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Abstract

A way to solve bi-objective problems is to use an effective single objective algorithm embedded in-
side an e-constraint approach. In this paper, we are interested in any Bi-Objective Vehicle Routing
Problem such that if one objective is constrained, the resulting single objective optimization prob-
lem can be solved by a state-of-the-art column generation-based method. We propose mechanisms
and techniques to significantly speed up the resulting algorithm. Computational experiments are
conducted on two problems: the Bi-Objective Vehicle Routing Problem With Time Windows and
the Bi-Objective Team Orienteering Problem with Time Windows. To the best of our knowledge,
this paper presents the first exact method proposed for the first problem and the second exact
method proposed for the second problem. On the first problem we demonstrate the effectiveness of
the proposed mechanisms. On the second problem, our algorithm is competitive with algorithms
from the literature.

Keywords: Combinatorial optimization, Bi-objective optimization, Vehicle Routing Problems,
Column generation

1. Introduction

The purpose of this paper is to devise a method for Bi-Objective Vehicle Routing Problems
(BOVRP) using one of the best column generation-based algorithm [Baldacci et al.|2011] for Vehicle
Routing Problems (VRP) in an e-constraint approach |Chankong and Haimes|[1983].

Dantzig and Ramser| (1959) introduced the VRP to model the distribution of gasoline from a
bulk terminal to service stations by a fleet of vehicles. The VRP and many variants |Toth and Vigo
2014| have been proposed and applied since then. The state-of-the-art reviews by |Jozefowiez et al.
(2008), |Labadie and Prodhon|(2014) and |Vega-Mejia et al.| (2017) point out that the definition of
several objectives leads to more realistic and rich problems. The problems defined that way are
classified as Multi-Objective Vehicle Routing Problems (MOVRP).

A MOVRP can be studied in the context of the Multi-Objective Combinatorial Optimization
(MOCO) Ehrgott|[2005]. As the problems considered in this paper are BOVRP, we introduce
here the main concepts of Bi-Objective Combinatorial Optimization (BOCO). The definitions are
illustrated in Figure[l] A BOCO problem can be defined by an objective vector ¢ composed of two
objective functions ¢! and ¢? to minimize. It searches for specific solutions, contained in the feasible
solution set X', which are not Pareto dominated by another feasible solution. Such a solution is
called an efficient (or Pareto optimal) solution. The Pareto dominance between two solutions is
defined as follows:
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Figure 1: Specification of points in the objective space of a bi-objective minimization problem. y; is the ¢!-extreme
point and y» is the c?-extreme point.

Definition 1. Let a and b be two solutions in X. The solution a strongly dominates (<) b if
and only if Vi € {1,2}, ci(a) < ci(b). Moreover, a (weakly) dominates (<) b if and only if
Vi € {1,2}, ci(a) < c(b) and i € {1,2}, c'(a) < c(b).

The set Y = ¢(&X) = (c'(X), ?(X)) is the image of the feasible solutions in the objective space.
Each feasible solution & € X’ corresponds to a single point y = ¢(x) in the objective space, whereas
a point in Y may be associated with several feasible solutions. The notion of dominance between
solutions can be extended to their image in the objective space. However, the usual vocabulary
refers to non-dominated points instead of efficient points. The non-dominated points form the non-
dominated set Y. Among the non-dominated points, we distinguish two points referred to as the
extreme points associated with extreme feasible solutions. More precisely, the point that optimizes
lexicographically ¢1 then ca (respectively, co then ¢1) is called the ¢1-extreme point (respectively, co-
extreme point). Furthermore, points located on the boundary of the convex hull of ) are called
supported non-dominated points.

1.1. Literature on Bi-Objective Combinatorial Optimization

A popular class of methods to solve MOCO problems is composed of criterion space search
methods which work on the objective space. These methods usually solve a sequence of mono-

objective problems and rely on effective single objective algorithms [Boland et al.|2015a|. According
to [Ehrgott and Gandibleux|(2000), a well-known example is the two-phase method of|[Ulungu and|
Teghem| (1995). It relies on the weighted sum method ﬂAneja and Nair||1979ﬂ to compute the
supported non-dominated points. Then, the points are sorted according to one objective, and it

uses dedicated methods, such as branch-and-bound (B&B) or dynamic programming algorithms,
to find non-dominated points in the area defined by two consecutive supported non-dominated
points. However, the most popular algorithms are those using the e-constraint method
as they are easy to implement while being very effective. All the objectives except one
are bounded with constants, the € values, and the resulting single objective optimization problem is



solved. The non-dominated set can be computed by changing the bounds on the objectives.
|Aguad0 and Trandaﬁr| (]2018[) have done a review of the enhancements of the basic e-constraint
method in the literature. Recently, Boland et al.| (2015a) have conceived the balanced box method
to efficiently solve bi-objective mixed-integer programming problem. They consecutively explore
rectangle search area in the objective space by modifying the objective to optimize. Similar ideas
have been exploited in the triangle splitting method of |Boland et al.| (]2015bb. The other class of
methods to solve MOCO problems is composed of the methods dividing the solution space such as
branch-and-bound methods (B&B). Many improvements have been proposed in the literature as
shown in the complete review of [Przybylski and Gandibleux|2017|.

1.2. Literature on Multi-Objective Vehicle Routing Problems

Many MOVRPs have been studied in the literature, and most of them aim to minimize the
sum of the cost of the arcs used by a vehicle, like the mono-objective problem. Adding other
objectives allows to provide some ecological |Molina et al.[2014| Demir et al.[2014|, workload balance
[Halvorsen-Weare and Savelsbergh| 2016} |[Matl et al.|2019] or security [Bula et al.[2019] concerns.
However, few exact methods have been applied to MOVRPs, and the e-constraint method has
been mostly used. Some authors used the e-constraint method combined with an integer linear
programming solver to solve the resulting mono-objective compact formulation on a Capacitated-
Location Routing Problem , a Multi-Objective Generalized Consistent VRP
let al.|2015), a Bi-Objective Hazardous Waste Location-Routing Problem [Yu and Solvang[2016| and
an Inventory-Routing Problem |Arab et al.2018].

The e-constraint method has also been used with dedicated methods to solve the resulting
mono-objective problem. |Reiter and Gutjahr| (2012) design a branch-and-cut method (B&C) to
solve a BOVRP minimizing the total cost of the routes and the difference between the longest and
the shortest route. The instances they use have between 16 and 57 nodes and 2 to 9 available
vehicles. They solve 10 instances out of 57 in 8 hours. |Halvorsen-Weare and Savelsbergh/ (2016)
use a dynamic programming algorithm to solve a BOVRP minimizing the total cost and different
balance routing objective. Their instances are up to 12 nodes. solves a Bi-Objective
Stochastic Covering Tour Problem with a B&C. The instances with 30 nodes have been solved in
a time limit of 3 days. The number of non-dominated points varies between 6 and 112.

Finally, |Parragh and Tricoire| (2019) introduce a new B&B to solve generic Bi-Objective Inte-
ger Programming problems. They apply their method to solve a Bi-Objective Team-Orienteering
Problem minimizing the total cost and maximizing the profit collected by visiting a node (see Sec-
tion . Basic column generation technique has been added to solve the linear relaxation of the
mono-objective formulations. The instances have between 15 and 35 nodes, and the B&B solves 69
instances out of 80 in 2 hours. In their paper, they also compare the following criterion space search
methods: the e-constraint, a bi-directional e-constraint method and the balanced box method both
described in|Boland et al.|(2015a). They show that the e-constraint method is more effective on two
different Uncapacitated Bi-Objective Facility Location problems than its bi-directional counterpart
and the balanced box method. They also show that the B&B was the most effective method for all
considered problems.

In this paper, one of the most effective algorithms for vehicle routing problems, the column
generation and enumeration algorithm of |Baldacci et al.| (2011), is embedded in an e-constraint
method. The main contribution of this paper is the design of five mechanisms to significantly
speed-up the method. These mechanisms exploit properties of the column generation algorithms




and the decomposition in the context of the e-constraint approach. Unlike classical criterion space
search methods, the mechanisms allow to get information from one mono-objective problem to
another. Experiments show that the final algorithm is the state-of-the-art algorithm for a problem
defined by [Parragh and Tricoire| (2019), the Bi-Objective Team Orienteering Problem with Time
Windows. The algorithm can also serve as a benchmark for future works on Bi-Objective Vehicle
Routing Problems with Time Windows.

The remainder of the paper is organized as follows. The class of studied BOVRP is defined in
Section This section also describes the basic algorithm used to solve these problems. Additional
properties and performance improvement techniques are proposed in Section Sectionpresents
the computational results. Conclusions are provided in Section

2. An e-Constraint Method for Bi-Objective Vehicle Routing Problems

In the characteristics of the BOVRPs that can be solved by our algorithm are described. A
general bi-objective mathematical model is formulated in Section As the algorithm is based on
the e-constraint method, the model for a fixed value of € is given in Section This mono-objective
formulation is solved by the algorithm of Baldacci et al.| (2011), which is outlined in Section
The basic e-constraint method is described in Section

2.1. Bi-Objective Vehicle Routing Problems

We consider BOVRP with two positive costs per edge. Therefore, a route has two costs. The
first route cost (respectively, the second route cost) is the sum of the first costs (respectively, the
second costs) on the edges of the route. This is required to apply the new mechanisms. Therefore,
the mechanisms cannot be used with some routing problems such as the bi-objective covering tour
problem [Jozefowiez et al.||2007L |Glize et a1.||2020| even if the algortihm of Baldacci et al. can be
applied to them. Operational constraints such as the maximum number of routes, time windows,
vehicle capacities can be considered.

Formally, the problem is defined over a graph G = (V, E). The graph may or may not be
oriented. The vertex set V = {0,...,n} contains a depot 0 and n customers i, 1 < ¢ < n.
Let V' = V' \ {0} be the customer set. This set can be partitioned into two subsets: i) V{ the set
of customers that must be visited; ii) Vj the set of customers that may not be visited. Two integer
costs c}j and cgj are associated with each edge (i,j) € E. Such integrality condition on the costs
can be relaxed , except if one of the mechanisms introduced in Section [3|is used. However, this
condition facilitates the design of the algorithm. The customers are visited by a set of K vehicles
located at the depot. A path p, performed by one vehicle, starts at the depot and passes through a
set of edges E,. It has two costs cll7 = Z(i,j)eEp cgj and CIQ) = Z(i,j)eEp c?j. A route is a path which
ends at the depot. The goal is to find a set of routes that visits all required customers, respects
the operational constraints and minimizes the total costs.

2.2. Bi-Objective Mathematical Model

The problems can be modeled by a set partitioning formulation. Let R be the set of all feasible
routes. Let a; be equal to 1 if route r € R visits the node i € V/, —1 if r visits ¢ € V5 and 0
otherwise. For each i € V', we define a constant d; equal to 1 if ¢ € V/ and —1 otherwise. A binary
variable z, is equal to 1 if and only if the route r € R is selected. The model is:



minimize (Z clay, Z c%xr> (111)

reER reR
s.t. Z Qi Ty > d; ieV’ 2)
re€R (1)
> a < K| (1]3)
reR

z, € {0,1} reR (14)

The objective vector (1}1) minimizes the two costs. Constraints (1}2) ensure that a vertex is
visited once if it belongs to V{ or visited at most once if it belongs to V4. Constraint (1}3) limits
the number of vehicles available. Finally, Constraints 1 4) define the variable domains.

2.8. The e-Constraint Mathematical Model
Model is transformed into Model (2| by the introduction of a bound € on the second objective.

minimize Z cla, 121)
reR
s.t. Z apxy >di i€V’ 2) — XS
reR
>z < K] (213) «— 5 (2)
reER
a, < e 2l4) <+— af
reR
z, € {0,1} reR (25

Objective (2|1) minimizes the first objective and Constraint (2|4) bounds the value of the second
objective. The other constraints are as in Model . The dual variables of each constraint are
reported on the right-hand side of the model.

2.4. Notations

Model (1)) is the Master Problem (MP), and its linear relaxation is the Linear Master Problem
(LMP). Model (2) is the e-Master Problem (MP(¢)), and its linear relaxation is the e-Linear Master
Problem (LMP(¢)). The dual of LMP(¢) is denoted DLP(¢). These models restricted on a subset of
routes R C R will be denoted RMP(¢,R), RLMP(¢,R) and RDLP(¢,R). The pair A€ = ()¢, a¢) rep-
resents the dual variables associated with Constraints (2|2), Constraint (2|3) and Constraint (2]4)
for a fixed value of ¢, respectively. According to the context, A€ can also represent the dual values
obtained by the solution of RLMP(¢,R). To lighten the notation, if x (respectively, y) is a feasible
solution (respectively, a point in the objective space), the objective values (respectively, the point
coordinates) will be c. and ¢2 (respectively, 011} and CZ)

2.5. Solution of MP(e)

Model has an exponential number of variables z,. However, it can be solved by the column
generation and enumeration algorithm introduced by|Baldacci et al.| (2008) and later improved by
Baldacci et al.|(2011). The algorithm is composed of the following four steps, and it will be denoted
by GENROUTE in this paper.



2.5.1. Step 1: Computation of the Lower Bound

The optimum of LMP(e) is a lower bound LB of MP(e) and is obtained by column generation.
Usually, the pricing problem of the column generation for VRP is an FElementary Shortest Path
problem with Resource Constraints, and it is solved with a labelling algorithm which produces ele-
mentary routes with negative reduced cost. As in|Baldacci et al.|(2011), the elementarity constraint
on the routes is relaxed, meaning that a route can visit a customer more than once. The relaxation

is done through the definition of ng-routes. An ng-route allows several visits to the same customer
as long as two visits are not close in the sequence. A parameter, called the size of the ng-sets,
controls when it is possible to revisit a customer. Additional details on this relaxation and how to
implement it can be found in Baldacci et al.| (2011).

This step is enclosed in the function compute_lowerbound. The input of the function is the
bound on the second objective €. The output is a lower bound LB on the first objective, the set
of ng-routes R in the restricted master problem at the end of the algorithm and the dual values A€
associated with the optimum of RLMP (e, R).

2.5.2. Step 2: Computation of an Upper Bound

The second step aims to find an upper bound UB which is a point in the objective space
associated with a feasible solution of MP(e). To do so, the method used dedicated heuristics for
each problem which are explained in Sections and In the next algorithms, the function
compute_upperbound takes € in argument and returns a point UB in the objective space along with
an associated solution.

2.5.83. Step 3: Route Enumeration

Given the dual values A€ obtained at the end of the first step, we search for the routes with a
reduced cost smaller or equal to the value v = UB — LB. This value is called the gap.
introduced this third step called column enumeration. The enumeration is done by
means of a monodirectional or a bidirectional labelling algorithm. In a labelling algorithm, a label
represents a path by a subset of features called resources (like its load, its reduced cost, its last
visited customer...). It is progressively extended to another label by visiting other customers. The
size of the set of labels is managed by dominance rules and completion bounds. The dominance rule
allows to discard labels that will not lead to a better solution than other labels. For a given label,
the completion bound represents the lower bound on reduced cost of paths ending at the depot and
that can complement the current label to form a feasible route. Therefore, the completion bounds
allow to remove labels whose reduced cost would be greater than the gap.

In the next algorithms, this step corresponds to the function route_enumeration. The input of
the function is the gap v and the dual values A€. The output is a set of columns R with a reduced
cost less than or equal to the gap.

2.5.4. Step 4: Computation of an Optimal Solution
The optimum and an optimal solution of MP(e) can be obtained by solving RMP(e, R). The
integer problem can be solved with a black box MILP solver. In the algorithms, this corresponds

to a call to the function solve. The inputs are € and R, and the output is an optimal solution for
MP(e).



Compute the extreme points S1 and 52 ;
YN ::{(6%176%1)7(0%276%2)}5
izl;ei:c?gl—l;UBi,1:SI;
while ¢f;p < ci, do

/* Step 1 (Section 2.5.1) */
LB;, A% <+ compute_lowerbound(e;) ;

/* Step 2 (Section 2.5.2) */
UB; + compute_upperbound(e;) ;

/* Step 3 (Section 2.5.3) */

i = min(cks, clljBi) — LB;;

R; < route_enumeration(v;, A“) ;

/* Step 4 (Section 2.5.4) */
O; + solve(e;, R;) ;
/* Update the set of non-dominated points and the next ¢ value */

YN YN UA{(ep,: cd,)} s

€i+1 = 0201- —1 3

14—1+1;

end

R+ Ri_1;

while ¢; > 0%2 do

/* Step 4 (Section 2.5.4) */
O; + solve(e;, R)) ;

/* Update the set of non-dominated points and the next e value */
YN YnU{(ch, cd,)} s

€41 = 0201_ —1;

14—1+1;

end

Return Vy ;

Algorithm 1: Stepwise e-constraint method.

2.6. Stepwise e-Constraint Method

GENROUTE can easily be embedded in an e-constraint approach. The resulting algorithm is called
Stepwise e-constraint method (SeM) given in Algorithm The output Yy is the minimal complete
set for Model . That is the set composed of all non-dominated points in the
objective space and at least one feasible solution for each point.

The algorithm starts by computing the two extreme solutions S1 and S2. This can be done
using GENROUTE with the objectives min c!'+a;c? and min c®+asc! with o and as small enough
constants. These lexicographic objectives ensure that the extreme points returned are not weakly

dominated. As ¢! is an integer cost, it can be deduced that a; €]0; Wlsl)] Let w be an upper

bound on the cost ¢ of any non-dominated point - for instance, w = > (cgi + CZZO). Thus, a1 can
eV’
be fixed to % The same goes for aw. In practice, we use a1 = ap = 107° which is valid for all the
instances.
After computing S1 and S2, an iterative process begins with ¢ = 1 and Oy = S1. Also, €] is



fixed such that S; is excluded. The " iteration is composed of the following actions. First, an
optimal solution O; of MP(¢;) is found by GENROUTE (steps 1 to 4). Then, the point (ca,,ca) is
added to Yy, €41 is fixed to exclude O;, and i is incremented. The algorithm stops when 6207, < 6%2.

Algorithm |1|can be sped up as follows. First, if ClljBl- exceeds C,15'27 the gap ~; in step 3 can be
tightened to cg, — LB;. Indeed, no non-dominated point can have a first objective value strictly
greater than the one of So. Moreover, at the end of the first loop of Algorithm |1} the set R; 1
contains all routes with a reduced cost less than or equal to 0152 — LB;_1. So, the routes in R;_; are
sufficient to compute the remaining non-dominated points without the generation of new routes.
This assertion is proved in Therefore, the remaining non-dominated points can be
generated by solving the restricted master problem RMP(e,R; 1) until the value of € is less than
or equal to ¢%y. As a final remark, weakly dominated solutions can be generated by the algorithm
and are removed from YVy.

3. The e-Constraint Column Generation-and-Enumeration Algorithm

We propose mechanisms to improve the efficiency of SeM. The mechanisms are presented in
Section The inclusion of these mechanisms in SeM leads to an algorithm, the e-constraint
Column Generation-and-Enumeration Algorithm (eCGEA), described in Section

3.1. Tyap: Reduction of the Gap

At each iteration of SeM, a gap ~ is computed between the lower bound and an upper bound.
This gap bounds the value of the reduced cost of the routes generated during the route enumeration
phase. Therefore, tightening the gap should improve the efficiency of the enumeration. To reduce
the gap during iteration 7, we set ; to clU p, — LBi — 1. Indeed, the sum of the reduced costs
of the routes of a feasible solution O is less than the difference between clO and the lower bound.
Decreasing the gap by one is possible because if no feasible solution exists in the resulting restricted
master problem, the solution corresponding to the upper bound is optimal. Note that this reduction
is possible because the cost matrix ¢! has integer coefficients. For instance, let the lower bound
be 2.5 and the upper bound value on the first objective be 5. With this technique, the gap v will
be 1.5. Therefore, all feasible solutions having a cost ¢! less than or equal to 4 can be found in the
resulting restricted master problem. One could want to compute the gap between the lower bound
rounded up (3) and the upper bound minus one. However, a gap of 1 generates solutions with a
cost ¢! less than 3.5, and a feasible solution of cost 4 could be missed. If this mechanism is used,
the integrality condition of the cost ¢' cannot be relaxed.

3.2. Ty: Avoidance of Lower Bound Computation

A possibility to improve the computational times is to limit the number of calls to the column
generation algorithm that computes a lower bound, i.e. the first step of GENROUTE. Let LB; be
the lower bound, A% = (A% af) be the dual values and R; be the set of routes returned by the
function compute_lowerbound(e; ) during iteration i of SeM. A sensitivity analysis can provide an
interval [A%; A!] on the value of € in which the optimal basis of RLMP(e;,R;) and o do not change.
Therefore, the set R; can be used to compute the lower bound for a value €; in [Al;e; —1]. The
optimum of LMP(e;) is directly given by LB; = LB; — (¢; — ¢j)a. Note that the dual values A%
are not necessarily an ideal choice for another €; value, even if ¢; in [AL Aé]. Therefore, the impact
of this mechanism on the global efficiency of the algorithm may vary from one problem to another.



The function compute_lowerbound, introduced in Section is modified to check the condition
of the sensitivity analysis and avoid the generation of a new restricted master problem. The dual
values A“-1 and the set of routes Ez‘—l used during the previous iteration are additional inputs to
the method.

3.3. Tyaria: Avoidance of Route Enumeration

Another costly part of SeM is the route enumeration done at each iteration. The following
proposition gives the conditions for which the upper bound computed at iteration ¢ is a non-
dominated point.

Proposition 1. If \j ™' = \J/, a~1 = o and~y; < v;_1, then the optimal solution of RMP(e;,R;_1)
is an optimal solution of MP(e;). It is also an efficient solution.

To prove this proposition, we need to prove the following theorem. To lighten the notations,
we pose i = 2. The reduced cost of a route r, computed with respect to the dual variables A, is
noted ¢, (A). Theorem proves that the sum of the reduced costs of the routes of any feasible
solution U By with respect to A is the same as this sum expressed according to A, if A\j' = Ag?
and at = a. Therefore, the routes of UBy have the sum of their positive reduced costs with
respect to A and A less than or equal to vs. If 79 < 1, the routes of UB; have already been
generated in the route enumeration between LB and U Bj, so there is no need to launch the route
enumeration procedure.

Theorem 1. Let UBs be a feasible solution of MP(e1) and A (respectively A2 ) an optimal solution
of DLP(e1) (respectively DLP(e3)) with €1 > ez. If \j' = A\§ and ot = a2, then the sum of the
reduced costs of UBy with respect to A2 can be computed as:

ZTER & (A2) ngQ = ZTGR(C}" - ZiEV air/\zé'l - Cgael)erBQ

Proof.
— UB 1 € 2 UB
Z Gr(A%) 72 = E (¢, — Zair)\iz —cra®)z, 7?
reER reR eV
_ § Cl UBQ _ E E aZTxUBQ )\62 § 02 € UBQ
reER i€V reR reER
1 UB2 €2 UB2 €2 2 e, .UBs
E _Z)‘i —Zxr A9 — c o,
reR eV’ reR reR
= E claUB2 Z At — ZxTUBQ)\ E Ca1zVB2 [y Proposz'tz'on
reR eV’ reER reR
_ 1 € 2 € UB
= E (¢, — Zair)\il —cia)x, 72
reR eV

O

Theoremuses Proposition which gives the conditions for which the sum of the dual variables
of At and A are equal.



Proposition 2. Let LBy (respectively LBs) be the lower bound of MP(e1) (respectively MP(es))
and At (respectively A?) an optimal solution of DLP(e1) (respectively DLP(e3)) with €1 > ea.
If NG = AF and o = o, then Y, AL =300 A2

Proof. According to Section we obtain:

1 2 2 6 _ 1
LB, — (CLBl - CLBQ)Q = CLB,
= E clalPr — () — )t = E clalBe
reR reR
= g clalBr — o = g clalP2 — ey0? [a? = 1]
reR reER
= E A4+ KNG = g A2+ KA [strong duality theorem]
eV’ eV’
€1 __ €2 €2 __ €1
:>§:/\i_§:/\i PG =g/

eV’ eV’
O

Furthermore, it is possible to improve the computational times by removing from R;_; routes
that cannot be part of a solution for MP(¢;), i.e. the routes with a reduced cost, computed accord-
ing to A%, greater than ~;. This routine is enclosed in the function column_deletion. The inputs
are the dual values A%, a gap 7% and a set of routes R;_;. The output is a new set R; of routes
from R;_; whose reduced costs, computed with respect to A%, are less than <.

3.4. Tsawe: Warm Start Route Enumeration

Another improvement is to avoid starting the labelling algorithm with an empty route, but
instead to warm start it using labels generated during previous enumeration phases. At iteration 4,
the routes and labels generated during the previous iterations can be partitioned into four sets:

e R, 1: feasible routes with a reduced cost inferior to the gap;

e Lr;_i: feasible routes dominated by another feasible route or with a reduced cost greater
than the gap;

e Lp;, ;: feasible paths dominated by another path, eliminated by a completion bound, or
infeasible with respect to the cost ¢?;

e I, 1: labels leading to infeasible routes with respect to resources other than the cost ¢? (e.g.,
time windows, vehicle capacities ...). This set is not saved.

The enumeration phase at iteration i can be started with labels from R;_1, Lr;_1 and fpi_l. First,
the reduced costs of the routes of the two sets, Lr;_1 and R;_1, are computed with respect to A.
Then, these routes are stored into two sets. The first set R; contains the ones with a reduced cost
less than ;. The remaining ones are stored in Lr;. This first routine is an extension of the function
column_deletion, introduced in Section with only one extra input: the set Lr;_;.

After that, the enumeration algorithm is started from Lp,;_; instead of a label representing an
empty route starting at the depot. During this enumeration phase, the sets R;, Lr; and Lp, are

10



completed with the adequate routes and paths. Initially, the sets Ry and Lry are empty, and Lpg
is initialized with a label representing a visit to the depot. As the sets may become too large,
they are reset between two iterations ¢ — 1 and ¢ if A\j' # )\Bi_l or a # af-1. Moreover, if
the route enumeration is warm started, the search is necessarily monodirectional as a bidirectional
algorithm would require to store too many initialization labels. In the algorithm, the function
route_enumeration, introduced in Section is modified to accept an additional parameter that
is the set of labels to initialize the search. If the search is not warm started, this parameter is
the empty set. This function also returns the new sets Lp; and Lr;. It is important to return Lr;
because the routes not used at iteration ¢ can be useful during subsequent iterations.

3.5. Tyuar: Multiple Reduced Cost

One of the main drawbacks of GENROUTE is the sensitivity of the route enumeration procedure
to the gap. The algorithm may not converge because of a small increase of the gap. If this happens
during SeM, the algorithm would be stuck even though the problems for subsequent € values may
be solved. The following strategy is used to mitigate this issue. The number of columns generated
during the enumeration phase is bounded by a value M AX_COL. That way, the algorithm can
generate a set of points, not necessarily non-dominated, in the objective space. To that end, the
subroutine route_enumeration is modified to accept an additional parameter that is the maximum
number of routes to generate.

However, if the enumeration stops because the bound M AX _COL is reached at iteration i,
then the solution O; of RMP(e;, Ei) may not be an efficient solution. The missing non-dominated
points, located in the rectangle defined by (LB, ¢;) and P; = (c})i,c%i), are searched during a
second enumeration phase. To perform this new enumeration, multiple dual values are considered.
To that end, the following linear problems are solved by column generation for a set of weights
W = {w, : 0 < k < |[W]|} that are supposed to be sorted increasingly and with wy = 0 and
wpy| = 1. The set W is a parameter of eCGEA.

min Z(wk s clay + (1 — wy) * Axy) (3]1)
reR
St apx, > d; ic V' Bl2) «— A
reR
> o < K| B3
reR (3)
Z ey < cp, Bl4) +— al*
reR
Z Cx, < ¢ Bl5) +— ay*
reR
z, >0 reR 6)

For each weight wy, the solution of Model gives a point in the objective space LB,, as well
as the dual values A%k = (A"k, o*). A gap 7, with respect to the point (cloi, €;) is computed.
This is illustrated in Figurefor W ={0,0.5,1}. In the final algorithm, this step corresponds to a
call to a modified compute_lowerbound function in which the weight wy, the solution O; and ¢; are
additional inputs.
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Figure 2: Lower bounds and gaps computed with Tgyq for W = {0,0.5,1} because generated columns in the gap 71
are more than MAX_COL

That way, a route r has |[W| reduced costs which are additional resources for the route enumer-
ation algorithm. A label can be discarded if at least one of the reduced costs is greater than the gap
associated to the direction. This can also be improved by using a different completion bound for
each reduced cost. In the algorithm, this corresponds to a variant of the function route_enumeration
where the inputs consist of the set of weights W, the dual values for each LB,, , the gap for each
weight wy, and O;. The enumeration returns a set of routes R;. An e-constraint algorithm is
performed to find the missing non-dominated points by solving RMP (e, R;) for C%Z_ <e<g—1.

3.6. Complete Algorithm

The mechanisms presented above are included in SeM to improve its efficiency. The new so-
lution method is called e-constraint Column Generation-and-Enumeration Algorithm (eCGEA).
Algorithms |2| and |3| give the pseudo-code. Initially, the extreme points are computed as in SeM.
Then, at each iteration, € is set such that the previous solution is excluded and a new solution
is computed. A difference with SeM is the computation of the gap following Ty,,. Moreover,
tests are performed during the while loop to avoid some calls to compute_lowerbound with Ty, and
route_enumeration with Ty;q4. If a call of route_enumeration is made, Tsqpe is used to warm start
the labelling algorithm. Also, if the route_enumeration procedure is stopped because the bound
MAX _COL is reached, its index is saved in the set I. The second loop of Algorithmcorresponds
to the Tz, mechanism. For each iteration where M AX _COL was reached during the enumeration,
the rectangle defined by (cp, |, ¢, ) and (¢, ¢3,) is explored to search for missing non-dominated
points. A lower bound for each weight in W is computed, and another enumeration is performed
as explained in Then, the restricted master problem is solved by an e-constraint algorithm on
the complete rectangle.

4. Computational Results

The experiments have been conducted on a Xeon E5-2695 processor with a 2.30GHz CPU in a
single thread. The implementation is in C++, and the linear problems and the integer problems are
solved with Gurobi 7.1. Two problems have been defined to evaluate the efficiency of the algorithm.
The first problem, the Bi-Objective Vehicle Routing Problem with Time Windows (BOVRPTW), is
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Compute the extreme points S1 and 52 ;
1.2 12 )
yN = {(051’6251)7(052’652)} )
i=0ia=ch—1i )
R, + @, Lri_1 + @, Lpi,1 — {0}, R, + @, A1 0, [ + 0 ;
while ¢; > C%Q do
/* Step 1 (Section 2.5.1) with T} (Section
LB;, R, A% + compute_lowerbound(e;,R;—1,A=1) ;
/* Step 2 (Section 2.5.2)
UB; + compute_upperbound(e;) ;
/* Step 3 (Section 2.5.3) with Ty, (Section
7; = min(ck,, clljBl,) —LB;—1;

R;, Lr;, Lp; < generate_route(;, vi—1, A%, A% R;_1,Lri_1,Lp;i—1) ;
/* Step 4 (Section 2.5.4)
O; + solve(e;, R;);
/* Update the set of non-dominated points and the next e value
YN InU{(chH,:¢p)}
€41 20201_—1;2'(—7;—1—1;
/* For Tyuai, check the size of R; (Section
if |R;| > MAX_COL then
| T+ TU{i};
end

end

/* For Taual, generate other reduced costs for non-explored area (Section '

for i € I do
/* Non-explored area = rectangle defined by (6101717020171) and (06170201)

for w € W do
/* Step 1 (Section 2.5.1)

LB" Ay < compute_lowerbound(w, Oy, €;) ;
Y = (w*clol + (1 —w) *0207;—1) — (w*ciBw +(1—w) *C%Bw) ;
end
/* Step 3 (Section 2.5.3) with Ty,u (Section l
R + route_enumeration(vyg, g, s Nw N wl Oi)
/* e-constraint in the complete non-explored area
while € > cZOi do
P + solve(e, R) ;
/* Update the set of non-dominated points and the next € value

yN <~ yN U {(C}DchP)} ;

€= c%; —1;
end
end
Return Vy ;

Algorithm 2: e-constraint Column Generation-and-Enumeration Algorithm.
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/* Check if possible not to do the step 3 or to warm start the step 3 */
if \j7' £\ or a1 £ % or |R;—1| > MAX_COL then
/* Step 3 (Section 2.5.3) starting the labelling algorithm with an empty route and

limiting the size of R; to MAX_COL (Section */
R;, Lr;, Lp; < route_enumeration(vy;, A%, MAX _COL);

else
/* Remove non interesting routes at ¢ from ﬁi_1 or add interesting ones from Hi_l

(Sections and */
R;, Lr; + column_deletion(v;, A, R;—1, Lri_1);
/* Check if possible not to do the step 3 (Section ‘ */
if v; > 7;—1 then

/* Step 3 (Section 2.5.3) starting the labelling algorithm with labels in Lp, ;) (Tsave

in Section and limiting the size of R; to MAX_COL (Section */
E;,ﬂ;,fpi + route_enumeration(v;, A% MAX _COL,Lp,_,);
R« R, UR;;
Lr; « L, ULr;
end
end

Return R;, Lr;, Lp;;
Algorithm 3: generate route(y;, yi—1, A1, A% R;_1, Lr;_1, Lpi—1).

used to evaluate the improvements induced by the techniques from Section The second problem,
the Bi-Objective Team Orienteering Problem with Time Windows (BOTOPTW), is a problem
introduced in [Parragh and Tricoire 2019|. It allows the comparison of eCGEA with another
algorithm from the literature.

The time limit is 4 hours for the BOVRPTW and 2 hours for the BOTOPTW. For each problem,
we provide the computational times of the algorithms as well as their performance profiles
. The performance of an algorithm on an instance is defined as the ratio of its CPU
time over the best CPU time among the compared algorithms. A performance profile represents
the percentage of instances solved (y-axis) at a given performance (z-axis). For instance, a curve
which passes through the point (2,0.8) indicates that 80% of the instances have been solved by the
associated algorithm in less than twice the time of the fastest algorithm. Thus, a curve situated
above another curve represents an algorithm with a better overall performance. If an instance is not
solved by an algorithm, the CPU time for this instance and this algorithm is considered infinite.
If an instance is not solved by any algorithm, then it is not added in the performance profile.
The impact of each technique of Section on SeM is evaluated in for BOVRPTW
and in[Appendix_D|for BOTOPTW. In[Appendix C} a compact formulation is embedded in the
e-constraint method to see the impact of ecCGEA on BOVRPTW instances.

The remainder of the section is organized as follows. The two problems and the test instances
are described in Section The analysis on the BOVRPTW is reported in Section and the
one on the BOTOPTW in Section
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4.1. Test problems

Bi-Objective Vehicle Routing Problem With Time Windows. This problem is a straightforward
extension of the Vehicle Routing Problem with Time Windows. Each customer in V’/ must be served
a given quantity of goods by a vehicle defined by a capacity. Each edge is associated with two costs,
and therefore a route has also two costs. Instances were created by combining two of Solomon’s
VRPTW instance together. Let A and B be a couple of Solomon’s instances with |V| = 25.
We create an instance called A — B as follows: the first location of clients, the time windows,
the service time, the demand and the location of the depot are provided from file A, whereas the
second location of clients are taken from file B. The cost matrix ¢! (respectively ¢?) comes from the
pairwise distance between the first (respectively second) locations of nodes. The distance between
client a located at (24,y,) and client b located at (wp,yp) is |/ (za — 25)% + (Yo — Y6)2 + 1]. Once
all redundant resulting files are removed, it gives a total of 168 instances.

Bi-Objective Team Orienteering Problem with Time Windows. |Parragh and Tricoire| (2019) intro-
duced and solved the Bi-Objective Team Orienteering Problem with Time Windows (BOTOPTW).
It is a bi-objective problem based on the Team Orienteering problem (TOP) |Gunawan et al.|2016].
In the BOTOPTW, each i € V' is associated with profit p;, a time window [b;;e;] and a service
time s;. The profit is collected if 7 is visited during its time window. It is not necessary to visit all
the nodes in V’. A travel time (or cost) ¢;; is also associated with each edge. The first objective
is to minimize the total travel time and the second objective is to maximize the collected profit.
The BOTOPTW can be solved using eCGEA by setting cl-lj = ¢;; and cfj = —p;. We use the 80
test instances used in [Parragh and Tricoire|2019|. These instances are derived from the Krolack
instances |Righini and Salani||2009] and are denoted X — K — Z with X the Krolak instance it is
based on, K the number of vehicles and Z the number of vertices.

4.2. Results on the BOVRPTW

The goal is to evaluate the contributions of the mechanisms from Section [3| The parameters
used in the method are set as follows: the size of pre-defined ng-sets used for ng-route relaxation is
|N;| = 8, the parameters for the Ty, mechanisms are W = {0,0.25,0.5,0.75,1} and MAX COL =
30000 (see Section . Upper bound sets have been pre-computed and given as an input to
the algorithms such that the computational times are not impacted by the quality of the upper
bound. An upper bound set is computed as follows. Model is solved using aggregation weights
wg € {0,0.25,0.5,0.75,1} by means of a column generation algorithm. Then, a black-box MIP
solver is embedded in an e-constraint method to compute feasible solutions using the columns
previously found.

Table gives the characteristics of the instances. The instances are grouped into several types
(Type). The type of an instance is defined by the types of the Solomon’s instances used to build
it. The table also reports the average number (|ND|) of non-dominated points and the average
number (]S]) of supported points over the solved instances. The value MGap is the average gap v =

1 * . . . .
100 — C“iﬂ on the first objective between the lower bound LB and the optimal solution O for
(@]

each e computed by SeM. Finally, we report the total number of instances (Number), the number of
instances solved by SEM and the number of instances solved by eCGEA. The results show that the

Instances available on https://www.sintef .no/nearp
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Table 1: Features of the instances of BOVRP.

Type |ND| |S| MGap Number SeM eCGEA

rlcl 38 11 3.0 12 12 12
rl.c2 46 12 3.4 12 11 11
rl_rc 54 13 2.8 12 12 12
r2_cl 47 11 3.0 11 1 1
r2_c2 63 12 1.9 11 1 1
r2_rc 74 16 2.8 11 3 6
rcl_cl 18 8 3.9 8 8 8
rcl_c2 22 9 4.3 8 8 8
rcl_r 35 10 5.8 8 8 8
rc2_cl 44 8 3.4 8 1 3
rc2_c2 40 11 4.0 8 2 4
rc2_r 63 13 4.7 8 2 3
clc2 10 4 6.3 9 7 8
clrc 19 6 6.5 9 8 8
clr 37 10 6.7 9 8 9
c2_rc 38 14 2.5 8 1 6
c2r 53 13 - 8 0 2
c2.cl 25 7 - 8 0 7

Total 18 12 3.79 168

O
w

118

mechanisms are able to improve the standard e-constraint approach as an additional 25 instances
are solved to optimality.

Now, we focus on the instances closed by at least one algorithm to evaluate more precisely
the contribution of the techniques embedded in eCGEA. Tables and report the computation
time in seconds (Time) for both methods as well as the computational time to generate the upper
bound (UB). A dash (-) marks the fact that the algorithm was not able to converge. Except for
Tyap, There are conditions to be checked before the application of a mechanism. We report the
percentage of non-dominated points for which the conditions on each mechanisms are met (X (%)
with X the mechanism name). For instance, if T4 is equal to 17%, it means that the conditions
not to use column generation were verified for 17% of the non-dominated set. The average on all
these metrics on all instances solved by both methods are given in the line Mean. The table also
indicates the number of instances solved optimally by each algorithm. In average, eCGEA is more
than 50% faster than SeM. The speed up is less significant on the instances cl_c, ¢lr and cl_rc. An
explanation is that these instances have smaller non-dominated sets, and therefore SeM is iterated
less often leaving less room for improvement for the proposed mechanisms.

All mechanisms are highly used during the algorithm: on average, Tyqiq is used between 27%
and 42%, Tsqve between 19% and 32% and T, between 4% and 30%. The longer the time needed
to solve an instance, the higher the use of a mechanism. This is especially true for Ty,,. An
explanation is that the instances that are the longest to solve are the ones where the procedure
route_enumeration is also used the most.

Figure [3| represents the performance profiles of SeM and eCGEA. The profile of eCGEA is
clearly better than the one of SeM. 20% of the instances are not closed by SeM, and eCGEA is
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Table 2: Computational results of SeM and eCGEA on instances of type r_c, r_rc, rc.r and rc_c for |V| = 25.

UB SeM eCGEA UB  SeM eCGEA
Instance Time Time Time Ty Tyatid Tsave Tquar Instance Time Time  Time 11y Thaiid Tsave Tdual
(s) (s) (s) (%) (%) (%) (%) (s) (s) (s) (%) (%) (%) (%)
r10l_cl 1.8 4.9 3.7 57 17 43 rc101_cl 4.7 4.4 41 13 13 25
r101_c2 1.8 4.3 33 55 41 23 rc101_c2 6.1 4.8 3.8 50 43 7
r101_rcl 2.1 6.7 4.7 62 47 18 rcl01.r1  10.0 12.2 10.6 46 27 31

ri02.cl  25.0 102.2 42.1 74 16 63
ri02.c2  22.2 25.6 19.5 69 31 36
ri02_rcl 149 23.6 16.7 75 60 18
ri03.cl 218 24.9 18.0 64 61 11
ri03.c2 422 343 27.9 52 27 27
rl03_rcl1 40.8 42.0 30.7 63 35 31
ri04cl  60.8 42.7 353 43 23 26
rl04_rcl 178.8 1241.5 264.7 62 32 33
ri04c2  65.0 75.4 49.0 57 30 27
ri05.c1 178 16.9 172 66 22 47
ri05.c2  15.6 14.7 11.7 58 23 39
r105_rcl 8.5 13.0 11.3 60 29 34
ri06cl  49.5 54.5 404 57 38 27
ri06.c2  88.8 61.7 51.9 54 30 29
rl06_rcl 95.0 189.2 173.0 58 33 28
rl07cl 119.9 1322.7 350.3 66 56 24
rl07c2 1324 1353 103.4 41 17 24
ri08_cl  52.6 52.1 448 44 18 29
ri08_c2 124.8 6960.1 552.9 48 35 27
ri09cl  33.7 13.4 11.5 40 24 28
ri09.c2  22.0 24.7 23.8 54 36 21

rcl02.cl 11.1 11.8 9.3 59 47 12
rc102.c2 15.3 18.0 13.8 33 21 21
rc102.r1  30.8 30.1 27.4 69 37 33
rc103.cl1 30.9 26.0 20.8 57 50 7
rc103.c2 59.5 71.8 54.4 46 26 26
rc103r1  26.9 29.4 23.4 57 43 16
rcl04cl 57.5 66.5 54.6 50 55 9
rcl04.c2 259 20.0 18.3 43 21 36
rc104_r1  49.9 61.9 51.2 69 56 10
rcl05.cl 14.7 13.9 127 71 33 29
rc105.c2 10.9 8.6 7.3 61 52 9
rc105r1  11.9 111 9.1 40 45 10
rcl06_cl 14.7 8.3 6.6 40 33 13
rcl06_.c2 26.8 18.4 159 61 29 25
rcl06_r1  17.0 12.4 11.0 38 25 21
rcl07.cl 18.4 12.1 127 21 14 7
rc107.c2 37.0 20.9 18.3 52 36 20
rc107r1  49.2 1748 115.3 58 33 27
rcl08_cl 29.7 29.3 26.3 47 47 6
rc108_c2 31.2 31.7 31.3 45 30 20
rc108r1  33.9 56.3 39.2 50 32 21

e

e
WOOOPODODODODOONODODODODODODODODODOINODODOOOOOOOO
(cNeNeloloNoNoNoNoNooloNolo NN oo ool ool o X}

r109.rcl 20.1 26.6 229 60 33 31 rc201.cl1 727 341.1 2159 76 74 3 2
ri10cl 1335 177.9 159.7 42 29 16 rc201.c2  61.1 70.6 51.9 56 52 11 0
ri10.c2 829 69.5 64.4 36 19 22 rc201.r1 191.3 37405 473.4 62 52 27 27
r110_rcl  40.0 57.8 446 71 44 31 rc202_c2 292.5 - 26740 70 55 7 55
rillcl 1243 1152.1 170.2 61 17 43 rc205.cl 235.4 - 33429 74 63 14 63
rill.c2 143.7 199.3 155.7 41 27 20 rc205.c2 180.5 375.98 188.1 57 46 18 0
rl1lrcl 86.8 135.1 93.5 62 39 29 rc205.r1 163.1 7849 2723 63 43 22 32
r112 cl 88.5 109.5 83.6 53 33 22 rc206_cl 341.7 - 14509 81 60 32 68
rl12.rcl 64.1 2426 101.7 38 22 30 rc206.c2 246.4 - 3385.0 54 59 11 32
r201_c1 385.4 1822.6 1333.6 65 63 20 59  rc206.r1 241.1 - 1073.1 66 45 28 47
r201_c2 246.5 1072.4 7309 66 56 19 65

r201lrcl 915 94.9 81.6 52 44 25 0

r202_rcl 393.8 4989.1 2044.5 65 69 12 7

r203_rcl 416.4 - 48189 86 31 3 30

r205_rcl 176.9 1035.3 649.8 70 50 17 42

r209_rcl 346.7 - 11842.2 62 72 11 85

r210_rcl 379.5 - 4303.5 62 27 9 33

Mean 570.3 201.2 57 35 28 7 Mean 209.2 62.0 51 38 18 3
Closed 38 41 Closed 29 34

never 3 times longer than SeM.

4.8. Results on the BOTOPTW

The goal is to compare eCGEA with an algorithm from the literature proposed by [Parragh
and Tricoire (2019). The parameters used in the method are set as follows: the size of pre-
defined ng-sets used for ng-route relaxation is |N;| = 8, the parameters for the Ty, mechanisms
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Table 3: Computational results of SeM and eCGEA on instances of type c_c, c.r and c_rc for |V| = 25.

UB SeM eCGEA UB SeM eCGEA
Instance Time Time Time T3, Tyaiid Tsave Tdual Instance  Time Time Time Ty Tyatid Tsave Tdual
(s) (s) (s) (%) (%) (%) (%) (s) (s) (s) (%) (%) (%) (%)
cl0lc2 255 13.6 19.2 40 20 40 0 cl108.rcl 123.6 2195 1704 76 69 7 48
cl0l.rcl 1438 135 11.6 50 50 17 0 c108-r1 553.4 - 29619 52 48 30 54
c101.r1 53.0 35.0 35.7 55 55 14 0 c109.c2 173.2 270.3 3304 61 83 0 89
cl02.c2  96.0 46.6 39.2 44 38 13 0 «cl09.rcl 159.9 282.5 3527 74 66 11 26
c102_rc1 101.4 112.0 149.0 53 67 7 67 cl09.r1 335.2 1642.0 1171.1 57 64 17 71
cl02_r1 380.3 872.3 10495 51 53 17 40 c201.rcl 122.1 4349.7 935.0 29 43 21 71
cl03.rcl 163.7 184.3 2976 61 65 13 61 c201.rl 829.4 - 2674.1 65 76 13 91
cl03.r1 354.3 42554 796.5 29 55 14 48 c201.cl 352.6 - 419.7 64 14 36 57
cl04_c2 283.0 - 5053.8 43 39 22 39  c202.rcl 536.5 - 1365.9 50 61 6 61
cl04.r1 641.7 2525.3 1552.8 64 48 23 26 c202.cl 7489 - 2539.4 66 38 24 59
cl05.c2 321 47.2 52.9 0 0 0 0 c203cl 864.6 - 10858.5 50 67 13 79
cl05.rcl1  58.0 113.2 59.5 67 60 13 13 c204_-rcl 1409.9 - 10947.2 65 68 10 75
cl05.r1 1399 185.1 500.8 44 72 12 72  c205.rcl 298.3 - 571.2 67 60 16 74
cl06.c2 24.8 26.1 81.1 40 40 0 0 c205.r1 681.9 - 5898.6 59 70 25 80
cl06_rcl 175 11.0 11.5 50 50 17 0 c205cl 287.8 - 768.9 74 41 12 35
cl06_r1 55.1 48.2 45.8 57 48 14 0 c206_rcl 269.2 - 1003.0 74 50 24 71
cl07.c2 40.0 48.1 59.2 25 25 25 0 c206.cl 471.7 - 7697.9 68 50 18 59
cl07_rc1 228.0 1782.6 367.1 73 73 13 80 c207cl 635.8 - 12257.1 73 35 27 50
cl07r1 213.0 359.6 2914 50 38 19 0 c208.rcl 421.2 - 1591.6 59 57 11 70
cl08.c2 77.3 43.9 414 75 75 6 0 c208cl 545.6 - 878.0 70 35 35 65
Mean 671.5 3159 51 53 13 30
Closed 24 40
1 e
09+
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Figure 3: Performance profiles of SeM and eCGEA on BOVRPTW instances.

are W = {0,1} and MAX_COL = 30000 (see Section [3.5). At each iteration i of eCGEA and
SeM, an upper bound UB; of M P(e;) (see Section 2.5.2) is computed as follows. The function
compute_lowerbound returns the set of ng-routes R; in the restricted linear master problem at the
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end of the column generation (see Section. The non-elementary routes are removed from R;.
The resulting integer program RM P(e;, R;) is then solved using a black box mixed integer linear
programming (MILP) solver to obtain UB;. The execution time of this heuristic is included in the
execution time of eCGEA and SeM.

Tables and report the results on the 80 instances solved by [Parragh and Tricoire| (2019).
The size of the non-dominated set (|[ND]), the size of the supported set (|S|) and the average
gap (MGap) between a non-dominated point and the closest lower bound for the first objective
are reported. The computational times in seconds are given for Parragh and Tricoire’s algorithm
(B&B), SeM and eCGEA.The line Mean represents the average computation times for the instances
closed by both methods. We also indicate the percentage of the non-dominated points found with
each technique. As we do not use the same CPU than Parragh and Tricoire| (2019) we checked
the relative efficiency using the passmark CPU scor |Parragh and Tricoire| (]2019[) use a 2.6-GHz
Xeon E5-2650 v2 CPU with a CPU Single Thread Rating of 1691 and we use a 2.1-GHz Xeon
E5-2695 v4 CPU with a CPU Single Thread Rating of 1628. As the two processors are close and
the difference is in their favor, we did not modify their computational times by a factor of 1.04.
They also implement the procedures in C++ and use Gurobi 6.5.0.

On the complete set of instances, eCGEA is almost 7 times faster than B&B, and it closes 6
additional instances. The techniques Ty, and T4 are highly used for all instances. On the
contrary, Ty, is less used. It means that the instances are well-adapted for column generation,
and few columns are generated at each iteration when compared with BOVRPTW instances. Some
c101 instances are solved faster by SeM than eCGEA. This is due to the fact that the mechanism
Taua is quite used on these instances, and it can slow down the solution if the number of columns
to be found during the enumeration is just a little bit greater than the MAX_COL parameter. An
additional remark, shown in is that the mechamism T4 is crucial for the efficiency
of eCGEA.

Figurerepresents the performance profiles of B&B, SeM and eCGEA. First, the profiles show
again that on the whole set of instances, eCGEA dominates the other methods. However, this
observation should be mitigated. On instances such as those in classes c101, r¢101 and pr01, eCGEA
is much more effective as it is considerably faster, and it is able to find new non-dominated sets. On
other instances such as those in the class r101, B&B is strictly more efficient than our algorithms.
It should be noted that the worst computational time of eCGEA on this class of instances is only 70
seconds. Even without the speed-up mechanisms, SeM is competitive with B&B. This underlines
the fact that the choice to base the method on a state-of-the-art single objective column generation
algorithm is important. However, advanced column generation techniques can add unnecessary
additional time required to solve some instances like the 101 instances.

5. Conclusion

In this paper, we propose an exact algorithm to solve bi-objective vehicle routing problems. The
idea is to use a state-of-the-art column generation-and-enumeration algorithm for single objective
vehicle routing problems in an e-constraint approach to obtain an easy to implement method. We
provide different procedures and mechanisms to improve the efficiency of the algorithm. It should

2https://www.cpubenchmark.net/cpu_list.php
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Figure 4: Performance profiles of B&B, SeM and eCGEA on BOVRPTW instances.

be noted that these procedures rely on the properties of the column generation-and-enumeration
algorithm as well as observations on the objective space. They are not specific to vehicle routing
problems and could be used for other problems. The efficiency of the improvement techniques have
been tested on the Bi-Objective Vehicle Routing Problem allowing the algorithm to outperform
a direct application of the e-constraint method. The results can be used to benchmark other
algorithms for this problem which is representative of bi-objective vehicle routing problems. We
have also tested our algorithm on the Bi-Objective Team Orienteering Problem with Time Windows.
The algorithm outperforms the exact algorithm proposed in the literature so far. This study also
presents the limits of using the e-constraint method for bi-objective vehicle routing problems as the
gap increases with smaller € values. A perspective could be to construct pertinent cuts to reduce
this gap.
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Table 4: Computational experiments of the BOTOPTW on the instances ¢101 and pr01.

Instance characteristics B&B SeM eCGEA
Instance |ND| |NS| MGap Time Time Time T Tyatia Tsave Taual

OO ©) (s) (%) (%) (%) (%)

c101.1.15 18 10 249 9.8 11.9 7.8 61 61 6 0
c101.1.20 20 10 245 449 23.3 9.7 60 70 0 0
c101.1.25 21 9 21.7 949 30.8 10.8 67 67 5 0
c101.1.30 21 9 21.7 197.2 37.4 15.1 67 67 5 0
c101.1.35 23 9 205 263.9 47.7 16.0 70 70 4 0
cl01.2_15 24 13 20.6 44.9 28.9 16.6 58 58 4 0
c101.2.20 32 16 17.8 755.3 56.8 38.0 56 62 0 0
c101.2.25 37 20 149 5931.0 1547 96.3 51 54 3 3
c101.2.30 37 20 149 - 1352 95.0 54 57 3 3
c101.2.35 41 18 134 - 78.2 499 58 61 7 0
c101.3.15 24 13 206 407 25.7 18.7 58 58 4 0
c101-3:20 33 16 17.4 8444 356.1 4421 58 54 0 27
c101.3.25 42 21 137 - 2712.7 2193.3 57 52 2 26
c101.3.30 - - - - - - - - - -
c101.3.35 - - - - - - - - - -
c101.4.15 24 13 206 443 277 185 58 58 4 0
c101.420 33 16 17.4 838.7 372.8 4776 58 51 3 27
c101.4.25 42 21 137 - 4110.8 43315 57 52 2 26
c101.4.30 - - - - - - - - - -
c101.4.35 - - - - - - - - - -
Mean 26 13 20.2 759.2 97.8 97.2 60 61 3 5
Closed 12 16 16

pr01_.1_15 26 7 203 4.0 223 9.4 73 61 11 0
pr01_1_20 39 5 155 19.6 68.8 124 85 85 5 0
pr01_1.25 72 7 9.6 1356 128.2 21.5 90 85 6 0
pr01.1.30 93 7 8.2 1222.6 1468.8 56.2 91 85 7 0
pr01.1.35 85 9 0.0 3345.3 1678.2 173.3 88 82 11 0
pr01.2_15 36 8 155 3.4 25.0 126 78 69 11 0
pr01.2_20 72 13 11.8 36.9 1269 785 79 69 10 1
pr01.225 121 13 7.1 341.4 2905.7 134.1 84 81 5 0
pr01.2.30 153 10 6.5 1800.9 757.8 476.7 89 84 8 2
pr01.2_35 - - - - - - - - - -
pr01.3.15 37 8 15.2 2.7 29.8 122 76 70 11 0
pr01_3_20 67 10 126 46.6 68.0 327 79 69 10 0
pr01.3.25 134 11 6.5 201.6 2025 56.8 92 87 4 0
pr01.3.30 169 10 5.9 1297.0 5516 178.5 93 89 5 0
pr01.3.35 195 15 4.3 - 2865.5 1657.0 89 81 9 1
pr01_4_15 37 8 15.2 2.7 25.1 11.8 76 70 11 0
pr01_4.20 67 11 12.6 40.2 67.2 323 79 69 12 0
pr01.425 135 11 6.4 166.6 236.6 45.5 92 89 3 0
pr01.430 169 10 5.9 1175.0 4728 121.3 093 90 5 0
pr01 435 195 15 4.3 - 2530.0 2341.5 88 82 10 1
Mean 89 9 10 5789 519.7 86.2 85 78 8 0
Closed 17 19 19
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Table 5: Computational experiments of the BOTOPTW on the instances 7101 and r¢101.

Instance characteristics B&B SeM eCGEA
Instance  |[ND| |[NS| MGap Time Time Time Tip Tyatid Tsave Tduai

O 6 ) 5 (5 () () () (%) (%)

r101_1_15 9 3 203 03 90 50 56 56 22 0
r101.1_.20 10 5 282 02 129 44 70 80 10 0
r101_1.25 10 5 282 05 163 55 70 80 10 0
r101.1_30 16 3 242 16 203 69 81 81 6 0
r101.1_35 23 4 177 3.0 3384 158 83 74 9 4
r101_2_15 25 6 148 0.6 157 114 76 44 32 0
r101.2_20 27 8 151 1.3 231 125 78 68 18 0
r101_2_25 32 6 148 2.0 420 141 84 72 16 0
r101_.2_30 40 7 125 6.3 529 211 80 75 7 0
r101_2_35 47 7 108 10.1 748 388 85 62 23 0
r101_3_15 45 8 99 1.6 283 153 82 60 22 0
r101_.3.20 44 9 107 25 391 189 79 64 18 0
r101_.3.25 54 10 102 45 585 253 83 70 15 0
r101_.3_.30 62 10 9.1 125 784 401 84 63 22 0
r101_3_35 73 11 8.0 30.3 111.8 59.3 84 63 22 0
r101_4_15 51 9 91 19 329 184 82 61 22 0
r101_4_20 56 10 9.0 3.6 473 252 84 64 21 0
r101_4_25 65 11 9.2 7.0 703 327 83 72 14 0
r101_4_30 77 12 8.2 18.2 1205 48.0 82 74 12 0
r101_4_35 102 11 6.7 37.9 157.6 68.2 87 68 19 0
Mean 43 8 143 7.3 525 243 80 67 17 0
rc101.1_15 11 6 253 11 100 28 73 82 0 0
rc101.1_20 11 6 255 24 105 37 73 82 0 0
rc101.1.25 12 6 244 48 181 4.2 75 83 0 0
rc101_1_30 12 6 244 54 215 b2 75 83 0 0
rc101.1.35 12 6 244 70 249 65 75 83 0 0
rc101.2_15 25 10 150 6.2 199 91 72 64 12 0
rc101.2_20 27 10 145 224 292 123 74 67 11 0
rc101.2.25 29 9 139 482 317 11.7 79 72 10 0
rc101_2_30 29 9 139 576 401 139 79 72 10 0
rc101.2_35 29 9 139 816 441 164 79 72 10 0
rc101_3_15 25 10 151 85 185 9.0 72 64 12 0
rc101_3_20 34 11 125 351 302 16.1 74 65 15 0
rc101.3.25 46 14 10.0 180.2 50.8 25.7 76 65 13 0
rc101_3_30 46 14 10.0 2204 59.8 26.3 76 65 13 0
rc101_3.35 46 14 10.0 3321 70.0 313 76 65 13 0
rc101.4_15 25 10 151 6.9 156 99 72 64 12 0
rc101.4_20 36 13 122 461 330 18.0 75 64 17 0
rc101.4.25 49 16 9.9 2629 542 27.0 75 61 18 0
rc101.4_30 53 16 9.6 4786 71.0 36.5 74 64 15 0
rc101.4_35 59 17 8.4 946.2 933 52.0 76 63 15 0
Mean 31 11 154 137.7 373 16.9 75 70 10 0
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Appendix A. Optimal solution of MP(€)

This appendix proves that it is valid to use GENROUTE to find an optimal solution of MP ().

Theorem 2. The notations have been introduced in Section The linear relazation of MP(e) is as follows:

minimize Z ey 1)
rER
s.t. Z airzy >d; 1€V’ 2) — S
reR
Y e <IK| (A1}3) «—
rER
Zcimge [A1l4) +—af
rER
zr >0 reR 5)

(A1)

Let X >0 (i € V'), A\§ <0 and a° < 0 be the duals associated with constraints 2), 3) and 4).

The dual of the formulation (A.1) is as follows:

mazimize Z di\i + |K|A§ + eaf 1)
i€V’

s.t. Z a X + A5 +c2a“<c rER 2)
eV’

AP >0 iev' [A2]3)
X <0 @2
o &2)

(A2)

Let 2B be the optimal solution of the formulation (A1) and xVB be a feasible solution of MP(c). Let A *B =
33

(X EBac EBY be the optimal solution of the formulation

The sum of the reduced cost of routes 7 € R such that 72 > 0 is less than or equal to the difference of cost ¢!

between V8 and x¥B. This difference of cost is called the gap ~.

Proof. The gap is described in Equation (A.3) and the reduced cost of a route r in Equation .

_ 1 UB 1 LB
N = crxy — Crxy
rER TER
1 LB LB 2 c¢LB
¢ =cp — E ir§ -6 7 —caf Vr € R
i€V’

By [A1]2) and (A2]3), Vi € V', > awa/ A; ¥ > dixi PP

rER

Thus, Z Z airzdBAE LB > Z dixi BB

i€V reER %

By (A.1]3) and (A.2]4), Y a/"X5 P > | KNG HP

reR

Finally, by 4) and 5), Z EaVPa P8 > ea

rER

e LB
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(A-3)

(A4)



By the strong duality theorem:

1, LB e LB e LB e LB
crxys = E di\; + | KXo + e
rER eV’

SOILELED 3D WIFLIEENS DELIILNS e LR e Wrxs B
r€ER iceV/ reR rER rTER
B DT G LR SR o SY LI S TR SR LN
TER rTER re€ER ieV/' reR r€ER r€ER
> Y = 3 an X 3 Bt HY L by (5
rTER i€V’
=5 > Z&x?lg by (A.4)
TER
Therefore, the sum of the reduced cost of the routes such that Y2 > 0 is less than or equal to the gap. O

Let LB and UB be a lower bound and an upper bound of MP(e) and A¢ “Z be the dual solution associated
with LB. In the following paragraph, we consider that the reduced costs are computed with respect to A° LB,
The step 3 of GENROUTE (see Section generates all routes with reduced cost less than or equal to the gap
v =c"(UB) — c'(LB). Let 2p be a feasible solution associated with a non-dominated point P in the objective space
such that ¢' (LB) < ¢'(P) < ' (UB) and ¢*(P) < e. By Theroem xp is composed by routes with reduced cost less
than or equal to cl(P) — cl(LB) < 7. These routes are generated in a set of routes R by the route enumeration of
GENROUTE between LB and UB. Thus, any solution p can be found in R by modifying the ¢ value of RMP(¢,R).
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Table B.6: Computational results of SeM and SeM with each technique on instances of type r_c, r_re, rer and re_c
for |V| = 25.

Instance SeM Tgap T Tyatia Tsave Tdual SeM T_qap T Tyalid Tsave Tual
r10l cl 4.9 4.8 4.8 4.2 4.7 3.6 rclOlcl 4.4 4.1 4.4 4.2 3.5 3.8
r101_c2 4.3 4.4 4.4 3.6 4.1 3.6 rcl0l.c2 4.8 5.3 5.3 4.3 4.6 4.1
r101_rcl 6.7 6.3 6.6 5.2 5.4 4.8 rcl01.rl 12.2 125 12.9 11.2 11.7 11.2
r102_cl 102.2 90.2 88.8 96.9 69.9 42.7 rcl02.cl 11.8 11.3 10.7 10.4 9.8 10.5

r102_c2 25.6 24.6 23.0 22.7 243 21.6  rcl02.c2 18.0 19.1 16.7 16.7 16.8 17.5
r102_rcl 23.6 23.7 22.7 20.6 20.5 19.2  rcl02.r1 30.1 30.4 30.4 28.0 28.9 26.8
r103_cl 24.9 26.3 21.4 22.7 24.4 21.5  rcl03cl 26.0 25.9 253 22.7 21.8 223
r103_c2 34.3 34.4 32.7 33.8 29.4 30.1  rcl03_c2 71.8 74.4 82.6 67.4 72.4 53.3
r103_rcl 42.0 41.2 38.4 39.2 33.1 379 rcl03.r1 29.4 29.7 26.9 26.2 22.1 26.4
r104_cl 42.7 42.7 39.7 42.6 41.8 40.1  rcl04_cl 66.5 67.4 772 60.3 66.9 76.1
rl04_rcl 1241.5 1269.1 1440.0 1268.3 139.1 288.5 rcl04.c2 20.0 20.9 21.3 21.1 16.3 19.4
r104_c2 75.4 76.1 64.8 71.8 71.7 62.5 rcl04.rl 61.9 59.0 57.4  53.5 61.0 55.3
r105_cl 16.9 16.5 17.7 16.2 16.0 15.4  rcl05_cl 13.9 13.2 13.2 12.2 13.6 12.4

r105_c2 14.7 14.0 133 12.6 14.3 11.9  rcl05_c2 8.6 8.7 9.2 7.3 8.2 6.9
r105_rcl 13.0 13.2 131 11.8 12.3 10.6  rcl05.r1 111 10.7 9.6 9.3 10.2 9.8
r106_cl 54.5 50.9 46.7 50.1 42.1 46.0 rcl06-cl 8.3 7.9 8.0 7.4 7.9 7.0

r106_c2 61.7 63.3 60.5 60.1 58.3 55.4  rcl06_c2 18.4 17.8 17.5 16.5 17.1 16.7
rl06_rc1 189.2 1849 1755 1849 149.4 181.8 rcl06.r1 12.4 13.3 12.7 12.1 11.8 11.9
rl07_cl 1322.7 1330.4 11945 1107.2 196.6 1201.1 rcl07_cl 12.1 131 12.6 1211 11.9 12.8
rl07.c2 1353 136.7 1285 127.1 1251 122.1 rcl07_c2 20.9 20.1 20.1 18.8 18.6 18.5
r108_cl 52.1 50.4  47.2 51.1 51.1 48.3 rclO7_r1 1748 1555 138.0 144.1 170.8 118.0
rl08_c2 6960.1 6356.7 8150.9 6993.9 261.7 12429 rcl08_cl 29.3 28.9 274 269 27.6 27.3
r109_cl 13.4 13.3 13.4 12.7 13.9 12.0 rcl08c2 31.7 33.6 32.2 32.3 30.7 29.5
r109_c2 24.7 23.6 26.3 22.7 22.6 19.9  rcl08.rl 56.3 49.5 61.3 47.1 49.7 39.2
r109_rcl 26.6 325 26.4 25.3 26.9 25.2  rc201cl 3411 326.4 3642 2245 155.6 201.4
rl10cl 1779 177.0 195.6 165.7 177.4 1724 rc201c2 70.6 65.3 80.0 52.9 54.8 50.6
r110_c2 69.5 66.3 68.1 71.6 65.1 63.0 rc201.r1 3740.5 3377.1 3430.4 2489.2 338.6 1229.0
r110_rcl 57.8 61.6 52.7 54.4 56.3 47.3  rc202.c2 - - - - 3527.9 5996.7
rlll.cl 11521 1065.2 1110.4 1105.0 171.9 1106.6 rc205cl - - - - 13129.3 12349.6
r11l1.c2 199.3 177.5 182.0 190.4 1844 153.0 rc205.c2 376.0 324.6 351.3 258.2 272.8 212.3
rillrcl 1351 126.9 140.0 1109 106.2 111.9 rc205r1 7849 753.4 6413 555.6 279.8 313.0

rl12.c1  109.5 107.2 105.6 96.1 101.8 93.6 rc206_cl - - - - 1507.8 -
rl12.rcl 2426 2209 208.9 198.1 1426 107.7 rc206_c2 - - - - 298.7 -
r201_cl 1822.6 1592.8 2121.0 1547.4 671.1 11725 rc206_r1 - - - - 1238.9 -

r201_c2 1072.4 954.1 937.8 626.4 503.7 5143
r201_rcl 94.9 86.8 90.1 89.1 92.5 86.0
r202_rcl 4989.1 3840.9 3784.2 4573.4 2866.6 1440.8
r205_rcl1 1035.3 858.6 1327.7 735.8 497.9 588.0

r210_rcl - - - - 7138.7 -
Mean 570.3 507.0 579.6 5229 186.7 2428 Mean 209.2 1924 193.1 146.6 62.6 91.1
Closed 38 38 38 38 39 38 Closed 24 24 24 24 29 26

Appendix B. Results on the BOVRPTW

This appendix underlines the impact of each technique of Section embedded SeM on BOVRPTW instances.
Tablesandprovides the computation times in seconds ( Time) for SeM and SeM improved with each technique.
The column called Tyap (respectively Tip, Tyatid, Tsave and Tgyuar) represents the algorithm SeM improved with the
technique Tyap (respectively Tip, Tvatids Tsave and Tauqer). The line Mean represents the average computation times
for the instances closed by all methods, and the line Closed represents the number of closed instances. Furthermore,
Figure represents the performance profiles of SeM and SeM improved with each technique.

Thanks to the mean CPU time and the performance profiles, we can see that all techniques except T3, provide
improvements to SeM. The technique Tsqve is clearly the most impacting improvement, and it helps to close 17
instances when compared to SeM. The technique T}, can improve SeM (like on 7¢201_r1 and ¢104_rcl), but it can

27



Table B.7: Computational results of SeM and eCGEA on instances of type c_c, c_r and c_re for |[V| = 25.

Instance SeM Tgap Ty Tyalid Tsave Tdual SeM Tgap Ty Tyalid Tsave Taual
cl01.c2 13.6 12.2 729 135 13.2 13.2 c108_c2 43.9 38.1 42.5 34.9 43.3 355
cl01_rcl 135 13.0 12.9 13.1 12.8 12.9 c108.rc1 219.5 209.6 176.1 141.6 187.4 159.4
c101-r1 35.0 333 42.9 30.8 33.0 30.7 c108-r1 - 11746.7 - 11379.5 1569.8 11436.9
c102_c2 46.6 42.1 43.3 42.8 42.3 454  c109_c2 270.3 214.1 261.1 199.4 311.9 245.2
cl02_rc1 112.0 103.5 105.9 79.8 117.2 1799 cl09.rc1 2825 262.2 280.8 257.0 285.3 281.6
cl102_r1 872.3 812.7 861.5 804.8 721.4 9420 cl109-c2 270.3 214.1 261.1 199.4 311.9 245.2
c103.rcl1 184.3 185.4 144.0 135.8 181.5 193.7 <c201.rcl 4349.7 2498.5 3558.6 1814.8 1006.5 1583.8
cl03_r1 42554 3533.2 4691.6 3788.5 755.5 4067.5 c201-rl - - - - 2287.1 -
c104_c2 - - - - 2934.8 - c20lcl - - - - 411.6 11589.8
cl04_rcl - 13175.9 12583.2 12341.7 13719.9 - c202cl - - - - 2050.3 -
cl04.r1 25253 2711.5 22215 2448.1 1671.6 23194 c203.cl - - - - 8439.1 -
cl105_c2 47.2 38.0 50.4 44.2 48.9 39.8 c205.rcl - 12394.0 5202.8 7838.8 383.0 67149
cl05.rcl1 113.2 201.5 115.1 73.2 106.3 78.7 c205.r1 - - - - 12841.8 -
cl05.r1 185.1 220.5 224.7 180.6 148.9 181.2 c205.cl - - - - 796.7 -
c106_c2 26.1 23.1 71.4 24.6 259 242  c206.rcl - - - - 834.2 -
c106_rcl 11.0 10.2 11.4 10.5 10.5 10.8 c206_cl - - - - 7082.7 -
cl106.r1 48.2 43.4 50.3 47.3 45.2 42.3 c207.cl - - - - 9578.0 -
cl107_c2 48.1 47.6 51.3 47.1 48.6 54.0 c208_rcl - - - - 89824 -
cl07_rcl 1782.6 1855.0 2625.2 1649.8 681.8 2304.2 c208_cl - - - - 605.9 -
cl107-r1 359.6 329.4 340.7 337.2 358.1 329.0

Mean 671.5 568.8 679.9 517.5 298.7 559.2

Closed 24 27 26 27 39 27
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Figure B.5: Performance profiles of SeM and SeM improved with each technique on BOVRPTW instances.

also slow down it (like on 7104_rcl and r108_c2). Indeed, the column generation algorithm is too slow for some
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instances, and 7}, is conceived to remove this step. Moreover, the set covering problems, master problems of column
generation for VRP, are highly degenerated and present multiple optimal dual solutions.
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Appendix C. Results on the BOVRPTW

This appendix provides the results of solving a multi-commodity network flow model with time window and
capacity constraints |Cordeau/2000| embedded in an e-constraint technique (compact_formulation) on the BOVRPTW
instances. Table provides the computation times in seconds (Time) for eCGEA and compact_formulation. The
line Mean represents the average computation times for the instances closed by all methods, and the line Closed

represents the number of closed instances.

Table C.8: Computational results of eCGEA and compact_formulation on instances of type c_c, c_r and c_rc for

V] = 25.

eCGEA compact_formulation

eCGEA compact_formulation

Instance Time Time Instance Time Time
(s) (s) (s) (s)
r101_cl 3.7 309 cl01l.rl 35.7 3135
r101_c2 33 30.9 cl105c2 52.9 52.9
r101_rcl 4.7 41.3  cl105.rcl 59.5 302.9
r105_cl 17.2 7072.7  cl105.r1 500.8 522.0
r105_c2 11.8 6269.7 c106_c2 81.1 46.4
r105_rcl 11.3 2128.9 cl06.rcl 11.6 11.2
r201.c1 1333.6 6080.4 cl06-r1 45.8 191.1
r201_rcl 81.6 730.2 1072 59.2 62.7
rc101_cl 4.1 1425.6 cl07.rcl 367.1 1320.2
rc101_c2 3.8 859.0 cl107-r1 291.4 10653.4
rc101_rl 10.6 3102.6 c201rcl 935.0 18.2
rc201.c1 2159 11185.3 c201rl1 2674.1 126.2
rc201_c2 519 1580.0 c201cl 419.7 20.0
cl101_c2 19.2 50.1 c205.rcl 571.2 13620.7
c101_rcl 11.6 142 c205r1 5898.6 7181.7
Mean 118.9 2706.8
Closed 118 30
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Table D.9: Computational time of the BOTOPTW on the instances ¢101 and pr01.

Instances SeM  Tyap Tiw  Tvatia Tsave Tauar Instances SeM Tyap Tiw  Tvatid Tsave Tdual
c101.1_15 11.9 15.0 8.3 9.7 10.7 11.5 pr01.1_15 223 16.6 12.2 11.0 13.7 16.5
cl01.120 233 169 124 13.6 137 17.0 pr01.1.20 68.8 65.8 24.3 40.7 313 526
cl01.125 308 29.3 157 14.9 183 227 pr01.125 1282 1015 50.6 70.5 60.8 102.5
cl01.130 374 276 18.9 227 243 28.0 pr01.1.30 1468.8 1240.1 128.0 405.7 286.5 413.4
cl01.135 477 356 243 243 28.3 36.5 pr01.1.35 1678.2 9529 346.0 664.9 764.88 834.7
cl01215 289 269 18.8 19.0 20.0 229 pr01215 250 249 155 170 213 29.1
cl01.2.20 56.8 526 463 41.1 40.3 584 pr01.220 1269 106.7 89.4 86.9 1339.6 142.3
cl01.2.25 1547 1183 106.1 103.1 92.8 1153 pr01.2.25 2905.7 19425 2097.5 1796.1 1784.5 251.7
c101.2.30 135.2 147.6 1251 94.5 99.5 112.8 pr01.2.30 757.8 624.5 5423.0 553.9 - 6746
cl01.2.35 782 934 58.7 58.7 68.0 78.0 pr01.235 - - - - - -
c101_3_15 25.7 289 20.8 209 22.96 28.6 pr01.3.15 20.8 23.8 19.2 17.1 216 246
c101.3.20 356.1 236.5 249.9 184.8 152.3 460.6 pr01.3.20 68.0 649 414 480 524 65.6
c101.3.25 2712.7 1846.3 1809.1 1195.7 1536.3 2993.0 pr01.3.25 2025 197.6 112.8 138.0 145.3 199.8
c101.3.30 - - - - - - pr01.3.30 551.6 515.6 279.3 380.7 341.7 504.3
c101.3.35 - - - - - - pr01.3.35 2865.6 2528.8 2815.7 2562.4 2604.6 -
cl014.15 277 247 20.4 227 2192 252 pr01 415 251 241 193 16.8 209 28.2
cl01.420 3728 176.5 247.1 139.5 1774 4589 pr01.420 67.2 73.1  50.0 474 46.4 747
cl01.4.25 4110.8 5224.1 5821.6 3318.6 2725.9 4643.3 pr01.425 236.6 192.3 102.4 1332 131.0 193.2
c101.4.30 - - - - - - pr01.430 4728 4405 260.4 304.1 278.1 4156
c101.4.35 - - - - - - pr01.4.35 2530.0 2507.3 2693.6 2167.8 2306.3 -
Mean 1196.2 1140.6 1211.4 1029.0 894.9 1223.6 Mean 504.8 3739 228.0 261.1 333.7 209.3

Appendix D. Results on the BOTOPTW

This appendix aims to see the impact of each technique of Sectionin SeM on BOTOPTW instances. Tables
andprovides the computation times in seconds (Time) for SeM and SeM improved with each technique. The
column called Tyap (respectively Tip, Thatids Tsave and Tayaqr) represents the algorithm SeM improved with the tech-
nique Tgap (respectively Tip, Tyvatid, Tsave and Tyuar). The line Mean represents the average computation times for the
instances closed by all methods, and the line Closed represents the number of closed instances. Figurerepresents
the performance profiles of SeM and SeM improved with each technique.

Thanks to the mean CPU time and the performance profiles, we can see that all techniques provide improvements
to SeM, in particular T}, and Tyaiid-
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Table D.10: Computational time of the BOTOPTW on the instances 101 and rc101.

Instances SeM Tgap :Flb T’Ualid Tsave Tdual Instances SeM Tgap le :Fvalid Tsave Tdual

r101.1.15 9.0 65 4.5 52 6.7 7.6 rcl01.1.15 10.0 73 45 47 3.7 86
rl01.1.20 129 95 6.2 65 75 96 rcl01.1.20 105 9.9 6.0 63 6.7 114
r101.1.25 16.3 11.7 7.6 81 94 150 rcl01.1.25 181 16.2 8.6 86 7.1 132
r101.1.30 20.3 225 12.6 127 133 20.6 rcl01.1.30 21.5 15.8 10.0 104 10.0 18.8
r101.1.35 38.4 33.6 19.8 227 241 395 rcl01.1.35 249 19.6 11.8 122 133 189
r101.2.15 157 158 9.8 11.7 16.6 154 rcl01.2.15 19.9 158 9.9 109 147 16.1
r101.2.20 23.1 234 141 156 21.3 237 rcl01.2.20 29.2 23.3 15.1 152 202 27.7
r101.2.25 42.0 335 19.5 21.2 275 333 rcl01.2.25 31.7 36.4 185 201 26.6 31.7
r101.2.30 529 60.1 31.9 331 409 528 rcl01.2.30 40.1 38.1 23.5 305 318 447
rl01.2.35 748 726 41.3 485 657 70.7 rcl01.2.35 441 454 27.5 309 39.3 448
rl101.3.15 283 27.8 16.6 19.1 257 27.6 rcl01.3.15 185 159 10.0 11.0 13.6 1538
rl01.3.20 39.1 36.1 285 25.4 341 37.7 rcl01.320 30.2 29.3 18.3 209 264 29.0
r101.3.25 585 558 32.6 374 439 553 rcl01.3.25 50.8 49.1 31.1 342 435 497
r101.3.30 784 79.4 46.9 555 71.6 80.8 rcl01.3.30 59.8 59.5 36.9 479 50.6 58.4
r101.3.35 111.8 131.7 80.9 78.4 99.3 113.9 rcl01.3.35 70.0 70.2 55.6 50.0 60.3 69.6
r101.4.15 329 315 18.4 220 30.0 37.0 rcl01415 156 158 10.0 125 150 18.4
rl01.4.20 47.3 46.3 349 319 445 457 rcl01.420 33.0 31.6 19.4 260 299 31.2
rl01.4.25 70.3 68.2 38.6 447 59.6 80.0 rcl01.425 542 541 34.1 440 496 63.1
r101.4.30 120.5 100.9 77.2 65.6 857 99.7 rcl01.430 71.0 725 45.0 514 730 70.1
r101.4.35 157.6 158.8 89.7 108.0 143.3 156.3 rcl01.4.35 93.3 92.3 58.6 66.0 93.2 919

Mean 525 513 31.6 337 435 511 Mean 37.3 359 22.7 257 314 36.6
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Figure D.6: Performance profiles of SeM and SeM improved with each technique on BOTOPTW instances.
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