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Abstract—We define untyped proof structures for second
order multiplicative linear logic as hypergraphs that we
call nets. We give a desequentialisation method associating
a proof-tree its representing net, and because not all nets
represent a proof we define a correctness criterion, based
on parsing, which determines (and construct) the proof that
is represented by a net S (if such proof exists). Because
the parsing rewriting is confluent on proof nets and always
decreases the size of a net our criterion runs in quadratic
time.

Index Terms—Linear Logic, Proof nets, Second order quan-
tification

I. Introduction

Linear logic, introduced by Jean-Yves Girard [1], refines

both intuitionistic and classical logic. It emerged from a

meticulous study of a denotational model of lambda calculus

[2], where the intuitionistic implication was decomposed into

two distinct operations. From its inception, linear logic has

been characterized by two complementary representations:

a sequent calculus proof system and a graphical formalism

called proof nets.
The conceptual foundation of proof nets parallels natural

deduction, identifying proofs up to rule commutations and

offering a more intuitive framework for understanding proofs

as programs. Unlike natural deduction, however, the syntax

of proof nets is inherently permissive. Identifying the subset

of graphical representations that correspond to valid sequent

calculus proofs requires specific correctness criteria. These

criteria have been extensively studied since Girard’s original

work (such as [3], [4], [5]), and they typically come with a

sequentialization theorem—a result that reconstructs a sequent

calculus proof from a graphical representation satisfying the

correctness criteria. For instance, Figure 1 illustrates two

graphical proofs and a sequent calculus proof. The central

graphical proof qualifies as a proof net, representing the

sequent calculus proof on the left-hand side, while the right

hand-side graphical proof fails the correctness criteria and

does not correspond to any sequent calculus proof.

In the simplest setting of multiplicative linear logic (the

smallest fragment), correctness criteria are entirely local

[6], [7], [8]. A graphical proof is correct if it satisfies

properties determined solely by the relationships between

vertices and their immediate neighbors in the graph. Even
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Fig. 1: A sequent calculus proof (left) its corresponding proof

net (center). On the right: a graph not representing any proof.

in this restricted case, various criteria have been proposed,

addressing in particular the computational complexity of

verifying correctness. Extensions to larger fragments, incor-

porating additive connectives or exponentials, have inspired

many new approaches (such as parsing criteria of [9], [3]),

motivated both by complexity considerations and the desire

to avoid global correctness criteria.

One noticeable gap in this body of work is the treatment

of second-order quantifiers. While Girard studied correctness

criteria for first-order quantifiers [10], these approaches are

limited in scope, as they apply only to closed formulas and

impose significant computational costs. This paper addresses

this gap by proposing a definition of proof nets for second-

order quantifiers, restricted to the simplest non-trivial frag-

ment: second-order multiplicative linear logic. We introduce

a definition of proof nets for second-order quantifiers, ac-

companied by a correctness criterion that is quadratic in the

number of edges in the graphical representation. We prove

a sequentialization theorem for this criterion and refine it

further to develop a second, static correctness criterion.

Our approach employs a notion of graphical proofs that

eschews type annotations, advancing beyond traditional

methods. This “Curry-style” approach contrasts with the

“Church-style” reliance on types, unifying proofs such as

the identity at all types under a single representation. For

instance, the lambda-term λx.x embodies the identity across

all types. While omitting types introduces challenges in

intuitive interpretation—allowing for generalized axiom rules

that incorporate arbitrary sequences of formulas— it compels

explicit handling of dependencies otherwise implicit in types.



Consider the graphical proofs in Figure 2, when types are

removed, dependencies—such as those introduced by the

universal quantifier—become obscured, and two graphical

proofs with a different correctness status are identified to

the same object.

Even within the narrow scope of second-order multiplica-

tive logic and allowing types, the interplay between quan-

tifiers and multiplicative connectives presents challenging

questions. Take for instance the following graphical proof:

ax ax

X Y X⊥ Y⊥
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Relatively to the multiplicative correctness criterion of

Danos-Regnier the graphical proof above on the left side

(denoted S η) is correct, however the quantifiers are not

introduced properly. Indeed, the M-rule cannot be applied

before the tensor rule but in order to apply the ⊗-rule one

must first apply the ∀-rule. However the ∀-rule cannot be

applied first because its variable occurs free at the right

side of the axiom, thus requiring the ∃-rule to be performed

beforehand, but this rule can only be applied after the M-rule.

This cycle of dependencies, represented by red arrows in the

figure on the right side, shows that the graphical proof on

the left side, although correct for Danos-Regnier switchings,

does not correspond to a proof.

To address this, we reintroduce dependencies using point-

ers, analogous to “jumps” in Girard’s criteria for quantifiers

[10]. However, our approach is more parsimonious: we in-

troduce ∀-pointers to leaves (conclusions of axioms) and ∃-

pointers to occurrences of existential witnesses. Avoiding

types will allow us to distinguish proofs based on the use of

their variables. For example the sequent calculus proof below

can be represented by nets where the universal pointer goes

above the exists only when representing the second proof

tree (this will force the tensor to be sequentialized before

the ∀-link), whereas in the case of the first proof tree that

pointer does not appear: this is because the variable of the

∀-quantifier can be renamed before applying the tensor rule

hence the two occurrences of X are not be related in the first

proof tree.
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Another line of work exists proposed by L. Strassburger

and related deep inference [11]. Our work differs significantly

from that of L. Strassburger because its MLL2 proof struc-

tures, are inherently typed and use only atomic axioms [11].

Unlike Strassburger, we aim to study correctness indepen-

dently of types, focusing instead on properties such as the

geometry of the proof structures (that we will call net in this

document). For example, Strassburger’s use of implicit boxes

complicates capturing proof equivalence, whereas our ap-

proach, similar to Girard’s use of pointers [10], avoids boxes

and resolves this issue. Furthermore, our parsing criterion is

both novel and efficient, running in quadratic time, unlike

the exponential-time complexity of existing criteria based on

switchings such as [10] and [11].

II. Preliminaries

In this section we introduce hypergraphs equipped with

pointers, in order to handle second order quantification and

to interpret proofs of second order multiplicative linear logic.

The challenge in the definition is to add quantifiers while

keeping an untyped setting. Pointers are used to reintroduce

exactly the needed information to deal with quantifiers

(which is usually implicitly given by types).

Before going into these technical details involving quan-

tifiers, we recall some basic definitions and results on proof

nets for multiplicative linear logic. This will also allow us to

introduce notations used in the remaining parts of the paper.

A. Second-order multiplicative linear logic

We quickly recall the syntax of second-order multiplicative

linear logic.

Formulas of MLL2 are defined inductively, given a count-

able set of propositional variables Var coming with an invo-

lution (·)⊥ : X 7→ X⊥:

A, B � X, X⊥ | A ⊗ B | AM B | ∀XA | ∃XA

A (one-sided) sequent Γ is a finite sequence of formulas of

MLL2. The rules of the sequent calculus of MLL2 are given

in Figure 3. A proof of MLL2 is a tree constructed using

the rules of the sequent calculus. The rule introducing the

existential quantifier as for premisse a sequent of the form

Γ, A[X ← B], as usual, the substitution A[X ← B] must be

stable under α–conversion thus B cannot contain variable

which occurs bounded in A. An occurence of a formula A is

principal in a rule of MLL2 if it is introduced by an axiom rule

(or a daimon rule subsection II-C) or is the main formula of

the rule (these are the red occurences in Figure 3, for example

A⊗ B is the main formula of the tensor rule). Occurences of

a same formula in a proof are related by the trace function tr,
which allows to define a thread i.e. a sequence of occurences

x, tr(x), tr2(x), . . . An (occurence of a) formula y is available
in a proof π if there exists a thread x, . . . , y such that x is

principal in a rule of π.

B. Multiplicative nets

As in the work [12] we present nets as hypergraphs. We

recall the basic definitions.
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Fig. 2: Two typed nets that become the same net when forgetting types. The first net contains a forall-rule which is valid

because X does not occur free in the conclusions, on the other hand the forall-rule cannot be valid in the second net because

its variable X appears free in the conclusions. To distinguish the untyped nets which represent a proof and those that don’t

we must therefore consider additional information.
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∃
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Fig. 3: Rules of the sequent calculus MLL2.

(⋆) To apply the rule ∀, the variable Y must not appear free in Γ.

1) Nets and modules: Given a set X we will let X!∗

denote the set of finite sequences of elements of X with-

out repetitions. Such sequences will be denoted by vectors

x⃗ = x1x2 . . . xk. In the following, we may refer to x⃗ as a set
to denote the underlying set |x⃗| = {x1, x2, . . . , xk}.

We fix a countable set of positions that we denote P which

will define the nodes of our hypergraphs.

Definition 1. Suppose given a set L of labels. A directed (L-
labelled) hypergraph is a tuple (V, E, s, t, ℓ) where V ⊂ P is a

finite set of positions and E is a finite set of links, s : E → V !∗

is the source map, t : E → V !∗
is the target map and ℓ : E → L

is the labelling map.

A link is an hypergraph (V, E, s, t, ℓ) such that E = {e} and

V = |s(e)| ∪ |t(e)|.
An hypergraph (V, E, s, t, ℓ) is trivial when E = ∅.

Notation 2. A link will be denoted as ⟨u⃗ ▷l v⃗⟩, where

E = {e}, V = |⃗u| ∪ |⃗v|, s(e) = u⃗, t(e) = v⃗ and ℓ(e) = ℓ. A

trivial hypergraph ({p1, . . . , pn}, ∅, s, t, ℓ) will be denoted by

⟨p1, . . . , pn⟩.

As a convention, we assume all the hypergraphs to be

loop–free i.e. the source and target sets of each link are

disjoint. In particular, u⃗ and v⃗ will be assumed disjoint when

writing ⟨u⃗ ▷l v⃗⟩. A conclusion/output (resp. a premise/input)
of a directed hypergraph H is a position which is not in the

source set (resp. target set) of any link in H .

Notation 3. Given two sets X0 and X1 we denote their disjoint

union X0⊎X1. Given two functions f : X0 → E and g : X1 →

E, we denote by f ⊎g their co-pairing, i.e. the function taking

an element x ∈ X0 ⊎ X1, and returning either f (x) if x ∈ X0,

or g(x) if x ∈ X1.

Definition 4. Given two hypergraphsH1 = (V1, E1, t1, s1, ℓ1)

and H2 = (V2, E2, t2, s2, ℓ2), we define their sum as:

H1 +H2 = (V1 ∪ V2, E1 ⊎ E2, t1 ⊎ t2, s1 ⊎ s2, ℓ1 ⊎ ℓ2).

Remark 5. Vertices may overlap in a sum (as we take the

union of vertex sets rather than the disjoint union). As a

consequence, a position may be input (or output) of several

distinct links. Any hypergraph can therefore be defined as

a sum of links and trivial hypergraphs, although not in

a unique manner. We will define the representation of a

hypergraph H = (V, E, s, t, ℓ) as the sum∑
p∈Is(H)

⟨p⟩ +
∑
e∈E

⟨s(e) ▷ℓ(e) t(e)⟩,

where Is(H) is the set of isolated positions in H , i.e. elements

v ∈ V which are neither source or target of any link.

A module is an hypergraph such that for each position p
there exists at most one link e such that p ∈ |s(e)|, and at most
one link e′ such that p ∈ |t(e′)|. A net is an hypergraph such

that for each position p there exists at most one link e such

that p ∈ |s(e)|, and exactly one link e′ such that p ∈ |t(e′)|.
2) Nets for MLL: We now fix the set of labels as the set

consisting of the axiom (ax), the tensor (⊗), the parr (M), and

the cut (cut) symbols. Furthermore we fix a family of links

associated with those labels, namely:

• ax-labelled links that have no inputs (they are initial

links) and exactly two outputs,

• cut-labelled links that have exactly two inputs and no

outputs (they are final links),

• ⊗- and M-labelled links that have exactly two inputs and

one output.

Formally we fix a countable set P of positions and a family

of links LMLL defined as:

LMLL =

{
⟨p1, p2 ▷⊗ p3⟩, ⟨▷ax p1, p2⟩,
⟨p1, p2 ▷M p3⟩, ⟨p1, p2 ▷cut⟩

∣∣∣∣∣∣ p1, p2, p3 ∈ P

}
Definition 6. A MLL net is a sum of links in LMLL which is

a net.

Since the inception of LL it is well known that proofs

from the sequent calculus may be represented as nets (or

proof structures) [13]. One can easily define the net JπK
associated with a sequent calculus proof π inductively. We



do not recall this definition here, as it is a particular case of

the interpretation of second-order proofs found in section III.

However not all nets are the image of a proof. Among

nets, one therefore distinguish proof nets, which are those

nets H for which there exists a sequent calculus proof π
with H = JπK.

The correctness criteria are properties of a net H which

are necessary and sufficient for H to be a proof net. Those

results are usually established through a sequentialisation the-
orem reconstructing from the considered property a sequent

calculus proof π such that H = JπK.

We briefly discuss some of the known criteria for mul-

tiplicative linear logic (MLL). We first consider the most

famous one, introduced by Danos and Regnier [7] as a

simplification of Girard’s original criterion. This criterion

consists in taking a net S , compute its switching graphs σS ,

and check if all of these graphs are acyclic and connected.

A switching graph is defined by disconnecting each M–link

from one of its inputs.

Theorem 7 ([7]). Given a MLL net S : Each switching σS of
S is an acyclic and connected graph if and only if there exists
a proof π of MLL such that S = JπK.

The main issue with this criterion is the cost of its

implementation. More specifically, if the net contains n ∈ N
such M links, then there are 2n

different switching graphs:

this makes the complexity of this criterion exponential (in

the number of links) in the worst case.

More efficient criteria, such as the parsing criterion of

Banach [3], or the contractibility criterion [6], are defined

through a rewriting system on nets. A net H is a proof net

if and only if it can be rewritten to a net of a specific shape.

Naively, these criteria operate in quadratic time, but may be

optimized to run in linear time [14].

We will introduce in section IV a parsing criterion for

second order multiplicative nets which coincides with that

of Banach on MLL nets.

C. Generalised axioms

We introduce generalised axioms that, as in Ludics [15],

we call daimons and denote ✠. The daimon defines a sequent

calculus rule with no premisses, which can introduce any

sequent Γ: in particular, it generalises an axiom rules because

it may introduce sequents of the form A, A⊥. Considering this

new rule we obtain new sequent calculus systems, MLL✠

which consists in the MLL system in which the axiom rule is

substituted with the daimon rule. Similarly, we define MLL✠
2

as the MLL2 system in which we replaced the axiom rule by

the daimon rule.

Considering this new rule also gets us to consider new

kinds of nets in which we don’t allow axiom links but can

contain daimon- (✠) links: these links have an empty source,

but can have a target of any cardinality. A MLL✠ nets is a

net which is a sum of link of L✠
MLL where:

L✠
MLL =

{
⟨p1, p2 ▷⊗ p3⟩, ⟨p1, p2 ▷M p3⟩,
⟨p1, p2 ▷cut⟩, ⟨▷✠ p1, . . . , pn⟩

∣∣∣∣∣∣ n ∈ N,
p1, . . . , pn ∈ P

}
Any MLL nets can canonically be mapped to MLL✠

nets by

replacing each of its axioms ⟨▷ax p1, p2⟩ by a binary daimon

link ⟨▷✠ p1, p2⟩. Conversely, any MLL✠
net which has only

binary daimons (i.e. daimons of the form ⟨▷✠ p1, p2⟩) can

be mapped to a MLL nets by replacing each binary daimon

⟨▷✠ p1, p2⟩ with an axiom ⟨▷ax p1, p2⟩.

The critera which tests the correctness of MLL nets can also

test the correctness of MLL✠
nets, more precisely: applied to

a MLL✠
net, the Danos-Regnier criterion and the parsing

criterion characterise if the net S represents a proof π where

π is a proof of MLL✠
(instead of simply MLL). In fact the use

of daimons is closely related to the correctness criteria, they

can be used to encode the partitions involved in the Danos-

Regnier criterion [16]. Furthermore, they allow for a natural

expression of the parsing rewriting: it consists simply of a

rewriting of MLL✠
nets into MLL✠

nets. On the other hand,

an MLL net will never rewrite into an MLL net after one step

of parsing rewriting.

III. Second order nets

The first problem we must address is that of defining the

MLL✠
2 -nets: they will resemble the MLL✠

-nets but will be

equipped with new kind of links: the new connectives ∀ and

∃, but also, a new class of links that we call pointers. Before

establishing the criterions we will also need to introduce the

desequentialisation process, defining the net JπK associated

with a proof–tree π from MLL2.

A. Adding pointers
In previous sections, the vertices of an hypergraph be-

longed to a set positions P. In order to handle pointers we

enrich the set of positions as P∪P• where the elements of P•

are called pointer ports or pointer positions. We will usually

denote pointer ports as p, q, s, . . . . The elements of P ∪ P•

are called positions, while elements of P will be called regular
positions. Links in L✠

MLL will involve only regular positions.

We then consider two new kind of links, corresponding to

the universal (∀) and existential (∃) quantifiers:

L✠
2 = {⟨p ▷∀ q, s⟩, ⟨p ▷∃ q, , s⟩ | p, q ∈ P, s ∈ P•} ∪ L✠

MLL.

Links of the form ⟨p ▷∀ q, s⟩ (resp.⟨p ▷∃ q, s⟩) are

universal links (resp. existential links): these links contain both

one target s which is a port position, and in fact are (up-

to this point) the only links involving pointer positions. In

illustrations, pointer positions are shown on the right of the

links:

p

q

s∀

p

q

s∃

As explained in the introduction, these links are not suf-

ficient to handle quantifiers properly. We need to introduce



a new class of links: pointers links. A pointer is a link with

a single source position which is a pointer position, a single

target position which is a regular position, and a label p. To

avoid confusion such links will have a separate notation: we

denote ⟨s ▶p t⟩ the pointer ⟨s ▷p t⟩. We now extend L✠
2

with the following types of pointers with forall-pointers and

two types of existential pointers:

Ptr = {⟨s ▶∀ t⟩, ⟨s ▶+∃ t⟩, ⟨s ▶−∃ t⟩ | s ∈ P•, t ∈ P}.

Suppose now given an hypergraph defined from links in

L✠
2 ∪ Ptr such that each position is in the target set of

exactly one L✠
2 link. Since the ∀ and ∃ links are the only

(non pointers) links containing a port position, each pointer

⟨s ▶p t⟩ will have its source s belonging to the target of

exactly one existential or universal link. The corresponding

link will be called the source link of the pointer.

Definition 8. A directed path is a sequence of positions

p1, . . . , pk such that for all i = 1, . . . , k − 1 there exists a

non-pointer link e ∈ L✠
2 with pi ∈ |s(e)| and pi+1 ∈ |t(e)|.

A position p is said to be above a position q if there exists

a directed path p1, . . . , pk, p1 = p and pk = q.

Definition 9. A MLL2 pre-net is a sumH of links in L✠
2 ∪Ptr

such that:

• regular positions are in the source of at most one link,

• all position are in the target set of exactly one L2 link,

• source links of ∃ (resp. ∀) pointers are ∃ (resp. ∀) links,

• target positions of ∀ pointers are targets of ✠ links,

• target positions of ∃ pointers are above their source.

We distinguish universal and existential pointer links be-

cause the semantics of these pointers pointers are distinct,

and as a consequence they will be treated differently in the

correctness criterion. A positive existential (resp. negative

existential) pointer is a pointer of the form ⟨s ▶+
∃

t⟩ (resp.

⟨s ▶−
∃

t⟩). In the typed case, this indicates the fact that the

target of the link is a positive (resp. negative) occurence of

the existential witness of the source ∃–link. We may write

⟨s ▶
∃

t⟩ to denote an existential pointer with an arbitrary

sign. A universal pointer is a pointer of the form ⟨s ▶∀ t⟩. In

the typed case, this indicates the fact that the target position

t depends on the variable quantified by the source ∀ link.

Remark 10. Note that in Definition 9, pointers have no

restriction on their targets or sources. In particular, two

pointers may have the same source: for instance ⟨s ▶p t⟩
and ⟨s ▶p t′⟩ can occur in the same pre–net. Similarly two

distinct pointers may share their target, this may occur for

instance when two distinct ∀ links point to the same position.

In the typed case, this indicates that the position contains a

formula in which both variables occur free. A ∀-pointer link

may also share its target with an ∃-pointer link. In the typed

case, this indicates that the existential witness in that position

contains the variable.

Lastly, note that we do not disallow repetition of pointers:

a net could contain two (or more) copies of the link ⟨s ▶p t⟩.
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✠
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Fig. 4: Coherence of trees is not merely the isomorphism of

the trees.

While this does not impact the results, we will suppose in

the following that such a situation does not arise.

B. Existential pointers and coherence

One additional condition needs to be added to define

untyped second-order nets. This aspect arises from our choice

to work with untyped nets and has to do with existential

quantifiers. More specifically: while existential pointers give

the information of which sub-trees correspond to the exis-
tential witnesses of the ∃ rule, they do not ensure that these

subtrees are coherent, i.e. that they can be understood as

describing a single formula. For instance, consider the pre-

nets of Figure 4, no sequent calculus proof can translate into

the left-hand side pre–net: indeed, it requires the existential

witness to be simultaneously of the form A ⊗ B and of the

form A M B, which is not possible. A natural idea would

be to ask the pointed subtrees to be isomorphic. But this

is not compatible with the use of non-atomic axioms or

daimon rules. Indeed, because daimon rules can introduce

any sequent, the right-hand side pre-net of Figure 4 is the

image of the following proof:

✠
A, B, AM B

M
AM B, AM B

M
(AM B)M (AM B)

∃
∃X (X M X)

An obvious reason why the last existential rule is correct is

that we have two occurrences of the same witness. In the

typed case, this is guaranteed by the fact that this witness

is the same formula (e.g. A M B in the proof above). In the

absence of explicit formulas, we use the notion of coherence
of the subtrees above the target of existential pointers. Note

that coherent subtrees are not only compatible but we also

require that their pointed position match.

To properly state the definition, we first introduce a few

notations. Given a pre-net and a binary relation ∼ on pointer

positions, we say that positions p and p′ are existentially
equivalent w.r.t. ∼ when there exists a pointer link ⟨s ▶⋆

∃
p⟩

and a pointer link ⟨s′ ▶⋆
∃

p′⟩ with s ∼ s′ (here ⋆ ∈ {+,−}).
Given a pre-net and a position p, we write ∀↑(p) the set

of sources of pointer links whose target is above p. Given



a binary relation ∼ on pointer positions, we write ∀↑(p) ∼
∀↑(p′) when there exists a one-to-one mapping f : ∀↑(p) →
∀↑(p′) such that f (x) ∼ x.

Given a binary relation R ⊂ X×X and two elements x, x′ ∈
X, we define Rx↔x′ as follows:

Rx↔x′ =
(
R ∪ {(x, x′), (x′, x)}

)
\ {(x, x), (x′, x′)}

Definition 11. Let N be a pre-net (S ,P), p and p′ be

two positions, and ∼ be a binary relation on positions. We

say p and p′ are coherent w.r.t ∼ when: either p and p′

are existentially coherent w.r.t. ∼, or they are not target

of existential pointer links and satisfy one of the following

conditions:

• p or p′ is the target of a daimon link, and ∀↑(p) ∼ ∀↑(p′);
• p and p′ are both conclusions of ⊗ links (resp. M links),

whose hypotheses are pairwise coherent w.r.t. ∼;

• p and p′ are both conclusions of ∀ links (resp. ∃ links)

of pointer position s and s′, whose hypotheses are

coherent w.r.t. the relation ∼s↔s′ .

We say that p and p′ are coherent, written p ¨ p′ when

they are coherent w.r.t. the identity on pointer positions (i.e.

the binary relation x ∼ x′ ⇔ x = x′).

We define in a similar way the notion of anticoherent

positions. Given a pre-net, and a binary relation ∼ on pointer

positions, we say that positions p and p′ are existentially

anticoherent w.r.t. ∼ if there exists pointer positions s ∼ s′

and:

• either there exists links ⟨s ▶
∃

p⟩ and ⟨s′ ▶∀ p′⟩,
• or there exists links ⟨s ▶∀ p⟩ and ⟨s′ ▶

∃
p′⟩.

Definition 12. Let N be a pre-net (S ,P), p and p′ be

two positions, and ∼ be a binary relation on positions. We

say p and p′ are anti-coherent w.r.t ∼ when p and p′ are

existentially anticoherent w.r.t. ∼, or they are not targets of

pointer links and:

• p or p′ is the target of a daimon link, and ∀↑(p) = ∀↑(p′);
• p and p′ are conclusions of ⊗ and M links, whose

hypotheses are pairwise anticoherent w.r.t. ∼;

• p and p′ are conclusions of ∀ link and ∃ links of pointer

position s and s′, whose hypotheses are anticoherent

w.r.t. the relation ∼s↔s′ .

We say that p and p′ are anticoherent, written p ˚ p′ when

they are anticoherent w.r.t. the identity on pointer positions

(i.e. the binary relation x ∼ x′ ⇔ x = x′).

Definition 13. A pre-net S is a net if for all existential link

⟨p ▷∃ q, s⟩ in S and all positions p, p′:
• if there are pointer links ⟨s ▶+

∃
p⟩ and ⟨s ▶+

∃
p′⟩ (resp.

⟨s ▶−
∃

p⟩ and ⟨s ▶−
∃

p′⟩), then p ¨ p′ in the net without

these pointer links;

• if there are pointer links ⟨s ▶−
∃

p⟩ and ⟨s ▶+
∃

p′⟩ (resp.

⟨s ▶+
∃

p⟩ and ⟨s ▶−
∃

p′⟩), then p ˚ p′ in the net without

these pointer links.

With some work, one can show that for each ∃ link

in a net, one can reconstruct a minimal witness, which

is intuitively the union of the subtrees above targets of

existential pointers (or their dual, depending on the polarity

of the pointer). Coherence (and anticonherence) insures that

taking such a union is possible.

C. Pre-soundness
We can associate a proof π from the sequent calculus of

MLL✠
2 with a MLL✠

2 net, that we denote JπK, which is defined

by induction on the proof tree π. The inductive cases of the

⊗- M- and cut- rules are as in the multiplicative case [13],

with the additional presence of pointers but in these rules

those do not play any role and are just carried through the

induction unchanged. The cases of the ∀- and ∃- connectives

is the novelty here, we add a link at below the right position

but more importantly we may add pointers, it is important to

understand what are the targets of the pointers which have

their source in the new quantifier link. To handle universal

pointers we assume the existence of an injection X 7→ sX

mapping propositional variables to port positions.

Definition 14. Given a finite set of propositional variables

V, the representation with traced variables V of a proof π in

MLL✠
2 is the net ⟨π;V⟩ defined by induction in Figure 5. In

the base case i.e. π is a proof made of a single daimon rule,

a pointer ⟨sX ▶∀ pi⟩ is added if and only if the variable X
belongs to V and occurs free in the formula Ai. In the case of

the ∃-rule the position w1, . . . ,wl are the targets of the new

existential pointers and w⃗ is an enumeration of the positions

at address ξ ∈ {l, r, up}∗ with respect to p in the net S (l
indicates to go up on the left of p, and so on . . . ) so that ξ is

the address of an occurence of Y in A (see Figure 5), i.e. a wi

is a position at the address ξ relatively to p where ξ is the

address of a Y’s occurrences in A. In the case of the ∀-rule no

new pointer is added simply the we add a link ⟨p ▷∀ q, sX⟩

and the pointers of source sX naturally become the pointers

of the added link and their targets are v1, . . . , vl in Figure 5

(note that universal-pointers are carried along the induction

defining JπK).

The (canonical) representation of a proof π is ⟨π;VP⟩ where

VP is the set of universal variables of π, we denote it JπK.

Remark 15. The function ⟨·;V⟩ associates with each available

formula occurence in a proof π a position in the hypergraph

⟨π;V⟩; this map is denoted posπ and is bijective, i.e. any

position in ⟨π;V⟩ is associated with a unique available

occurence of a formula in π.

In the exists rule of MLL2 (Figure 3) the occurence of

the formula B in A[X ← B] are the witnesses occurence of

the rule; the occurence of X in A are the positive witnesses
occurence, the occurence of X⊥ in A are the negative witnesses
occurence. A proof tree is complete if for each of its exists

rule r the witnesses occurence of r are accessible occurences

(section II). The next proposition explains that a proof-tree

of MLL✠
2 or MLL2 can always be extended so that it is

complete; for MLL2 an obvious solution is to eta-expand

the proof, although it is not necessary to fully eta-expand

it and use only atomic axioms, we merely need that the
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Fig. 5: The desequentialisation process: it associates with every proof of the sequent calculus MLL2 (and more generally

MLL2
✠

) a MLL✠
2 net.

witness occurences become available, i.e. principal in some

rule. In fact, to obtain a complete proof the eta expansion

of quantifiers will never be needed, because an exists cannot

have for witness a (strict) subformula of ∀XA or of ∃XA so

only the eta expansion of ⊗- and M- connectives is needed.

Proposition 16. For any π proof tree of MLL2 (resp. MLL2
✠)

there exists a complete proof tree π′ such that π eta expands
(resp. proof–search expands, see Figure 6) to π′, i.e. π →η π′

(resp. π→s π
′).

Proposition 17. For each proof π of MLL✠
2 , JπK is a net.

Proof. It is straightforward to show that JπK is a pre-net, then

one shows that JπK has coherent witness trees: this is because

the (roof of) trees which correspond to a same witness are

associated with occurences of the same formula (i.e. the

formula B in the premisse of the ∃ rule Γ, A[B/X]). □

Remark 18. Proposition 17 shows that proofs desequentialise

to nets, however not all nets are the desequentialisation of

a proof. As in the multiplicative case nets which contain

switching cycles or switching disconnection don’t represent

any proof, the novelty is that some nets (S ,P) may be

multiplicatively correct (i.e. the switching graphs of S are

acyclic and connected) but still be incorrect. For instance two

existential pointers may be conflicting, more precisely when

the paths of these pointers (i.e. the path from the source

to the target of the pointer) intersect and belong to a same

unique descending path (see Figure 7). Another case is when

a forall rule is performed when the variable X is not free in

the context (such as the net S η of section I whose untyped

version is right hand side net of Figure 7), this will become

clear when defining the parsing reduction steps.

Remark 19. The nets we have introduced can represent proof

(Proposition 17) furthermore two proofs which are equivalent

upto some rules-commutations are mapped to the same net

(up-to isomorphism). For instance, two proofs which are

equivalent for the (∀/∀) commutations (see below, where X

and Y do not occur free in Γ) will be mapped to the same

net.

π

A, B,Γ
∀

∀XA, B,Γ
∀

∀XA,∀YB,Γ

∼

π

A, B,Γ
∀

A,∀YB,Γ
∀

∀XA,∀YB,Γ

We can capture proof equivalences by isomorphism because

of the absence of boxes (by contrast, boxes are involved in

the works [1] and [11]). Because of that, our representation

of proofs as nets captures all natural commutations.

IV. Second order proof nets

We will define a reduction procedure on MLL✠
2 nets that

will allow us to define the notion of ”proof net”. However,

the reduction rules require to keep track of some additional

dependencies during the parsing rewriting. As a consequence,

we will introduce new pointer links, which will be used only
for the purpose of rewriting. We denote the class of these

additional pointers PtrC:

PtrC = {⟨s 99K∃ q⟩, ⟨s 99K∀ q⟩, ⟨s⇝∀ s′⟩ | s, s′ ∈ P•, q ∈ P}.

Pointers of the form ⟨s 99K∃ q⟩ (resp. ⟨s 99K∀ q⟩, resp.

⟨s⇝∀ s′⟩) are called existential ghosts (resp. universal ghosts,
resp. dependency pointers).

In the following, we will therefore work with a pair of a

MLL✠
2 -net, together with a correction pointer structure.

Definition 20. Let S be a MLL✠
2 net. A correction pointer

structure for S is a sum P of links from PtrC whose source

and target are positions in S and such that:

• universal ghosts are subject to the same constraints as

universal pointers: their source is a pointer positions

which is the target of a ∀ link, and their target is the

target of a ✠ link;

• existential ghosts are subject to the same constraints as

existential pointers: their source is a pointer positions

which is the target of a ∃ link, and their target is a

position above their source;

• dependency pointers are pointers from universal links

to existential links: is a pointer positions which is the



✠
Γ, AM B

→s
✠

Γ, A, B
M

Γ, AM B

✠
Γ, A ⊗ B,∆

→s
✠

Γ, A
✠

∆, B
⊗

Γ, A ⊗ B,∆

✠
Γ,∀XA

→s
✠

Γ, A[Y/X]
∀

Γ,∀XA

✠
Γ,∃XA

→s
✠

Γ, A[B/X]
∃

Γ,∃XA

Fig. 6: Proof search rewriting in MLL✠
2 sequent calculus. In the forall-rule the eigenvariable Y is fresh.
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Fig. 7: Interaction of existential pointers. The first two nets are incorrect because the existential pointers will create a conflict

(an exists-pointer and an exists-ghost will share the same target during the parsing reduction), the third net is correct, the

existential pointers will not conflict: they will only meet when they are both ghosts. The right-most net is incorrect because

the pointers of the forall-link cannot become ghost, the parsing rewriting will not be able to perform any step that is not

a rerouting.

target of a ∀ link, and their target is a pointer positions

which is the target of a ∃ link.

Definition 21. A correction net is a pair (S ,P) of a net S
and a correction pointer structure for S , we will denote such

pairs S •P. Given a correction net S •P, a position p is active
when p belongs to the target set of a ✠ link of S , and such

that if p is the target of an existential pointer, then it is not
the target of another existential pointer, nor the target of an

existential ghost.

An active position is existential-free if it is not the target

of an existential pointer.

A (non-pointer) link is active if its source set contains only

active positions. It is existential-free if all its source positions

are existential-free.

Notation 22. Given a MLL✠
2 net S we denote by S (s→) the

pointer links of source s in S , i.e. the pointers of the form

⟨s ▶ t⟩ for some position t. Given a position p, S (→ p)
denotes the pointers of target p in S i.e. of the form ⟨s ▶ p⟩
for some port position s. Similarly we define the notations

for a correction pointer structure P and define the notation

for the ghosts P(s99K).
Given a correction pointer structure P we define P(⇝s)

the dependency pointers of target s, i.e. of the form ⟨s′ ⇝∀
s⟩. Given a universal pointer ⟨s ▶∀ p⟩ the dependency

substitution ⟨s ▶∀ p⟩
[
pf s′

]
returns ⟨s ⇝∀ s′⟩. Given

a dependency pointer ⟨s ⇝∀ s′⟩ the ghost substitution

⟨s ⇝∀ s′⟩ [s′ L99 r] returns ⟨s 99K∀ r⟩. Given an existential

pointer ⟨s ▶
∃

p⟩ the ghost substitution ⟨s ▶
∃

p⟩
[
p L99 r

]
returns ⟨s 99K∃ r⟩. These substitutions naturally can be lifted

to sets of pointer links.

Notation 23. A context for a net S is an hypergraph C such

that the sum C + S is a net, then that sum is denoted C[S ]

(in particular C can contain pointers whose target lies within

the positions of S ). The substitution [p ← q] is a map on

positions and maps p to q while mapping any other position

a to itself a. Substitutions can be lifted to sets in the usual

way. Substitutions can also be lifted single-link hypergraphs

such that t(e[p ← q]) = t(e)[p ← q] while s(e[p ← q]) =
s(e)[p← q]. Substitutions can therefore be lifted to nets. We

will denote by Cθ[S ] the hypergraph θC + S .

We define the parsing reduction on correction nets as a

labelled rewriting S • P
e
−→P S ′ • P′ on active links. The

rewriting rules are shown in Figure 9 and are subject to the

following constraints.

• Par rule: it applies on an existential-free active M link,

such that the two positions in the source set are targets

of the same ✠ link. This contracts the M-link into a

single position r (the conclusion of the link). Pointers to

the sources of the initial M-link are rerouted to r.

• Tensor rule: it applies on an existential-free active ⊗

link, such that the two positions in the source set are

targets of distinct ✠ links. This contracts the ⊗ link into

a single position r (the conclusion of the link), merging

the two ✠ links. Pointers to the sources of the initial ⊗

link are rerouted to r.

• Forall rule: it applies on an existential-free active ∀ link

⟨▷✠ p1, . . . , pn, p⟩ + ⟨p ▷∀ r, s⟩

such that there is at most one universal pointer from s

and it can only go to p and all universal ghosts of source

s have their target among p1, . . . , pn. This contracts the

∀ link into a single position r. Pointers of source s are

deleted, and pointers of target p are rerouted to r.

• Exists rule: it applies on an existential-free active ∃

link ⟨p ▷∃ r, s⟩. This contracts the ∃ link into a single
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Fig. 8: Parsing rewriting rules illustrated

position r. Pointers of source s are deleted, dependency

pointers of target s are replaced by universal ghosts of

target r, and pointers of target p are rerouted to r.

• Pointers rule: it is the only rule that applies to an active

position

⟨▷✠ p1, . . . , pn, p⟩ + ⟨s ▶∃ p⟩

which is not existential-free. This replaces the unique

existential link ⟨s ▶
∃

p⟩ by an existential ghost ⟨s 99K∃
p⟩, and universal links of target p are replaced by

dependency links to s.

Definition 24. Given an integer n we denote ✠n the net

consisting of a single daimon link with n conclusions, i.e.

⟨▷✠ p1, . . . , pn⟩. A proof-net is a net S that reduces to a

daimon i.e. such that S −→P ✠n for some integer n.

V. Soundness

Theorem 25 (Soundness). The image of a sequent calculus
proof is a proof net.

Theorem 25 is obtained by proving a more general result

which is better suited for inductive reasoning. Recall that the

representation of a proof ⟨π;V⟩ naturally comes with a lo-

calising map posπ mapping each active formulas in π to a po-

sition in ⟨π;V⟩. In fact, more precisely, given A1, . . . , An the

conclusion sequent of π the positions posπ(A1), . . . , posπ(An)
are the conclusions of the net ⟨π;V⟩.

Lemma 26. Given a sequent calculus proof π of conclusion
A1, . . . , An, ⟨π;V⟩ reduces to ✠n+P where P contains universal
pointers ⟨sX ▶∀ posπ(Ai)⟩ when X belongs to V and X occurs
free in Ai.

The induction is more or less straightforward, except for

the ∃ quantifier rule case, which requires the following

proposition to ensure that no ill-situation arise between

existential pointers (such as the one described in Remark 18).

Say that a position is bound if it is above an exists pointer

or if it is in the descending path from an exists pointer to

its link. A position is free when it is not bound. Then the

following is true.

Proposition 27. Given a net S and e terminal existential link
for S such that e points only to free positions in S ; if S −→P S ′

then S + e −→P S ′ + e.

One uses the previous proposition in order to prove

Lemma 26, specifically, when the proof π ends with a terminal

∃- rule. In that case ⟨π;V⟩ will be mapped to ⟨π0;V⟩+e+Pe

where π0 is the immediate subproof in π and e is the new

existantial link while Pe are the added pointers. In order to

apply Proposition 27, one must observe that e is indeed a

terminal link for ⟨π0;V⟩ and that the new pointers Pe points

to free positions in ⟨π0;V⟩ (this is ensured by the types in

the sequent calculus).

VI. Completeness

In this section, we prove:

Theorem 28. A proof net is the image of a sequent calculus
proof.

Since we are working with untyped nets, we are working

up to an implicit universal quantification. Indeed, a given

proof net represents many different sequent calculus proofs

that share the same general structure (derivation tree) but

differ in the formulas introduced in the axioms.

This appeared in the proof of soundness, but did not

induce additional complications. This will however need to

be tackled properly in the proof of completeness. Indeed, the

proof will show that one can reconstruct a sequent calculus

proof from a proof structure and a parsing reduction to ✠k.

Some information about the formulas involved will only be

known after several steps in this reconstruction. We therefore

need to proceed inductively on families of proofs sharing

some structure (e.g. proofs that end with a tensor rule in

which the left formula depends on a given variable X). Those

are abstracted by the notion of scheme.



C[⟨▷✠ p⃗, p⟩ + ⟨▷✠ q⃗, q⟩ + ⟨p, q ▷⊗ r⟩] • P −→P Cr←p,q[⟨▷✠ p⃗, q⃗, r⟩] • P[r ← p, q]
C[⟨▷✠ p⃗, p, q⟩ + ⟨p, q ▷M r⟩] • P −→P Cr←p,q[⟨▷✠ p⃗, r⟩] • P[r ← p, q]

C[⟨▷✠ p⃗, p⟩ + ⟨p ▷∀ r, s⟩ + S (s→)] • P + P(s99K) −→P Cr←p[⟨▷✠ p⃗, r⟩] • P[r ← p]
C[⟨▷✠ p⃗, p⟩ + ⟨p ▷∃ r, s⟩] • P + P(s99K) + P(⇝s) −→P Cr←p[⟨▷✠ p⃗, r⟩] • P[r ← p] + P(⇝s) [s L99 r]

C[⟨▷✠ p⃗, p⟩ + ⟨s ▶
∃

p⟩ + S (→p)∀] • P −→P C[⟨▷✠ p⃗, p⟩] • P + ⟨s 99K∃ p⟩ + S (→p)∀
[
pf s

]
Fig. 9: The parsing criterion: rewriting rules.

A. Schemes

Definition 29 (Schemes). We consider a new set of variables

Var(2)
disjoint from Var. We define schemes inductively as

follows:

S := F(X1, . . . , Xn) | X | S ⊗ S | S M S | ∃X S | ∀X S ,

where X, X1, . . . , Xn ∈ Var, and F ∈ Var(2)
.

Schemes are a generalisation of MLL2 formulas, they can

be instantiated. Schemes impose some contraints on vari-

ables: we expect variables in Var(2)
to abstract formulas of

MLL
2

that contain some specific variables in Var and that

do not contain some other specific variables in Var. This

translates through the notion of explicit variables: those are

the variables for which constraints have to be satisfied.

Definition 30. An instantiation with explicit variables B ⊆
Var is function σ mapping schemes to MLL2 formulas re-

specting the following induction:

• σ(X) is X.

• σ(F(X1, . . . , Xn)) is a formula such that for all i Xi ∈

FV(A), and for all Y ∈ B \ {X1, . . . , Xn}, Y < FV(A);
• σ(S 1□S 2) = σ(S 1)□σ(S 2); for any binary connective.

• σ(∀XS ) = ∀XσS and σ(∃XS ) = ∃XσS .

A formula A is an instance with explicit variables B of a

scheme S if there exists a instantiation σ with explicit

variables B such that A = σS .

Example 31. Consider the scheme S = ∀XF(X)⊗F(Y). Then,

in the empty set of explicit variables, we have that:

• S ⊨∅ ∀X(X ⊗ Y) ⊗ (X ⊗ Y);
• S ⊭∅ ∀XX ⊗ (X ⊗ Z), because a same second order

propositional variable F must be instantiated by a same

formula

• S ⊭∅ ∀XX ⊗ (Y M Z), because X is an explicit variable

yet it appears in the instance of F(Y,Z);
• S ⊭∅ ∀XX⊗ (YMZ), because the instance of F′(W) does

not contain the variable W ;

• S ⊭∅ ∀XX ⊗ W , because F is instanced to two distinct

formulas X and W .

We will also need to keep track of existentially and

universally quantified variables. We define the set BV(S ) of

bounded variables of a scheme S inductively:

• BV(F(X1, . . . , Xn)) = ∅;
• BV(S 1 ⊗ S 2) = BV(S 1) ∪ BV(S 2);
• BV(S 1 M S 2) = BV(S 1) ∪ BV(S 2);
• BV(∃X, S ) = BV(S ) ∪ {X};
• BV(∀X, S ) = BV(S ) ∪ {X}.

Definition 32. A sequent of schemes (or scheme of sequent)

is a sequence of schemes ⊢ S 1, . . . , S n. We define BV(⊢
S 1, . . . , S n) as the union of the sets BV(S 1), . . . ,BV(S n).

A sequent of schemes ⊢ S 1, . . . , S n can also be instantiated.

Definition 33. An instantiation σ with explicit variables

B is compatible with a sequent of scheme S 1, . . . , S n if

BV(S 1, . . . , S n) = B. A sequent ⊢ A1, . . . , An is an instantiation
of a sequent of schemes S 1, . . . , S n if there exists an instantia-

tion compatible with S 1, . . . , S n such that ⊢ σ(S 1), . . . , σ(S n)
equals ⊢ A1, . . . , An.

Proofs can also be defined for schemes as in Figure 10.

The proof of a scheme π instantiates to a proof π′ of MLL✠
2

whenever there exists an instantion σ with explicit variable

which corresponds to the variables in π, such that σ(π) equals

π′. Furthermore, as MLL✠
2 proofs, a proof of schemes π can

be mapped to a net π† as illustrated in Figure 17. In fact, the

representation of a proof of schemes π and the representation

of its instances are the same (Proposition 36).

To establish Theorem 28, we in fact prove the following

technical result.

Lemma 34 (Technical lemma). Given a proof net P, there
exists a scheme of sequent ⊢ S 1, . . . , S n and a proof π of S (in
MLL✠†

2 ) such that π† = P.

The proof of this follows from several key lemmas, stated

in subsection VI-B, as well as the following proposition that

relates proofs of schemes with proofs of MLL✠
2 .

Proposition 35. If ⊢ S 1, . . . , S n is a scheme of sequent and π is
a proof of ⊢ S 1, . . . , S n (in MLL✠†

2 ), then for each instantiation
σ of ⊢ S 1, . . . , S n: σ(π) is a proof of ⊢ σ(A1), . . . , σ(An) in
MLL✠

2 .

Proof. One checks that the rules of MLL✠†
2 are mapped

through σ to rules of MLL✠
2 . Then, by induction one easily

constructs a proof tree in MLL✠
2 from a proof tree π in

MLL✠†
2 . □

Proposition 36. Given a proof of schemes π, and an instan-
tiation σ with explicit variables B; the proof structures ⟨π; B⟩†

and ⟨σ(π); B⟩ are equal.

We are now ready to prove the completeness theorem

stated at the beginning of the section.

Proof of Theorem 28. Let S be a proof net, using the technical

result Lemma 34, there exists a scheme calculus proof π such

that S = JπK†. π is a scheme calculus proof tree of conclusion

S 1, . . . , S n hence for any instantiation σ of S 1, . . . , S n the



proof tree σ(π) is a proof of MLL✠
2 (Proposition 35). Recall

that JπK† = ⟨π; V⟩† where V are the universal variables of

π; by Proposition 36 ⟨π; V⟩† and ⟨σ(π); V⟩ are equal. Finally

since the variables of π and σ(π) are the same ⟨σ(π); V⟩ is

JπK. We conclude that S = Jσ(π)K. □

B. Proof of the technical lemma

Notation 37. Given a net S and a correction net S ′ • P we

denote S ≈ S ′ • P whenever S = S ′ i.e. the underlying net

of the correction net S ′ • P is S .

Proposition 35 trivially implies a more general result which

applies to correction nets rather than nets.

Corollary 38. Given a scheme proof π and σ an instantiation
for π whenever S • P ≈ JπK† then S • P ≈ Jσ(π)K.

Given a proof-tree π and d one of its daimon rule given

a proof-tree π0 we denote π[π0/d] the proof obtained by

replacing the daimon d in π with the proof π0. The following

lemma (Lemma 40) involves the proof search rewriting →s:

it rewrites a proof-tree consisting of a single daimon rule

into a proof tree containing a single rule, this rewriting

then generalises to proof trees by the contextual closure

in the straightforward way, if π →s π
′

then for any proof

ρ, ρ[π/d] →s ρ[π/d]. In particular one can easily see that

each rewriting steps defining →s introduce a correct rule or

applies an existential subsitution (this preserves correctness),

furthermore one can observe that any proof tree can be the

result of a proof search starting from a proof made of a single

daimon link, this result in the following proposition:

Proposition 39. π is a proof tree, if and only if, there exists
Dai a proof tree made of single daimon rule such that Dai→∗s π.

Lemma 40. Let π′ be a proof of schemes. Given a reduction
S • P

e
−→P S ′ • P′ such that S ′ = Jπ′K† then there exists a

proof π such that: (1) S = JπK† and (2) π′ →ℓ(e)
s π where the

proof search step acts on the subformula associated with the
conclusion of the link e and proof search for connective of e
that is ℓ(e).

Equivalently the following diagram commutes (the dashed
arrows represents the existence of such π):

S • P S ′ • P′

π π′

e

J·KJ·K

ℓ(e)

We prove the lemma by treating all cases of reduction, this

makes 4 cases for connectives and one case for the rerouting

rule. For each cases, we show that the diagram commute as

is illustrated in Figure 18, Figure 19 and Figure 20.

Proof of Lemma 34. Let S be a proof net, i.e. S −→∗P ✠n,

reason by induction on the length n of the parsing sequence.

If n = 0 the net S represents a proof tree of MLL✠†
2

consisting of a single daimon rule; If n > 0 we conclude

by using Lemma 40: decompose the parsing reduction as

S • ∅ −→P S ′ • P′ −→∗P ✠n and complete the diagram:

S • ∅ S ′ • P′ ✠n

π π′ Dai

e ∗

J·KJ·K J·K

ℓ(e) ∗

The proof tree Dai consists of a single daimon rule and the

corresponding (red) arrow is obtained as in the case n = 0;

the proof tree π′ and the corresponding (orange) arrows is

obtained by applying the induction hypothesis on the top

right corner, finally the proof tree π and the corresponding

(blue) arrows is obtained by Lemma 40. □

Remark 41. In presence of second order quantifiers, one can

substitute a cut between A and A⊥ by a tensor and an

existential quantifier. This is completely standard in the typed

case: it adds in the sequent conclusion as many ∃XX ⊗ X⊥

as the number of cuts occuring in the net. In our case

(which is untyped) this corresponds to substituting the links

⟨p1, p2 ▷cut⟩ with the sum of links ⟨p1, p2 ▷⊗ p⟩ + ⟨p ▷∃
q, s⟩+ ⟨s ▶+

∃
p1⟩+ ⟨s ▶−∃ p2⟩. We can thus straightforwardly

extend our sequentialisation theorem in the presence of cuts.

VII. Towards a static criterion

A. Further study of the reduction

Proposition 42. The parsing rewriting is strongly confluent
on proof nets.

Remark 43. The fact that the parsing rewriting is strongly

confluent means that if a net S is a proof net then any

strategy of reduction for the parsing rewriting −→P will

terminate and normalise S to ✠k. As a consequence since the

parsing rewriting always decrease the number of connective

links or existential pointers in S , the parsing criterion can

run in quadratic time, by applying a naive strategy: we look

for a parsing-redex e in S (this costs a reading of S ) reduce

S as S •
e
−→P S ′ •P′; now do the previous step in S ′ •P′ (if it

isn’t a single daimon link). This will make n reduction steps

and read the net n times where n is the number of links and

existential pointers in S in S .

Given a forall link ⟨p ▷∀ q, s⟩ the universal pointers

⟨s ▶∀ t⟩ where t is not above s are called out of range.

A pointer guard of a pointer ⟨s ▶∀ t⟩ is an existential

pointer ⟨s′ ▶
∃

t′⟩ such that t′ is below t; the link of a

pointer guard is the existential link containing s′; the guard
of a pointer p = ⟨s ▶∀ t⟩ is the link of its pointer guard

of target t0 such that t0 is above the target of all pointer

guards of p (i.e. its the exists which points below t and is

the most highest in the syntax tree); we denote it g(p). we

call a potential sequence a sequence (αi)1≤i≤n of links and

positions. A potential sequence of a net S is a reduction
sequence when there exists nets (S i)1≤i≤n such that S

α1
−−→P S 1

and S i
αi+1
−−−→P S i+1 for each 1 ≤ i ≤ n − 1, then the net S n



✠
F1(X⃗1), . . . , Fn(X⃗n)

S 1, S 2,Γ
M

S 1 M S 2,Γ

S 1,Γ S 2,∆
⊗

S 1 ⊗ S 2,Γ,∆

S [Z/Y],Γ
∀

∀XS [X/Y],Γ

S [S ′/Y],Γ
∀

∃XS [X/Y],Γ

Fig. 10: Rules generating the scheme sequent calculus that we denote MLL✠†
2 . To apply the forall rule one must verify that

all the schemes in Γ do not contain the variable X in their variable list.

✠
Γ, F(X1, . . . , Xn)

→s
✠

Γ, F1(X1
1 , . . . , X

1
n1), F2(X2

1 , . . . , X
2
n2)

M
Γ, F1(X1

1 , . . . , X
1
n1)M F2(X2

1 , . . . , X
2
n2)

✠
Γ, F(X1, . . . , X1),∆

→s
✠

Γ, F1(X1
1 , . . . , X

1
n1)

✠
∆, F2(X2

1 , . . . , X
2
n2)

⊗
Γ, F1(X1

1 , . . . , X
1
n1) ⊗ F2(X2

1 , . . . , X
2
n2),∆

✠
Γ, F(X1, . . . , X1)

→s
✠

Γ, F0(X1, . . . , Xn, (0 + 1).X)
∀

Γ,∀XF0(X1, . . . , Xn)
✠

Γ, F(X1, . . . , Xn)
→s

✠
Γ, F0(X1, . . . , Xn)

∃
Γ,∃XF0(X1, . . . , X1)

π

 ✠
Γ, F(X1, . . . , X1)

→s π[F ←∃ W]
 ✠
Γ, F(X1, . . . , Xn,Y1, . . . ,Yk)


Fig. 11: Proof search rewriting in the scheme sequent calculus. In the forall-rule the variable Y is fresh. The last rule will be

related to the pointer rule of the parsing reduction. It involves a substitution [F ←∃ W] which denotes the fact of adding F
as a witness to the ∃-quantifier of variable W thus given a F in Var(2)

it behaves as ∃WA[F ←∃ W] = ∃WA[F ← W] while

passing through every other connective;d for instance (∃ZA)[F ←∃ W] equals ∃Z(A[F ←∃ W]) while X[F ←∃ W] returns

X.

is the reduct of the sequence we denote then S
α⃗
−→P S n. A

reduction sequence verifies a net S if S
α⃗
−→P ✠k, then it is

called a verification sequence. A reduction sequence (αi)1≤i≤n

on S satisfies the existential precedence if for each αi that is

a forall-link the sequence (α1, . . . , αi−1) contains the guards

of each out of range pointers of αi.

Proposition 44. If P is a proof net, each of its verification
sequence satisfies the ”existential precedence rule”.

Proof. A forall-link e is contractible only when the pointers

which are not above itself are in its daimons are of the

form ⟨s 99K∀ p⟩ i.e. they have been deactivated, however

the only way pointers ⟨s 99K∀ p⟩ is if they are the residuals

of dependency pointers ⟨s⇝∀ s′⟩ and s′ is the target of an

exists link e′. As a consequence it is necessary that the link

e′ is contracted before e. □

Definition 45. A kingdom of a set of positions P inside a

net S is a minimal sub-proof net of S containing the set

of positions P. The kingdom of a universal link e in S is a

kingdom of e and all its guards (that is a kingdom of the set

obtained by taking the union of the source sets and targets

sets of these links).

Proposition 46. Given a net S and α⃗ is a reduction sequence
for S to a daimon, then for all ∀ link e in α⃗, the daimon link
produced by α⃗≤e is associated with a proof net containing a
kingdom of the link e.

The weak parsing is the parsing rewriting of Figure 9 but

such that the forall-step can be performed as long as the

forall link is below a daimon link (disregarding its pointers

or ghosts). A weak reduction sequence for S is a sequence

of links and pointers (αi)1≤i≤n such that there exists nets

(S i)1≤i≤n with S = S 1 and for all i; S i
αi
−→

w

P S i+1. A sequence α⃗

is full for S if it contains all the links and existential pointers

of S . Our next theorem shows how a condition on a weak

reduction sequence can make it a reduction sequence; we

say that a weak reduction sequence α⃗ satisfies the kingdom

property if for each forall-links e in α⃗ we have that α<e

contains a kingdom of e and reduces it into a single daimon,

the one that lies above e.

Theorem 47. Given a guarded net S (i.e. all its out of range
universal pointers have a guard) and a full weak reduction
sequence α⃗ for S ; if α⃗ satisfies the kingdom property then α⃗ is
a verification sequence of S (hence S is a proof net).

B. A static correctness criterion

Based on the previous study of reduction, we define the

following notion of switching for second-order multiplicative

nets where the forall-link behaves similarly to a par-link.

Definition 48. The switching rewriting is defined on MLL✠
2

nets as follow:

S + ⟨p1, p2 ▷M p⟩ →M S [p1 ← p]
S + ⟨p1, p2 ▷M p⟩ →M S [p2 ← p]

S + ⟨p ▷∀ q, s⟩ +
∑

1≤i≤n⟨s ▶∀ ti⟩ →∀ S [p← q]
S + ⟨p ▷∀ q, s⟩ +

∑
1≤i≤n⟨s ▶∀ ti⟩ →∀ S [p← g(⟨s ▶∀ ti⟩)]

A switching is a normal form with respect to the switching

rewriting. The switchings of a net S are all the normal

forms of S with respect to the switching rewriting. The

graph associated with an hypergraph (V, E, s, t, ℓ) is the graph

whose nodes are V ⊎E and such that an edge occur between

a node e and p s(e) or t(e) contains p.

We conjecture that the following result holds.

Conjecture 49. A guarded MLL✠
2 net is a proof net iff every

second-order switching defines a connected and acyclic graph.



We believe that a proof of this result could be obtained

by refining the following method. First, prove that there

exists at least one ∀ link whose kingdom does not contain

another ∀-link (if this is not the case this will create a cycle

in the switching graphs). We take this ∀ link. We replace

it by a wide M link connecting the corresponding ∃ links.

We check that this change does not impact the correction

graphs (same switchings). This shows that there is a subproof

(multiplicative criterion) ending with this M. To continue, we

remove the ∀ link we just treated (keep it as a wide M), and

continue with next ∀ link without other ∀ link above.

This would establish that if the criterion is satisfied, it is

a proof net. Conversely, showing that any proof net satisfies

the criterion should be straightfoward.
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Appendix

A. Related Works

We discuss a related line of work proposed by L. Strass-

burger which stems from deep inference. A closely related

line of work, based on the formalism of deep inference [17]

has been proposed by L. Strassburger, initiated in [18] and

continued in [11], where the author defines proof structures

(called pre-proof graphs) for second order multiplicative linear

logic with units and atomic axioms, and proposes a cor-

rectness criterion characterising the pre-proof graphs which

represent a proof from the sequent calculus.

Strassburger’s approach and ours provide complementary

perspectives that mutually enrich and clarify one another.

While his work shares similarities with ours, key differences

set our contributions apart, which we outline below:

a) Witnesses of existential quantifiers: The pre-proof

graphs defined in [11] are inherently typed, and make uses of

atomic axioms, as a consequence, the witnesses
1

of existential

quantifiers have the same syntax tree. By contrast, our

approach only requires the witnesses of existential quantifiers

to be coherent (see Figure 4). Furthermore the witnesses of

pre-proof graphs (as specified in [11] Definition 4.3 condition

2) cannot capture bounded variables: indeed this is the case of

proof structures representing a proof, however this condition

outright rejects some kind of proof structures that can be

defined in our setting. For instance the two left-most proof

structures of Figure 7 cannot be defined in Strassburger’s

framework but are permitted in ours, though ultimately

rejected by our correctness criterion. A consequence of these

two first observations is that we define a greater set of proof

structures, namely there are more proof structures than pre-

proof graphs. This, in particular, has consequences when

investigating cut-elimination, and more specifically, when

one wants to characterise the behavior of a proof structure

using cut-elimination: because some behaviors can only be

revealed when using the cut elimination with incorrect proof

structures (see [12]).

b) Time complexity of the correctness criteria: Strass-

burger’s correctness criterion for pre-proof graphs is based

on the Danos-Regnier criterion [7]: its naive implementation

is an algorithm running in exponential time. In contrast,

our parsing-based criterion terminates in quadratic time

(Remark 43).

c) Proof Equivalence: The criterion for pre-proof graphs

reconstructs a deep inference proof from a graph, because

a deep inference proof may correspond to many sequent

calculus proof the proof-equivalence induced by pre-proof-

graphs is unclear (as observed in [11] Section 8). However, a

version based on sequent calculus is provided in the report

version of [11], but the equivalence induced on sequent

calculus is still unclear because of the use of (equivalents of)

∀-boxes, therefore some commutations (e.g. (∀/M) and (∀/∀))
are not directly captured by the pre-proof graph syntax and

must involve a rewriting of the boxes. On the other hand

our criterion reconstructs a proof from the sequent calculus

without relying on boxes. Thus our approach induces natural

proof equivalences avoiding the complications associated

with box rewriting (Remark 19).

d) The presence of daimons: As pointed out in the

subsection II-C we consider proof structures in the presence

of daimons and our criterion characterise MLL✠
2 proof-nets,

1
To be more precise those with the same polarity.



whereas generalised axioms are absent in pre-proof graphs

of [11].

B. Complements to Section II

1) Occurences of a formula: The aim of this additional

subsection is to define the occurences of MLL2 formulas

within another formula, a sequent, or a proof tree (from

MLL✠
2 or MLL2). We introduce three symbols called directions

to describe paths within syntax trees, l, r and up which

respectively correspond to the following instructions “go

left”, “go right” and “go up”. A sequence ρ in {l, r, up}∗ is

an address or a path. The occurence of a formula A in a

formula B is given by an address: more precisely, directions

act on formulas in the following way (where □ is a binary

connective i.e. ⊗ or M and Q is a quantifier i.e. ∃ or ∀):

d · X ≜ undefined

l · A□B ≜ A
r · A□B ≜ A
up · A□B ≜ undefined

l · QX A ≜ undefined

r · QX A ≜ undefined

up · QX A ≜ A

Above A and B are MLL2 formulas and X is a propositional

variable.

To identify an occurrence of a formula in a sequent Γ, we

use a pair (i, ρ) made of an index i to identify the position

of the formula in Γ = A1, . . . , An and a path ρ ∈ {l, r, up}∗

to locate the formula within the syntax tree of Ai. For

instance, in ⊢ Γ =⊢ P ⊗ Q,∀XR, P, (0, l) and (2, ε) are the

two occurences of P while (1, up) is the only occurence of

R. Similarly, to identify an occurence of a formula within a

proof tree π of MLL2 we use a tuple (ξ, i, ρ) made of a path
ξ ∈ {l, r, up}∗ which locates a sequent Γ within π together

with an occurence (i, ρ) locating a formula within Γ.

We have presented the notion of occurence for formulas

and proof trees of MLL2 and MLL✠
2 , but indeed this can be

adapted for MLL✠†
2 and schemes of section VI rather than

formulas.

2) Threads: Another technical aspect of sequent calculus

is that of threads, that we briefly expose, because the thread

of a formula A in a proof π will corresponds to a position in

the hypergraph JπK.

To define threads one must observe that the occurrences

of a formula a same formula A within a proof tree π can

be tracked using the trace function tr. The trace function is

a total function that maps occurrences of formulas in the

premisses of a rule to the corresponding occurrences in the

conclusion of that rule (we do not illustrate it here but this is

standard especially in the works involving fixed points, for

instance see [19]). A thread in π is a sequence (x1, . . . , xn)
of occurences of the same formula such that tr(xi) = xi+1 for

1 ≤ i ≤ n−1; A thread is maximal if it cannot be extended, i.e.,

it is not the prefix or suffix of any other thread in π. Every

occurence α of a formula in a proof tree π has a unique

associated maximal thread that we denote π⃗(α).

Definition 50 (Active and accessible occurences). The oc-

curence α of a formula in a proof tree is active if (1) a daimon

rule introducing A1, . . . , An occurs in π and α is the occurence

of one the formulas Ai or (2) if there exists a rule in π such

that the occurence α is the main formula of the rule.

An occurence α of a formula in a proof tree is accessible
if one of the occurences in π⃗(α) is active.

Occurrences and threads can be cumbersome to formalize

rigorously. An alternative approach is to use a localised
version of the sequent calculus, where sequents are composed

of syntax trees rather than formulas. In this setting, an

occurrence of a formula within the proof tree π corresponds

directly to a node within a syntax tree. This eliminates the

need for explicit paths or indices, as the structure of the

syntax tree inherently identifies the location of the formula.

3) Eta expansion: The eta expansion is defined on MLL2

proofs as the rewriting in Figure 12. Note that to obtain a

complete proof the eta expansion of quantifiers will never be

needed, because an exists cannot have for witness a (strict)

subformula of ∀XA or of ∃XA.

C. Complements to Section III
1) Complements on coherence: We here provide a more

detailed formalisation of the notion of coherence and antico-

herence of position, by defining the coherence of subtrees so

that, two positions are coherent if and only if the subtrees

above the two positions are coherent. For this, we introduce

the notion of tree with pointers. This also illustrate that when

testing the coherence of the trees above a position p we may

need to hide some of the subtrees above p as illustrated in

Figure 13.

Definition 51. Given a regular position p, trees with pointers
of conclusion p are inductively defined as follows:

• If S = ⟨p⟩ is a trivial hypergraph made of a single

position p, and P(p) is a hypergraph consisting only

of universal pointers having p as target, then ⟨p⟩+P(p)
is a tree with pointer of conclusion p.

• If S is a tree with pointers of conclusion p, S′ is a tree

with pointers of conclusion p′ disjoint from S, and q is a

fresh position: S∪S′+⟨p, p′ ▷⊗ q⟩ and S∪S′+⟨p, p′ ▷M
q⟩ are trees with pointers of conclusion q;

• If S is a tree with pointers of conclusion p, q is a fresh

position, and s is a pointer position (which could occur

in pointers of S ), then S + ⟨p ▷∀ q, s⟩ is a tree with

pointers of conclusion q.

Given a pre-net S and a position p, we now define in a

straightforward way the tree (with pointers) above p in (S ,P),
that we denote Tp(N). This will then be used to define the

syntactic tree above the vertex, including the pointers of ∀

links that may point to vertices in that syntactic tree. We

seek to ensure that two existential pointers are coherent of

respective target p and q: for that it is not enough to look at

the trees with pointers above p and q because the existential

links above p and q may instantiate subtrees which have no

more influence on the types (Figure 13), this is why we will

introduce the notion of type trees above p.



ax
AM B, A⊥ ⊗ B⊥

→η

ax
A, A⊥

ax
B, B⊥

⊗
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∃
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∀
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Fig. 12: Eta expansion in MLL2.
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Fig. 13: The coherence of witnesses checks the coherence of

partial trees: to verify that the last existential link of the left-

hand side pre–net has coherent witnesses one verifies that

the last exisential link in the right hand side hypergraph has

coherent witnesses, i.e. that the trees above the targets of

existential pointers without hidden trees are coherent.

Definition 52. Given a pre-net S and a position p, the tree
(with pointers) above p in S , written Tp(S ), is defined as the

largest p–tree S that is contained in S + P when its daimon

links are removed. A hidden tree T0 in a tree with pointers T
is a tree with pointers above a position t such there exists an

existential pointer ⟨s ▶
∃

t⟩ ∈ P that is fully defined on T . The

type tree of p in (S ,P) is the tree denoted Tp(N) obtained by

taking Tp(N) and removing each of its hidden trees. Given

an existential link ⟨p ▷∃ q, s⟩ its positive (resp. negative) type
trees are the trees of the set W+S (s) = {Tr(N) | ⟨s ▶+

∃
r⟩} (resp.

W−S (s){Tr(N) | ⟨s ▶−
∃

r⟩}).

Remark 53. In a type tree universal and existential pointers

targets are regular positions which are the target of no non–

pointer links.

Definition 54. Given a net S we define the tree with pointer

above a regular position p of S inductively

We must now defined the coherence of subtrees. To do so

we first define when two subtrees are unifiable. Given a tree

with pointers T we can easily associate it a formula of MLL2

called position-formula
2
, denoted F(T ) whose propositional

variables are pairs p(X⃗) made of a position together with a

finite sequence of port position, one does so by induction:

2
In fact these really are similar to the schemes of subsection VI-A

F(⟨p⟩ + P) ≜ p(s(P))
F(T1 + T2 + ⟨p1, p2 ▷⊗ p⟩) ≜ F(T1) ⊗ F(T2)
F(T1 + T2 + ⟨p1, p2 ▷M p⟩) ≜ F(T1)M F(T2)
F(T1 + ⟨p ▷∀ q, s⟩) ≜ ∀sF(T1)
F(T1 + ⟨p ▷∃ q, s⟩ + P) ≜ ∃sF(T1)

Two trees T1 and T2 are unifiable if their formulas F(T1) and

F(T2) are unifiable, i.e. there exists a substitution θ such that

θF(T1) and θF(T2) are equal. Note such substitutions θ are

compositions of subsitutions of the form [p(X⃗)← F(T )]. Be-

cause unifiability does not take into account the information

of the pointers it is not sufficient to define coherence. Given

a position-formula we define its occuring pointers as follow:

p∀(p(X⃗)) ≜ {x ∈ X⃗}
p∀(F□G) ≜ p∀(F) ∪ p∀(G)
p∀(∀sF) ≜ p∀(F) \ s
p∀(∃sF) ≜ p∀(F)

A simple substitution [p ← F] is coherent if p∀(p) equals

p∀(F). A substitution is coherent when it is the composition

of simple coherent substitutions. Finally one can defined one

coherence: two trees T1 and T2 are coherent if the formulas

F(T1) and F(T2) can be unified by a coherent substitution.

Indeed the definition of coherent subtrees naturally gener-

alises to finites sets of trees: the trees T1, . . . ,Tn are coherent

if they can be unified by a coherent substitution.

Formula-tree can also be negated in the obvious way,

which allows us to define dual-coherence.

p(X⃗)
⊥
≜ p(X⃗)

(F□G)⊥ ≜ F⊥□G⊥
(∀sF)⊥ ≜ ∃sF⊥

(∃sF)⊥ ≜ ∀sF⊥

Note that p∀(F) and p∀(F⊥) are equal. Two trees T1 and T2
are dually coherent whenever T1 and T2

⊥
are coherent.

Notation 55. Given a formula A and B and Ξ a set of addresses

and ξ an address. We denote adrB(A) the set of addresses of

the subformula B in A. We denote Get(A, ξ) the formula at

address ξ (if defined), we denote Get(A,Ξ) the set of formulas

{Get(A, ξ) | ξ ∈ Ξ}. Similarly given a net S and one of its

position p we defined Get(S , p, ξ) and Get(S , p,Ξ)
2) Proof of proposition 17:

Proposition 17. For each proof π of MLL✠
2 , JπK is a net.

Proof. This is done by induction on the proof π:

• if π is a daimon rule introducing a sequent Γ =

A1, . . . , An the JπK is a daimon link summed with uni-

versal pointers, indeed this is a MLL✠
2 net.

• if π is a tensor rule applied on two proofs π1 and π2,

we consider disjoint renamings for the hypergraphs Jπ1K



and Jπ2K, then JπK = Jπ1K+ Jπ2K+ ⟨p, q ▷⊗ r⟩ for a fresh

position r where p and q are the positions corresponding

to the formulas A and B, indeed the sum of MLL✠
2 net

is still an MLL✠
2 net and furthermore adding a terminal

link which has for conclusion a fresh position results in

a MLL✠
2 net.

• if π is a parr rule applied on a proofs π1 and p, q are

the conclusions corresponding to the principal formulas

in the rule, we define JπK = Jπ1K + ⟨p, q ▷M r⟩ for a

fresh position r, adding a terminal link which has for

conclusion a fresh position to a MLL✠
2 net results in a

MLL✠
2 net.

• if π is a existential quantifier rule applied on a proof π1:

π1

Γ, A[B/X]
∃

Γ,∃YA[Y/X]

and p is the conclusion associated with to the prin-

cipal formula in the rule; q1, . . . , qn are the positions

corresponding to the positive witnesses that we obtain

by taking the addresses of X in A i.e. adrX(A) and

finding the corresponding position in the net Jπ1K; this

means that {q1, . . . , qn} = Get(JπK, p, adrX(A)). Similarly

r1, . . . , rm are the positions associated with the negative

witnesses Get(JπK, p, adrX⊥ (A)).
With this sets of positions defined we can define the

desequentialisation of π as follow for fresh position w
and pointer position s:

JπK = Jπ1K + ⟨p ▷∃ q, s⟩ +
n∑

i=1

⟨s ▶+∃ qi⟩ +

m∑
i=1

⟨s ▶−∃ ri⟩

• if π is a universal quantifier rule applied on a proofs

π1 and p is the conclusion corresponding to the prin-

cipal formula in the rule, and q1, . . . , qn are positions

corresponding to the variable X (recall that we assume

the existence of an injective map X 7→ sX mapping all

propositional variables to a port position, thus the qi’s

are the positions in Jπ1K which are the target of a pointer

of source sX i.e. some pointer ⟨s ▶∀ qi⟩ occur in the net).

Having defined q1, . . . , qn we define the desequentialisa-

tion of π as JπK = Jπ1K +
∑n

i=1⟨s ▶∀ ri⟩ + ⟨p ▷∀ r, s⟩ for

fresh position r and pointer position s.

(1) By construction JπK is a pre–net one can inductively

check that the property of target and source surjectivity are

preserved because the new position is always taken fresh,

furthermore target surjectivity is always preserved because

the new position is always the target of the added link. (2)

Further JπK is a net because its existsential pointers verify

coherence, this is proved inductively on π, but the only

interesting case is when adding an existential link and its

pointers; assume the proof is of the following form

π1

Γ, A[B/X]
∃

Γ,∃YA[Y/X]

An exists link ⟨p ▷∃ q, s⟩ is added to Jπ1K its conclusion is

the fresh position q and it points to Get(JπK, p, adrX(A)) thus

it points above p, furthermore the witnesses are coherent

(to do so one observe that occurences of formulas B in π
are mapped to a position q whose tree may be typed by B,

more specifically one shows that two occurences of a same

formula B in a proof π are mapped to positions in JπK which

are coherent – on the other hand, if the formula are B and

B⊥ they are mapped to anti-coherent positions.). (3) We must

ensure that JπK contains only ∀-pointers whose target are

outputs of daimon links; this again is proved by induction

straightforwardly. □

D. Proof Equivalence – On remark 19

The fact that our nets are box-free allows us to capture

exactly the proof equivalence of MLL2; if two proofs of MLL2

are equivalent (modulo rule commutations, see Figure 14)

they are represented by the same net. Since we our nets are

untyped objects this becomes an equivalence modulo alpha

conversion: two proof of MLL2 are equivalent (modulo alpha

conversion) if and only if they are represented by the same

net.

Definition 56. Given two symbols a, b belonging to

{⊗,M,∀,∃} the commutation ∼(a/b) is the (symmetric) binary

relation on proof trees of MLL✠
2 or MLL2 as defined in

Figure 14. Two proof trees π and π′ are 1-equivalent, denoted

π ∼1 π
′
, if there exists two symbols a, b of {⊗,M,∀,∃} two

subtrees π0 of π and π′0 of π′ and a proof tree ρ such that

ρ[π0] = π, π′ = ρ[π′0] and π0 ∼(a/b) π
′
0. Two proof trees are

equivalent if π ∼∗1 π
′

where ∼∗1 is the transitive, symmetric

and reflexive closure of ∼1.

Proposition 57. Let π and π′ be two proof trees of MLL✠
2 and

V a set of propositional variables; if π ∼ π′ then ⟨π; V⟩ = ⟨π′; V⟩

Proof. This is given by Figure 15 and Figure 16. □

Proposition 58. Let π and π′ be two proof trees of the scheme
calculus, if JπK = Jπ′K then π and π′ are equivalent.

Proof. Assume that JπK and Jπ′K are both equal to a net S .

By soundness, S is a proof net i.e. S → ✠n and we have

the diagram as in Theorem 28, to conclude we show that

given two equivalent proofs π and π′ represented by S and

two contractible link e1, e2 in S the proofs obtained by the

steps S
e1
−→P

e2
−→P S ′ and S

e2
−→P

e1
−→P S ′ (the nets are equal by

confluence) are equivalent proofs. □

E. Complements to section VI

1) Desequentialisation for scheme calculus: We define the

desequentialisation of proof trees from the scheme calculus

as in Figure 17.

2) Completeness Diagrams: We illustrate the technical

lemma (Lemma 40) which leads us to prove the completeness

theorem (Theorem 28) in the figures 18, 19 and 20.

Also note that the substitution and desequentialisation are

compatible:



π0

Γ, A, B,C,D
M

Γ, AM B,C,D
M

Γ, AM B,C M D

∼(M/M)

π0

Γ, A, B,C,D
M

Γ, A, B,C M D
M

Γ, A, B,C M D

π0

Γ, A[X ← F], B,C
∃

Γ,∃XA, B,C
M

Γ,∃XA, BMC

∼(M/∃)

π0

Γ, A[X ← F], B,C
M

Γ, A[X ← F], BMC
∃

Γ,∃XA, BMC
π0

Γ, A[X ← F], B[Y ← G]
∃

Γ,∃XA, B[Y ← G]
∃

Γ,∃XA,∃YB

∼(∃/∃)

π0

Γ, A[X ← F], B[Y ← G]
∃

Γ, A[X ← F],∃YB
∃

Γ,∃XA,∃YB

π0

Γ, A[X ← Z], B[Y ← W]
∀

Γ,∀XA, B[Y ← W]
∀

Γ,∀XA,∀YB

∼(∀/∀)

π0

Γ, A[X ← Z], B[Y ← W]
∀

Γ, A[X ← Z],∀YB[Y ← W]
∀

Γ,∀XA,∀YB
π0

Γ, A[X ← Z], B[Y ← G]
∀

Γ,∀XA, B[Y ← G]
∃

Γ,∀XA,∃YB

∼(∀/∃)

π0

Γ, A[X ← Z], B[Y ← G]
∃

Γ, A[X ← Z],∃YB
∀

Γ,∀XA,∃YB

π0

Γ, A[X ← Z], B,C
∀

Γ,∀XA, B,C
M

Γ,∀XA, BMC

∼(∀/M)

π0

Γ, A[X ← Z], B,C
M

Γ, A[X ← Z], BMC
∀

Γ,∀XA, BMC

π1

Γ, A

π2

∆, B,C,D
M

∆, B,C M D
⊗

Γ, A ⊗ B,C M D,∆

∼(M/⊗)

π1

Γ, A
π2

∆, B,C,D
⊗

Γ, A ⊗ B,C,D,∆
M

Γ, A ⊗ B,C M D,∆

π1

Γ, A

π2

∆, B,C[X ← F]
∃

∆, B,∃XC
⊗

Γ, A ⊗ B,∃XC,∆

∼(∃/⊗)

π1

Γ, A
π2

∆, B,C[X ← F]
⊗

Γ, A ⊗ B,C[X ← F],∆
∃

Γ, A ⊗ B,∃XC,∆

π1

Γ, A

π2

∆, B,C[X ← Z]
∀

∆, B,∀XC
⊗

Γ, A ⊗ B,∀XC,∆

∼(∀/⊗)

π1

Γ, A
π2

∆, B,C[X ← Z]
⊗

Γ, A ⊗ B,C[X ← Z],∆
∀

Γ, A ⊗ B,∀XC,∆

π1

Γ, A

π2

∆, B,C
π3

D,Θ
⊗

∆, B,C ⊗ D,Θ
⊗

Γ, A ⊗ B,C ⊗ D,∆,Θ

∼(⊗/⊗)

π1

Γ, A
π2

∆, B,C
⊗

Γ, A ⊗ B,C,∆
π3

D,Θ
⊗

Γ, A ⊗ B,C ⊗ D,∆,Θ

Fig. 14: The proof equivalence on MLL✠
2 and MLL2 proofs. The ∀ rules are always supposed to be applyable meaning the

variable does not appear in the context. In the commutation (∀/⊗) we assume that the variable Y of the universal quantifier

does not occur in Γ, A; in other words a tensor rule between two proofs should only be allowed when the two proofs don’t

variables of universal quntifiers. In the commutation (∀/∃) the variable Z of the universal quantifier does not occur in the

witness G of the existential quantifier.

Lemma 59. Given a proof π Jπ[π′/d]K = JπK[Jπ′K/d].

3) On remark 41: Figure 21 illustrates the substitution

described in Remark 41.

F. Complements to Section VII-A

1) On confluence: Proving confluence is done by decom-

posing the parsing reduction as →ptr ⊎ →
C
P where →ptr is

the pointer rule and →C
P is the parsing rewriting without the

pointer rule. One observe that →C
P contains a unique critical

pair that can only occur in incorrect nets, showing that→C
P is

strongly confluent on proof nets. Then one shows that →ptr

is confluent and finally that one step of →ptr and one step

of →C
P always commute when then can be both performed.

We present the proof of the confluence of the parsing

rewriting.

Proposition 42. The parsing rewriting is strongly confluent
on proof nets.

Proof. If both rewriting steps are contracting a connective

link confluence hold by Proposition 60; If both rewriting steps

are pointers rule confluence hold by Proposition 61; If one

step is pointer rule while the other is a connective confluence

hold by Proposition 62. □

To do so we prove a series of proposition as sketched in

section VII-A. Let us decompose the parsing reduction as

→ptr ⊎ →
C
P where →ptr is the pointer rule and →C

P is the

parsing rewriting without the pointer rule.

Proposition 60. The parsing reduction of connective links→C
P

is confluent on proof nets.



π0

Γ, A, B,C,D
M

Γ, AM B,C,D
M

Γ, AM B,C M D

π0

Γ, A, B,C,D
M

Γ, A, B,C M D
M

Γ, A, B,C M D

∼(M/M)

a1 . . . an

Jπ0K

M

c

c2c1

M

b

b2b1

J·K J·K

π0

Γ, A[X ← F], B[Y ← G]
∃

Γ,∃XA, B[Y ← G]
∃

Γ,∃XA,∃YB

π0

Γ, A[X ← F], B[Y ← G]
∃

Γ, A[X ← F],∃YB
∃

Γ,∃XA,∃YB

∼(∃/∃)

a1 p. . . an

∃

q

s

w1

Jπ0K
wl. . .

λ1

λl

∃

q′

s′

w′1 w′
l′

. . .

λ′1

λ′
l′p′

J·K J·K

π0

Γ, A[X ← F], B,C
∃

Γ,∃XA, B,C
M

Γ,∃XA, BMC

π0

Γ, A[X ← F], B,C
M

Γ, A[X ← F], BMC
∃

Γ,∃XA, BMC

∼(∃/M)

a1 p. . . an

∃

q

s

w1

Jπ0K
wl. . .

λ1

λl

M

b

b2b1

J·K J·K

π0

Γ, A[X ← Z], B[Y ← G]
∀

Γ,∀XA, B[Y ← G]
∃

Γ,∀XA,∃YB

π0

Γ, A[X ← Z], B[Y ← G]
∃

Γ, A[X ← Z],∃YB
∀

Γ,∀XA,∃YB

∼(∃/∀)

a1 p. . . an

∀

q

s

w1

Jπ0K
wl. . .

λ1

λl

∃

q′

s′

w′1 w′
l′

. . .

λ′1

λ′
l′p′

J·K J·K

π0

Γ, A[X ← Z], B[Y ← W]
∀

Γ,∀XA, B[Y ← W]
∀

Γ,∀XA,∀YB

π0

Γ, A[X ← Z], B[Y ← W]
∀

Γ, A[X ← Z],∀YB
∀

Γ,∀XA,∀YB

∼(∀/∀)

a1 p. . . an

∀

q

s

w1

Jπ0K
vl. . .

λ1

λl

∀

q′

s′

v′1 v′
l′

. . .

λ′1

λ′
l′p′

J·K J·K

π0

Γ, A[X ← Z], B,C
∀

Γ,∀XA, B,C
M

Γ,∀XA, BMC

π0

Γ, A[X ← Z], B,C
M

Γ, A, BMC
∀

Γ,∀XA, BMC

∼(∀/M)

a1 p. . . an

∀

q

s

w1

Jπ0K
vl. . .

λ1

λl

M

b

b2b1

J·K J·K

Fig. 15: Equivalent proofs have the same representation as a net, this includes all the cases which do not contain the tensor.



π1

Γ, A

π2

∆, B,C,D
M

∆, B,C M D
⊗

Γ, A ⊗ B,C M D,∆

π1

Γ, A
π2

∆, B,C,D
⊗

Γ, A ⊗ B,C,D,∆
M

Γ, A ⊗ B,C M D,∆

∼(⊗/M)

⊗

r

qa1 p. . . an b1 . . . bk

Jπ1K Jπ2K

M

c

c2c1

J·K J·K

π1

Γ, A

π2

∆, B,C[X ← F]
∃

∆, B,∃XC
⊗

Γ, A ⊗ B,∃XC,∆

π1

Γ, A
π2

∆, B,C[X ← F]
⊗

Γ, A ⊗ B,C[X ← F],∆
∃

Γ, A ⊗ B,∃XC,∆

∼(⊗/∃)

⊗

r

qa1 p. . . an b1 . . . bk

Jπ1K Jπ2K

∃

q′

s′

w′1 w′
l′

. . .

λ′1

λ′
l′p′

J·K J·K

π1

Γ, A

π2

∆, B,C[X ← Z]
∀

∆, B,∀XC
⊗

Γ, A ⊗ B,∀XC,∆

π1

Γ, A
π2

∆, B,C[X ← Z]
⊗

Γ, A ⊗ B,C[X ← Z],∆
∀

Γ, A ⊗ B,∀XC,∆

∼(⊗/∀)

⊗

r

qa1 p. . . an b1 . . . bk

Jπ1K Jπ2K

∀

q′

s′

w′1 w′
l′

. . .

λ′1

λ′
l′p′

J·K J·K

π1

Γ, A

π2

∆, B,C
π3

D,Θ
⊗

∆, B,C ⊗ D,Θ
⊗

Γ, A ⊗ B,C ⊗ D,∆,Θ

π1

Γ, A
π2

∆, B,C
⊗

Γ, A ⊗ B,C,∆
π3

D,Θ
⊗

Γ, A ⊗ B,C ⊗ D,∆,Θ

∼(⊗/⊗)

⊗

r

qa1 p. . . an b1 . . . bk

Jπ1K Jπ2K

⊗

r′

q′p′ c1 . . . cm

Jπ3K

J·K J·K

Fig. 16: Equivalent proofs have the same representation as a net: all tensor cases.

✠
F1(X⃗1), . . . , Fn(X⃗n)

7→J·K

✠

. . .p1 pn

sX1 sXn. . .

π1

Γ, S 1

π2

∆, S 2
⊗

Γ, S 1 ⊗ S 2,∆

7→J·K

⊗

r

qa1 p. . . an b1 . . . bk

Jπ1K Jπ2K π0

Γ, S 1, S 2
M

Γ, S 1 M S 2

7→J·K

M

r

qa1 p. . . an

Jπ0K

π1

Γ, S
π2

∆, S ⊥
cut

Γ,∆

7→J·K

cut

qa1 p. . . an b1 . . . bk

Jπ1K Jπ2K π0

Γ, S [Z/Y]
∀

Γ,∀XS [X/Y]
7→J·K a1 p. . . an

∀

q

s

v1

Jπ0K
vl. . .

π0

Γ, S [S ′/Y]
∃

Γ,∃XS [X/Y]
7→J·K a1 p. . . an

∃

q

s

w1

Jπ0K
wl. . .

λ1

λl

Fig. 17: The desequentialisation process of a proof π from the scheme calculus MLL✠
2
†
, it associates a proof from the sequent

calculus MLL✠
2
†

with a MLL✠
2 net. The only difference with the desequentialisation of sequent calculus lies in the base case,

namely a point ⟨sx ▶∀ t⟩ is added in the base case only when t is the position associated with F(X⃗) and X⃗ contains the

variable X.



C


M

p

p2 an. . .

s∀

p1

s∃

a1

✠ 
C[p1,p2←p]


p an. . .

s∀

a1

✠ 

π[F1←F11MF12]


✠

F11(X⃗11), F12(X⃗12, . . . , Fn(X⃗n))
M

F11(X⃗11)M F12(X⃗12), . . . , Fn(X⃗n)

 π

 ✠
F1(X⃗1), . . . , Fn(X⃗n)



J·K
J·K

P

s

C



✠ ✠

p1a1 . . . an p2 b1 . . . bm

p

⊗

s2
s′2

s1

s′1
∃∃

∀
∀


C[p1,p2←p]



✠

a1 . . . an b1 . . . bmp

s1 s2

∀∀

s′1 s′2

∃
∃



π[F1←F11⊗F12]


✠

F11(X⃗11), Fσ1(X⃗σ1, . . . , Fσk(X⃗σk))
✠

F12(X⃗12), Fτ1(X⃗τ1, . . . , Fτk(X⃗τm))
⊗

F11(X⃗11)M F12(X⃗12), . . . , Fn(X⃗n)

 π

 ✠
F1(X⃗1), . . . , Fn(X⃗n)


J·K J·K

P

s

Fig. 18: Completeness Diagrams (1/3).

C


an. . .a1

✠

p

q

∃ s
s′ s∗ s0

∀

∀

∃

∃


C[p←q]


an. . .a1

✠

q

s′ s∗ s0

∀
∀

∃



π[F1←∃WF11(X⃗11)]


✠

F11(X⃗11), . . . , Fn(X⃗n)
M

∃WF11(X⃗11), . . . , Fn(X⃗n)

 π

 ✠
F1(X⃗1), . . . , Fn(X⃗n)



J·K
J·K

P

s

C


an. . .a1

✠

p

q

∀ s
s′ s∗

∃
∀

∀ ∀
∀


C[p←q]


an. . .a1

✠

q

s′ s∗



π[F1←∀WF11(X⃗11)]


✠

F11(X⃗11,W), . . . , Fn(X⃗n)
M

∀WF11(X⃗11,W), . . . , Fn(X⃗n)

 π

 ✠
F1(X⃗1), . . . , Fn(X⃗n)



J·K
J·K

P

s

Fig. 19: Completeness Diagrams (2/3).



C


an. . .a1

✠

p

s
s′ ∃

∀


C[p←q]


an. . .a1

✠

p

s
s′ ∃
∀



π{F1 ←∃ W}

 ✠
F1(X⃗1, X⃗′1), . . . , Fn(X⃗n)

 π

 ✠
F1(X⃗1), . . . , Fn(X⃗n)


J·K J·K

P

s

Fig. 20: Completeness Diagrams (3/3). The parsing read backwards correspond takes a formula F1 occuring in the daimon

of the proof π as a witness of an existential quantifer, this is managed through a substitution denoted ←∃, furthermore this

steps add some dependencies to F1.

cut

p1 p2

7→

p1 p2

p

q

⊗

∃ s

+
−

Fig. 21: Illustrating the substitution involved in Remark 41

Proof. Consider two links (e1, e2) which are subject to parsing

denote d(e1) (resp. d(e2)) the daimon(s) above the link e1
(resp. e2). Note that d(e1) and d(e2) contains either one

daimon link or two, if d(e1)∩d(e2) = ∅ (meaning the daimons

above the links are distinct) confluence is straightforward:

because the parsing of connectives replaces d(e1) + e1 with

a new daimon link and edits the target of some pointers

(the pointers whose target lies in the outputs of d(e1)) as a

consequence the two rewriting steps affect distinct part of

the net and confluence is guaranteed.

We will therefore always assume that d(e1) ∩ d(e2) is not

empty meaning the two links have at least one daimon link

in common. We then treat the case one after the other (recall

that the position in the sources of e1 and e2 can be target of

∀-ghosts or ∀-pointers and of ∃-ghost, however they cannot

be the target of ∃-pointers);

• If e1 is a parr link the confluence is obtained as in

Figure 22

• If e1 is an exists link the confluence is obtained as in

Figure 23: in particular note that the existential pointer

of the exists link must be a ghost for the rule to be

applicable.

• If e1 is a parr link the confluence is obtained as in

Figure 24

• If e1 is a tensor link while d(e1) , d(e2) (this in particular

that if both e1 and e2 are tensor links they cannot be

placed under the same two daimons) the confluence is

obtained as in Figure 25

• Finally assume that e1 is a tensor link while d(e1) =

d(e2) in that case e2 must also be a tensor, such a case

is called the critical pair, we observe that confluence

does not hold in this case, see Figure 26. However a

net containing a critical pair is not a proof net because

after one reduction of one of the two tensor (say e1)

the parsing reduction will never be able to reduce the

other tensor link (in that case e2) (Figure 26). Since S is

supposed to be a proof net this case never happen.

□

Proposition 61. The pointer rule defines a strongly confluent
rewriting rule.

Proof. This is illustrated in Figure 28 where the two existan-

tial pointers are assumed to be in the same daimon link. □

Proposition 62. Given a net S : S →C
P S 1 and S →ptr S 2

there exists S ′ such that S 1 →ptr S ′ while S 2 →
C
P S ′

Proof. The parsing S →C
P S 1 of the connective link e implies

that the sources of e cannot be the target of an active

existantial link, hence in parrticular it is not the target of the

existantial pointer subject to the rewriting S →ptr S 2 (this

is important to show confluence). The confluence diagrams

are illustrated Figure 27. □

We illustrate the proof of confluence of the parsing reduc-

tion.

2) Existential Precedence and Kingdoms: We provide proofs

of the remaining propositions of subsection VII-A.



✠

a1 an p1 p2

p

M

q1 q2

q

M

✠

a1 an p1 p2

p

M

q

✠

a1 an p q1 q2

q

M

✠

a1 an p q

P P

P P

✠

a1 . . . an p1 p2

p

M

✠

b1 . . . bnq1 q2

q

⊗

✠

a1 . . . an p

✠

b1 . . . bnq1 q2

q

⊗

✠

a1 . . . an p1 p2

p

M

b1 . . . bn

✠

a1 . . . an p b1 . . . bnq

P P

P P

✠

a1 an p1 p2

p

M

q

q0

∃ s

✠

a1 an p

q

q0

∃ s

✠

a1 an p1 p2

p

M

q

✠

a1 an p q

P P

P P

✠

a1 . . . an p1 p2

p

M

q

q0

∀ s

✠

a1 . . . an p

q

q0

∀ s

✠

a1 an p1 p2

p

M

q

✠

a1 an p q

P P

P P

Fig. 22: Confluence cases of the form (M/?)

Lemma 63. Given two nets S −→∗P S ′; Each daimon link r in
S ′ is associated with a sub-proof net P of S .

Proof. We define inductively a sub proof structure P of S
corresponding to r. We consider the reduction sequence from

S to S ′ and its restriction s to the rules applied to elements

of P (links or positions). Forgetting the pointers from ∃ and

∀ links in S outside of P, we have a proof structure P and a

reduction s from P to a daimon. This means that P is correct,

hence a proof net (by completeness). □

Remark 64. Given a net S and a reduction sequence α⃗, let

p = ⟨s ▶∀ t⟩ be some pointer in S , we can defined easily

the pointer p[α⃗] which is a pointer and the reduct of the

pointer p after applying the reduction sequence α⃗ to S . If

p[α⃗] targets a position p then for any sequence α0 that is

a prefix of α the pointer reduct p[α⃗0] targets a position p0
that lies above p. In particular if p is a universal pointer

while p[α⃗] is a universal ghost it must be that the existential

guard e of p has been reduced and that (the existential rule

associated) with e is contained in the proof net associated

with the daimon containing the target of p[α⃗0].

Proposition 46. Given a net S and α⃗ is a reduction sequence
for S to a daimon, then for all ∀ link e in α⃗, the daimon link
produced by α⃗≤e is associated with a proof net containing a

kingdom of the link e.

Proof. After reducing S using the sequence α⃗≤e the rule

for e creates a daimon link associated with a proof net

Pe (Lemma 63). Furthermore, α⃗≤e contains the guards of e
(Proposition 44).

Let p = ⟨s 99K∀ t⟩ be universal ghosts associated with e:

since the rule on e can be applied, p must point at the daimon

right above e, and the original universal pointer p′ in S which

as generated p must have its target above t (Remark 64).

Since p′ has become a ghost p it means that its guard has

been contracted and since p points on the daimon above e it

means that the guard of p′ is contained in Pe the proof-net

associated with the daimon e. By this argument all the guard

of e are contained in the proof-net Pe.

Hence, Pe is a sub-proof net of S containing the guards of

e: Pe therefore contains a kingdom for e. □

Remark 65. Not every weak reduction sequence which satis-

fied the existential precedence rule is a verification sequence,

specifically because some reduction sequence might satisfy

the existential precedence in S . but not apply to S ; for

instance this is the case of the net representing the second

proof at the end of the section I. This is why the kingdom

property was defined.



✠

a1 . . . an p1 p2

p

M

q
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∀ s

✠
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p

M
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✠

a1 . . . an

✠
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q
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p
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∀ s′
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✠
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q
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✠
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p
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∀ s′

✠

a1 . . . an b1 . . . bnqp

P P

P P

✠

a1 . . . an

q
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p
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∃ s′

✠
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∀ s

p

✠
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Fig. 23: Confluence cases of the form (∃/?)

Theorem 47. Given a guarded net S (i.e. all its out of range
universal pointers have a guard) and a full weak reduction
sequence α⃗ for S ; if α⃗ satisfies the kingdom property then α⃗ is
a verification sequence of S (hence S is a proof net).

Proof. Since the weak reduction sequence α⃗ is full for S if

it is a reduction sequence of S then S is a proof net. The

fact that the net is well scoped existentially ensures that the

tensor, par, exists parsing rewriting can always be performed

hence we must simply ensure that the forall rules can always

be performed. Consider any for all link e in S : Indeed

the condition ensure that when reducing α⃗≤e the daimon

produced when reducing e contains one of its kingdom and

thus all its guarding existsential link. This ensure that all the

out of range pointer ⟨s ▶∀ t⟩ have become ghosts ⟨s 99K∀ t⟩
then the fact that the kingdom is located in a single daimon

which lies above e is ensured by the property. Thus the

universal ghosts of the forall link e points in the daimon just

above e as a consequence the parsing rule can be applied. □
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Fig. 24: Confluence cases of the form (∀/?)
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Fig. 25: Confluence cases of the form (⊗/?); the (⊗/⊗) case is not exhaustive and in particular does not illustrate the critical

pair, the remaining (⊗/⊗) is treated in the next figure.
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Fig. 26: Non confluence of the critical pair (⊗/⊗). In both reducts the remaining tensor is cyclic and thus cannot be contracted.

Because we don’t represent the context (other links occuring in the parsed net), the two redexes are isomorphic, however, if

other links are involved the reducts can be distinct nets. The critical pair occurs only in incorrect nets, because (1) the two

distinct reducts cannot contract the remaining tensor links; and (2) the parsing reduction may merge daimons but never

split them thus an (incontractible) cyclic tensor below a daimon link can never become contractible after steps of parsing

reduction.
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Fig. 27: Confluence cases of the form (reroute/?) where the other step is a parsing reduction for a connective; note that in

the exists case the pointer port s and s′ are necessarily distinct because if the exists step can be performed the pointer of

the exists link must be a ghost. Furthermore the position p and q must be distinct because q is the input of a contractible

link, therefore it must be existential free.
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Fig. 28: Confluence cases of the form (reroute/reroute); we illustrate the two cases, when the two existential pointers have

distinct source, and when both existential pointers have the same source.
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