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Abstract

A way to solve bi-objective problems is to use an e↵ective single objective algorithm embedded in-
side an ✏-constraint approach. In this paper, we are interested in any Bi-Objective Vehicle Routing
Problem such that if one objective is constrained, the resulting single objective optimization prob-
lem can be solved by a state-of-the-art column generation-based method. We propose mechanisms
and techniques to significantly speed up the resulting algorithm. Computational experiments are
conducted on two problems: the Bi-Objective Vehicle Routing Problem With Time Windows and
the Bi-Objective Team Orienteering Problem with Time Windows. To the best of our knowledge,
this paper presents the first exact method proposed for the first problem and the second exact
method proposed for the second problem. On the first problem we demonstrate the e↵ectiveness of
the proposed mechanisms. On the second problem, our algorithm is competitive with algorithms
from the literature.

Keywords: Combinatorial optimization, Bi-objective optimization, Vehicle Routing Problems,
Column generation

1. Introduction

The purpose of this paper is to devise a method for Bi-Objective Vehicle Routing Problems
(BOVRP) using one of the best column generation-based algorithm [Baldacci et al. 2011] for Vehicle
Routing Problems (VRP) in an ✏-constraint approach [Chankong and Haimes 1983].

Dantzig and Ramser (1959) introduced the VRP to model the distribution of gasoline from a
bulk terminal to service stations by a fleet of vehicles. The VRP and many variants [Toth and Vigo
2014] have been proposed and applied since then. The state-of-the-art reviews by Jozefowiez et al.
(2008), Labadie and Prodhon (2014) and Vega-Mej́ıa et al. (2017) point out that the definition of
several objectives leads to more realistic and rich problems. The problems defined that way are
classified as Multi-Objective Vehicle Routing Problems (MOVRP).

A MOVRP can be studied in the context of the Multi-Objective Combinatorial Optimization
(MOCO) [Ehrgott 2005]. As the problems considered in this paper are BOVRP, we introduce
here the main concepts of Bi-Objective Combinatorial Optimization (BOCO). The definitions are
illustrated in Figure 1. A BOCO problem can be defined by an objective vector c composed of two
objective functions c1 and c

2 to minimize. It searches for specific solutions, contained in the feasible
solution set X , which are not Pareto dominated by another feasible solution. Such a solution is
called an e�cient (or Pareto optimal) solution. The Pareto dominance between two solutions is
defined as follows:

Preprint submitted to Computers & Operations Research February 13, 20251



c
1

c
2

•
y1

•

•
y2

•

•

⌃

⌃

⌃

⇥

⇥

⇥
• Non-dominated point

⌃ Weakly non-dominated point

⇥ Dominated point

⇥ Convex hull of Y

Pareto front

Figure 1: Specification of points in the objective space of a bi-objective minimization problem. y1 is the c1-extreme
point and y2 is the c2-extreme point.

Definition 1. Let a and b be two solutions in X . The solution a strongly dominates (<) b if
and only if 8i 2 {1, 2}, c

i(a) < c
i(b). Moreover, a (weakly) dominates () b if and only if

8i 2 {1, 2}, c
i(a)  c

i(b) and 9i 2 {1, 2}, c
i(a) < c

i(b).

The set Y = c(X ) = (c1(X ), c2(X )) is the image of the feasible solutions in the objective space.
Each feasible solution x 2 X corresponds to a single point y = c(x) in the objective space, whereas
a point in Y may be associated with several feasible solutions. The notion of dominance between
solutions can be extended to their image in the objective space. However, the usual vocabulary
refers to non-dominated points instead of e�cient points. The non-dominated points form the non-
dominated set YN . Among the non-dominated points, we distinguish two points referred to as the
extreme points associated with extreme feasible solutions. More precisely, the point that optimizes
lexicographically c1 then c2 (respectively, c2 then c1) is called the c1-extreme point (respectively, c2-
extreme point). Furthermore, points located on the boundary of the convex hull of Y are called
supported non-dominated points.

1.1. Literature on Bi-Objective Combinatorial Optimization

A popular class of methods to solve MOCO problems is composed of criterion space search
methods which work on the objective space. These methods usually solve a sequence of mono-
objective problems and rely on e↵ective single objective algorithms [Boland et al. 2015a]. According
to Ehrgott and Gandibleux (2000), a well-known example is the two-phase method of Ulungu and
Teghem (1995). It relies on the weighted sum method [Aneja and Nair 1979] to compute the
supported non-dominated points. Then, the points are sorted according to one objective, and it
uses dedicated methods, such as branch-and-bound (B&B) or dynamic programming algorithms,
to find non-dominated points in the area defined by two consecutive supported non-dominated
points. However, the most popular algorithms are those using the ✏-constraint method [Haimes
et al. 1971] as they are easy to implement while being very e↵ective. All the objectives except one
are bounded with constants, the ✏ values, and the resulting single objective optimization problem is

2



solved. The non-dominated set can be computed by changing the bounds on the objectives. Sáez-
Aguado and Trandafir (2018) have done a review of the enhancements of the basic ✏-constraint
method in the literature. Recently, Boland et al. (2015a) have conceived the balanced box method
to e�ciently solve bi-objective mixed-integer programming problem. They consecutively explore
rectangle search area in the objective space by modifying the objective to optimize. Similar ideas
have been exploited in the triangle splitting method of Boland et al. (2015b). The other class of
methods to solve MOCO problems is composed of the methods dividing the solution space such as
branch-and-bound methods (B&B). Many improvements have been proposed in the literature as
shown in the complete review of [Przybylski and Gandibleux 2017].

1.2. Literature on Multi-Objective Vehicle Routing Problems

Many MOVRPs have been studied in the literature, and most of them aim to minimize the
sum of the cost of the arcs used by a vehicle, like the mono-objective problem. Adding other
objectives allows to provide some ecological [Molina et al. 2014, Demir et al. 2014], workload balance
[Halvorsen-Weare and Savelsbergh 2016, Matl et al. 2019] or security [Bula et al. 2019] concerns.
However, few exact methods have been applied to MOVRPs, and the ✏-constraint method has
been mostly used. Some authors used the ✏-constraint method combined with an integer linear
programming solver to solve the resulting mono-objective compact formulation on a Capacitated-
Location Routing Problem [Toro et al. 2017], aMulti-Objective Generalized Consistent VRP [Kovacs
et al. 2015], a Bi-Objective Hazardous Waste Location-Routing Problem [Yu and Solvang 2016] and
an Inventory-Routing Problem [Arab et al. 2018].

The ✏-constraint method has also been used with dedicated methods to solve the resulting
mono-objective problem. Reiter and Gutjahr (2012) design a branch-and-cut method (B&C) to
solve a BOVRP minimizing the total cost of the routes and the di↵erence between the longest and
the shortest route. The instances they use have between 16 and 57 nodes and 2 to 9 available
vehicles. They solve 10 instances out of 57 in 8 hours. Halvorsen-Weare and Savelsbergh (2016)
use a dynamic programming algorithm to solve a BOVRP minimizing the total cost and di↵erent
balance routing objective. Their instances are up to 12 nodes. Tricoire (2012) solves a Bi-Objective
Stochastic Covering Tour Problem with a B&C. The instances with 30 nodes have been solved in
a time limit of 3 days. The number of non-dominated points varies between 6 and 112.

Finally, Parragh and Tricoire (2019) introduce a new B&B to solve generic Bi-Objective Inte-
ger Programming problems. They apply their method to solve a Bi-Objective Team-Orienteering
Problem minimizing the total cost and maximizing the profit collected by visiting a node (see Sec-
tion 4.1). Basic column generation technique has been added to solve the linear relaxation of the
mono-objective formulations. The instances have between 15 and 35 nodes, and the B&B solves 69
instances out of 80 in 2 hours. In their paper, they also compare the following criterion space search
methods: the ✏-constraint, a bi-directional ✏-constraint method and the balanced box method both
described in Boland et al. (2015a). They show that the ✏-constraint method is more e↵ective on two
di↵erent Uncapacitated Bi-Objective Facility Location problems than its bi-directional counterpart
and the balanced box method. They also show that the B&B was the most e↵ective method for all
considered problems.

In this paper, one of the most e↵ective algorithms for vehicle routing problems, the column
generation and enumeration algorithm of Baldacci et al. (2011), is embedded in an ✏-constraint
method. The main contribution of this paper is the design of five mechanisms to significantly
speed-up the method. These mechanisms exploit properties of the column generation algorithms
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and the decomposition in the context of the ✏-constraint approach. Unlike classical criterion space
search methods, the mechanisms allow to get information from one mono-objective problem to
another. Experiments show that the final algorithm is the state-of-the-art algorithm for a problem
defined by Parragh and Tricoire (2019), the Bi-Objective Team Orienteering Problem with Time
Windows. The algorithm can also serve as a benchmark for future works on Bi-Objective Vehicle
Routing Problems with Time Windows.

The remainder of the paper is organized as follows. The class of studied BOVRP is defined in
Section 2. This section also describes the basic algorithm used to solve these problems. Additional
properties and performance improvement techniques are proposed in Section 3. Section 4 presents
the computational results. Conclusions are provided in Section 5.

2. An ✏-Constraint Method for Bi-Objective Vehicle Routing Problems

In 2.1, the characteristics of the BOVRPs that can be solved by our algorithm are described. A
general bi-objective mathematical model is formulated in Section 2.2. As the algorithm is based on
the ✏-constraint method, the model for a fixed value of ✏ is given in Section 2.3. This mono-objective
formulation is solved by the algorithm of Baldacci et al. (2011), which is outlined in Section 2.5.
The basic ✏-constraint method is described in Section 2.6.

2.1. Bi-Objective Vehicle Routing Problems

We consider BOVRP with two positive costs per edge. Therefore, a route has two costs. The
first route cost (respectively, the second route cost) is the sum of the first costs (respectively, the
second costs) on the edges of the route. This is required to apply the new mechanisms. Therefore,
the mechanisms cannot be used with some routing problems such as the bi-objective covering tour
problem [Jozefowiez et al. 2007, Glize et al. 2020] even if the algortihm of Baldacci et al. can be
applied to them. Operational constraints such as the maximum number of routes, time windows,
vehicle capacities can be considered.

Formally, the problem is defined over a graph G = (V,E). The graph may or may not be
oriented. The vertex set V = {0, . . . , n} contains a depot 0 and n customers i, 1  i  n.
Let V 0 = V \ {0} be the customer set. This set can be partitioned into two subsets: i) V 0

1 the set
of customers that must be visited; ii) V 0

2 the set of customers that may not be visited. Two integer
costs c

1
ij

and c
2
ij

are associated with each edge (i, j) 2 E. Such integrality condition on the costs
can be relaxed , except if one of the mechanisms introduced in Section 3 is used. However, this
condition facilitates the design of the algorithm. The customers are visited by a set of K vehicles
located at the depot. A path p, performed by one vehicle, starts at the depot and passes through a
set of edges Ep. It has two costs c1p =

P
(i,j)2Ep

c
1
ij

and c
2
p =

P
(i,j)2Ep

c
2
ij
. A route is a path which

ends at the depot. The goal is to find a set of routes that visits all required customers, respects
the operational constraints and minimizes the total costs.

2.2. Bi-Objective Mathematical Model

The problems can be modeled by a set partitioning formulation. Let R be the set of all feasible
routes. Let air be equal to 1 if route r 2 R visits the node i 2 V

0
1 , �1 if r visits i 2 V

0
2 and 0

otherwise. For each i 2 V
0, we define a constant di equal to 1 if i 2 V

0
1 and �1 otherwise. A binary

variable xr is equal to 1 if and only if the route r 2 R is selected. The model is:
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8
>>>>>>>>>>><

>>>>>>>>>>>:

minimize

 
X

r2R
c
1
rxr,

X

r2R
c
2
rxr

!
(1.1)

s.t.

X

r2R
airxr � di i 2 V

0 (1.2)

X

r2R
xr  |K| (1.3)

xr 2 {0, 1} r 2 R (1.4)

(1)

The objective vector (1.1) minimizes the two costs. Constraints (1.2) ensure that a vertex is
visited once if it belongs to V

0
1 or visited at most once if it belongs to V

0
2 . Constraint (1.3) limits

the number of vehicles available. Finally, Constraints (1.4) define the variable domains.

2.3. The ✏-Constraint Mathematical Model

Model (1) is transformed into Model (2) by the introduction of a bound ✏ on the second objective.
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

minimize
X

r2R
c
1
rxr (2.1)

s.t.

X

r2R
airxr � di i 2 V

0 (2.2)  ! �
✏

i

X

r2R
xr  |K| (2.3)  ! �

✏

0

X

r2R
c
2
rxr  ✏ (2.4)  ! ↵

✏

xr 2 {0, 1} r 2 R (2.5)

(2)

Objective (2.1) minimizes the first objective and Constraint (2.4) bounds the value of the second
objective. The other constraints are as in Model (1). The dual variables of each constraint are
reported on the right-hand side of the model.

2.4. Notations

Model (1) is the Master Problem (MP), and its linear relaxation is the Linear Master Problem
(LMP). Model (2) is the ✏-Master Problem (MP(✏)), and its linear relaxation is the ✏-Linear Master
Problem (LMP(✏)). The dual of LMP(✏) is denoted DLP(✏). These models restricted on a subset of
routes R ✓ R will be denoted RMP(✏,R), RLMP(✏,R) and RDLP(✏,R). The pair ⇤✏ = (�✏

,↵
✏) rep-

resents the dual variables associated with Constraints (2.2), Constraint (2.3) and Constraint (2.4)
for a fixed value of ✏, respectively. According to the context, ⇤✏ can also represent the dual values
obtained by the solution of RLMP(✏,R). To lighten the notation, if x (respectively, y) is a feasible
solution (respectively, a point in the objective space), the objective values (respectively, the point
coordinates) will be c

1
x and c

2
x (respectively, c1y and c

2
y).

2.5. Solution of MP(✏)

Model (2) has an exponential number of variables xr. However, it can be solved by the column
generation and enumeration algorithm introduced by Baldacci et al. (2008) and later improved by
Baldacci et al. (2011). The algorithm is composed of the following four steps, and it will be denoted
by GENROUTE in this paper.
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2.5.1. Step 1: Computation of the Lower Bound

The optimum of LMP(✏) is a lower bound LB of MP(✏) and is obtained by column generation.
Usually, the pricing problem of the column generation for VRP is an Elementary Shortest Path
problem with Resource Constraints, and it is solved with a labelling algorithm which produces ele-
mentary routes with negative reduced cost. As in Baldacci et al. (2011), the elementarity constraint
on the routes is relaxed, meaning that a route can visit a customer more than once. The relaxation
is done through the definition of ng-routes. An ng-route allows several visits to the same customer
as long as two visits are not close in the sequence. A parameter, called the size of the ng-sets,
controls when it is possible to revisit a customer. Additional details on this relaxation and how to
implement it can be found in Baldacci et al. (2011).

This step is enclosed in the function compute lowerbound. The input of the function is the
bound on the second objective ✏. The output is a lower bound LB on the first objective, the set
of ng-routes eR in the restricted master problem at the end of the algorithm and the dual values ⇤✏

associated with the optimum of RLMP(✏, eR).

2.5.2. Step 2: Computation of an Upper Bound

The second step aims to find an upper bound UB which is a point in the objective space
associated with a feasible solution of MP(✏). To do so, the method used dedicated heuristics for
each problem which are explained in Sections 4.2 and 4.3. In the next algorithms, the function
compute upperbound takes ✏ in argument and returns a point UB in the objective space along with
an associated solution.

2.5.3. Step 3: Route Enumeration

Given the dual values ⇤✏ obtained at the end of the first step, we search for the routes with a
reduced cost smaller or equal to the value � = UB � LB. This value is called the gap. Baldacci
et al. (2008) introduced this third step called column enumeration. The enumeration is done by
means of a monodirectional or a bidirectional labelling algorithm. In a labelling algorithm, a label
represents a path by a subset of features called resources (like its load, its reduced cost, its last
visited customer...). It is progressively extended to another label by visiting other customers. The
size of the set of labels is managed by dominance rules and completion bounds. The dominance rule
allows to discard labels that will not lead to a better solution than other labels. For a given label,
the completion bound represents the lower bound on reduced cost of paths ending at the depot and
that can complement the current label to form a feasible route. Therefore, the completion bounds
allow to remove labels whose reduced cost would be greater than the gap.

In the next algorithms, this step corresponds to the function route enumeration. The input of
the function is the gap � and the dual values ⇤✏. The output is a set of columns R with a reduced
cost less than or equal to the gap.

2.5.4. Step 4: Computation of an Optimal Solution

The optimum and an optimal solution of MP(✏) can be obtained by solving RMP(✏, R). The
integer problem can be solved with a black box MILP solver. In the algorithms, this corresponds
to a call to the function solve. The inputs are ✏ and R, and the output is an optimal solution for
MP(✏).
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Compute the extreme points S1 and S2 ;
YN = {(c1

S1, c
2
S1), (c

1
S2, c

2
S2)} ;

i = 1 ; ✏i = c
2
S1 � 1 ; UBi�1 = S1 ;

while c
1
UBi�1

< c
1
S2 do

/* Step 1 (Section 2.5.1) */

LBi,⇤✏i  compute lowerbound(✏i) ;
/* Step 2 (Section 2.5.2) */

UBi  compute upperbound(✏i) ;
/* Step 3 (Section 2.5.3) */

�i = min(c1
S2, c

1
UBi

)� LBi ;

Ri  route enumeration(�i,⇤✏i) ;
/* Step 4 (Section 2.5.4) */

Oi  solve(✏i, Ri) ;
/* Update the set of non-dominated points and the next ✏ value */

YN  YN [ {(c1
Oi
, c

2
Oi
)} ;

✏i+1 = c
2
Oi
� 1 ;

i i+ 1 ;

end

R Ri�1 ;
while ✏i > c

2
S2 do

/* Step 4 (Section 2.5.4) */

Oi  solve(✏i, R)) ;
/* Update the set of non-dominated points and the next ✏ value */

YN  YN [ {(c1
Oi
, c

2
Oi
)} ;

✏i+1 = c
2
Oi
� 1 ;

i i+ 1 ;

end

Return YN ;
Algorithm 1: Stepwise ✏-constraint method.

2.6. Stepwise ✏-Constraint Method

GENROUTE can easily be embedded in an ✏-constraint approach. The resulting algorithm is called
Stepwise ✏-constraint method (SeM) given in Algorithm 1. The output YN is the minimal complete
set [Hansen 1980] for Model (1). That is the set composed of all non-dominated points in the
objective space and at least one feasible solution for each point.

The algorithm starts by computing the two extreme solutions S1 and S2. This can be done
using GENROUTE with the objectives min c1+↵1c

2 and min c2+↵2c
1 with ↵1 and ↵2 small enough

constants. These lexicographic objectives ensure that the extreme points returned are not weakly
dominated. As c

1 is an integer cost, it can be deduced that ↵1 2]0; 1
c2(S1) ]. Let ! be an upper

bound on the cost c2 of any non-dominated point - for instance, ! =
P
i2V 0

(c20i + c
2
i0). Thus, ↵1 can

be fixed to 1
!
. The same goes for ↵2. In practice, we use ↵1 = ↵2 = 10�5 which is valid for all the

instances.
After computing S1 and S2, an iterative process begins with i = 1 and O0 = S1. Also, ✏1 is
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fixed such that S1 is excluded. The i
th iteration is composed of the following actions. First, an

optimal solution Oi of MP(✏i) is found by GENROUTE (steps 1 to 4). Then, the point (c1
Oi
, c

2
Oi
) is

added to YN , ✏i+1 is fixed to exclude Oi, and i is incremented. The algorithm stops when c
2
Oi
 c

2
S2.

Algorithm 1 can be sped up as follows. First, if c1
UBi

exceeds c
1
S2, the gap �i in step 3 can be

tightened to c
1
S2 � LBi. Indeed, no non-dominated point can have a first objective value strictly

greater than the one of S2. Moreover, at the end of the first loop of Algorithm 1, the set Ri�1

contains all routes with a reduced cost less than or equal to c
1
S2�LBi�1. So, the routes in Ri�1 are

su�cient to compute the remaining non-dominated points without the generation of new routes.
This assertion is proved in Appendix A. Therefore, the remaining non-dominated points can be
generated by solving the restricted master problem RMP(✏,Ri�1) until the value of ✏ is less than
or equal to c

2
S2. As a final remark, weakly dominated solutions can be generated by the algorithm

and are removed from YN .

3. The ✏-Constraint Column Generation-and-Enumeration Algorithm

We propose mechanisms to improve the e�ciency of SeM. The mechanisms are presented in
Section 3.1-3.5. The inclusion of these mechanisms in SeM leads to an algorithm, the ✏-constraint
Column Generation-and-Enumeration Algorithm (eCGEA), described in Section 3.6.

3.1. Tgap: Reduction of the Gap

At each iteration of SeM, a gap � is computed between the lower bound and an upper bound.
This gap bounds the value of the reduced cost of the routes generated during the route enumeration
phase. Therefore, tightening the gap should improve the e�ciency of the enumeration. To reduce
the gap during iteration i, we set �i to c

1
UBi
� LBi � 1. Indeed, the sum of the reduced costs

of the routes of a feasible solution O is less than the di↵erence between c
1
O

and the lower bound.
Decreasing the gap by one is possible because if no feasible solution exists in the resulting restricted
master problem, the solution corresponding to the upper bound is optimal. Note that this reduction
is possible because the cost matrix c

1 has integer coe�cients. For instance, let the lower bound
be 2.5 and the upper bound value on the first objective be 5. With this technique, the gap � will
be 1.5. Therefore, all feasible solutions having a cost c1 less than or equal to 4 can be found in the
resulting restricted master problem. One could want to compute the gap between the lower bound
rounded up (3) and the upper bound minus one. However, a gap of 1 generates solutions with a
cost c1 less than 3.5, and a feasible solution of cost 4 could be missed. If this mechanism is used,
the integrality condition of the cost c1 cannot be relaxed.

3.2. Tlb: Avoidance of Lower Bound Computation

A possibility to improve the computational times is to limit the number of calls to the column
generation algorithm that computes a lower bound, i.e. the first step of GENROUTE. Let LBi be
the lower bound, ⇤✏i = (�✏i ,↵

✏i) be the dual values and eRi be the set of routes returned by the
function compute lowerbound(✏i) during iteration i of SeM. A sensitivity analysis can provide an
interval [�i

a;�
i

b
] on the value of ✏ in which the optimal basis of RLMP(✏i, eRi) and ↵

✏i do not change.

Therefore, the set eRi can be used to compute the lower bound for a value ✏j in [�i
a; ✏i � 1]. The

optimum of LMP(✏j) is directly given by LBj = LBi � (✏i � ✏j)↵✏i . Note that the dual values ⇤✏i

are not necessarily an ideal choice for another ✏j value, even if ✏j in [�i
a;�

i

b
]. Therefore, the impact

of this mechanism on the global e�ciency of the algorithm may vary from one problem to another.
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The function compute lowerbound, introduced in Section 2.5.1, is modified to check the condition
of the sensitivity analysis and avoid the generation of a new restricted master problem. The dual
values ⇤✏i�1 and the set of routes eRi�1 used during the previous iteration are additional inputs to
the method.

3.3. Tvalid: Avoidance of Route Enumeration

Another costly part of SeM is the route enumeration done at each iteration. The following
proposition gives the conditions for which the upper bound computed at iteration i is a non-
dominated point.

Proposition 1. If �
✏i�1
0 = �

✏i
0 , ↵

✏i�1 = ↵
✏i and �i  �i�1, then the optimal solution of RMP(✏i,Ri�1)

is an optimal solution of MP(✏i). It is also an e�cient solution.

To prove this proposition, we need to prove the following theorem. To lighten the notations,
we pose i = 2. The reduced cost of a route r, computed with respect to the dual variables ⇤✏1 , is
noted cr(⇤✏1). Theorem 1 proves that the sum of the reduced costs of the routes of any feasible
solution UB2 with respect to ⇤✏1 is the same as this sum expressed according to ⇤✏2 , if �✏1

0 = �
✏2
0

and ↵
✏1 = ↵

✏2 . Therefore, the routes of UB2 have the sum of their positive reduced costs with
respect to ⇤✏1 and ⇤✏2 less than or equal to �2. If �2  �1, the routes of UB2 have already been
generated in the route enumeration between LB1 and UB1, so there is no need to launch the route
enumeration procedure.

Theorem 1. Let UB2 be a feasible solution of MP(✏1) and ⇤✏1 (respectively ⇤✏2) an optimal solution
of DLP(✏1) (respectively DLP(✏2)) with ✏1 > ✏2. If �✏1

0 = �
✏2
0 and ↵

✏1 = ↵
✏2, then the sum of the

reduced costs of UB2 with respect to ⇤✏2 can be computed as:
P

r2R cr(⇤✏2) xUB2
r =

P
r2R(c

1
r �

P
i2V air�

✏1
i
� c

2
r↵

✏1)xUB2
r

Proof.

X

r2R
cr(⇤

✏2) xUB2
r =

X

r2R
(c1r �

X

i2V
air�

✏2
i
� c

2
r↵

✏2)xUB2
r

=
X

r2R
c
1
rx

UB2
r �

X

i2V
(
X

r2R
airx

UB2
r )�✏2

i
�
X

r2R
c
2
r↵

✏2x
UB2
r

=
X

r2R
c
1
rx

UB2
r �

X

i2V 0

�
✏2
i
�
X

r2R
x
UB2
r �

✏2
0 �

X

r2R
c
2
r↵

✏2x
UB2
r

=
X

r2R
c
1
rx

UB2
r �

X

i2V 0

�
✏1
i
�
X

r2R
x
UB2
r �

✏1
0 �

X

r2R
c
2
r↵

✏1x
UB2
r [by Proposition 2]

=
X

r2R
(c1r �

X

i2V
air�

✏1
i
� c

2
r↵

✏1)xUB2
r

Theorem 1 uses Proposition 2 which gives the conditions for which the sum of the dual variables
of ⇤✏1 and ⇤✏2 are equal.
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Proposition 2. Let LB1 (respectively LB2) be the lower bound of MP(✏1) (respectively MP(✏2))
and ⇤✏1 (respectively ⇤✏2) an optimal solution of DLP(✏1) (respectively DLP(✏2)) with ✏1 > ✏2.
If �✏1

0 = �
✏2
0 and ↵

✏1 = ↵
✏2, then

P
i2V 0 �

✏1
i

=
P

i2V 0 �
✏2
i
.

Proof. According to Section 3.2, we obtain:

c
1
LB1
� (c2LB1

� c
2
LB2

)↵✏1 = c
1
LB2

)
X

r2R
c
1
rx

LB1
r � (✏1 � ✏2)↵

✏1 =
X

r2R
c
1
rx

LB2
r

)
X

r2R
c
1
rx

LB1
r � ✏1↵

✏1 =
X

r2R
c
1
rx

LB2
r � ✏2↵

✏2 [↵✏2 = ↵
✏1]

)
X

i2V 0

�
✏1
i
+K�

✏1
0 =

X

i2V 0

�
✏2
i
+K�

✏2
0 [strong duality theorem]

)
X

i2V 0

�
✏1
i

=
X

i2V 0

�
✏2
i

[�✏2
0 = �

✏1
0 ]

Furthermore, it is possible to improve the computational times by removing from Ri�1 routes
that cannot be part of a solution for MP(✏i), i.e. the routes with a reduced cost, computed accord-
ing to ⇤✏i , greater than �i. This routine is enclosed in the function column deletion. The inputs
are the dual values ⇤✏i , a gap �

✏i and a set of routes Ri�1. The output is a new set Ri of routes
from Ri�1 whose reduced costs, computed with respect to ⇤✏i , are less than �

✏i .

3.4. Tsave: Warm Start Route Enumeration

Another improvement is to avoid starting the labelling algorithm with an empty route, but
instead to warm start it using labels generated during previous enumeration phases. At iteration i,
the routes and labels generated during the previous iterations can be partitioned into four sets:

• Ri�1: feasible routes with a reduced cost inferior to the gap;

• Lri�1: feasible routes dominated by another feasible route or with a reduced cost greater
than the gap;

• Lpi�1: feasible paths dominated by another path, eliminated by a completion bound, or
infeasible with respect to the cost c2;

• Ii�1: labels leading to infeasible routes with respect to resources other than the cost c2 (e.g.,
time windows, vehicle capacities ...). This set is not saved.

The enumeration phase at iteration i can be started with labels from Ri�1, Lri�1 and Lpi�1. First,
the reduced costs of the routes of the two sets, Lri�1 and Ri�1, are computed with respect to ⇤✏i .
Then, these routes are stored into two sets. The first set Ri contains the ones with a reduced cost
less than �i. The remaining ones are stored in Lri. This first routine is an extension of the function
column deletion, introduced in Section 3.3, with only one extra input: the set Lri�1.

After that, the enumeration algorithm is started from Lpi�1 instead of a label representing an
empty route starting at the depot. During this enumeration phase, the sets Ri, Lri and Lpi are
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completed with the adequate routes and paths. Initially, the sets R0 and Lr0 are empty, and Lp0

is initialized with a label representing a visit to the depot. As the sets may become too large,
they are reset between two iterations i � 1 and i if �✏i

0 6= �
✏i�1
0 or ↵

✏i 6= ↵
✏i�1 . Moreover, if

the route enumeration is warm started, the search is necessarily monodirectional as a bidirectional
algorithm would require to store too many initialization labels. In the algorithm, the function
route enumeration, introduced in Section 2.5.3, is modified to accept an additional parameter that
is the set of labels to initialize the search. If the search is not warm started, this parameter is
the empty set. This function also returns the new sets Lpi and Lri. It is important to return Lri

because the routes not used at iteration i can be useful during subsequent iterations.

3.5. Tdual: Multiple Reduced Cost

One of the main drawbacks of GENROUTE is the sensitivity of the route enumeration procedure
to the gap. The algorithm may not converge because of a small increase of the gap. If this happens
during SeM, the algorithm would be stuck even though the problems for subsequent ✏ values may
be solved. The following strategy is used to mitigate this issue. The number of columns generated
during the enumeration phase is bounded by a value MAX COL. That way, the algorithm can
generate a set of points, not necessarily non-dominated, in the objective space. To that end, the
subroutine route enumeration is modified to accept an additional parameter that is the maximum
number of routes to generate.

However, if the enumeration stops because the bound MAX COL is reached at iteration i,
then the solution Oi of RMP(✏i, Ri) may not be an e�cient solution. The missing non-dominated
points, located in the rectangle defined by (LBi, ✏i) and Pi = (c1

Oi
, c

2
Oi
), are searched during a

second enumeration phase. To perform this new enumeration, multiple dual values are considered.
To that end, the following linear problems (3) are solved by column generation for a set of weights
W = {wk : 0  k  |W |} that are supposed to be sorted increasingly and with w0 = 0 and
w|W | = 1. The set W is a parameter of eCGEA.

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

min

X

r2R
(wk ⇤ c1rxr + (1� wk) ⇤ c2rxr) (3.1)

s.t.

X

r2R
airxr � di i 2 V

0 (3.2)  ! �
wk

i

X

r2R
xr  |K| (3.3)  ! �

wk

0

X

r2R
c
1
rxr  c

1
Oi

(3.4)  ! ↵
wk

1

X

r2R
c
2
rxr  ✏i (3.5)  ! ↵

wk

2

xr � 0 r 2 R (3.6)

(3)

For each weight wk, the solution of Model (3) gives a point in the objective space LBwk
as well

as the dual values ⇤wk = (�wk ,↵
wk). A gap �wk

with respect to the point (c1
Oi
, ✏i) is computed.

This is illustrated in Figure 2 for W = {0, 0.5, 1}. In the final algorithm, this step corresponds to a
call to a modified compute lowerbound function in which the weight wk, the solution Oi and ✏i are
additional inputs.
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c
1

c
2

•
LB1 = LBi •Pi

•LB0

•
LB0.5

✏i

�1 = �i

� 0

�0.5

Figure 2: Lower bounds and gaps computed with Tdual for W = {0, 0.5, 1} because generated columns in the gap �1
are more than MAX COL

That way, a route r has |W | reduced costs which are additional resources for the route enumer-
ation algorithm. A label can be discarded if at least one of the reduced costs is greater than the gap
associated to the direction. This can also be improved by using a di↵erent completion bound for
each reduced cost. In the algorithm, this corresponds to a variant of the function route enumeration
where the inputs consist of the set of weights W , the dual values for each LBwk

, the gap for each
weight wk and Oi. The enumeration returns a set of routes Ri. An ✏-constraint algorithm is
performed to find the missing non-dominated points by solving RMP(✏,Ri) for c2Oi

 ✏  ✏i � 1.

3.6. Complete Algorithm

The mechanisms presented above are included in SeM to improve its e�ciency. The new so-
lution method is called ✏-constraint Column Generation-and-Enumeration Algorithm (eCGEA).
Algorithms 2 and 3 give the pseudo-code. Initially, the extreme points are computed as in SeM.
Then, at each iteration, ✏ is set such that the previous solution is excluded and a new solution
is computed. A di↵erence with SeM is the computation of the gap following Tgap. Moreover,
tests are performed during the while loop to avoid some calls to compute lowerbound with Tlb and
route enumeration with Tvalid. If a call of route enumeration is made, Tsave is used to warm start
the labelling algorithm. Also, if the route enumeration procedure is stopped because the bound
MAX COL is reached, its index is saved in the set I. The second loop of Algorithm 2 corresponds
to the Tdual mechanism. For each iteration where MAX COL was reached during the enumeration,
the rectangle defined by (c1

Oi�1
, c

2
Oi�1

) and (c1
Oi
, c

2
Oi
) is explored to search for missing non-dominated

points. A lower bound for each weight in W is computed, and another enumeration is performed
as explained in 3.5. Then, the restricted master problem is solved by an ✏-constraint algorithm on
the complete rectangle.

4. Computational Results

The experiments have been conducted on a Xeon E5-2695 processor with a 2.30GHz CPU in a
single thread. The implementation is in C++, and the linear problems and the integer problems are
solved with Gurobi 7.1. Two problems have been defined to evaluate the e�ciency of the algorithm.
The first problem, the Bi-Objective Vehicle Routing Problem with Time Windows (BOVRPTW), is
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Compute the extreme points S1 and S2 ;
YN = {(c1

S1, c
2
S1), (c

1
S2, c

2
S2)} ;

i = 0 ; ✏i = c
2
S1 � 1 ;

Ri�1  ;, Lri�1  ;, Lpi�1  {0}, eRi�1  ;, ⇤✏i�1  0, I  ; ;
while ✏i > c

2
S2 do

/* Step 1 (Section 2.5.1) with Tlb (Section 3.2) */

LBi,
eRi,⇤✏i  compute lowerbound(✏i, eRi�1,⇤✏i�1) ;

/* Step 2 (Section 2.5.2) */

UBi  compute upperbound(✏i) ;
/* Step 3 (Section 2.5.3) with Tgap (Section 3.1) */

�i = min(c1
S2, c

1
UBi

)� LBi � 1 ;

Ri, Lri, Lpi  generate route(�i, �i�1,⇤✏i�1 ,⇤✏i , Ri�1, Lri�1, Lpi�1) ;
/* Step 4 (Section 2.5.4) */

Oi  solve(✏i, Ri);
/* Update the set of non-dominated points and the next ✏ value */

YN  YN [ {(c1
Oi
, c

2
Oi
)};

✏i+1 = c
2
Oi
� 1; i i+ 1;

/* For Tdual, check the size of Ri (Section 3.5) */

if |Ri| �MAX COL then

I  I [ {i};
end

end

/* For Tdual, generate other reduced costs for non-explored area (Section 3.5) */

for i 2 I do

/* Non-explored area = rectangle defined by (c1Oi�1
, c2Oi�1

) and (c1Oi
, c2Oi

) */

for w 2W do

/* Step 1 (Section 2.5.1) */

LB
w
,⇤w  compute lowerbound(w ,Oi , ✏i) ;

�w = (w ⇤ c1
Oi

+ (1� w) ⇤ c2
Oi�1

)� (w ⇤ c1
LBw

+ (1� w) ⇤ c2
LBw

) ;

end

/* Step 3 (Section 2.5.3) with Tdual (Section 3.5) */

R route enumeration(�0 ,�0 , .., �|W |,�|W |,Oi) ;
/* ✏-constraint in the complete non-explored area */

while ✏ > c
2
Oi

do

P  solve(✏, R) ;
/* Update the set of non-dominated points and the next ✏ value */

YN  YN [ {(c1
P
, c

2
P
)} ;

✏ = c
2
P
� 1 ;

end

end

Return YN ;
Algorithm 2: ✏-constraint Column Generation-and-Enumeration Algorithm.
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/* Check if possible not to do the step 3 or to warm start the step 3 */

if �
✏i�1
0 6= �

✏i
0 or ↵

✏i�1 6= ↵
✏i or |Ri�1| �MAX COL then

/* Step 3 (Section 2.5.3) starting the labelling algorithm with an empty route and

limiting the size of Ri to MAX COL (Section 3.5) */

Ri, Lri, Lpi  route enumeration(�i ,⇤✏i ,MAX COL);

else

/* Remove non interesting routes at i from Ri�1 or add interesting ones from Lri�1

(Sections 3.3 and 3.4) */

Ri, Lri  column deletion(�i,⇤✏i , Ri�1, Lri�1);
/* Check if possible not to do the step 3 (Section 3.3) */

if �i > �i�1 then

/* Step 3 (Section 2.5.3) starting the labelling algorithm with labels in Lp
i�1) (Tsave

in Section 3.4) and limiting the size of Ri to MAX COL (Section 3.5) */

R
1
i , Lr

1
i , Lpi  route enumeration(�i ,⇤✏i ,MAX COL,Lpi�1 );

Ri  R
1
i [Ri;

Lri  Lr
1
i [ Lri;

end

end

Return Ri, Lri, Lpi;

Algorithm 3: generate route(�i, �i�1,⇤✏i�1 ,⇤✏i , Ri�1, Lri�1, Lpi�1).

used to evaluate the improvements induced by the techniques from Section 3. The second problem,
the Bi-Objective Team Orienteering Problem with Time Windows (BOTOPTW), is a problem
introduced in [Parragh and Tricoire 2019]. It allows the comparison of eCGEA with another
algorithm from the literature.

The time limit is 4 hours for the BOVRPTW and 2 hours for the BOTOPTW. For each problem,
we provide the computational times of the algorithms as well as their performance profiles [Dolan
and Moré 2002]. The performance of an algorithm on an instance is defined as the ratio of its CPU
time over the best CPU time among the compared algorithms. A performance profile represents
the percentage of instances solved (y-axis) at a given performance (x-axis). For instance, a curve
which passes through the point (2, 0.8) indicates that 80% of the instances have been solved by the
associated algorithm in less than twice the time of the fastest algorithm. Thus, a curve situated
above another curve represents an algorithm with a better overall performance. If an instance is not
solved by an algorithm, the CPU time for this instance and this algorithm is considered infinite.
If an instance is not solved by any algorithm, then it is not added in the performance profile.
The impact of each technique of Section 3 on SeM is evaluated in Appendix B for BOVRPTW
and in Appendix D for BOTOPTW. In Appendix C, a compact formulation is embedded in the
✏-constraint method to see the impact of eCGEA on BOVRPTW instances.

The remainder of the section is organized as follows. The two problems and the test instances
are described in Section 4.1. The analysis on the BOVRPTW is reported in Section 4.2 and the
one on the BOTOPTW in Section 4.3.
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4.1. Test problems

Bi-Objective Vehicle Routing Problem With Time Windows. This problem is a straightforward
extension of the Vehicle Routing Problem with Time Windows. Each customer in V

0 must be served
a given quantity of goods by a vehicle defined by a capacity. Each edge is associated with two costs,
and therefore a route has also two costs. Instances were created by combining two of Solomon’s
VRPTW instances1 together. Let A and B be a couple of Solomon’s instances with |V | = 25.
We create an instance called A � B as follows: the first location of clients, the time windows,
the service time, the demand and the location of the depot are provided from file A, whereas the
second location of clients are taken from file B. The cost matrix c

1 (respectively c
2) comes from the

pairwise distance between the first (respectively second) locations of nodes. The distance between
client a located at (xa,ya) and client b located at (xb,yb) is b

p
(xa � xb)2 + (ya � yb)2 + 1c. Once

all redundant resulting files are removed, it gives a total of 168 instances.

Bi-Objective Team Orienteering Problem with Time Windows. Parragh and Tricoire (2019) intro-
duced and solved the Bi-Objective Team Orienteering Problem with Time Windows (BOTOPTW).
It is a bi-objective problem based on the Team Orienteering problem (TOP) [Gunawan et al. 2016].
In the BOTOPTW, each i 2 V

0 is associated with profit pi, a time window [bi; ei] and a service
time si. The profit is collected if i is visited during its time window. It is not necessary to visit all
the nodes in V

0. A travel time (or cost) cij is also associated with each edge. The first objective
is to minimize the total travel time and the second objective is to maximize the collected profit.
The BOTOPTW can be solved using eCGEA by setting c

1
ij

= cij and c
2
ij

= �pi. We use the 80
test instances used in [Parragh and Tricoire 2019]. These instances are derived from the Krolack
instances [Righini and Salani 2009] and are denoted X �K � Z with X the Krolak instance it is
based on, K the number of vehicles and Z the number of vertices.

4.2. Results on the BOVRPTW

The goal is to evaluate the contributions of the mechanisms from Section 3. The parameters
used in the method are set as follows: the size of pre-defined ng-sets used for ng-route relaxation is
|Ni| = 8, the parameters for the Tdual mechanisms are W = {0, 0.25, 0.5, 0.75, 1} and MAX COL =
30000 (see Section 3.5). Upper bound sets have been pre-computed and given as an input to
the algorithms such that the computational times are not impacted by the quality of the upper
bound. An upper bound set is computed as follows. Model (3) is solved using aggregation weights
wk 2 {0, 0.25, 0.5, 0.75, 1} by means of a column generation algorithm. Then, a black-box MIP
solver is embedded in an ✏-constraint method to compute feasible solutions using the columns
previously found.

Table 1 gives the characteristics of the instances. The instances are grouped into several types
(Type). The type of an instance is defined by the types of the Solomon’s instances used to build
it. The table also reports the average number (|ND|) of non-dominated points and the average
number (|S|) of supported points over the solved instances. The value MGap is the average gap � =

100 � c
1
LB

⇤100
c1
O

on the first objective between the lower bound LB and the optimal solution O for

each ✏ computed by SeM. Finally, we report the total number of instances (Number), the number of
instances solved by SEM and the number of instances solved by eCGEA. The results show that the

1Instances available on https://www.sintef.no/nearp
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Table 1: Features of the instances of BOVRP.

Type |ND| |S| MGap Number SeM eCGEA

r1 c1 38 11 3.0 12 12 12
r1 c2 46 12 3.4 12 11 11
r1 rc 54 13 2.8 12 12 12
r2 c1 47 11 3.0 11 1 1
r2 c2 63 12 1.9 11 1 1
r2 rc 74 16 2.8 11 3 6
rc1 c1 18 8 3.9 8 8 8
rc1 c2 22 9 4.3 8 8 8
rc1 r 35 10 5.8 8 8 8
rc2 c1 44 8 3.4 8 1 3
rc2 c2 40 11 4.0 8 2 4
rc2 r 63 13 4.7 8 2 3
c1 c2 10 4 6.3 9 7 8
c1 rc 19 6 6.5 9 8 8
c1 r 37 10 6.7 9 8 9
c2 rc 38 14 2.5 8 1 6
c2 r 53 13 - 8 0 2
c2 c1 25 7 - 8 0 7

Total 18 12 3.79 168 93 118

mechanisms are able to improve the standard ✏-constraint approach as an additional 25 instances
are solved to optimality.

Now, we focus on the instances closed by at least one algorithm to evaluate more precisely
the contribution of the techniques embedded in eCGEA. Tables 2 and 3 report the computation
time in seconds (Time) for both methods as well as the computational time to generate the upper
bound (UB). A dash (-) marks the fact that the algorithm was not able to converge. Except for
Tgap, There are conditions to be checked before the application of a mechanism. We report the
percentage of non-dominated points for which the conditions on each mechanisms are met (X(%)
with X the mechanism name). For instance, if Tvalid is equal to 17%, it means that the conditions
not to use column generation were verified for 17% of the non-dominated set. The average on all
these metrics on all instances solved by both methods are given in the line Mean. The table also
indicates the number of instances solved optimally by each algorithm. In average, eCGEA is more
than 50% faster than SeM. The speed up is less significant on the instances c1 c, c1 r and c1 rc. An
explanation is that these instances have smaller non-dominated sets, and therefore SeM is iterated
less often leaving less room for improvement for the proposed mechanisms.

All mechanisms are highly used during the algorithm: on average, Tvalid is used between 27%
and 42%, Tsave between 19% and 32% and Tdual between 4% and 30%. The longer the time needed
to solve an instance, the higher the use of a mechanism. This is especially true for Tdual. An
explanation is that the instances that are the longest to solve are the ones where the procedure
route enumeration is also used the most.

Figure 3 represents the performance profiles of SeM and eCGEA. The profile of eCGEA is
clearly better than the one of SeM. 20% of the instances are not closed by SeM, and eCGEA is
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Table 2: Computational results of SeM and eCGEA on instances of type r c, r rc, rc r and rc c for |V | = 25.

UB SeM eCGEA UB SeM eCGEA

Instance Time Time Time Tlb Tvalid Tsave Tdual Instance Time Time Time Tlb Tvalid Tsave Tdual

(s) (s) (s) (%) (%) (%) (%) (s) (s) (s) (%) (%) (%) (%)

r101 c1 1.8 4.9 3.7 57 17 43 0 rc101 c1 4.7 4.4 4.1 13 13 25 0
r101 c2 1.8 4.3 3.3 55 41 23 0 rc101 c2 6.1 4.8 3.8 50 43 7 0
r101 rc1 2.1 6.7 4.7 62 47 18 0 rc101 r1 10.0 12.2 10.6 46 27 31 0
r102 c1 25.0 102.2 42.1 74 16 63 0 rc102 c1 11.1 11.8 9.3 59 47 12 0
r102 c2 22.2 25.6 19.5 69 31 36 0 rc102 c2 15.3 18.0 13.8 33 21 21 0
r102 rc1 14.9 23.6 16.7 75 60 18 0 rc102 r1 30.8 30.1 27.4 69 37 33 0
r103 c1 21.8 24.9 18.0 64 61 11 0 rc103 c1 30.9 26.0 20.8 57 50 7 0
r103 c2 42.2 34.3 27.9 52 27 27 0 rc103 c2 59.5 71.8 54.4 46 26 26 0
r103 rc1 40.8 42.0 30.7 63 35 31 0 rc103 r1 26.9 29.4 23.4 57 43 16 0
r104 c1 60.8 42.7 35.3 43 23 26 0 rc104 c1 57.5 66.5 54.6 50 55 9 0
r104 rc1 178.8 1241.5 264.7 62 32 33 6 rc104 c2 25.9 20.0 18.3 43 21 36 0
r104 c2 65.0 75.4 49.0 57 30 27 0 rc104 r1 49.9 61.9 51.2 69 56 10 0
r105 c1 17.8 16.9 17.2 66 22 47 0 rc105 c1 14.7 13.9 12.7 71 33 29 0
r105 c2 15.6 14.7 11.7 58 23 39 0 rc105 c2 10.9 8.6 7.3 61 52 9 0
r105 rc1 8.5 13.0 11.3 60 29 34 0 rc105 r1 11.9 11.1 9.1 40 45 10 0
r106 c1 49.5 54.5 40.4 57 38 27 0 rc106 c1 14.7 8.3 6.6 40 33 13 0
r106 c2 88.8 61.7 51.9 54 30 29 0 rc106 c2 26.8 18.4 15.9 61 29 25 0
r106 rc1 95.0 189.2 173.0 58 33 28 0 rc106 r1 17.0 12.4 11.0 38 25 21 0
r107 c1 119.9 1322.7 350.3 66 56 24 10 rc107 c1 18.4 12.1 12.7 21 14 7 0
r107 c2 132.4 135.3 103.4 41 17 24 0 rc107 c2 37.0 20.9 18.3 52 36 20 0
r108 c1 52.6 52.1 44.8 44 18 29 0 rc107 r1 49.2 174.8 115.3 58 33 27 0
r108 c2 124.8 6960.1 552.9 48 35 27 17 rc108 c1 29.7 29.3 26.3 47 47 6 0
r109 c1 33.7 13.4 11.5 40 24 28 0 rc108 c2 31.2 31.7 31.3 45 30 20 0
r109 c2 22.0 24.7 23.8 54 36 21 0 rc108 r1 33.9 56.3 39.2 50 32 21 0
r109 rc1 20.1 26.6 22.9 60 33 31 0 rc201 c1 72.7 341.1 215.9 76 74 3 29
r110 c1 133.5 177.9 159.7 42 29 16 0 rc201 c2 61.1 70.6 51.9 56 52 11 0
r110 c2 82.9 69.5 64.4 36 19 22 0 rc201 r1 191.3 3740.5 473.4 62 52 27 27
r110 rc1 40.0 57.8 44.6 71 44 31 0 rc202 c2 292.5 - 2674.0 70 55 7 55
r111 c1 124.3 1152.1 170.2 61 17 43 4 rc205 c1 235.4 - 3342.9 74 63 14 63
r111 c2 143.7 199.3 155.7 41 27 20 0 rc205 c2 180.5 375.98 188.1 57 46 18 0
r111 rc1 86.8 135.1 93.5 62 39 29 0 rc205 r1 163.1 784.9 272.3 63 43 22 32
r112 c1 88.5 109.5 83.6 53 33 22 0 rc206 c1 341.7 - 1450.9 81 60 32 68
r112 rc1 64.1 242.6 101.7 38 22 30 3 rc206 c2 246.4 - 3385.0 54 59 11 32
r201 c1 385.4 1822.6 1333.6 65 63 20 59 rc206 r1 241.1 - 1073.1 66 45 28 47
r201 c2 246.5 1072.4 730.9 66 56 19 65
r201 rc1 91.5 94.9 81.6 52 44 25 0
r202 rc1 393.8 4989.1 2044.5 65 69 12 77
r203 rc1 416.4 - 4818.9 86 31 3 30
r205 rc1 176.9 1035.3 649.8 70 50 17 42
r209 rc1 346.7 - 11842.2 62 72 11 85
r210 rc1 379.5 - 4303.5 62 27 9 33

Mean 570.3 201.2 57 35 28 7 Mean 209.2 62.0 51 38 18 3
Closed 38 41 Closed 29 34

never 3 times longer than SeM.

4.3. Results on the BOTOPTW

The goal is to compare eCGEA with an algorithm from the literature proposed by Parragh
and Tricoire (2019). The parameters used in the method are set as follows: the size of pre-
defined ng-sets used for ng-route relaxation is |Ni| = 8, the parameters for the Tdual mechanisms
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Table 3: Computational results of SeM and eCGEA on instances of type c c, c r and c rc for |V | = 25.

UB SeM eCGEA UB SeM eCGEA

Instance Time Time Time Tlb Tvalid Tsave Tdual Instance Time Time Time Tlb Tvalid Tsave Tdual

(s) (s) (s) (%) (%) (%) (%) (s) (s) (s) (%) (%) (%) (%)

c101 c2 25.5 13.6 19.2 40 20 40 0 c108 rc1 123.6 219.5 170.4 76 69 7 48
c101 rc1 14.8 13.5 11.6 50 50 17 0 c108 r1 553.4 - 2961.9 52 48 30 54
c101 r1 53.0 35.0 35.7 55 55 14 0 c109 c2 173.2 270.3 330.4 61 83 0 89
c102 c2 96.0 46.6 39.2 44 38 13 0 c109 rc1 159.9 282.5 352.7 74 66 11 26
c102 rc1 101.4 112.0 149.0 53 67 7 67 c109 r1 335.2 1642.0 1171.1 57 64 17 71
c102 r1 380.3 872.3 1049.5 51 53 17 40 c201 rc1 122.1 4349.7 935.0 29 43 21 71
c103 rc1 163.7 184.3 297.6 61 65 13 61 c201 r1 829.4 - 2674.1 65 76 13 91
c103 r1 354.3 4255.4 796.5 29 55 14 48 c201 c1 352.6 - 419.7 64 14 36 57
c104 c2 283.0 - 5053.8 43 39 22 39 c202 rc1 536.5 - 1365.9 50 61 6 61
c104 r1 641.7 2525.3 1552.8 64 48 23 26 c202 c1 748.9 - 2539.4 66 38 24 59
c105 c2 32.1 47.2 52.9 0 0 0 0 c203 c1 864.6 - 10858.5 50 67 13 79
c105 rc1 58.0 113.2 59.5 67 60 13 13 c204 rc1 1409.9 - 10947.2 65 68 10 75
c105 r1 139.9 185.1 500.8 44 72 12 72 c205 rc1 298.3 - 571.2 67 60 16 74
c106 c2 24.8 26.1 81.1 40 40 0 0 c205 r1 681.9 - 5898.6 59 70 25 80
c106 rc1 17.5 11.0 11.5 50 50 17 0 c205 c1 287.8 - 768.9 74 41 12 35
c106 r1 55.1 48.2 45.8 57 48 14 0 c206 rc1 269.2 - 1003.0 74 50 24 71
c107 c2 40.0 48.1 59.2 25 25 25 0 c206 c1 471.7 - 7697.9 68 50 18 59
c107 rc1 228.0 1782.6 367.1 73 73 13 80 c207 c1 635.8 - 12257.1 73 35 27 50
c107 r1 213.0 359.6 291.4 50 38 19 0 c208 rc1 421.2 - 1591.6 59 57 11 70
c108 c2 77.3 43.9 41.4 75 75 6 0 c208 c1 545.6 - 878.0 70 35 35 65

Mean 671.5 315.9 51 53 13 30
Closed 24 40

Figure 3: Performance profiles of SeM and eCGEA on BOVRPTW instances.

are W = {0, 1} and MAX COL = 30000 (see Section 3.5). At each iteration i of eCGEA and
SeM, an upper bound UBi of MP (✏i) (see Section 2.5.2) is computed as follows. The function
compute lowerbound returns the set of ng-routes eRi in the restricted linear master problem at the
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end of the column generation (see Section 2.5.1). The non-elementary routes are removed from eRi.
The resulting integer program RMP (✏i, eRi) is then solved using a black box mixed integer linear
programming (MILP) solver to obtain UBi. The execution time of this heuristic is included in the
execution time of eCGEA and SeM.

Tables 4 and 5 report the results on the 80 instances solved by Parragh and Tricoire (2019).
The size of the non-dominated set (|ND|), the size of the supported set (|S|) and the average
gap (MGap) between a non-dominated point and the closest lower bound for the first objective
are reported. The computational times in seconds are given for Parragh and Tricoire’s algorithm
(B&B), SeM and eCGEA.The line Mean represents the average computation times for the instances
closed by both methods. We also indicate the percentage of the non-dominated points found with
each technique. As we do not use the same CPU than Parragh and Tricoire (2019) we checked
the relative e�ciency using the passmark CPU score2. Parragh and Tricoire (2019) use a 2.6-GHz
Xeon E5-2650 v2 CPU with a CPU Single Thread Rating of 1691 and we use a 2.1-GHz Xeon
E5-2695 v4 CPU with a CPU Single Thread Rating of 1628. As the two processors are close and
the di↵erence is in their favor, we did not modify their computational times by a factor of 1.04.
They also implement the procedures in C++ and use Gurobi 6.5.0.

On the complete set of instances, eCGEA is almost 7 times faster than B&B, and it closes 6
additional instances. The techniques Tlb and Tvalid are highly used for all instances. On the
contrary, Tdual is less used. It means that the instances are well-adapted for column generation,
and few columns are generated at each iteration when compared with BOVRPTW instances. Some
c101 instances are solved faster by SeM than eCGEA. This is due to the fact that the mechanism
Tdual is quite used on these instances, and it can slow down the solution if the number of columns
to be found during the enumeration is just a little bit greater than the MAX COL parameter. An
additional remark, shown in Appendix D, is that the mechamism Tvalid is crucial for the e�ciency
of eCGEA.

Figure 4 represents the performance profiles of B&B, SeM and eCGEA. First, the profiles show
again that on the whole set of instances, eCGEA dominates the other methods. However, this
observation should be mitigated. On instances such as those in classes c101, rc101 and pr01, eCGEA
is much more e↵ective as it is considerably faster, and it is able to find new non-dominated sets. On
other instances such as those in the class r101, B&B is strictly more e�cient than our algorithms.
It should be noted that the worst computational time of eCGEA on this class of instances is only 70
seconds. Even without the speed-up mechanisms, SeM is competitive with B&B. This underlines
the fact that the choice to base the method on a state-of-the-art single objective column generation
algorithm is important. However, advanced column generation techniques can add unnecessary
additional time required to solve some instances like the r101 instances.

5. Conclusion

In this paper, we propose an exact algorithm to solve bi-objective vehicle routing problems. The
idea is to use a state-of-the-art column generation-and-enumeration algorithm for single objective
vehicle routing problems in an ✏-constraint approach to obtain an easy to implement method. We
provide di↵erent procedures and mechanisms to improve the e�ciency of the algorithm. It should

2
https://www.cpubenchmark.net/cpu_list.php
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(a) On all instances.

(b) On the r101 instances. (c) On the c101, rc101, pr01 instances.

Figure 4: Performance profiles of B&B, SeM and eCGEA on BOVRPTW instances.

be noted that these procedures rely on the properties of the column generation-and-enumeration
algorithm as well as observations on the objective space. They are not specific to vehicle routing
problems and could be used for other problems. The e�ciency of the improvement techniques have
been tested on the Bi-Objective Vehicle Routing Problem allowing the algorithm to outperform
a direct application of the ✏-constraint method. The results can be used to benchmark other
algorithms for this problem which is representative of bi-objective vehicle routing problems. We
have also tested our algorithm on the Bi-Objective Team Orienteering Problem with TimeWindows.
The algorithm outperforms the exact algorithm proposed in the literature so far. This study also
presents the limits of using the ✏-constraint method for bi-objective vehicle routing problems as the
gap increases with smaller ✏ values. A perspective could be to construct pertinent cuts to reduce
this gap.
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Table 4: Computational experiments of the BOTOPTW on the instances c101 and pr01.

Instance characteristics B&B SeM eCGEA

Instance |ND| |NS| MGap Time Time Time Tlb Tvalid Tsave Tdual

(-) (-) (%) (s) (s) (s) (%) (%) (%) (%)

c101 1 15 18 10 24.9 9.8 11.9 7.8 61 61 6 0
c101 1 20 20 10 24.5 44.9 23.3 9.7 60 70 0 0
c101 1 25 21 9 21.7 94.9 30.8 10.8 67 67 5 0
c101 1 30 21 9 21.7 197.2 37.4 15.1 67 67 5 0
c101 1 35 23 9 20.5 263.9 47.7 16.0 70 70 4 0
c101 2 15 24 13 20.6 44.9 28.9 16.6 58 58 4 0
c101 2 20 32 16 17.8 755.3 56.8 38.0 56 62 0 0
c101 2 25 37 20 14.9 5931.0 154.7 96.3 51 54 3 3
c101 2 30 37 20 14.9 - 135.2 95.0 54 57 3 3
c101 2 35 41 18 13.4 - 78.2 49.9 58 61 7 0
c101 3 15 24 13 20.6 40.7 25.7 18.7 58 58 4 0
c101 3 20 33 16 17.4 844.4 356.1 442.1 58 54 0 27
c101 3 25 42 21 13.7 - 2712.7 2193.3 57 52 2 26
c101 3 30 - - - - - - - - - -
c101 3 35 - - - - - - - - - -
c101 4 15 24 13 20.6 44.3 27.7 18.5 58 58 4 0
c101 4 20 33 16 17.4 838.7 372.8 477.6 58 51 3 27
c101 4 25 42 21 13.7 - 4110.8 4331.5 57 52 2 26
c101 4 30 - - - - - - - - - -
c101 4 35 - - - - - - - - - -

Mean 26 13 20.2 759.2 97.8 97.2 60 61 3 5
Closed 12 16 16

pr01 1 15 26 7 20.3 4.0 22.3 9.4 73 61 11 0
pr01 1 20 39 5 15.5 19.6 68.8 12.4 85 85 5 0
pr01 1 25 72 7 9.6 135.6 128.2 21.5 90 85 6 0
pr01 1 30 93 7 8.2 1222.6 1468.8 56.2 91 85 7 0
pr01 1 35 85 9 0.0 3345.3 1678.2 173.3 88 82 11 0
pr01 2 15 36 8 15.5 3.4 25.0 12.6 78 69 11 0
pr01 2 20 72 13 11.8 36.9 126.9 78.5 79 69 10 1
pr01 2 25 121 13 7.1 341.4 2905.7 134.1 84 81 5 0
pr01 2 30 153 10 6.5 1800.9 757.8 476.7 89 84 8 2
pr01 2 35 - - - - - - - - - -
pr01 3 15 37 8 15.2 2.7 29.8 12.2 76 70 11 0
pr01 3 20 67 10 12.6 46.6 68.0 32.7 79 69 10 0
pr01 3 25 134 11 6.5 201.6 202.5 56.8 92 87 4 0
pr01 3 30 169 10 5.9 1297.0 551.6 178.5 93 89 5 0
pr01 3 35 195 15 4.3 - 2865.5 1657.0 89 81 9 1
pr01 4 15 37 8 15.2 2.7 25.1 11.8 76 70 11 0
pr01 4 20 67 11 12.6 40.2 67.2 32.3 79 69 12 0
pr01 4 25 135 11 6.4 166.6 236.6 45.5 92 89 3 0
pr01 4 30 169 10 5.9 1175.0 472.8 121.3 93 90 5 0
pr01 4 35 195 15 4.3 - 2530.0 2341.5 88 82 10 1

Mean 89 9 10 578.9 519.7 86.2 85 78 8 0
Closed 17 19 19
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Table 5: Computational experiments of the BOTOPTW on the instances r101 and rc101.

Instance characteristics B&B SeM eCGEA

Instance |ND| |NS| MGap Time Time Time Tlb Tvalid Tsave Tdual

(-) (-) (%) (s) (s) (s) (%) (%) (%) (%)

r101 1 15 9 3 29.3 0.3 9.0 5.0 56 56 22 0
r101 1 20 10 5 28.2 0.2 12.9 4.4 70 80 10 0
r101 1 25 10 5 28.2 0.5 16.3 5.5 70 80 10 0
r101 1 30 16 3 24.2 1.6 20.3 6.9 81 81 6 0
r101 1 35 23 4 17.7 3.0 38.4 15.8 83 74 9 4
r101 2 15 25 6 14.8 0.6 15.7 11.4 76 44 32 0
r101 2 20 27 8 15.1 1.3 23.1 12.5 78 68 18 0
r101 2 25 32 6 14.8 2.0 42.0 14.1 84 72 16 0
r101 2 30 40 7 12.5 6.3 52.9 21.1 80 75 7 0
r101 2 35 47 7 10.8 10.1 74.8 38.8 85 62 23 0
r101 3 15 45 8 9.9 1.6 28.3 15.3 82 60 22 0
r101 3 20 44 9 10.7 2.5 39.1 18.9 79 64 18 0
r101 3 25 54 10 10.2 4.5 58.5 25.3 83 70 15 0
r101 3 30 62 10 9.1 12.5 78.4 40.1 84 63 22 0
r101 3 35 73 11 8.0 30.3 111.8 59.3 84 63 22 0
r101 4 15 51 9 9.1 1.9 32.9 18.4 82 61 22 0
r101 4 20 56 10 9.0 3.6 47.3 25.2 84 64 21 0
r101 4 25 65 11 9.2 7.0 70.3 32.7 83 72 14 0
r101 4 30 77 12 8.2 18.2 120.5 48.0 82 74 12 0
r101 4 35 102 11 6.7 37.9 157.6 68.2 87 68 19 0

Mean 43 8 14.3 7.3 52.5 24.3 80 67 17 0

rc101 1 15 11 6 25.3 1.1 10.0 2.8 73 82 0 0
rc101 1 20 11 6 25.5 2.4 10.5 3.7 73 82 0 0
rc101 1 25 12 6 24.4 4.8 18.1 4.2 75 83 0 0
rc101 1 30 12 6 24.4 5.4 21.5 5.2 75 83 0 0
rc101 1 35 12 6 24.4 7.0 24.9 6.5 75 83 0 0
rc101 2 15 25 10 15.0 6.2 19.9 9.1 72 64 12 0
rc101 2 20 27 10 14.5 22.4 29.2 12.3 74 67 11 0
rc101 2 25 29 9 13.9 48.2 31.7 11.7 79 72 10 0
rc101 2 30 29 9 13.9 57.6 40.1 13.9 79 72 10 0
rc101 2 35 29 9 13.9 81.6 44.1 16.4 79 72 10 0
rc101 3 15 25 10 15.1 8.5 18.5 9.0 72 64 12 0
rc101 3 20 34 11 12.5 35.1 30.2 16.1 74 65 15 0
rc101 3 25 46 14 10.0 180.2 50.8 25.7 76 65 13 0
rc101 3 30 46 14 10.0 220.4 59.8 26.3 76 65 13 0
rc101 3 35 46 14 10.0 332.1 70.0 31.3 76 65 13 0
rc101 4 15 25 10 15.1 6.9 15.6 9.9 72 64 12 0
rc101 4 20 36 13 12.2 46.1 33.0 18.0 75 64 17 0
rc101 4 25 49 16 9.9 262.9 54.2 27.0 75 61 18 0
rc101 4 30 53 16 9.6 478.6 71.0 36.5 74 64 15 0
rc101 4 35 59 17 8.4 946.2 93.3 52.0 76 63 15 0

Mean 31 11 15.4 137.7 37.3 16.9 75 70 10 0
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Appendix A. Optimal solution of MP(✏)

This appendix proves that it is valid to use GENROUTE to find an optimal solution of MP(✏).

Theorem 2. The notations have been introduced in Section 2.2. The linear relaxation of MP(✏) is as follows:
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

minimize
X

r2R

c1rxr (A.1.1)

s.t.
X

r2R

airxr � di i 2 V 0 (A.1.2)  ! �✏

i

X

r2R

xr  |K| (A.1.3)  ! �✏

0

X

r2R

c2rxr  ✏ (A.1.4)  ! ↵✏

xr � 0 r 2 R (A.1.5)

(A.1)

Let �✏

i � 0 (i 2 V 0), �✏

0  0 and ↵✏  0 be the duals associated with constraints (A.1.2), (A.1.3) and (A.1.4).
The dual of the formulation (A.1) is as follows:

8
>>>>>>>>>><

>>>>>>>>>>:

maximize
X

i2V 0

di�
✏

i + |K|�✏

0 + ✏↵✏ (A.2.1)

s.t.
X

i2V 0

air�
✏

i + �✏

0 + c2r↵
✏  c1r r 2 R (A.2.2)

�✏

i � 0 i 2 V 0 (A.2.3)

�✏

0  0 (A.2.4)

↵✏ (A.2.5)

(A.2)

Let xLB be the optimal solution of the formulation (A.1) and xUB be a feasible solution of MP(✏). Let ⇤✏ LB =
(�✏ LB ,↵✏ LB) be the optimal solution of the formulation (A.2).

The sum of the reduced cost of routes r 2 R such that xUB

r > 0 is less than or equal to the di↵erence of cost c1

between xUB and xLB. This di↵erence of cost is called the gap �.

Proof. The gap is described in Equation (A.3) and the reduced cost of a route r in Equation (A.4).

� =
X

r2R

c1rx
UB

r �
X

r2R

c1rx
LB

r (A.3)

cr = c1r �
X

i2V 0

air�
✏ LB

i � �✏ LB

0 � c2r↵
✏ LB 8r 2 R (A.4)

By (A.1.2) and (A.2.3), 8i 2 V 0,
X

r2R

airx
UB

r �✏ LB

i � di�
✏ LB

i .

Thus,
X

i2V 0

X

r2R

airx
UB

r �✏ LB

i �
X

i2V 0

di�
✏ LB

i (A.5)

By (A.1.3) and (A.2.4),
X

r2R

xUB

r �✏ LB

0 � |K|�✏ LB

0 (A.6)

Finally, by (A.1.4) and (A.2.5),
X

r2R

c2rx
UB

r ↵✏ LB � ✏↵✏ LB (A.7)
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By the strong duality theorem:

X
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c1rx
LB

r =
X

i2V 0
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✏ LB
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airx
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X

r2R
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r �✏ LB

0 +
X

r2R
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UB

r ↵✏ LB by (A.5), (A.6) et (A.7)

)
X
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UB

r �
X

r2R
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UB

r �
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i2V 0

X
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airx
UB

r �✏ LB
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r2R

xUB
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r2R
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UB

r ↵✏ LB

)� �
X

r2R

(c1r �
X

i2V 0

air�
✏ LB

i � �✏ LB

0 � c2r↵
✏ LB)xUB

r by (A.3)

)� �
X

r2R

crx
UB

r by (A.4)

Therefore, the sum of the reduced cost of the routes such that xUB

r > 0 is less than or equal to the gap.

Let LB and UB be a lower bound and an upper bound of MP(✏) and ⇤✏ LB be the dual solution associated
with LB. In the following paragraph, we consider that the reduced costs are computed with respect to ⇤✏ LB .
The step 3 of GENROUTE (see Section 2.5.3) generates all routes with reduced cost less than or equal to the gap
� = c1(UB)� c1(LB). Let xP be a feasible solution associated with a non-dominated point P in the objective space
such that c1(LB)  c1(P )  c1(UB) and c2(P )  ✏. By Theroem 2, xP is composed by routes with reduced cost less
than or equal to c1(P ) � c1(LB)  �. These routes are generated in a set of routes R by the route enumeration of
GENROUTE between LB and UB. Thus, any solution xP can be found in R by modifying the ✏ value of RMP(✏,R).
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Table B.6: Computational results of SeM and SeM with each technique on instances of type r c, r rc, rc r and rc c
for |V | = 25.

Instance SeM Tgap Tlb Tvalid Tsave Tdual SeM Tgap Tlb Tvalid Tsave Tdual

r101 c1 4.9 4.8 4.8 4.2 4.7 3.6 rc101 c1 4.4 4.1 4.4 4.2 3.5 3.8
r101 c2 4.3 4.4 4.4 3.6 4.1 3.6 rc101 c2 4.8 5.3 5.3 4.3 4.6 4.1
r101 rc1 6.7 6.3 6.6 5.2 5.4 4.8 rc101 r1 12.2 12.5 12.9 11.2 11.7 11.2
r102 c1 102.2 90.2 88.8 96.9 69.9 42.7 rc102 c1 11.8 11.3 10.7 10.4 9.8 10.5
r102 c2 25.6 24.6 23.0 22.7 24.3 21.6 rc102 c2 18.0 19.1 16.7 16.7 16.8 17.5
r102 rc1 23.6 23.7 22.7 20.6 20.5 19.2 rc102 r1 30.1 30.4 30.4 28.0 28.9 26.8
r103 c1 24.9 26.3 21.4 22.7 24.4 21.5 rc103 c1 26.0 25.9 25.3 22.7 21.8 22.3
r103 c2 34.3 34.4 32.7 33.8 29.4 30.1 rc103 c2 71.8 74.4 82.6 67.4 72.4 53.3
r103 rc1 42.0 41.2 38.4 39.2 33.1 37.9 rc103 r1 29.4 29.7 26.9 26.2 22.1 26.4
r104 c1 42.7 42.7 39.7 42.6 41.8 40.1 rc104 c1 66.5 67.4 77.2 60.3 66.9 76.1
r104 rc1 1241.5 1269.1 1440.0 1268.3 139.1 288.5 rc104 c2 20.0 20.9 21.3 21.1 16.3 19.4
r104 c2 75.4 76.1 64.8 71.8 71.7 62.5 rc104 r1 61.9 59.0 57.4 53.5 61.0 55.3
r105 c1 16.9 16.5 17.7 16.2 16.0 15.4 rc105 c1 13.9 13.2 13.2 12.2 13.6 12.4
r105 c2 14.7 14.0 13.3 12.6 14.3 11.9 rc105 c2 8.6 8.7 9.2 7.3 8.2 6.9
r105 rc1 13.0 13.2 13.1 11.8 12.3 10.6 rc105 r1 11.1 10.7 9.6 9.3 10.2 9.8
r106 c1 54.5 50.9 46.7 50.1 42.1 46.0 rc106 c1 8.3 7.9 8.0 7.4 7.9 7.0
r106 c2 61.7 63.3 60.5 60.1 58.3 55.4 rc106 c2 18.4 17.8 17.5 16.5 17.1 16.7
r106 rc1 189.2 184.9 175.5 184.9 149.4 181.8 rc106 r1 12.4 13.3 12.7 12.1 11.8 11.9
r107 c1 1322.7 1330.4 1194.5 1107.2 196.6 1201.1 rc107 c1 12.1 13.1 12.6 12.1 11.9 12.8
r107 c2 135.3 136.7 128.5 127.1 125.1 122.1 rc107 c2 20.9 20.1 20.1 18.8 18.6 18.5
r108 c1 52.1 50.4 47.2 51.1 51.1 48.3 rc107 r1 174.8 155.5 138.0 144.1 170.8 118.0
r108 c2 6960.1 6356.7 8150.9 6993.9 261.7 1242.9 rc108 c1 29.3 28.9 27.4 26.9 27.6 27.3
r109 c1 13.4 13.3 13.4 12.7 13.9 12.0 rc108 c2 31.7 33.6 32.2 32.3 30.7 29.5
r109 c2 24.7 23.6 26.3 22.7 22.6 19.9 rc108 r1 56.3 49.5 61.3 47.1 49.7 39.2
r109 rc1 26.6 32.5 26.4 25.3 26.9 25.2 rc201 c1 341.1 326.4 364.2 224.5 155.6 201.4
r110 c1 177.9 177.0 195.6 165.7 177.4 172.4 rc201 c2 70.6 65.3 80.0 52.9 54.8 50.6
r110 c2 69.5 66.3 68.1 71.6 65.1 63.0 rc201 r1 3740.5 3377.1 3430.4 2489.2 338.6 1229.0
r110 rc1 57.8 61.6 52.7 54.4 56.3 47.3 rc202 c2 - - - - 3527.9 5996.7
r111 c1 1152.1 1065.2 1110.4 1105.0 171.9 1106.6 rc205 c1 - - - - 13129.3 12349.6
r111 c2 199.3 177.5 182.0 190.4 184.4 153.0 rc205 c2 376.0 324.6 351.3 258.2 272.8 212.3
r111 rc1 135.1 126.9 140.0 110.9 106.2 111.9 rc205 r1 784.9 753.4 641.3 555.6 279.8 313.0
r112 c1 109.5 107.2 105.6 96.1 101.8 93.6 rc206 c1 - - - - 1507.8 -
r112 rc1 242.6 220.9 208.9 198.1 142.6 107.7 rc206 c2 - - - - 298.7 -
r201 c1 1822.6 1592.8 2121.0 1547.4 671.1 1172.5 rc206 r1 - - - - 1238.9 -
r201 c2 1072.4 954.1 937.8 626.4 503.7 514.3
r201 rc1 94.9 86.8 90.1 89.1 92.5 86.0
r202 rc1 4989.1 3840.9 3784.2 4573.4 2866.6 1440.8
r205 rc1 1035.3 858.6 1327.7 735.8 497.9 588.0
r210 rc1 - - - - 7138.7 -

Mean 570.3 507.0 579.6 522.9 186.7 242.8 Mean 209.2 192.4 193.1 146.6 62.6 91.1
Closed 38 38 38 38 39 38 Closed 24 24 24 24 29 26

Appendix B. Results on the BOVRPTW

This appendix underlines the impact of each technique of Section 3 embedded SeM on BOVRPTW instances.
Tables B.6 and B.7 provides the computation times in seconds (Time) for SeM and SeM improved with each technique.
The column called Tgap (respectively Tlb, Tvalid, Tsave and Tdual) represents the algorithm SeM improved with the
technique Tgap (respectively Tlb, Tvalid, Tsave and Tdual). The line Mean represents the average computation times
for the instances closed by all methods, and the line Closed represents the number of closed instances. Furthermore,
Figure B.5 represents the performance profiles of SeM and SeM improved with each technique.

Thanks to the mean CPU time and the performance profiles, we can see that all techniques except Tlb provide
improvements to SeM. The technique Tsave is clearly the most impacting improvement, and it helps to close 17
instances when compared to SeM. The technique Tlb can improve SeM (like on rc201 r1 and c104 rc1), but it can
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Table B.7: Computational results of SeM and eCGEA on instances of type c c, c r and c rc for |V | = 25.

Instance SeM Tgap Tlb Tvalid Tsave Tdual SeM Tgap Tlb Tvalid Tsave Tdual

c101 c2 13.6 12.2 72.9 13.5 13.2 13.2 c108 c2 43.9 38.1 42.5 34.9 43.3 35.5
c101 rc1 13.5 13.0 12.9 13.1 12.8 12.9 c108 rc1 219.5 209.6 176.1 141.6 187.4 159.4
c101 r1 35.0 33.3 42.9 30.8 33.0 30.7 c108 r1 - 11746.7 - 11379.5 1569.8 11436.9
c102 c2 46.6 42.1 43.3 42.8 42.3 45.4 c109 c2 270.3 214.1 261.1 199.4 311.9 245.2
c102 rc1 112.0 103.5 105.9 79.8 117.2 179.9 c109 rc1 282.5 262.2 280.8 257.0 285.3 281.6
c102 r1 872.3 812.7 861.5 804.8 721.4 942.0 c109 c2 270.3 214.1 261.1 199.4 311.9 245.2
c103 rc1 184.3 185.4 144.0 135.8 181.5 193.7 c201 rc1 4349.7 2498.5 3558.6 1814.8 1006.5 1583.8
c103 r1 4255.4 3533.2 4691.6 3788.5 755.5 4067.5 c201 r1 - - - - 2287.1 -
c104 c2 - - - - 2934.8 - c201 c1 - - - - 411.6 11589.8
c104 rc1 - 13175.9 12583.2 12341.7 13719.9 - c202 c1 - - - - 2050.3 -
c104 r1 2525.3 2711.5 2221.5 2448.1 1671.6 2319.4 c203 c1 - - - - 8439.1 -
c105 c2 47.2 38.0 50.4 44.2 48.9 39.8 c205 rc1 - 12394.0 5202.8 7838.8 383.0 6714.9
c105 rc1 113.2 201.5 115.1 73.2 106.3 78.7 c205 r1 - - - - 12841.8 -
c105 r1 185.1 220.5 224.7 180.6 148.9 181.2 c205 c1 - - - - 796.7 -
c106 c2 26.1 23.1 71.4 24.6 25.9 24.2 c206 rc1 - - - - 834.2 -
c106 rc1 11.0 10.2 11.4 10.5 10.5 10.8 c206 c1 - - - - 7082.7 -
c106 r1 48.2 43.4 50.3 47.3 45.2 42.3 c207 c1 - - - - 9578.0 -
c107 c2 48.1 47.6 51.3 47.1 48.6 54.0 c208 rc1 - - - - 8982.4 -
c107 rc1 1782.6 1855.0 2625.2 1649.8 681.8 2304.2 c208 c1 - - - - 605.9 -
c107 r1 359.6 329.4 340.7 337.2 358.1 329.0

Mean 671.5 568.8 679.9 517.5 298.7 559.2
Closed 24 27 26 27 39 27

Figure B.5: Performance profiles of SeM and SeM improved with each technique on BOVRPTW instances.

also slow down it (like on r104 rc1 and r108 c2). Indeed, the column generation algorithm is too slow for some
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instances, and Tlb is conceived to remove this step. Moreover, the set covering problems, master problems of column
generation for VRP, are highly degenerated and present multiple optimal dual solutions.
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Appendix C. Results on the BOVRPTW

This appendix provides the results of solving a multi-commodity network flow model with time window and
capacity constraints [Cordeau 2000] embedded in an ✏-constraint technique (compact formulation) on the BOVRPTW
instances. Table C.8 provides the computation times in seconds (Time) for eCGEA and compact formulation. The
line Mean represents the average computation times for the instances closed by all methods, and the line Closed
represents the number of closed instances.

Table C.8: Computational results of eCGEA and compact formulation on instances of type c c, c r and c rc for
|V | = 25.

eCGEA compact formulation eCGEA compact formulation

Instance Time Time Instance Time Time
(s) (s) (s) (s)

r101 c1 3.7 30.9 c101 r1 35.7 313.5
r101 c2 3.3 30.9 c105 c2 52.9 52.9
r101 rc1 4.7 41.3 c105 rc1 59.5 302.9
r105 c1 17.2 7072.7 c105 r1 500.8 522.0
r105 c2 11.8 6269.7 c106 c2 81.1 46.4
r105 rc1 11.3 2128.9 c106 rc1 11.6 11.2
r201 c1 1333.6 6080.4 c106 r1 45.8 191.1
r201 rc1 81.6 730.2 c107 c2 59.2 62.7
rc101 c1 4.1 1425.6 c107 rc1 367.1 1320.2
rc101 c2 3.8 859.0 c107 r1 291.4 10653.4
rc101 r1 10.6 3102.6 c201 rc1 935.0 18.2
rc201 c1 215.9 11185.3 c201 r1 2674.1 126.2
rc201 c2 51.9 1580.0 c201 c1 419.7 20.0
c101 c2 19.2 50.1 c205 rc1 571.2 13620.7
c101 rc1 11.6 14.2 c205 r1 5898.6 7181.7

Mean 118.9 2706.8
Closed 118 30
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Table D.9: Computational time of the BOTOPTW on the instances c101 and pr01.

Instances SeM Tgap Tlb Tvalid Tsave Tdual Instances SeM Tgap Tlb Tvalid Tsave Tdual

c101 1 15 11.9 15.0 8.3 9.7 10.7 11.5 pr01 1 15 22.3 16.6 12.2 11.0 13.7 16.5
c101 1 20 23.3 16.9 12.4 13.6 13.7 17.0 pr01 1 20 68.8 65.8 24.3 40.7 31.3 52.6
c101 1 25 30.8 29.3 15.7 14.9 18.3 22.7 pr01 1 25 128.2 101.5 50.6 70.5 60.8 102.5
c101 1 30 37.4 27.6 18.9 22.7 24.3 28.0 pr01 1 30 1468.8 1240.1 128.0 405.7 286.5 413.4
c101 1 35 47.7 35.6 24.3 24.3 28.3 36.5 pr01 1 35 1678.2 952.9 346.0 664.9 764.88 834.7
c101 2 15 28.9 26.9 18.8 19.0 20.0 22.9 pr01 2 15 25.0 24.9 15.5 17.0 21.3 29.1
c101 2 20 56.8 52.6 46.3 41.1 40.3 58.4 pr01 2 20 126.9 106.7 89.4 86.9 1339.6 142.3
c101 2 25 154.7 118.3 106.1 103.1 92.8 115.3 pr01 2 25 2905.7 1942.5 2097.5 1796.1 1784.5 251.7
c101 2 30 135.2 147.6 125.1 94.5 99.5 112.8 pr01 2 30 757.8 624.5 5423.0 553.9 - 674.6
c101 2 35 78.2 93.4 58.7 58.7 68.0 78.0 pr01 2 35 - - - - - -
c101 3 15 25.7 28.9 20.8 20.9 22.96 28.6 pr01 3 15 29.8 23.8 19.2 17.1 21.6 24.6
c101 3 20 356.1 236.5 249.9 184.8 152.3 460.6 pr01 3 20 68.0 64.9 41.4 48.0 52.4 65.6
c101 3 25 2712.7 1846.3 1809.1 1195.7 1536.3 2993.0 pr01 3 25 202.5 197.6 112.8 138.0 145.3 199.8
c101 3 30 - - - - - - pr01 3 30 551.6 515.6 279.3 380.7 341.7 504.3
c101 3 35 - - - - - - pr01 3 35 2865.6 2528.8 2815.7 2562.4 2604.6 -
c101 4 15 27.7 24.7 20.4 22.7 21.92 25.2 pr01 4 15 25.1 24.1 19.3 16.8 20.9 28.2
c101 4 20 372.8 176.5 247.1 139.5 177.4 458.9 pr01 4 20 67.2 73.1 50.0 47.4 46.4 74.7
c101 4 25 4110.8 5224.1 5821.6 3318.6 2725.9 4643.3 pr01 4 25 236.6 192.3 102.4 133.2 131.0 193.2
c101 4 30 - - - - - - pr01 4 30 472.8 440.5 260.4 304.1 278.1 415.6
c101 4 35 - - - - - - pr01 4 35 2530.0 2507.3 2693.6 2167.8 2306.3 -

Mean 1196.2 1140.6 1211.4 1029.0 894.9 1223.6 Mean 504.8 373.9 228.0 261.1 333.7 209.3

Appendix D. Results on the BOTOPTW

This appendix aims to see the impact of each technique of Section 3 in SeM on BOTOPTW instances. Tables D.9
and D.10 provides the computation times in seconds (Time) for SeM and SeM improved with each technique. The
column called Tgap (respectively Tlb, Tvalid, Tsave and Tdual) represents the algorithm SeM improved with the tech-
nique Tgap (respectively Tlb, Tvalid, Tsave and Tdual). The line Mean represents the average computation times for the
instances closed by all methods, and the line Closed represents the number of closed instances. Figure D.6 represents
the performance profiles of SeM and SeM improved with each technique.

Thanks to the mean CPU time and the performance profiles, we can see that all techniques provide improvements
to SeM, in particular Tlb and Tvalid.
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Table D.10: Computational time of the BOTOPTW on the instances r101 and rc101.

Instances SeM Tgap Tlb Tvalid Tsave Tdual Instances SeM Tgap Tlb Tvalid Tsave Tdual

r101 1 15 9.0 6.5 4.5 5.2 6.7 7.6 rc101 1 15 10.0 7.3 4.5 4.7 3.7 8.6
r101 1 20 12.9 9.5 6.2 6.5 7.5 9.6 rc101 1 20 10.5 9.9 6.0 6.3 6.7 11.4
r101 1 25 16.3 11.7 7.6 8.1 9.4 15.0 rc101 1 25 18.1 16.2 8.6 8.6 7.1 13.2
r101 1 30 20.3 22.5 12.6 12.7 13.3 20.6 rc101 1 30 21.5 15.8 10.0 10.4 10.0 18.8
r101 1 35 38.4 33.6 19.8 22.7 24.1 39.5 rc101 1 35 24.9 19.6 11.8 12.2 13.3 18.9
r101 2 15 15.7 15.8 9.8 11.7 16.6 15.4 rc101 2 15 19.9 15.8 9.9 10.9 14.7 16.1
r101 2 20 23.1 23.4 14.1 15.6 21.3 23.7 rc101 2 20 29.2 23.3 15.1 15.2 20.2 27.7
r101 2 25 42.0 33.5 19.5 21.2 27.5 33.3 rc101 2 25 31.7 36.4 18.5 20.1 26.6 31.7
r101 2 30 52.9 60.1 31.9 33.1 40.9 52.8 rc101 2 30 40.1 38.1 23.5 30.5 31.8 44.7
r101 2 35 74.8 72.6 41.3 48.5 65.7 70.7 rc101 2 35 44.1 45.4 27.5 30.9 39.3 44.8
r101 3 15 28.3 27.8 16.6 19.1 25.7 27.6 rc101 3 15 18.5 15.9 10.0 11.0 13.6 15.8
r101 3 20 39.1 36.1 28.5 25.4 34.1 37.7 rc101 3 20 30.2 29.3 18.3 20.9 26.4 29.0
r101 3 25 58.5 55.8 32.6 37.4 43.9 55.3 rc101 3 25 50.8 49.1 31.1 34.2 43.5 49.7
r101 3 30 78.4 79.4 46.9 55.5 71.6 80.8 rc101 3 30 59.8 59.5 36.9 47.9 50.6 58.4
r101 3 35 111.8 131.7 80.9 78.4 99.3 113.9 rc101 3 35 70.0 70.2 55.6 50.0 60.3 69.6
r101 4 15 32.9 31.5 18.4 22.0 30.0 37.0 rc101 4 15 15.6 15.8 10.0 12.5 15.0 18.4
r101 4 20 47.3 46.3 34.9 31.9 44.5 45.7 rc101 4 20 33.0 31.6 19.4 26.0 29.9 31.2
r101 4 25 70.3 68.2 38.6 44.7 59.6 80.0 rc101 4 25 54.2 54.1 34.1 44.0 49.6 63.1
r101 4 30 120.5 100.9 77.2 65.6 85.7 99.7 rc101 4 30 71.0 72.5 45.0 51.4 73.0 70.1
r101 4 35 157.6 158.8 89.7 108.0 143.3 156.3 rc101 4 35 93.3 92.3 58.6 66.0 93.2 91.9

Mean 52.5 51.3 31.6 33.7 43.5 51.1 Mean 37.3 35.9 22.7 25.7 31.4 36.6

Figure D.6: Performance profiles of SeM and SeM improved with each technique on BOTOPTW instances.
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