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Abstract

Genome-wide association studies (GWAS) have highlighted the importance of pleiotropy in humandiseases, where one gene can impact two or more unrelated traits. Examining shared genetic risk factorsacross multiple diseases can enhance our understanding of these conditions by pinpointing new genesand biological pathways involved. Furthermore, with an increasing wealth of GWAS summary statisticsavailable to the scientific community, leveraging these findings across multiple phenotypes could unveilnovel pleiotropic associations. Existing selectionmethods examine pleiotropy association one by one at ascale of either the genetic variant or the gene, and though cannot consider all the genetic information atthe same time. To address this limitation, we propose a new approach calledMPSG (Meta-analysismodeladapted for Pleiotropy Selection with Group structure). This method performs a penalised multivariatemeta-analysis method adapted for pleiotropy and takes into account the group structure informationnested in the data to select relevant variants and genes (or pathways) from all the genetic information. Todo so, we implemented an alternating directionmethod of multipliers (ADMM) algorithm. We comparedthe performance of the method with other benchmark meta-analysis approaches as GCPBayes, PLACO,and ASSET by considering as inputs different kinds of summary statistics. We provide an application ofour method to the identification of potential pleiotropic genes between breast and thyroid cancers.

1 Introduction
Genome-wide association studies (GWASs) that aim to detect associations between observable traits andindependently-tested genetic variation across the genomehavehighlighted that the phenomenaof pleiotropyis widely spread in human diseases [Solovieff et al., 2013]. Pleiotropy refers to the phenomenonwhere onegenetic locus affects multiple different or possibly unrelated phenotypes. Pleiotropy can be considered atthe scale of the genetic variant, when the variant usually called single nucleotide polymorphism (SNP) isinfluencing different phenotypes, or at the scale of the gene, when the same gene affects different traitsthrough the same or possibly different SNPs. Identification of these pleiotropic effectsmay inform commonbiological mechanisms between different diseases, helping to disentangle their relationships, have implica-tion for personal genomics in disease prevention as genetics tests for one disease could have implicationsfor another disease, and lead to new opportunities for drug development.Analysing several datasets onmultiple phenotypes all together can boost the statistical power for detectingtrue cross-phenotype associations that pleiotropic effects can cause. Though, this requires having accessto individual-level data frommultiple samples on different phenotypes that can be particularly challengingin practice. In the other hand, GWASs are providing an increasing amount of summary data on genotype-
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phenotype associations, and most of these results are made publicly available to the scientific community.Meta-analysis methods that combine summary statistics and corresponding inferential results across stud-ies offer flexibility to jointly study the effect of genes on multiple phenotypes by exploiting both individual-level data and the large number of accessible summary statistics from GWAS results. These methods im-prove the statistical power to detect a true association by exploiting more data for which only summary-level data are available. In the classicalmeta-analysis approach, p-values or effect sizes are combined acrossmultiple studies of the same trait [Evangelou and Ioannidis, 2013]. Under these approaches, only effectsin the same direction can be identified. However, and a pleiotropic variant might even have an oppositeeffect on two traits. Some approaches have been proposed to adapt meta-analysis models for the analy-sis of pleiotropy at the SNP-level. Several methods have been proposed to extend meta-analysis modelsto the analysis of pleiotropy at the SNP-level [Majumdar et al., 2018, Bhattacharjee et al., 2012, Ray andChatterjee, 2020]. Especially, the methods ASSET [Bhattacharjee et al., 2012] and more recently PLACO[Ray and Chatterjee, 2020] have been proposed to answer this problematic in frequentist frameworks.Though, these methods only consider pleiotropy at the SNP-level and test every SNP independently. Somepleiotropy effects involving different SNPs of the gene between studies can be missed.
Incorporating prior biological information in GWAS such as group structure information (gene or pathway)has shown some success in classical GWAS approaches. Recent efforts have been made to develop meth-ods allowing to explore cross-phenotype associations both at the SNP and gene-level [Asgari et al., 2023,Baghfalaki et al., 2021, Sutton et al., 2022]. To our knowledge, only the GCPBayes methods have beenproposed to handle summary statistics [Baghfalaki et al., 2021]. GCPBayes approaches allow for pleiotropyselection at both variable (SNPs) and group (genes) levels withmultiple diseases in each group. Themethodperformsmeta-analysis for each groupwithin a Bayesianmeta-analysis framework, adapted for pleiotropy.Such methods can also consider the correlation between genetic variants of the same gene in the analy-sis. Though, this method only allows each gene to be analysed one by one independently, and the highcomputational cost of the Bayesian framework can make the analysis of very long genes difficult.
Here, we propose a novel penalised multivariate meta-analysis method adapted for pleiotropy that takesinto account the group structure information nested in the data by considering all genetic variables simul-taneously. We implement an alternating direction method of multipliers (ADMM) algorithm to performboth regularisation at the variable and group levels. The performance of the novel approach is comparedto benchmark gene-level and SNP-level meta-analysis approaches on simulated data by considering dif-ferent kinds of summary data as inputs. Our method is then applied to the identification of potentialpleiotropic genes between breast and thyroid cancer by using summary statistics from pathway candidategenes.

2 Method

2.1 Notation and terminology
The term "summary statistics" refers to the key information about the genetic associations identified ina GWAS without sharing individual-level data. Suppose that we have access to summary statistics infor-mation from S independent GWAS. For each study s = 1, ..., S, the available information pertains to theestimators β̂s of βs ∈ Rp, where β̂s = (β̂1s, ..., β̂ps)

⊤ is typically theminimizer of some loss function, with
V̂s their corresponding estimated covariance matrices, and p is the number of variables in each dataset.In such a context, the set of available variables can slightly differ between studies. Then, for more gener-ality, we will note p the union of all available variables. For j = 1, ..., p, let Sj denote the set of studieswhich contain the jth covariate in the summary statistics. Let the genetic information be structured into
G groups. A group is a set of variables with a biological meaning. For example, this can be a set of SNPsbelonging to a gene, or SNPs belonging to a set of genes acting together in the same biological pathway.For g = 1, ..., G, let πg denote the set of mg covariates belonging to the group g. Then, p =

∑G
g=1 mg.

Considering the genetic information being structured into groups, we can model V̂s as a block diagonal
matrix of V̂ (g)

s ≡ Ĉov(β̂
(g)
s ), with g = 1, ..., G and β̂

(g)
s is a subset of the vector β̂s containing only theentries corresponding to variables within group g. When raw data are available, it is possible to obtain V̂s.In the context of GWAS analysis, each genetic variant is generally tested independently for its associationwith a disease with some regression techniques by using some adjustment variables. Then, in the contextof post-GWAS analysis, summary statistics are usually in the form of β̂s vectors of regression coefficientsof multiple univariate analyses and the corresponding vectors of variance estimators v̂s = (v̂1s, ..., v̂ps)

⊤.
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In this case, V̂s is in the form of a diagonal matrix.
2.2 Inverse-variance estimator for meta-analysis design
Traditional meta-analysis methods propose to analyse each covariate separately. Though, a multivariatemeta-analysis version called the inverse-variance estimator (∑S

s=1 V̂
−1
s )−1(

∑S
s=1 V̂

−1
s β̂s) has been sug-gested, which is the minimizer of∑S

s=1(β̂s−βs)
T V̂ −1

s (β̂s−βs) under the constraint that β1 = . . . = βS[Lin and Zeng, 2010]. Motivated by this estimator, a sparse meta-analysis (SMA) method has been devel-oped to performvariable selection inmeta-analysiswhen rawdata are not available [He et al., 2016].
In the context of pleiotropy, different studies are performed on possibly multiple different phenotypes. Incontrast to traditional meta-analysis, the true underlying effects for a given genetic variant can vary sig-nificantly across studies in terms of magnitude and direction. Hence, we propose an approach to performgroup and variable selection in the context of pleiotropy detection by usingmultivariate meta-analysis thatcan take into account group information structures in the data.
2.3 Model for group and variable selection
We consider the multivariate inverse-variance estimator without constraint being our objective functionas follows:

ℓ(B) =

G∑
g=1

S∑
s=1

(β̂(g)
s − β(g)

s )T V̂ (g)−1

s (β̂(g)
s − β(g)

s ), (1)

where the matrixB ∈ Rp×S consists of the vectors βs ∈ Rp stacked column-wise for s = 1, . . . , S. Each
βs is itself partitioned intoG groups as βs = (β

(1)⊤

s , . . . , β
(G)⊤

s )⊤.
OurMeta-analysis approach, adapted for Pleiotropy by integrating Sparsity intoGroups of variables (MPSG),is based on penalised likelihood maximisation. Using the likelihood form for independent datasets (1), wepropose the penalised likelihood estimate:

B̂α,λ = argmin
B∈Rp×S

{
ℓ(B) + λ(1− α)∥B∥G2,1

+ λα∥B∥l2,1
} (2)

where ∥B∥G2,1
=

G∑
g=1

√
mg

√∑
i∈πg

∑
s∈Si

β2
is

and ∥B∥l2,1 =

G∑
g=1

∑
i∈πg

√∑
s∈Si

β2
is

where λ ≥ 0 and α ∈ [0, 1] are regularisation parameters weighting a G2,1-norm penalty ∥B∥G2,1 and
l2,1-norm penalty ∥B∥l2,1 . The parameter λ controls an overall amount of penalisation, while α deter-mines how much penalisation is used for each penalty. TheG2,1-norm (as in [Wang et al., 2012]) fixes thegroup structure across studies and allows group selection by encouraging sparsity at the group-level. The
l2,1-norm allows to select relevant pleiotropic variables within groups. The penalisationmatches the penal-isation proposed in previous work [Sutton et al., 2022, Wang et al., 2012] but is adapted to a meta-analysiscontext.
2.4 ADMM algorithm
We propose to fit this model defined in (2) using the alternating direction method of multipliers (ADMM)algorithm [Boyd et al., 2011]. To simplify the notation we define λ1 = (1− α)λ and λ2 = λα. The ADMMformulation of our optimisation problem is given by

min
B,Z

{
ℓ(B) + λ1∥Z∥G2,1

+ λ2∥Z∥l2,1
}

subject toZ = B

3



Algorithm 1 CalculateZ(t+1)

Require: λ > 0 and α ∈ ]0, 1[
1: λ1 ⇐ (1− α)λ and λ2 ⇐ λα
2: Y (t+1) ⇐ B(t+1) +U (t)

3: for j = 1, . . . , p do
4: if [Y (t+1)](j,·) ≤ λ1 then
5: [Z(t+1)](j,·) ⇐ 0
6: else
7: [Z(t+1)](j,·) ⇐

∥[Y (t+1)](j,·)∥F−λ1

∥[Y (t+1)](j,·)∥F
[Y (t+1)](j,·)

8: end if
9: end for
10: for g = 1, . . . , G do
11: if ∥[Z(t+1)](πg,·)∥F ≤ λ2 then
12: [Z(t+1)](πg,·) ⇐ 0
13: else
14: [Z(t+1)](πg,·) ⇐

∥[Z(t+1)](πg,·)∥F−λ2

∥[Z(t+1)](πg,·)∥F
[Z(t+1)](πg,·)

15: end if
16: end for

whereZ ∈ Rp×K . The augmented Lagrangian introduces an auxiliary variableU with Lagrange multiplier
ρ and is given by the following:

Lρ(B,Z,U) = ℓ(B) + λ1∥Z∥G2,1 + λ2∥Z∥l2,1
+

ρ

2
∥B −Z +U∥2F +

ρ

2
∥U∥2F

The ADMM algorithm makes the following set of updates:
Bt+1 = argmin

B∈Rp×K

Lρ(B,Z(t),U (t))

Zt+1 = argmin
Z∈Rp×K

Lρ(B
(t+1),Z,U (t))

U t+1 = U (t) +B(t+1) −Z(t+1).

Each iteration of the algorithm consist of three sub-problems. The first updateB(t+1) can be solved ana-lytically. The update U (t+1) is simply a dual variable update. The update Z(t+1) is a convex optimisationproblem. Following [Jenatton et al., 2011], the update Z(t+1) can be seen as a conjugation of proximalfunctions that can be solved sequentially with problems separable in every group. Let [A](πg,·) denote therows of a matrixA corresponding to the SNP indices in πg. the updateZ(t+1) consists of the following twoloops proposed in algorithm 1.
2.5 Adaptive weights
While penalised approaches allow for the shrinkage of coefficients to zero, they come at the cost of possiblyexcessive shrinkage of non-zero coefficients. This has motivated several approaches that aim to reducethe effect of shrinkage on non-zero coefficients. Based on our previous work [Sutton et al., 2022], wehave incorporated an adaptive lasso approach that assigns weights to each coefficient of lasso and grouplasso penalties. Using an appropriate choice for the weights, penalisation for non-zero coefficients can bereduced and these coefficients will suffer less shrinkage. Hence, we proposed weighted versions both for
G2,1 and ℓ1-norm and as follows (respectively),

G∑
g=1

γg

√∑
i∈πg

∑
s∈Si

β2
is, and G∑

g=1

∑
i∈πg

wi

√∑
s∈Si

β2
is.

Analogous to the similar adaptive group and sparse-group lasso material in the literature [Zou, 2006,Münch et al., 2021], the G2,1-norm weights γg are taken to be the inverse of the G2,1-norm of the OLS
4



coefficients for g = 1, ..., G. Similarly, we take the weights for the ℓ2,1-norm to be wi where wi is chosenas the inverse of the ℓ2,1-norm applied to the OLS coefficients for i = 1, ..., p. That is, we set the weightsto be:
γg =

1√∑
i∈πg

∑
s∈Si

β̂2
is

, and wi =
1√∑
s∈Si

β̂2
is

.

2.6 Hyper-parameters tuning
The tuning parameters α and λ control the trade-off between model sparsity and model fit. Motivated bythework ofWang and Leng [He et al., 2016], we determine the tuning parameter by amodified informationcriterion (MIC) as following:

MICα,λ = SSEα,λ +

S∑
s=1

qs,α,λ
log(ns)

ns

where SSEα,λ =

G∑
g=1

S∑
s=1

(β̂(g)
s − β̂

(g)
s,α,λ)

⊤V̂ (g)−1

s (β̂(g)
s − β̂

(g)
s,α,λ)

where β̂(g)
s,α,λ is an element of the solution of (2) for the study s and the group g, under α and λ, and qα,λ,s

is the total number of nonzero components of β̂s,α,λ. TheSSEα,λ measures the overall model fit for theSstudies, whereas the second part of theMICα,λ measures themodel complexity among theS studies.Theappendix section A provides consistency results for model selection of the MIC criterion.

3 Simulation studies
In this section, we compare the performance of our proposedmethod with other state-of-the-art methodsGCPBayes, ASSET, and PLACO to detect pleiotropic effects using GWAS summary statistics (Baghfalaki et al.[2021], Bhattacharjee et al. [2012], Ray and Chatterjee [2020]). The main aim of our methods is to detectpleiotropic signals at both variable and group levels. Hence, we want to investigate the performance ofour method to detect pleiotropic groups comprising relevant variables, and to select the relevant variablesinside pleiotropic groups.
3.1 Design of the simulations
For these simulations, we considered p = 250 variables divided intoG = 5 groups ofmg = 50 variables for
S = 2 studies. We generated summary statistics for both studies i.e. beta estimates and their covariancematrix. Performances are evaluated over 50 replications. In each replication, we generated beta estimatesfor each study βs, where s = 1, 2, considering 60% group sparsity, two out of five groups have a non-zeroeffect. For groups with non-zero effect, we considered intra-group sparsity (IGS) using the form of the true
effects in study 1, β(g)

1 following the simulation settings in [Baghfalaki et al., 2021] as below:
β
(g)
1 = (βtrue.ζ

⊤
(1−IGS).mg

, 0⊤IGS.mg
)⊤ (3)

where βtrue ∈ Re is the magnitude of the effects, ζq = (ζ1, · · · , ζq)⊤ a q-dimensional vector of a discreterandom variable which takes the value 1 or −1 with equal probabilities, and 0q denotes a q-dimensional
vector with 0 elements. Then, we set β(1)

2 = β
(1)
1 and β

(2)
2 = −β

(2)
1 . We set IGS = 30% and βtrue = 0.1

and 0.15. For each group, the regression coefficients β̂(g)
s were simulated using a distributional assumptionas follows:

β̂s
(g)

∼ Nmg (β
(g)
s , V (g)), s = 1, 2, g = 1, · · · , G, (4)

where V (g) is defined as V (g) = σ2

N (Σ(g))−1 with Σ(g) a compound-symmetry matrix of correlation be-tween variables in the group with non-diagonal components ρ, σ2 a noise calculated such as the signal-to-noise ratio (SNR) in each βtrue value set up is fixed (SNR = 0.3 for βtrue = 0.1, and SNR = 0.6 for
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βtrue = 0.15), andN is the number of individuals from which the Σ(g) is supposed to come from. SNR is
defined by βs

TΣsβs

σ2 , with Σs a block diagonal matrix of Σ(g)
s , g = 1, ..., G.

We set N to be the same for both studies s. We test different scenarios with ρ = 0.25, 0.5 and N =
1500, 2000, 2500, 3000. For the subsequent simulation analyses, we considered V̂ (g) = V (g),∀g = 1, . . . , G.
3.1.1 Simulation study by varying the distribution of effects in groups

To look at the behaviour of each approach when the distribution of the global effect among variables isdifferent, we performed another simulation study for IGS = 70%, by keeping other parameters unchanged,and doing this only for βtrue = 0.1 and SNR = 0.3. This scenario corresponds to the same global amountof effect per group, but distributed into fewer variables within the group.
3.1.2 Simulation study with G = 50

As a final simulation study, we wanted to test the performances of each approach with a smaller n
p ratio byadding more non-pleiotropic groups in the data. Hence, we performed a simulation study with G= 50 butby keeping the number of pleiotropic groups to 2, resulting in 96% of group sparsity. The other parametersstayed unchanged.

3.1.3 GWAS summary statistics

The summary statistics required for gene-level analysis include the estimated coefficients of regressionand their covariance matrix. However, in the GWAS context, the covariance matrix between estimatesmay not be available but only include the regression coefficients and their standard errors. Although thecomplete summary data can be approximated by using some reference panels in this context, this is notalways possible. Thus, we considered two important scenarios in order to investigate the possible loss ofpower by not considering the intra-group covariance between beta estimates.
In the first scenario, we considered the general form of multivariate summary statistics with the corre-sponding non-diagonal covariance matrices that we refer to as (ND), generated as presented in the 3.1section. In the second scenario, we considered the situation when only the diagonal of the covariancematrix is known. Hence, the covariance matrix considered as inputs for the methods is the diagonal of V,that we refer to as (D).
3.1.4 Selection of pleiotropic signals

We first applied the MPSG method to the simulated data over different scenarios. The main aim of ourmethod is to detect pleiotropic signals at both variable and group levels. A variable is selected as pleiotropicby MPSG if its components for both studies are non-zero in the final model determined through the MIC.A group is selected as pleiotropic if at least one variable in the group is selected as pleiotropic. In thissimulation study, we decided to perform every analyses by using both MPSG with (MPSG-W) and withoutadaptive weights (MPSG), to see how the use of these weights can affect the method.
We used three other methods to compare the performance of MPSG to detect pleiotropy signals withbenchmark approaches considering summary statistics. We considered the Bayesianmeta-analysismethodGCPBayes [Baghfalaki et al., 2021] also designed for the detection of pleiotropy at group and variable levels.We considered the DS function as this is the best scalable GCPBayes method and the one that is usedin practice for the analysis of genome-wide datasets [Asgari et al., 2023]. We evaluated variable-levelpleiotropy detection by comparing our method to widely used single-SNP meta-analysis approaches suchas ASSET [Bhattacharjee et al., 2012] and PLACO [Ray and Chatterjee, 2020].
ASSET is a frequentist method that extends standard fixed effects meta-analysis by considering the effectsin each analysis to be either in the same direction or possibly opposite directions allowing the detection ofopposite pleiotropic effects. This approach uses summary statistics and does not take into account groupstructure. The outputs of this approach are a p-value of global association and an optimal subset of non-nullstudies that are associated with each SNP. To consider a variable as pleiotropic, we selected only variablesthat remained significant at the 5% level after an FDR correction for both studies.
PLACO is a frequentist method that differs from ASSET by testing the null hypothesis based on the productof the Z-statistics of the genetic variants across two studies and derive a null distribution of the test statistic
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in the form of a mixture distribution that allows for fractions of variants to be associated with none or onlyone of the traits. Similarly to ASSET, we choose to consider a variable as pleiotropic by selecting onlyvariables that remained significant at the 5% level after a FDR correction.
GCPBayes is a Bayesian statistical framework based on Monte Carlo Markov chain (MCMC) through Gibbssampling. The DS method models a multivariate Dirac spike and slab priors for each group. Groups withboth θ ≥ 0.5 and a local Bayesian false discovery rate lower than 0.05 were selected as pleiotropic(see [Baghfalaki et al., 2021] for more details). For selected groups, we considered non-zero variablesby using a 95% credible interval (CI). Variables with non-zero effects in both studies were selected aspleiotropic.
3.2 Simulation results
We evaluated the performance of all the approaches of interest by considering the Matthews correlationcoefficient (MCC) [Chicco and Jurman, 2020] as the first measure. The detail of true positive rate (TPR) andtrue negative rate (TNR) is also considered.
3.2.1 Group-level pleiotropy

The results of the MCC for pleiotropy at group-level are reported in Tables 1 and 3. The detail of TPR andTNR are also reported in Appendix B (Supplementary tables 7, 9, 10, and 13).
As expected, both three approaches show better results in the context of full consideration of the co-variance matrix of the summary statistics (ND) than with diagonal matrix (D) only. Both three methodsshow similar general tendencies in terms of performances when the intra-group correlation is moderated(ρ = 0.25) or high (ρ = 0.50), but all approaches are more affected by lack of power when only thediagonal of the covariance matrix is available (D).
When IGS = 30%, DS shows better performance than MPSG in every scenario (see Table 1). In particular,MPSG can lack of power when N is small as TPR can be low. The addition of adaptive weights to ourapproach brings more power to select pleiotropic groups without lowering the TNR, hence the methodshows better performances with than without adaptive weights.
When IGS = 70%, MPSG-W reaches similar level of performances than DS. In particular, when N is small,MPSG-W shows slightly better results than DS in the (D) context, and slightly worse in the (ND) context.This gap slightly increases both ways when IGS is higher.
The simulation study with G = 50 by adding groups with no effects showed similar results (see supple-mentary tables 14, 17, 19).
3.2.2 Variable-level pleiotropy

The results of the MCC for pleiotropy at variable-level are reported in Tables 2 and 4. The details of TPRand TNR are also reported in Appendix B (Supplementary tables 8, 11, 12, and 15).
As for group-level pleiotropy, both MPSG approaches show better results for (ND) summary statistics thanwith (D) summary statistics only. Though, DS (ND) and DS(D) have really similar performances when IGS ishigh.
DS (ND) and MPSG-W (ND) performs always better than SNP-level methods ASSET and PLACO. DS (D) alsoperforms better than ASSET and PLACO when IGS= 30%, but PLACO performs better or slightly the samewhen IGS= 70%.
MPSG-W (ND) shows the best performances for variable-level pleiotropy selection in always all scenarios,or is very similar to DS (ND). MPSG-W (D) can though struggle in terms of TPR, and so in MCC when N issmall, that can result from the fact themethod is not capable of selecting any true groups in such scenarios.In scenarios where MPSG-W (D) selects groups the right way, it performs similarly to PLACO and DS (D).Hence, MPSG-W has the best performance when (ND) summary statistics are available and still seems toperform well in selecting the right pleiotropic variables inside selected groups when only (D) summarystatistics can be used. It is worth noting that if most of the time MPSG-W outperforms MPSG, MPSG(ND)shows better results than MPSG-W(ND) in the two scenarios with IGS = 30%, ρ = 0.5, and N = 1.5k.MPSG(ND) still outperforms DS(ND) most of the time.
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The simulation study with G = 50 by adding groups with no effects showed similar results (see supple-mentary tables 16, 18, 20).
Table 1: Results of simulations for group pleiotropy with S = 2 for IGS=30%. Mean (Standard Deviation)of Matthews Correlation Coefficient (MCC) over 50 replications, expressed as percentages. DS: Dirac Spikefunction of GCPBayes; MPSG: MPSG without adaptive weights; MPSG-W: MPSG with adaptive weights.

N DS MPSG MPSG-W
ρ = 0.25. β = 0.11.5k ND 1 (0) 0.37(0.48) 0.82(0.35)D 0.96(0.17) 0(0) 0.19(0.34)2k ND 1(0) 0.65(0.47) 0.99(0.05)D 0.99(0.05) 0.05(0.22) 0.40(0.48)2.5k ND 1(0) 1(0) 0.99(0.05)D 0.99(0.05) 0.35(0.48) 0.63(0.47)3k ND 1(0) 0.98(0.08) 0.99(0.05)D 1(0) 0.51(0.5) 0.77(0.42)
ρ = 0.25. β = 0.151.5k ND 1(0) 0.99(0.07) 1(0)D 1(0) 0.61(0.49) 0.77(0.42)2k ND 1(0) 0.99(0.05) 1(0)D 1(0) 0.77(0.42) 0.90(0.3)2.5k ND 1(0) 0.99(0.05) 1(0)D 1(0) 0.87(0.33) 0.94(0.24)3k ND 1(0) 0.99(0.05) 0.99(0.05)D 1(0) 0.92(0.27) 0.97(0.15)
ρ = 0.50. β = 0.11.5k ND 1(0) 0.69(0.46) 0.94(0.21)D 0.83(0.34) 0(0) 0.15(0.32)2k ND 1(0) 0.82(0.39) 1(0)D 0.93(0.19) 0.01(0.09) 0.3(0.45)2.5k ND 1(0) 0.98(0.14) 1(0)D 0.96(0.16) 0.23(0.42) 0.35(0.48)3k ND 1(0) 0.99(0.05) 1(0)D 0.96(0.16) 0.33(0.47) 0.42(0.48)
ρ = 0.50. β = 0.151.5k ND 1(0) 0.99(0.05) 0.99(0.05)D 1(0) 0.33(0.47) 0.54(0.49)2k ND 1(0) 0.99(0.05) 0.99(0.05)D 1(0) 0.49(0.5) 0.66(0.46)2.5k ND 1(0) 0.99(0.05) 1(0)D 1(0) 0.58(0.5) 0.75(0.43)3k ND 1(0) 0.99(0.05) 1(0)D 1(0) 0.74(0.44) 0.77(0.42)

4 Real data analysis of breast and thyroid cancers

4.1 Study population
To first validate its utility, we applied MPSG to the analysis of the pleiotropy between breast and thyroidcancers. These two cancers are both more frequent in women and are influenced by hormonal and repro-ductive factors.
Individuals diagnosed with breast cancer are more likely to develop thyroid cancer as a secondary malig-nancy than patients diagnosed with other cancer types, and vice-versa [Nielsen et al., 2016]. This associ-ation does not seem to be explained by the consequences of cancer treatment or increased surveillance,but rather suggests common etiologies or common genetic mechanisms for the two diseases. Thyroid and
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Table 2: Results of simulations for variable pleiotropy with S = 2 for IGS=30%. Mean (Standard Deviation)of Matthews Correlation Coefficient (MCC) over 50 replications, expressed as percentages. DS: Dirac Spikefunction of GCPBayes; MPSG: MPSG without adaptive weights; MPSG-W: MPSG with adaptive weights.
N DS MPSG MPSG-W ASSET PLACO

ρ = 0.25, β = 0.11.5k ND 0.46(0.15) 0.22(0.29) 0.39(0.23) 0.38(0.16) 0.28(0.17)D 0.44(0.17) 0(0) 0.08(0.2)2k ND 0.59(0.16) 0.44(0.34) 0.69(0.24) 0.50(0.17) 0.44(0.19)D 0.58(0.18) 0.06(0.22) 0.34(0.45)2.5k ND 0.69(0.17) 0.83(0.13) 0.82(0.21) 0.57(0.18) 0.56(0.21)D 0.69(0.18) 0.34(0.46) 0.57(0.47)3k ND 0.77(0.16) 0.89(0.09) 0.89(0.16) 0.63(0.15) 0.67(0.22)D 0.77(0.16) 0.49(0.48) 0.74(0.41)
ρ = 0.25, β = 0.151.5k ND 0.77(0.16) 0.89(0.09) 0.9(0.14) 0.63(0.15) 0.67(0.22)D 0.76(0.17) 0.58(0.46) 0.74(0.41)2k ND 0.87(0.13) 0.91(0.07) 0.95(0.08) 0.71(0.11) 0.82(0.18)D 0.87(0.13) 0.74(0.4) 0.87(0.3)2.5k ND 0.93(0.09) 0.92(0.06) 0.97(0.07) 0.75(0.09) 0.9(0.14)D 0.93(0.1) 0.83(0.31) 0.92(0.24)3k ND 0.96(0.07) 0.94(0.04) 0.98(0.02) 0.77(0.07) 0.95(0.1)D 0.96(0.08) 0.87(0.26) 0.96(0.14)
ρ = 0.50, β = 0.11.5k ND 0.32(0.21) 0.38(0.26) 0.35(0.17) 0.26(0.21) 0.19(0.19)D 0.31(0.23) 0(0) 0.07(0.2)2k ND 0.43(0.26) 0.51(0.27) 0.56(0.25) 0.36(0.23) 0.29(0.25)D 0.42(0.28) 0.02(0.13) 0.27(0.42)2.5k ND 0.53(0.26) 0.7(0.18) 0.62(0.26) 0.45(0.23) 0.38(0.29)D 0.52(0.27) 0.22(0.4) 0.33(0.46)3k ND 0.61(0.26) 0.75(0.15) 0.68(0.25) 0.50(0.23) 0.47(0.32)D 0.60(0.28) 0.32(0.45) 0.38(0.47)
ρ = 0.50, β = 0.151.5k ND 0.60(0.27) 0.77(0.15) 0.71(0.25) 0.50(0.23) 0.47(0.32)D 0.59(0.28) 0.32(0.45) 0.49(0.48)2k ND 0.71(0.25) 0.81(0.14) 0.80(0.23) 0.58(0.22) 0.61(0.32)D 0.70(0.27) 0.47(0.47) 0.61(0.47)2.5k ND 0.78(0.23) 0.88(0.11) 0.87(0.19) 0.63(0.22) 0.70(0.3)D 0.77(0.24) 0.55(0.47) 0.72(0.43)3k ND 0.83(0.21) 0.89(0.09) 0.89(0.17) 0.67(0.19) 0.77(0.28)D 0.83(0.22) 0.70(0.42) 0.75(0.42)

breast cancers share some similarities in their biology: both are more frequent in women, and are influ-enced by hormonal and reproductive factors.
To investigate pleiotropy between these two distinct cancers, we used individual level data from the CECILEstudy, a French population-based case-control study on breast cancer (1,125 cases and 1,172 controls), andfrom the French studies included in the EPITHYR consortium on thyroid cancer (CATHY, Young-thyr, andE3N studies totalizing 1,129 women cases and 1,174 women controls) (Truong et al. [2021]). The study de-signs, quality control, and specific data cleaning were described in detail previously [Clavel-Chapelon et al.,2010, Baghfalaki et al., 2021, Cordina-Duverger et al., 2017, Xhaard et al., 2015]. Only women of Europeanancestry were kept for the analyses. To illustrate our methods, we selected variants from genes includedin 10 candidate pathways with only few overlapping SNPs. For each pair of SNPs belonging to the samegenes in extremely high correlation (r2 > 0.98), one SNP was removed. Then, only SNPs belonging to nonoverlapping groups (genes and pathways) were selected. At the end of the quality filtering process, thetwo datasets included the same panel of 3,766 SNPs within 331 genes (see table 5).
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Table 3: Results of simulations for group pleiotropy with S = 2 for IGS=70%. Mean (Standard Deviation)of Matthews Correlation Coefficient (MCC) over 50 replications, expressed as percentages. DS: Dirac Spikefunction of GCPBayes; MPSG: MPSG without adaptive weights; MPSG-W: MPSG with adaptive weights.
N DS MPSG MPSG-W

ρ = 0.25. β = 0.11k ND 0.96(0.12) 0.8(0.36) 0.92(0.15)D 0.69(0.39) 0.27(0.43) 0.72(0.4)1.5k ND 1(0) 0.93(0.15) 0.94(0.13)D 0.86(0.33) 0.64(0.45) 0.84(0.32)2k ND 1(0) 0.92(0.15) 0.97(0.1)D 0.93(0.22) 0.75(0.38) 0.9(0.23)2.5k ND 1(0) 0.92(0.15) 0.98(0.08)D 0.99(0.05) 0.87(0.27) 0.97(0.09)3k ND 1(0) 0.94(0.15) 0.98(0.08)D 1(0) 0.9(0.17) 0.99(0.07)
ρ = 0.50. β = 0.11k ND 0.98(0.08) 0.89(0.26) 0.92(0.17)D 0.44(0.48) 0.21(0.4) 0.52(0.47)1.5k ND 1(0) 0.95(0.13) 0.96(0.12)D 0.66(0.44) 0.4(0.47) 0.67(0.44)2k ND 1(0) 0.94(0.15) 0.99(0.07)D 0.77(0.39) 0.54(0.47) 0.78(0.39)2.5k ND 1(0) 0.93(0.14) 0.97(0.09)D 0.82(0.35) 0.55(0.46) 0.83(0.33)3k ND 1(0) 0.93(0.15) 0.98(0.08)D 0.85(0.35) 0.69(0.42) 0.84(0.33)

Table 4: Results of simulations for variable pleiotropy with S = 2 for IGS=70%. Mean (Standard Deviation)of Matthews Correlation Coefficient (MCC) over 50 replications, expressed as percentages. DS: Dirac Spikefunction of GCPBayes; MPSG: MPSG without adaptive weights; MPSG-W: MPSG with adaptive weights.
N DS MPSG MPSG-W ASSET PLACO

ρ = 0.25, β = 0.11k ND 0.67(0.18) 0.71(0.31) 0.85(0.12) 0.55(0.18) 0.67(0.21)D 0.54(0.34) 0.28(0.43) 0.63(0.4)1.5k ND 0.86(0.13) 0.91(0.07) 0.94(0.07) 0.69(0.14) 0.85(0.15)D 0.76(0.31) 0.67(0.44) 0.82(0.34)2k ND 0.94(0.08) 0.94(0.05) 0.97(0.03) 0.75(0.11) 0.93(0.1)D 0.88(0.23) 0.78(0.37) 0.92(0.22)2.5k ND 0.97(0.05) 0.94(0.04) 0.98(0.02) 0.79(0.08) 0.97(0.05)D 0.96(0.08) 0.89(0.23) 0.98(0.02)3k ND 0.98(0.03) 0.94(0.04) 0.99(0.02) 0.81(0.07) 0.98(0.03)D 0.98(0.03) 0.95(0.03) 0.98(0.02)
ρ = 0.50, β = 0.11k ND 0.53(0.28) 0.67(0.24) 0.73(0.2) 0.42(0.23) 0.5(0.31)D 0.35(0.4) 0.21(0.4) 0.45(0.44)1.5k ND 0.72(0.26) 0.83(0.13) 0.81(0.19) 0.57(0.24) 0.67(0.32)D 0.57(0.41) 0.42(0.48) 0.61(0.45)2k ND 0.79(0.24) 0.87(0.11) 0.88(0.15) 0.64(0.23) 0.77(0.28)D 0.68(0.38) 0.57(0.47) 0.7(0.41)2.5k ND 0.85(0.2) 0.89(0.1) 0.91(0.12) 0.7(0.19) 0.85(0.22)D 0.75(0.36) 0.59(0.47) 0.8(0.36)3k ND 0.9(0.16) 0.91(0.08) 0.93(0.11) 0.73(0.17) 0.88(0.18)D 0.81(0.35) 0.72(0.41) 0.81(0.36)
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Table 5: Non-overlapping pathway chosen for the study
Pathway Description #Gene #SNP
F_obesity Obesity and obesity-related phenotypes 48 857F_DNA DNA repair 88 610F_circadian Circadian Rhythm 23 559F_xeno Xenobiotics metabolism 68 531F_pub_he2010_4 Precocious or delayed puberty 16 329F_cell_cycle Cell cycle 19 249F_tobacco_hsa00760 Nicotinate and nicotinamide metabolism 23 229F_inflammatory Inflammatory response 26 182F_oglyc_hsa00511 Other glycan degradation 15 111F_folate Folate metabolism 5 50

4.2 Statistical analysis
To perform pleiotropy analysis, we used the same summary statistics for anymeta-analysismethods. Thesesummary statistics have been calculated previously in each dataset and for each gene (i.e. the regressioncoefficients and their covariance matrix for each gene) from a Bayesian hierarchical GLM by using Gaussianpriors from the BhGLM package [Baghfalaki et al., 2021].
We run a pleiotropy analysis both at gene and SNP levels by usingMPSGwith andwithout adaptive-weights,for comparison. We also compared the results from our methods with previously published pleiotropyanalysis results on the same data using the Bayesian meta-analysis model called GCPBayes at SNP andgene level [Baghfalaki et al., 2021]. We preferentially considered the DS function as it is the one used inthe pipeline for genome-wide analysis of pleiotropy [Asgari et al., 2023]. A gene was then considered aspleiotropic with GCPBayes if θ > 0.5. We also considered SNP-level pleiotropy analysis results by using themethod ASSET. These results used an FDR correction for multiple testing. As only pleiotropic effects wereexplored, we only considered SNPs detected in both datasets. For better SNP-level results comparison, wealso performed the most up-to-date SNP-level analysis method PLACO on these data. To get comparativeresults with ASSET, we applied an FDR to correct for multiple testing to consider pleiotropic SNPs by usingPLACO.
4.3 Application results
Previous SNP-level analysis with ASSET did not detect any significant SNPs after a multiple testing correc-tion. As for ASSET, SNP-level pleiotropy analysis using PLACO did not detect any SNP after amultiple testingcorrection.
Gene-level analysis using MPSG with adaptive weights selected 15 genes as pleiotropic. These results havebeen reported in Table 6. MPSG was able to retrieve the 9 previously selected genes by GCPBayes [Bagh-falaki et al., 2021]. The 9 common genes were also detected with MPSG without the use of adaptiveweights.
MPSGalso selected 6 additional genes as pleiotropic. As the previously reportedRORA (RAR-related orphanreceptor A) gene located in chromosome 15, MPSG retrieved another gene of the ROR-Family ReceptorTyrosine Kinases, RORB (RAR-related orphan receptor B) located on chromosome 9. Both proteins encodedby these genes help to regulate some genes involved in circadian rhythm. IL18RAP (interleukin 18 receptoraccessory protein), and UGT1A8 (UDP glucuronosyltransferase family 1 member A8) , are both located inchromosome 2. GLB1 (GLB1 galactosidase beta 1), RPA3 (replication protein A3), and CASC1, an alias for
DNAI7 (dynein axonemal intermediate chain 7), are respectively located in the chromosomes 3, 7, and 12.
CASC1 is in the same genomic region as the previously reported gene BCAT1 (branched-chain amino acidtransaminase 1).
One additional genewas selected as pleiotropic by using this strategy, PARP2 (poly(ADP-ribose) polymerase2) located on chromosome 14 which has been previously identified as potentially pleiotropic gene on thesame datasets by using raw data ([Sutton et al., 2022]). PARP2 also obtained a substantial probability ofbeing pleiotropic with GCPBayes (θ = 0.24) but did not reach the selection threshold.
MPSG was able to select genes with different numbers of SNPs, from short genes as IL18RAP with 13 SNPs
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to longer genes as RORA with 281 SNPs. The method was also able to select numerous SNPs as potentiallypleiotropic inside the selected genes, with also different proportions of selected SNPs in selected genes:from 8% of selected SNPs for RPA3 to almost 67% for RORA.
In particular, MPSG selected many more SNPs than GCPBayes in genes that were selected in common.GCPBayes results from the DS approach selected only one pleiotropic SNP for each of NEGR1, NPAS2, and
EGFR, were MPSG selected respectively 33, 13, and 28 SNPs. The HS approach of GCBayes, that is mostsuitable for SNP selection than DS, only selected 2 more pleiotropic SNPs than DS in NEGR1, and also foundan additional pleiotropic SNP in EBF2, for which MPSG selected 11 SNPs.
Table 6: Pleiotropic genes detected byMPSGwith adaptive-weights, and corresponding θ value for GCP-
Bayes. The number of selected SNPs for each gene is represented in parentheses. Genes in bold weredetected by every gene-level meta-analysis approaches. The first column indicates the genetic locus, start-ing with the chromosome number, and followed by the arm of the chromosome (q: long, p: short) and theexact position of the locus from the centromere.

Locus #SNPs Gene (#SNPs) GCPBayes θ (#SNPs)1p31.1 93 NEGR1 (33) 1.00 (1)1p22.1 77 TGFBR3 (19) 1.002q11.2 60 NPAS2 (13) 1.00 (1)2q12.1 13 IL18RAP (3) 8.00 x 10-4
2q37.1 58 UGT1A8 (8) 0.00243p22.3 22 GLB1 (6) 0.00437p21.3 25 RPA3 (2) 4.05 x 10-8
7p11.2 103 EGFR (28) 1.00 (1)8p21.2 60 EBF2 (11) 1.009p21.2-p21.1 197 LRRN6C (101) 1.009q21.13 34 RORB (5) 5.56 x 10-14
12p12.1 50 BCAT1 (13) 1.0012p12.1 17 CASC1 (3) 0.002315q22.2 281 RORA (188) 0.9916q12.2 122 FTO (43) 1.00

5 Computational time
We carry out a short simulation study using the current implementation of the MPSG R package to explorethe computational time of ourmethod and compare it with the other state-of-the-art gene-level pleiotropymethod GCBPayes. To have comparative results, we used the DS function of the GCPBayes package that ismore scalable in terms of computation than the HS method and so more suitable to a pleiotropy analysisat a genome-wide scale.
This simulation study has been conducted on a server with Intel® Xeon® Processor E7-8860 v4 2.20 GHz,516 GB RAM, CentOS 7.9.2009. Parallelisations have been implemented to perform the calculations of theMPSGmethod on a 2D-grid of hyperparameters and can be used. We choose to simulate data by consider-ing different sets with 9 groups and to runMPSG and GCPBayes for these 9 groups by using parallelizationsover 9 cores (to match with the number of α values tested).
We considered S = 2 studies for all simulations. As the calculation times of the methods can be affected bythe size of the groups considered, we chose to vary the size of the genes for each simulation by considering
mg = 50, 100, 200, and 500. Groups were generated by using the same procedure used in the simulationsection, with the following parameters: GS = 2

3 , IGS = 1
2 , N = 2500, ρ = 0.25, βtrue = 0.1, SNR = 0.3. Thecomputational time is also dependant on thenumber of hyperparameters tested forMPSG, and thenumberof iterations of the Gibbs sampler for DS. For DS, we set the number of iterations to 20, 000 with 10, 000a burn-in, as performed in [Baghfalaki et al., 2021]. For MPSG, we used a 2D-grid of 9 α values and 30 λvalues to calculate the best model with theMIC.We performed these simulations by using bothMPSGwithand without adaptive weights to compare both performances.

We used themicrobenchmark function from themicrobenchmark R package to compare the performancesof both methods, by performing each simulation 10 times. Figure 1 presents the boxplots of the calcula-
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tion times for each of the three approaches on batches of 10 simulations according to the different grouplengths.
As expected, the computational time increases when the number of variables within a group increases.The computational time is shorter for MPSG without the use of adaptive weights in every scenario. GCP-Bayes by using the DS function has the longest computational time in every scenario, and the gap withboth MPSG approaches is increasing greatly with the gene lengths, ranging from twice as long as MPSGwithout adaptive weights for mg = 50 to more than 20 times for mg = 500. It can also be noted that theincorporation of adaptive weights into the MPSG method increases the average calculation time by 10 to40% depending on the scenarios.
Results of these simulations show thatMPSG can allow to compute fast gene-level pleiotropy analysis, witha significant improvement over GCPBayes, especially in genome-wide contexts where some genes with avery high number of SNPs are present. This should remain true even by increasing significantly the numberof hyper-parameters tested for the recovery of the best model by using MPSG.

Figure 1: Computational times over group length for both GCPBayes, MPSG, and MPSG with adaptive-weights methods. Computational time is represented in the log10 scale. Dash lines show median values inevery scenario for each method.

6 Discussion
Meta-analysis methods adapted for pleiotropy that combine summary statistics and corresponding infer-ential results across studies offer flexibility to jointly study the effect of genetic variants on multiple phe-notypes by exploiting both individual level data and a large number of accessible summary statistics fromGWAS results. Then, with the high number of covariates in GWAS data it is crucial to select the mostrelevant variables to enhance model accuracy and to provide better interpretability of the results. Further-more, considering known biological structures of the data as genes or pathways, can provide more statis-tical power to identify relevant pleiotropic signals and help in the interpretation of the results. We presenta novel feature selection meta-analysis method adapted for pleiotropy detection at the gene (or pathway)and the SNP-level in GWAS data. MPSG uses penalised likelihood, exploiting different penalties, to inducestructured sparsity at a the gene and the SNP-level. This method takes into account the effect of linkagedisequilibrium in groups by incorporating known group structures, considering all the pool of structureddata together in a single comprehensive analysis of multiple traits. It takes into account heterogeneity inthe size and direction of the genetic effects across traits. The method uses an ADMM algorithm to reachconvergence and a MIC is then computed to select the best model according to two hyperparameters forgroup and variable regularization along studies.
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We applied our method to the identification of potential pleiotropic genes between breast and thyroidcancer by using summary statistics from candidate pathways data. MPSG retrieved the 9 genes previouslyidentified by GCPBayes and allowed the identification of 6 additional potentially pleiotropic genes betweenbreast and thyroid cancers.
We have compared the performance of the novel approach with benchmark gene-level and SNP-levelpleiotropy-based meta-analysis approaches through simulated studies by considering different kinds ofsummary data as inputs. Simulation study shown that the use of adaptive weights increased the perfor-mances of the method in almost all scenarios. It has been also shown that MPSG has slightly lower perfor-mances in detecting pleiotropy at the gene-level than the benchmark approach GCPBayes. Though, thesecomparative results were dependent on the underlying distribution of the effects in groups, being morefavorable to MPSG in scenarios with less causal SNPs and a higher correlation in relevant groups, whichis very likely in a real context. MPSG also has better performances than GCPBayes in detecting pleiotropyat SNP-level in selected groups. Finally, group-level methods MPSG and GCPBayes have shown better per-formances than SNP-level only methods, especially when full summary statistics were available. On theother hand, this was not always true when only summary statistics from GWAS results (diagonal) wereavailable. Notably, MPSG’s performance collapses more than that of GCPBayes in this case. This showsthe importance of summary statistics considerations. When individual data are available, the choice ofthe first stage analysis has to be made carefully to build proper multivariate summary statistics. Whenonly GWAS summary statistics are available, some extra work can be performed to better approximatefull summary statistics considering the linkage disequilibrium structure from a correct reference panel (https://pan.ukbb.broadinstitute.org/). Recent works have been made to impute full summary statisticswhen the empirical covariance of the covariate-response pair is not available, to detect biologically causalvariants [Chen et al., 2024, He et al., 2024].
It should be noted that taking into account the group structure requires labeling variables into groups. Wechoose to annotate SNPs to genes according to their genetic coordinates as it is commonly used in such acontext. Though, it is well known that most of the identified SNPs by GWAS on complex diseases such ascancers are located in non-coding regions [Liu et al., 2020]. Hence, mapping trait-associated SNPs to theirnearest gene can fail to identify the functional gene [Smemo et al., 2014]. As a futurework, it could be of in-terest to rather consider functional SNPs-to-genes annotations by integrating external others “omics” datathrough the analysis with MPSG, as it has been proposed for several methods in other contexts [Gerringet al., 2021]. For example, this could be handled by working on some extension of adaptive weights.
We had access to two candidate pathway datasets and then considered the analysis of pleiotropic genesand SNPs between two studies, but MPSG can handle more than two studies in the same analysis. Though,the selection of a pleiotropic gene in such a context could have different meanings and then lead to inter-pretation difficulties. For example, only two out of three studies could be relevant for a signal, but cannotbe highlighted. Hence, future work could also consider an additional regularization structure to allow forstudy selection in selected groups.

7 Conclusion
Wepresent a novel feature selectionmeta-analysismethod at group and variable levels adapted for pleiotropydetection in genome-wide data. Our method is way faster than the state-of-the-art GCPBayes approachwith almost as good performances in detecting pleiotropy at the gene-level when adaptive weights andproper inputs are considered, and shows better performances at the SNP-level inside selected genes.The methods have been implemented in a user-friendly R statistical package called “MPSG", available at
https://github.com/PESugier/MPSG.
As a meta-analysis method, it offers the flexibility to be used on any kind of response variable in GWASdata, and can also be useful for the detection of pleiotropic signals in other kinds of structured data as forexample expression data by considering pathways as a group of genes. This method could be extendedto study selection in pleiotropic genes, and the integration of multiple external omics data for a betterconsideration of functional biology in SNPs-to-genes annotations.
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A Appendix A: Consistency of the MIC criterion
The proof follows the framework presented in [He et al., 2016]. We assume throughout that for each
study s, nsV̂s →p Σs and assuming block diagonal matrix we have nsV̂

(g)
s →p Σ

(g)
s ,∀g = 1, . . . , G.For each study s, we also assume that ns/n → νs as n → ∞. Let νmin = min1⩽s⩽S {νs} and νmax =

max1⩽s⩽S {νs}.
Let M denote an arbitrary model, Mη denotes the model under η = (α, λ), and MT denote the truemodel. We say that M is an under-fitted model if MT ̸⊂ M and an over-fitted model if MT ⊂ M and
M ≠ MT . Define

β̂s,M = argmin
βs∈Rp:βjs=0,∀j /∈M

(
βs − β̂s

)⊤
V̂ −1
s

(
βs − β̂s

)
.

Further, we assume V̂s as a block diagonal matrix of V̂ (g)
s ≡ Ĉov(β̂

(g)
s ), with g = 1, ..., G. Then, by re-

arranging the variables with the variable group structure we denote β̂s,M = (β̂
(1)⊤

s,M , . . . , β̂
(G)⊤

s,M )⊤. Due tothe assumption of the independence between group, we also have

β̂
(g)
s,M = argmin

β
(g)
s ∈Rmg :β

(g)
is =0,∀i∈(πg∩M̄)

(
β(g)
s − β̂(g)

s

)⊤
V̂ (g)−1

s

(
β(g)
s − β̂(g)

s

)

Generally, remark that β̂s,M ̸= β̂s because of the constraint that β(g)
js = 0,∀j /∈ M and futher for some

g we have β̂(g)
s,M ̸= β̂

(g)
s .

Suppose that η∗ = (α∗, λ∗) yields the true model, ηu = (αu, λu) yields an under-fitted model, and ηo =
(αo, λo) yields an overfitted model. We wish to prove that, with high probability,MICηu

> MICηt
and

MICηo
> MICη∗ .

A.1 Proof ofMICηu > MICη∗

Both β̂
(g)
s,η∗ and β̂

(g)
s are consistent for β(g)

s . Further, we have ∀g = 1, . . . , G nsV̂
(g)
s →p Σ

(g)
s and∑S

s=1 qs,η∗
log(ns)

ns
→ 0 then it is easy to verify thatMICη∗ = op(1).

Now, for ηu:

MICηu
=

G∑
g=1

S∑
s=1

(β̂(g)
s − β̂(g)

s,ηu
)T V̂ (g)−1

s (β̂(g)
s − β̂(g)

s,ηu
)

+

S∑
s=1

qs,ηu

log(ns)

ns

MICηu ≥
G∑

g=1

S∑
s=1

(β̂(g)
s − β̂(g)

s,ηu
)T V̂ (g)−1

s (β̂(g)
s − β̂(g)

s,ηu
)

MICηu
≥

G∑
g=1

S∑
s=1

(β̂(g)
s − β̂

(g)
s,Mηu

)T V̂ (g)−1

s (β̂(g)
s − β̂

(g)
s,Mηu

)

MICηu
≥ min

MT ̸⊂M

G∑
g=1

S∑
s=1

(β̂(g)
s − β̂

(g)
s,M)T V̂ (g)−1

s (β̂(g)
s − β̂

(g)
s,M)

→
G∑

g=1

S∑
s=1

(β(g)
s − β

(g)
s,M)T V̂ (g)−1

s (β(g)
s − β

(g)
s,M) > 0
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AsMT ̸⊂ M (i.e.,M is an underfittingmodel) at least one component of βs,M is 0 when the correspond-ing component of βs is not, and so the difference between the two terms is different from 0. Then, since
∀s,∀g, V̂ (g)−1

s is definite positive, the limit of the last element is strictly positive.
A.2 Proof ofMICηo > MICη∗

Let find an lower bound forA = n (MICηo −MICη∗):

A ⩾ν−1
max

G∑
g=1

S∑
s=1

ns

(
β̂(g)
s − β̂(g)

s,ηo

)⊤
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The second inequality follows from the definition of β̂(g)
s,Mηo

. The third inequality holds because the con-
sidered model is an overfitted model. In the last inegality, the first term is Op(1) because for any M ⊃
MT , β̂

(g)
s,M is √ns consistent; the second term is also Op(1); and the third term goes to infinity. Hence,

MICηo > MICη∗ with probability tending to 1 .
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B Appendix B: Simulation study

Table 7: Results of simulations for group pleiotropy with S = 2 andG = 5 for IGS=30%. Mean (StandardDeviation) of True Positive Rate (TPR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W

ρ = 0.25. β = 0.11.5k ND 1 (0) 0.37(0.48) 0.84(0.36)D 0.95(0.18) 0(0) 0.17(0.31)2k ND 1(0) 0.66(0.48) 1(0)D 0.99(0.07) 0.06(0.24) 0.39(0.48)2.5k ND 1(0) 1(0) 1(0)D 0.99(0.07) 0.36(0.48) 0.63(0.47)3k ND 1(0) 1(0) 1(0)D 1(0) 0.52(0.5) 0.77(0.42)
ρ = 0.25. β = 0.151.5k ND 1(0) 1(0) 1(0)D 1(0) 0.62(0.49) 0.77(0.42)2k ND 1(0) 1(0) 1(0)D 1(0) 0.78(0.42) 0.9(0.3)2.5k ND 1(0) 1(0) 1(0)D 1(0) 0.88(0.33) 0.94(0.24)3k ND 1(0) 1(0) 1(0)D 1(0) 0.92(0.27) 0.98(0.14)
ρ = 0.50. β = 0.11.5k ND 1(0) 0.69(0.46) 0.94(0.22)D 0.81(0.35) 0(0) 0.14(0.3)2k ND 1(0) 0.82(0.39) 1(0)D 0.91(0.22) 0.02(0.14) 0.3(0.45)2.5k ND 1(0) 0.98(0.14) 1(0)D 0.96(0.17) 0.24(0.43) 0.35(0.48)3k ND 1(0) 1(0) 1(0)D 0.96(0.17) 0.34(0.48) 0.41(0.48)
ρ = 0.50. β = 0.151.5k ND 1(0) 1(0) 1(0)D 1(0) 0.34(0.48) 0.53(0.49)2k ND 1(0) 1(0) 1(0)D 1(0) 0.5(0.51) 0.66(0.47)2.5k ND 1(0) 1(0) 1(0)D 1(0) 0.58(0.5) 0.75(0.43)3k ND 1(0) 1(0) 1(0)D 1(0) 0.74(0.44) 0.77(0.42)
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Table 8: Results of simulations for variable pleiotropy withS = 2 andG = 5 for IGS=30%. Mean (StandardDeviation) of True Positive Rate (TPR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W ASSET PLACO

ρ = 0.25, β = 0.11.5k ND 0.28(0.15) 0.17(0.24) 0.25(0.22) 0.14(0.12) 0.14(0.12)D 0.28(0.16) 0(0) 0.05(0.19)2k ND 0.44(0.2) 0.37(0.3) 0.6(0.34) 0.36(0.17) 0.28(0.19)D 0.44(0.2) 0.06(0.24) 0.34(0.46)2.5k ND 0.58(0.21) 0.8(0.22) 0.77(0.3) 0.44(0.19) 0.42(0.24)D 0.57(0.22) 0.36(0.48) 0.57(0.49)3k ND 0.68(0.21) 0.91(0.15) 0.87(0.23) 0.51(0.17) 0.55(0.27)D 0.68(0.22) 0.52(0.5) 0.75(0.43)
ρ = 0.25, β = 0.151.5k ND 0.97(0.05) 0.99(0.04) 1(0.01) 0.71(0.1) 0.98(0.04)D 0.97(0.06) 1(0) 1(0)2k ND 0.99(0.02) 1(0) 1(0) 0.73(0.08) 1(0.01)D 0.99(0.03) 1(0) 1(0)2.5k ND 1(0.01) 1(0) 1(0) 0.74(0.07) 1(0.01)D 1(0.01) 1(0) 1(0)3k ND 1(0.01) 1(0) 1(0) 0.74(0.07) 1(0)D 1(0.01) 1(0) 1(0)
ρ = 0.50, β = 0.11.5k ND 0.19(0.18) 0.28(0.2) 0.2(0.17) 0.15(0.15) 0.09(0.13)D 0.18(0.18) 0(0) 0.05(0.18)2k ND 0.3(0.25) 0.41(0.26) 0.44(0.34) 0.23(0.21) 0.18(0.21)D 0.29(0.26) 0.02(0.14) 0.26(0.43)2.5k ND 0.4(0.29) 0.64(0.26) 0.51(0.36) 0.31(0.23) 0.27(0.27)D 0.4(0.29) 0.24(0.43) 0.34(0.48)3k ND 0.49(0.31) 0.69(0.24) 0.58(0.35) 0.37(0.24) 0.36(0.33)D 0.49(0.32) 0.34(0.48) 0.38(0.49)
ρ = 0.50, β = 0.151.5k ND 0.84(0.24) 0.96(0.09) 0.93(0.15) 0.6(0.22) 0.83(0.26)D 0.82(0.27) 0.78(0.42) 0.82(0.38)2k ND 0.91(0.16) 0.97(0.07) 0.97(0.09) 0.65(0.18) 0.9(0.18)D 0.9(0.18) 0.82(0.39) 0.93(0.24)2.5k ND 0.78(0.28) 0.93(0.11) 0.89(0.2) 0.57(0.23) 0.78(0.3)D 0.71(0.38) 0.6(0.49) 0.8(0.39)3k ND 0.97(0.07) 0.99(0.05) 0.99(0.03) 0.71(0.11) 0.97(0.07)D 0.97(0.08) 0.96(0.2) 1(0.01)
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Table 9: Results of simulations for group pleiotropy with S = 2 andG = 5 for IGS=30%. Mean (StandardDeviation) of True Negative Rate (TNR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W

ρ = 0.25. β = 0.11.5k ND 1(0) 0.99(0.05) 0.98(0.08)D 1(0) 1(0) 1(0)2k ND 1(0) 0.99(0.07) 0.99(0.05)D 1(0) 0.99(0.05) 1(0)2.5k ND 1(0) 1(0) 0.99(0.05)D 1(0) 0.99(0.05) 0.99(0.05)3k ND 1(0) 0.98(0.08) 0.99(0.05)D 1(0) 0.99(0.05) 0.99(0.05)
ρ = 0.25. β = 0.151.5k ND 1(0) 0.99(0.07) 1(0)D 1(0) 0.99(0.05) 0.99(0.05)2k ND 1(0) 0.99(0.05) 1(0)D 1(0) 0.99(0.05) 1(0)2.5k ND 1(0) 0.99(0.05) 1(0)D 1(0) 0.99(0.07) 1(0)3k ND 1(0) 0.99(0.05) 0.99(0.05)D 1(0) 1(0) 0.99(0.05)
ρ = 0.50. β = 0.11.5k ND 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2k ND 1(0) 1(0) 1(0)D 1(0) 0.99(0.05) 1(0)2.5k ND 1(0) 1(0) 1(0)D 1(0) 0.99(0.05) 1(0)3k ND 1(0) 0.99(0.05) 1(0)D 1(0) 0.99(0.05) 1(0)
ρ = 0.50. β = 0.151.5k ND 1(0) 0.99(0.05) 0.99(0.05)D 1(0) 0.99(0.05) 1(0)2k ND 1(0) 0.99(0.05) 0.99(0.05)D 1(0) 0.99(0.05) 0.99(0.05)2.5k ND 1(0) 0.99(0.05) 1(0)D 1(0) 1(0) 1(0)3k ND 1(0) 0.99(0.05) 1(0)D 1(0) 1(0) 1(0)
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Table 10: Results of simulations for group pleiotropy with S = 2 andG = 5 for IGS=70%. Mean (StandardDeviation) of True Positive Rate (TPR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W

ρ = 0.25. β = 0.11.5k ND 1(0) 1(0) 1(0)D 0.85(0.34) 0.7(0.46) 0.87(0.32)2k ND 1(0) 1(0) 1(0)D 0.92(0.23) 0.82(0.39) 0.95(0.21)2.5k ND 1(0) 1(0) 1(0)D 0.99(0.07) 0.94(0.24) 1(0)3k ND 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)
ρ = 0.50. β = 0.11.5k ND 1(0) 1(0) 1(0)D 0.64(0.44) 0.44(0.5) 0.68(0.45)2k ND 1(0) 1(0) 1(0)D 0.75(0.39) 0.6(0.49) 0.78(0.39)2.5k ND 1(0) 1(0) 1(0)D 0.81(0.36) 0.62(0.49) 0.85(0.34)3k ND 1(0) 1(0) 1(0)D 0.85(0.35) 0.76(0.43) 0.85(0.34)
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Table 11: Results of simulations for variable pleiotropywithS = 2 andG = 5 for IGS=30%. Mean (StandardDeviation) of True Negative Rate (TNR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W ASSET PLACO

ρ = 0.25, β = 0.11.5k ND 1(0) 1(0.01) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2k ND 1(0) 1(0.01) 0.99(0.01) 1(0) 1(0)D 1(0) 1(0.01) 1(0.01)2.5k ND 1(0) 0.98(0.02) 0.99(0.01) 1(0.01) 1(0)D 1(0) 0.99(0.02) 0.99(0.01)3k ND 1(0) 0.97(0.02) 0.99(0.01) 0.99(0.01) 1(0)D 1(0) 0.98(0.02) 0.99(0.01)
ρ = 0.25, β = 0.151.5k ND 1(0) 0.97(0.01) 1(0) 1(0) 1(0)D 1(0) 0.98(0.01) 1(0)2k ND 1(0) 0.97(0.02) 1(0) 1(0) 1(0)D 1(0) 0.98(0.01) 1(0)2.5k ND 1(0) 0.97(0.01) 1(0) 1(0) 1(0)D 1(0) 0.98(0.01) 1(0)3k ND 1(0) 0.97(0.01) 1(0) 1(0) 1(0)D 1(0) 0.98(0.01) 1(0)
ρ = 0.50, β = 0.11.5k ND 1(0) 0.99(0.01) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2k ND 1(0) 0.99(0.01) 0.99(0.01) 1(0) 1(0)D 1(0) 1(0) 1(0.01)2.5k ND 1(0) 0.98(0.02) 0.99(0.01) 1(0) 1(0)D 1(0) 0.99(0.02) 0.99(0.01)3k ND 1(0) 0.98(0.02) 0.99(0.01) 1(0) 1(0)D 1(0) 0.99(0.02) 1(0.01)
ρ = 0.50, β = 0.151.5k ND 1(0) 0.97(0.02) 1(0.01) 1(0) 1(0)D 1(0) 0.98(0.01) 1(0.01)2k ND 1(0) 0.97(0.02) 1(0) 1(0) 1(0)D 1(0) 0.98(0.01) 1(0)2.5k ND 1(0) 0.97(0.02) 1(0.01) 1(0) 1(0)D 1(0) 0.99(0.01) 1(0)3k ND 1(0) 0.97(0.01) 1(0) 1(0) 1(0)D 1(0) 0.98(0.01) 1(0)
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Table 12: Results of simulations for variable pleiotropywithS = 2 andG = 5 for IGS=70%. Mean (StandardDeviation) of True Positive Rate (TPR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W ASSET PLACO

ρ = 0.25, β = 0.11.5k ND 0.77(0.2) 0.94(0.1) 0.94(0.12) 0.55(0.18) 0.77(0.23)D 0.7(0.32) 0.7(0.46) 0.83(0.36)2k ND 0.9(0.13) 0.97(0.07) 0.98(0.05) 0.63(0.16) 0.89(0.17)D 0.84(0.27) 0.82(0.39) 0.94(0.24)2.5k ND 0.95(0.09) 0.99(0.04) 1(0.01) 0.68(0.12) 0.96(0.08)D 0.94(0.12) 0.94(0.24) 1(0.01)3k ND 0.97(0.05) 0.99(0.03) 1(0.01) 0.71(0.1) 0.98(0.04)D 0.98(0.05) 1(0.01) 1(0.01)
ρ = 0.50, β = 0.11.5k ND 0.6(0.32) 0.82(0.18) 0.74(0.3) 0.42(0.25) 0.57(0.36)D 0.51(0.41) 0.44(0.5) 0.59(0.47)2k ND 0.69(0.32) 0.87(0.16) 0.84(0.24) 0.51(0.24) 0.68(0.35)D 0.62(0.4) 0.6(0.49) 0.68(0.45)2.5k ND 0.78(0.28) 0.89(0.14) 0.89(0.2) 0.57(0.23) 0.78(0.3)D 0.71(0.38) 0.62(0.49) 0.8(0.39)3k ND 0.84(0.24) 0.93(0.11) 0.92(0.18) 0.6(0.22) 0.83(0.26)D 0.79(0.35) 0.76(0.43) 0.81(0.38)

Table 13: Results of simulations for group pleiotropy with S = 2 andG = 5 for IGS=70%. Mean (StandardDeviation) of True Negative Rate (TNR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W

ρ = 0.25. β = 0.11.5k ND 1(0) 0.93(0.15) 0.94(0.13)D 1(0) 0.93(0.16) 0.97(0.12)2k ND 1(0) 0.92(0.16) 0.97(0.1)D 1(0) 0.93(0.15) 0.95(0.14)2.5k ND 1(0) 0.92(0.16) 0.98(0.08)D 1(0) 0.93(0.15) 0.97(0.09)3k ND 1(0) 0.93(0.16) 0.98(0.08)D 1(0) 0.89(0.18) 0.99(0.07)
ρ = 0.50. β = 0.11.5k ND 1(0) 0.95(0.14) 0.96(0.13)D 1(0) 0.95(0.15) 0.98(0.08)2k ND 1(0) 0.93(0.16) 0.99(0.07)D 1(0) 0.94(0.16) 0.99(0.07)2.5k ND 1(0) 0.93(0.15) 0.97(0.09)D 1(0) 0.93(0.17) 0.97(0.09)3k ND 1(0) 0.93(0.15) 0.98(0.08)D 1(0) 0.93(0.18) 0.98(0.08)
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Table 14: Results of simulations for group pleiotropy withS = 2 andG = 50 for IGS=30%. Mean (StandardDeviation) of Matthews Correlation Coefficient (MCC) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W

ρ = 0.25. β = 0.11.5k ND 1(0) 0.39(0.48) 0.69(0.44)D 0.97(0.15) 0(0) 0.17(0.35)2k ND 1(0) 0.59(0.49) 0.98(0.06)D 0.98(0.07) 0(0) 0.34(0.47)2.5k ND 1(0) 0.93(0.24) 0.99(0.06)D 0.99(0.04) 0.26(0.44) 0.58(0.5)3k ND 1(0) 0.99(0.04) 0.98(0.06)D 0.99(0.04) 0.5(0.51) 0.72(0.45)
ρ = 0.25. β = 0.151.5k ND 1(0) 0.98(0.05) 0.99(0.05)D 1(0) 0.58(0.5) 0.74(0.44)2k ND 1(0) 0.99(0.04) 0.98(0.05)D 1(0) 0.76(0.43) 0.86(0.35)2.5k ND 1(0) 1(0.03) 1(0)D 1(0) 0.84(0.37) 0.96(0.2)3k ND 1(0) 1(0) 1(0)D 1(0) 0.92(0.27) 0.96(0.2)
ρ = 0.50. β = 0.11.5k ND 1(0) 0.71(0.45) 0.8(0.39)D 0.83(0.35) 0(0) 0.14(0.32)2k ND 1(0) 0.77(0.41) 1(0.03)D 0.89(0.28) 0(0) 0.29(0.45)2.5k ND 1(0) 0.97(0.15) 1(0.03)D 0.93(0.21) 0.2(0.4) 0.36(0.48)3k ND 1(0) 1(0.03) 0.99(0.04)D 0.95(0.2) 0.3(0.46) 0.4(0.49)
ρ = 0.50. β = 0.151.5k ND 1(0) 1(0.03) 1(0)D 0.99(0.06) 0.32(0.47) 0.49(0.5)2k ND 1(0) 0.99(0.05) 1(0)D 1(0) 0.48(0.5) 0.58(0.5)2.5k ND 1(0) 1(0.03) 1(0.03)D 1(0) 0.52(0.5) 0.74(0.44)3k ND 1(0) 1(0) 1(0)D 1(0) 0.72(0.45) 0.74(0.44)
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Table 15: Results of simulations for variable pleiotropywithS = 2 andG = 5 for IGS=70%. Mean (StandardDeviation) of True Negative Rate (TNR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W ASSET PLACO

ρ = 0.25, β = 0.11.5k ND 1(0) 0.99(0.01) 1(0) 1(0) 1(0)D 1(0) 0.99(0.01) 0.99(0.01)2k ND 1(0) 0.99(0.01) 1(0.01) 1(0) 1(0)D 1(0) 0.99(0.01) 0.99(0.01)2.5k ND 1(0) 0.99(0.01) 1(0.01) 1(0) 1(0)D 1(0) 0.99(0.01) 1(0)3k ND 1(0) 0.99(0.01) 1(0) 1(0) 1(0)D 1(0) 0.99(0.01) 1(0)
ρ = 0.50, β = 0.11.5k ND 1(0) 0.99(0.01) 1(0.01) 1(0) 1(0)D 1(0) 0.99(0.01) 1(0.01)2k ND 1(0) 0.99(0.01) 1(0.01) 1(0) 1(0)D 1(0) 0.99(0.01) 1(0)2.5k ND 1(0) 0.99(0.01) 1(0.01) 1(0) 1(0)D 1(0) 0.99(0.01) 1(0)3k ND 1(0) 0.99(0.01) 1(0.01) 1(0) 1(0)D 1(0) 0.99(0.01) 1(0)
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Table 16: Results of simulations for variable pleiotropy with S = 2 andG = 50 for IGS=30%. Mean (Stan-dard Deviation) of Matthews Correlation Coefficient (MCC) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W ASSET PLACO

ρ = 0.25, β = 0.11.5k ND 0.51(0.14) 0.26(0.32) 0.33(0.23) 0.23(0.14) 0.4(0.19)D 0.5(0.16) 0(0) 0.04(0.11)2k ND 0.64(0.15) 0.39(0.33) 0.69(0.24) 0.35(0.17) 0.56(0.21)D 0.63(0.18) 0(0) 0.27(0.42)2.5k ND 0.74(0.15) 0.78(0.23) 0.84(0.19) 0.46(0.18) 0.69(0.19)D 0.74(0.16) 0.25(0.43) 0.54(0.49)3k ND 0.82(0.14) 0.89(0.1) 0.9(0.14) 0.54(0.18) 0.78(0.18)D 0.81(0.15) 0.48(0.49) 0.71(0.44)
ρ = 0.25, β = 0.151.5k ND 0.81(0.14) 0.9(0.09) 0.91(0.14) 0.54(0.18) 0.78(0.18)D 0.8(0.15) 0.55(0.48) 0.73(0.43)2k ND 0.9(0.11) 0.93(0.06) 0.95(0.09) 0.65(0.15) 0.89(0.13)D 0.9(0.11) (0.73)0.41 0.85(0.35)2.5k ND 0.94(0.08) 0.94(0.05) 0.97(0.07) 0.72(0.13) 0.94(0.09)D 0.94(0.09) 0.81(0.36) 0.93(0.22)3k ND 0.97(0.06) 0.95(0.04) 0.98(0.05) 0.76(0.11) 0.96(0.07)D 0.97(0.06) 0.88(0.26) 0.95(0.2)
ρ = 0.50, β = 0.11.5k ND 0.37(0.22) 0.42(0.28) 0.32(0.17) 0.16(0.16) 0.26(0.24)D 0.34(0.24) 0(0) 0.04(0.12)2k ND 0.49(0.25) 0.48(0.27) 0.57(0.23) 0.24(0.21) 0.38(0.3)D 0.47(0.27) 0(0) 0.23(0.4)2.5k ND 0.59(0.24) 0.71(0.17) 0.64(0.25) 0.32(0.24) 0.49(0.32)D 0.56(0.28) 0.19(0.39) 0.32(0.46)3k ND 0.65(0.25) 0.78(0.13) 0.66(0.25) 0.39(0.26) 0.57(0.32)D 0.63(0.27) 0.29(0.44) 0.36(0.47)
ρ = 0.50, β = 0.151.5k ND 0.64(0.25) 0.79(0.13) 0.71(0.24) 0.39(0.26) 0.57(0.32)D 0.63(0.26) 0.3(0.45) 0.44(0.48)2k ND 0.74(0.24) 0.85(0.12) 0.78(0.23) 0.49(0.26) 0.7(0.3)D 0.74(0.25) 0.46(0.48) 0.54(0.49)2.5k ND 0.81(0.21) 0.89(0.1) 0.88(0.18) 0.57(0.25) 0.78(0.26)D 0.81(0.22) 0.5(0.49) 0.73(0.44)3k ND 0.86(0.18) 0.91(0.08) 0.89(0.17) 0.62(0.24) 0.83(0.22)D 0.86(0.19) 0.69(0.44) 0.73(0.44)
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Table 17: Results of simulations for group pleiotropy withS = 2 andG = 50 for IGS=30%. Mean (StandardDeviation) of True Positive Rate (TPR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W

ρ = 0.25. β = 0.11.5k ND 1(0) 0.39(0.49) 0.72(0.45)D 0.96(0.17) 0(0) 0.16(0.34)2k ND 1(0) 0.59(0.49) 1(0)D 0.97(0.12) 0(0) 0.34(0.47)2.5k ND 1(0) 0.94(0.24) 1(0)D 0.99(0.07) 0.26(0.44) 0.58(0.5)3k ND 1(0) 1(0) 1(0)D 0.99(0.07) 0.5(0.51) 0.72(0.45)
ρ = 0.25. β = 0.151.5k ND 1(0) 1(0) 1(0)D 1(0) 0.58(0.5) 0.74(0.44)2k ND 1(0) 1(0) 1(0)D 1(0) 0.76(0.43) 0.86(0.35)2.5k ND 1(0) 1(0) 1(0)D 1(0) 0.84(0.37) 0.96(0.2)3k ND 1(0) 1(0) 1(0)D 1(0) 0.92(0.27) 0.96(0.2)
ρ = 0.50. β = 0.11.5k ND 1(0) 0.72(0.45) 0.8(0.39)D 0.81(0.36) 0(0) 0.12(0.3)2k ND 1(0) 0.78(0.42) 1(0)D 0.87(0.3) 0(0) 0.28(0.44)2.5k ND 1(0) 0.98(0.14) 1(0)D 0.91(0.24) 0.2(0.4) 0.36(0.48)3k ND 1(0) 1(0) 1(0)D 0.94(0.22) 0.3(0.46) 0.4(0.49)
ρ = 0.50. β = 0.151.5k ND 1(0) 1(0) 1(0)D 1(0) 0.34(0.48) 0.53(0.49)2k ND 1(0) 1(0) 1(0)D 1(0) 0.5(0.51) 0.66(0.47)2.5k ND 1(0) 1(0) 1(0)D 1(0) 0.58(0.5) 0.75(0.43)3k ND 1(0) 1(0) 1(0)D 1(0) 0.74(0.44) 0.77(0.42)
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Table 18: Results of simulations for variable pleiotropy with S = 2 and G = 50 for IGS=30%. Mean(Standard Deviation) of True Positive Rate (TPR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W ASSET PLACO

ρ = 0.25, β = 0.11.5k ND 0.29(0.14) 0.17(0.22) 0.17(0.16) 0.08(0.07) 0.2(0.14)D 0.28(0.14) 0(0) 0.02(0.06)2k ND 0.45(0.18) 0.27(0.25) 0.55(0.34) 0.16(0.12) 0.37(0.21)D 0.44(0.19) 0(0) 0.25(0.42)2.5k ND 0.58(0.2) 0.7(0.29) 0.76(0.3) 0.25(0.15) 0.53(0.24)D 0.58(0.21) 0.26(0.44) 0.53(0.5)3k ND 0.69(0.2) 0.85(0.2) 0.86(0.24) 0.34(0.18) 0.66(0.25)D 0.68(0.21) 0.5(0.51) 0.72(0.45)
ρ = 0.25, β = 0.151.5k ND 0.68(0.2) 0.89(0.17) 0.87(0.23) 0.34(0.18) 0.66(0.25)D 0.67(0.21) 0.58(0.5) 0.74(0.44)2k ND 0.83(0.17) 0.94(0.12) 0.94(0.15) 0.47(0.18) 0.83(0.21)D 0.82(0.18) 0.76(0.43) 0.86(0.35)2.5k ND 0.9(0.14) 0.96(0.11) 0.97(0.12) 0.57(0.16) 0.91(0.16)D 0.9(0.14) 0.84(0.37) 0.94(0.24)3k ND 0.95(0.1) 0.98(0.08) 0.98(0.09) 0.62(0.15) 0.95(0.12)D 0.94(0.11) 0.92(0.27) 0.95(0.2)
ρ = 0.50, β = 0.11.5k ND 0.19(0.17) 0.27(0.19) 0.13(0.08) 0.05(0.07) 0.13(0.15)D 0.18(0.17) 0(0) 0.01(0.07)2k ND 0.31(0.24) 0.32(0.19) 0.39(0.33) 0.11(0.12) 0.24(0.24)D 0.3(0.25) 0(0) 0.22(0.41)2.5k ND 0.41(0.28) 0.58(0.26) 0.49(0.37) 0.17(0.17) 0.35(0.31)D 0.4(0.29) 0.2(0.4) 0.32(0.47)3k ND 0.49(0.3) 0.67(0.24) 0.51(0.37) 0.23(0.21) 0.44(0.34)D 0.48(0.31) 0.3(0.46) 0.35(0.47)
ρ = 0.50, β = 0.151.5k ND 0.48(0.31) 0.69(0.24) 0.59(0.37) 0.23(0.21) 0.44(0.34)D 0.47(0.31) 0.32(0.47) 0.44(0.5)2k ND 0.61(0.31) 0.78(0.22) 0.68(0.36) 0.32(0.24) 0.59(0.35)D 0.61(0.32) 0.48(0.5) 0.54(0.5)2.5k ND 0.71(0.29) 0.87(0.19) 0.83(0.29) 0.4(0.25) 0.69(0.33)D 0.7(0.3) 0.52(0.5) 0.74(0.44)3k ND 0.78(0.27) 0.9(0.16) 0.84(0.27) 0.46(0.25) 0.76(0.31)D 0.77(0.27) 0.72(0.45) 0.74(0.44)
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Table 19: Results of simulations for group pleiotropy withS = 2 andG = 50 for IGS=30%. Mean (StandardDeviation) of True Negative Rate (TNR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W

ρ = 0.25. β = 0.11.5k ND 1(0) 1(0) 1(0.01)D 1(0) 1(0) 1(0.01)2k ND 1(0) 1(0) 1(0.01)D 1(0) 1(0) 1(0.01)2.5k ND 1(0) 1(0) 1(0.01)D 1(0) 1(0) 1(0)3k ND 1(0) 1(0) 1(0.01)D 1(0) 1(0) 1(0)
ρ = 0.25. β = 0.151.5k ND 1(0) 1(0.01) 1(0)D 1(0) 1(0) 1(0)2k ND 1(0) 1(0.01) 1(0.01)D 1(0) 1(0) 1(0)2.5k ND 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)3k ND 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)
ρ = 0.50. β = 0.11.5k ND 1(0) 1(0) 1(0.01)D 1(0) 1(0) 1(0)2k ND 1(0) 1(0.01) 1(0)D 1(0) 1(0) 1(0)2.5k ND 1(0) 1(0.01) 1(0)D 1(0) 1(0) 1(0)3k ND 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)
ρ = 0.50. β = 0.151.5k ND 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2k ND 1(0) 1(0.01) 1(0)D 1(0) 1(0) 1(0)2.5k ND 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)3k ND 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)
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Table 20: Results of simulations for variable pleiotropy with S = 2 and G = 50 for IGS=30%. Mean(Standard Deviation) of True Negative Rate (TNR) over 50 replications, expressed as percentages.
N DS MPSG MPSG-W ASSET PLACO

ρ = 0.25, β = 0.11.5k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2.5k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)3k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)
ρ = 0.25, β = 0.151.5k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2.5k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)3k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)
ρ = 0.50, β = 0.11.5k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2.5k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)3k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)
ρ = 0.50, β = 0.151.5k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)2.5k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)3k ND 1(0) 1(0) 1(0) 1(0) 1(0)D 1(0) 1(0) 1(0)
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