 1,005
oes10 0,590 0,079 0,567 0,073 0,510 0,059 0,835 0,067 0,844 0,057 0,873 0,046 1,041 1,157

wq 0,945 0,013 0,934 0,013 0,935 0,014 0,344 0,027 0,368 0,024 0,364 0,026 1,012 1,011
enb 0,210 0,059 0,142 0,018 0,136 0,023 0,975 0,013 0,986 0,004 0,989 0,004 1,479 1,544

slump 0,829 0,143 0,765 0,121 0,800 0,103 0,524 0,212 0,605 0,182 0,603 0,154 1,084 1,036
andro 0,543 0,299 0,487 0,266 0,499 0,275 0,783 0,214 0,831 0,171 0,823 0,184 1,115 1,088
edm 0,825 0,182 0,795 0,168 0,795 0,172 0,624 0,130 0,657 0,111 0,659 0,111 1,038 1,038

mean 0,653 0,126 0,626 0,117 0,616 0,113 0,706 0,112 0,730 0,098 0,738 0,093 1,083 1,111

TABLE IV: Performance metrics for Ensemble of Regressor Chains approaches

Dataset
Average aRRMSE Average aCC RP

ERC ERCERCFR ERC ERCERCFR ERCERCFR / ERCmean std.dev. mean std.dev. mean std.dev. mean std.dev.
atp1d 0,488 0,075 0,454 0,068 0,868 0,063 0,888 0,060 1,075
atp7d 0,640 0,122 0,620 0,096 0,771 0,102 0,793 0,086 1,032
oes97 0,560 0,104 0,528 0,094 0,811 0,117 0,838 0,104 1,061
oes10 0,477 0,040 0,476 0,038 0,908 0,038 0,907 0,037 1,002

wq 0,919 0,011 0,917 0,012 0,389 0,025 0,395 0,024 1,002
enb 0,195 0,035 0,118 0,016 0,980 0,007 0,991 0,003 1,653

slump 0,778 0,118 0,734 0,106 0,633 0,197 0,666 0,166 1,060
andro 0,464 0,234 0,440 0,259 0,810 0,180 0,862 0,149 1,055
edm 0,812 0,166 0,795 0,169 0,635 0,119 0,658 0,111 1,021

mean 0,593 0,101 0,565 0,095 0,756 0,094 0,778 0,082 1,107

In an effort of concision, we do not display the metrics of
all tested datasets, we focus on those with a great number of
features, as we think they illustrate better the phenomenon we
want to observe.

We want to describe the general shape of the metrics
plots. Whether it is ascending (aCC) of descending (aRRMSE)
according to the metrics, the curves of both methods follow
a same pattern: there is first a steep progression for the most
significant variables, towards a progressive softening of the
slope or even often an optimum as for ERCFR, in the case of
atp1d, atp7d or oes10. Then, as variables become less and less
relevant towards the prediction, the curves move to a plateau,
meaning that the further inclusion of variables is no longer
relevant towards the prediction, if not introducing noise and/or
bias.

The most important part of the curve is this first steep
progression we described. It depicts the ability of the fea-
ture ranking method to select the most relevant features.
The steeper the slope, the more relevant the features. As
expected, ERCFR has most of the time a steeper curve
than RFPCT, meaning that it goes further and quicker into
optimality. The performance of ERCFR generally decreases
(respectively increases) swiftly at the beginning (the number
of selected feature is small) in terms of aRRMSE (respectively
aCC) and slows down at the end. This characteristic suggests
that ERCFR ranks the features properly and that a single
target regression algorithm can achieve a very good MTR
performances

Consequently, it means that ERCFR generally outperforms
RFPCT in terms of MTR metrics value. In most cases and for



every number of features, ERCFR achieves a better metrics
value, meaning its prediction is most of the time accurate. In
other words, for a same number of used features, ERCFR
offers a better variable selection regarding the predicted vari-
ables.

These findings show that local variable selection outper-
forms global variable selection in a MTR context, when deal-
ing with a consequent number of features. This is important
in view of the current state of the art global variable selection
methods. The difference is however less visible when having
a smaller number of variables.

V. CONCLUSION

In this paper, we introduced a feature ranking method,
termed as ensemble of regressor chains guided by feature
ranking, based on a combination of Ensemble of Regressor
Chains and Random Forest permutation importance measure.
Our approach leads to a local feature ranking per target by
appropriately modeling both dependencies among features and
targets in the feature ranking process. The main advantage of
this approach is that it simultaneously estimates the importance
for each feature regarding each target individually and the in-
trinsic inter-target relevance as well. The information given by
this importance is the core of our approach, and can be applied
in different MTR contexts. First, it can be used as weights
when computing distances for a distance-based model, like
kNN. The model thus takes into account the relevance of each
feature regarding the prediction of each target. Furthermore,
when the order of prediction is an impactful parameter, as it is
in a Regressor Chain context, the importance between targets
allows to determine an optimal order of prediction. Last but
not least, importance can be used for variable selection when
choosing the most relevant features is decisive. Our approach
is thus based on local variable selection, as opposed to global
variable selection methods, like RFPCT. Experiment showed
that the use of local variable selection almost always leads to
better predictive performance. This is particularly true when
dealing with a great amount of features.

While the emphasis in this paper was on estimating feature
importance in supervised multi-target regression, it is worth
mentioning that the idea underlying our approach may also
be extended to semi-supervised learning feature importance
evaluation in the MTR context.
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(a) atp1d

(b) atp7d

(c) oes10

(d) oes97

Fig. 1: Evolution of aRRMSE as the number of most relevant
features used for prediction increases.

(a) atp1d

(b) atp7d

(c) oes10

(d) oes97

Fig. 2: Evolution of aCC as the number of most relevant
features used for prediction increases.


