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Abstract

Unity is a powerful and versatile tool for creating real time experiments. It comes with a
homemade c-like language to program GPGPU massively parallel algorithms: Unity’s com-
pute shader language. As Unity has been primarily made for multi-platform games creation,
this language comes with several limitations: for example, it does not support multi-GPU
computation, and it lacks of complete math libraries. To overcome these flaws, the GPU
manufacturers have developed programming models that allow developers to leverage the
power of modern GPUs for general-purpose computing, like CUDA or HIP. Therefore, to
bring these features and flexibility to Unity, this article proposes an open source tool to
perform interoperability between Unity and CUDA.

Keywords: Unity, CUDA, Interoperability, Software Tools, Real-time Systems, Parallel Pro-
gramming, Programming Techniques

1 Introduction
Unity is one of the most widely used game engines in the industry1. As a result of this popularity,
Unity has expanded its usages, offering a tool more suited to cinema, or immersive teaching.
Therefore, Unity offers a wide range of tools, from rendering engine to networking services by
way of virtual reality support. What’s more, one of the keys to Unity’s success is that it has
been designed to support as many operating systems and devices as possible.

As an engine for real time application it provides two high performance tools for parallel
computing: Job system for Burst compiler for multithreading on central processing unit (CPU),
and compute shader for multithreading on the graphics processing unit (GPU)2, which is the
focus of this paper.

A compute shader provides high-speed general purpose computing and takes advantage of
the large numbers of parallel processors on the GPU. Compute shader in Unity closely match
to DirectX 11 technology. Moreover, they have been made to follow the philosophy of Unity,
in a way that any compute shader program should run on a wide variety of devices. Therefore,

1Pérez et al. [15] and an article of Slash Team [18] indicates that it has the largest share of the game engine
market: 38%, just ahead Unreal Engine which has 15%.

2Note that it does not concern computation parts of the rendering pipeline that are covered by more traditional
rendering shaders (vertex shader, fragment shader, etc.).
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Unity’s compute shader is using the lowest common denominator technology, ensuring it runs
smoothly on both the latest GPU and older, less powerful devices.

This leads to some lacks of functionality. More specifically, compute shader are missing:
debugging tools, object-oriented programming (OOP) possibilities, standardized libraries with
implementations of classical parallel algorithms, or ways of doing meta-programming develop-
ment. It is, in fact, complex to carry out large-scale developments with compute shader only.

For these reasons, when developers want to build specific high-performance applications,
they use more dedicated programming language and application programming interfaces (API)
like OpenCL, SYCL, HIP and CUDA.

CUDA is historically the most widely used. Indeed, in addition to a network effect presented
by Cusumano [4], and to being very convenient for the developer, its performance is comparable
to or even better than that of its competitors as demonstrated by Su et al. [17], Fang et al. [8]
and Costanzo et al. [3].

In order to profit of Unity rendering functionality and CUDA polyvalence, the authors of
this article have made a tool to perform interoperability between Unity and CUDA:
InteropUnityCUDA.

It makes possible to edit with CUDA API any previously allocated memory on
GPU from Unity. For example, imagine a texture that is created and rendered
in Unity while in the same time the content of the texture is written by CUDA.
InteropUnityCUDA is completely available on GitHub with a MIT licence, at this address:
https://github.com/davidAlgis/InteropUnityCUDA.

The contributions of this article are as follows:

• A novel methodology for interoperability between game engines and GPU
backends: We present a method for enabling direct interaction between game engine
graphics objects and GPU backends. While demonstrated using Unity and CUDA, this
approach can be generalized to other game engines and GPU APIs, offering a flexible
solution for high-performance computing applications in interactive environments.

• Allowing CUDA plugins cooperating with Unity rendering pipeline:
InteropUnityCUDA’s main purposes is to allow Unity extension by natives plugins that
can read and write Unity’s graphics object through CUDA. These plugins are not
provided by InteropUnityCUDA, which give tools for this interoperability.

• An in-depth analysis of the benefits and limitations of InteropUnityCUDA: We de-
tail how InteropUnityCUDA leverages CUDA’s capabilities, such as multi-GPU support
and advanced memory management, to overcome the constraints of Unity’s compute
shaders. This discussion also highlights potential limitations of the approach, providing
insights for further development and adaptation.

• Comprehensive performance comparisons with Unity’s Compute Shader: We
evaluate the performance of InteropUnityCUDA in multiples experiments, comparing its
performance to Unity’s native compute shaders to illustrate the potential improvements
in computational efficiency.

• Open-source access to InteropUnityCUDA and examples: To support reproducibil-
ity and encourage further research, we provide the tool and accompanying applications
in two GitHub repositories, including usage examples and benchmarks.

The rest of this article is organized as follows: Section 2 positions this paper in the
literature and state of the art. Section 3 focuses on a complete description of the principle
of InteropUnityCUDA and answers the questions of how it works, how to use it, and what
its limitations are. Section 4 compares InteropUnityCUDA and Unity’s compute shaders,
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through four different use cases including CPU to GPU memory copy, vector addition, ar-
ray reduction, and 2D waves simulation. These four examples are publicly accessible on
a GitHub repository BenchmarkCSvsInteropUnityCUDA under a MIT licence, at this ad-
dress: https://github.com/davidAlgis/BenchmarkCSvsInteropUnityCUDA. Finally, Section 5
concludes this paper and outlines some directions for future work.

2 Related Works

2.1 Software extension

Software extensibility enables applications to adapt and expand by incorporating additional
modules or plugins without altering the core system. This modular approach allows developers
to introduce new features or modify existing ones, enhancing flexibility and maintainability.
Hao et al. [10] propose a framework that employs design patterns to support third-party
extensions, enabling seamless integration of new functionalities into existing applications.
Similarly, Kouskouras et al. [11] demonstrate how combining design patterns with aspect-
oriented programming facilitates software extension by promoting modularity and reducing
code tangling. Unity has multiple supports of extensibility, for instance through native plu-
gins written in C, C++, or Objective-C, allowing interaction with the rendering pipeline via
graphics API code as demonstrated in the Github repository NativeRenderingPlugin, available
at this address https://github.com/Unity-Technologies/NativeRenderingPlugin. How-
ever, it lacks direct integration in Unity’s rendering pipeline with CUDA. InteropUnityCUDA
addresses this gap.

Different works propose to extend software using a well known design technique: the
Command pattern. For instance, Damyanov et al. [5] use this pattern in the context of the
web, allowing to encapsulate queries and objects as function parameters. In a different con-
text, Zhao et al. [19] use it in microservice architecture applications, allowing easy extensions
of softwares and introduction of new functionalities. Kröher et al. [12] use the Command
pattern for integrating distributed and central control in self-adaptive system. In this article,
the extension of Unity for Cuda is implemented using a combination of Unity native plugins
and the Command pattern.

2.2 Cross-Platform GPU Abstractions and Wrappers

Several libraries enable cross-platform GPU programming through unified abstractions. Rock-
enbach et al. [16] provide GSParLib, a C++ interface for GPU processing with CUDA and
OpenCL focusing on portability between different GPU platforms. Carter et al. [1] developed
Kokkos to address performance portability across many-core architectures, including both
GPU and multi-core CPU, by unifying data parallelism and memory access patterns in a
scalable C++ API. Ernstsson et al. [7] have made SkePU 2 a tool to enhance the flexibility
of skeleton programming for heterogeneous systems. Each of these frameworks enables stream-
lined high-performance computing but lacks direct integration with game engines like Unity,
which this work specifically addresses. Hence, their purpose is quite different and they deal
with GPU usage in programming. However, they can be used through InteropUnityCUDA.

2.3 Integrating CUDA with Unity

There are few known attempts to use the potential of CUDA in Unity. We can, however,
cite two Github repositories: On the one hand, Unity3D-CUDA illustrates a method for
executing CUDA kernels in Unity by pre-compiling CUDA code into PTX, which can then be
integrated into Unity projects using C# bindings. This repository is accessible at this address
https://github.com/przemyslawzaworski/Unity3D-CUDA. This repository only provides a
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proof of concept of this method, but not a full pipeline allowing large scale production. On the
other hand, in a more roundabout way uNvPipe provides a wrapper for NVIDIA’s NvPipe, a
zero-latency video compression library designed for interactive remoting applications, enabling
GPU-based video encoding directly within Unity. This repository can be accessed at https:
//github.com/hecomi/uNvPipe. Both solutions are valuable but focus on specific and limited
functionalities rather than the full range of CUDA’s capabilities within Unity.

2.4 Other Game Engines

Other game engines offer varying degrees of CUDA integration. Unreal Engine, built in C++,
allows seamless CUDA use, as demonstrated by Kuang et al. [13], enabling direct GPU com-
putation integration without wrappers. Godot Engine, while lacking native CUDA support,
permits custom C++ modules with external library bindings; a demonstration of CUDA us-
age is available at this address https://github.com/davidAlgis/godot_cuda. Unity’s C#
foundation, by contrast, requires additional tools for full CUDA access, a gap that this work
aims to address. Moreover, no demonstrations were found for either engine that apply CUDA
calculation directly to rendering objects.

3 Presentation of the Tool and its Architecture

3.1 Underlying Principle

InteropUnityCUDA allows interoperability between Unity and CUDA, to bypass the flaws of
compute shader and enjoy all the benefits of CUDA. It allows Unity extension by natives
plugins that can interact with Unity’s “graphic object” through CUDA. The principle of
InteropUnityCUDA can be summarized in one sentence: Send and “cast” the pointer of the
memory of Unity “graphic object” to CUDA to modify it directly through CUDA API. It is
important to note that this approach is not specific to Unity; it could be applied to any
game engine that allows C++ interaction and access to native memory pointers of “graphic
objects.”3

More precisely, InteropUnityCUDA works with three types of such Unity’s “graphic ob-
ject”:

• Texture2D4: A 2D texture is commonly used to store image data. It represents a
two-dimensional grid of pixel colors.

• Texture2D Array5: An array of 2D textures with the same width, height, and format,
allowing multiple textures to be stored in a single object and accessed in parallel.

• Compute Buffer6: A buffer designed to be used with compute shaders, enabling the
transfer of structured data between the CPU and GPU.

Unity supports multiple graphics APIs (such as OpenGL, Vulkan, and DirectX11), and
these three Unity types serve as wrappers for the native types of the chosen graphics API.
The process of using InteropUnityCUDA in a Unity project involves the following steps (see
Figure 1):

1. Create one of the above Unity types for rendering in Unity.

2. Retrieve a pointer to the corresponding native type of the graphics API.
3For example, InteropUnityCUDA in Unity uses the method GetNativeTexturePtr to retrieve the memory

pointer of a 2D texture, whereas in Unreal Engine, the equivalent method would be GetReferencedTexture.
4see https://docs.unity3d.com/ScriptReference/Texture2D.html
5see https://docs.unity3d.com/ScriptReference/Texture2DArray.html
6see https://docs.unity3d.com/ScriptReference/ComputeBuffer.html
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3. Send this pointer to InteropUnityCUDA.

4. Use CUDA’s interoperability functions to register the pointer, enabling future access
within CUDA kernels.

5. Read/Write from a CUDA kernel some data to this pointer.

6. When the rendering experience is done, use CUDA’s interoperability functions to un-
register the pointer (undo step 4).

7. Release the graphics object in Unity (undo step 1).

C#
Unity

API C++
InteropUnityCUDA

1

2
graphics
object

3 4

5

6

7

Figure 1: Sequence diagram for the process of using InteropUnityCUDA in a Unity project.
Each number corresponds to the step described in Section 3.1.

These steps represent the main challenge of implementing InteropUnityCUDA, that is: a
way to juggle between graphics object memory in two different environments. As mentioned
before, these steps are not specific to Unity, they could be applied to any game engine. This
principle, allows InteropUnityCUDA to profit from Unity rendering and its easy creation for
graphics memory in addition to CUDA polyvalence and performances for editing this memory.

It should be noted that these operations must be executed from the render thread in Unity,
which can be achieved using the Unity’s GL.IssuePluginEvent method. The documentation
on this method is available at this address https://docs.unity3d.com/ScriptReference/
GL.IssuePluginEvent.html. This Unity method is quite specific, as it sends a user-defined
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command to a native code plugin. The event sent is an integer. As discussed in the next
section, this induces some specific mechanisms to allows using different events.

3.2 Using Action Pattern

While InteropUnityCUDA has been designed to be used intensively, manually calling many
functions via GL.IssuePluginEvent can be tedious when dealing with a wide range of func-
tions. To address this, InteropUnityCUDA is build upon two different mechanism: a dictio-
nary of actions and the action pattern (aka command pattern). Let’s remember that this
pattern is defined as a behavioral design pattern that encapsulates a request as an object,
allowing for parameterization of clients with different requests (for more details about this,
see Figure 2 and the dedicated chapter in the book of Gamma et al. [9]).

Invoker Action Receiver

Execute DoSomething

Figure 2: Sequence diagram for the command pattern.

The command pattern offers two particular advantages. First, it simplifies the pro-
cess of interoperability calls, as the user (from Unity) only needs to create an “Action”
from a tier’s library, to register it to InteropUnityCUDA to simplify its calling through
GL.IssuePluginEvent Unity function, and then to execute it at each rendering frame. Sec-
ond, it allows for a better encapsulation, as a user mostly interacts with InteropUnityCUDA
library only, and not directly with the library that implements the action and performs some
CUDA computing.

An abstract class named Action is proposed in InteropUnityCUDA to build extension
libraries in C++/CUDA. Unlike traditional pattern implementations, which have a single
execution function, this abstract class contains three virtual functions named Start, Update,
and OnDestroy. They correspond to a “minimum” life cycle for game engine logic: Start
performs allocation and prepare the action, Update calls the main computation for each frame
update, and OnDestroy free the allocated memory in Start.

Any concrete class that performs computations should inherit from this abstract class. Its
implementation is then proposed in tier’s CUDA library. A generic wrapper for these Actions
is also proposed for the Unity programmer. Once the user has built such an action, he can
register it in InteropUnityCUDA, and then call its Update method at each rendering frame.
Notice that this call (the same for Start and OnDestroy) is made through InteropUnityCUDA
only, again to simplify the work of game developers in Unity.

3.3 Wrappers for Graphics API

CUDA’s interoperability functions are specific to each graphics API. This introduces certain
limitations as discussed in Section 3.5. Hence, to simplify the development of CUDA based
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plugin and to respect the Unity’s philosophy, three wrappers are proposed in InteropUni-
tyCUDA, one for each of the three kinds of Unity Graphical Object (Texture 2D, Texture 2D
Array, and Compute Buffer). These wrappers enable the object’s data to be used in CUDA
without knowledge of the originating graphics API.

These wrappers are generally set by Actions inside their Start methods and released in
their OnDestroy ones. Thus, they are not exposed to the Unity programmer, but only for the
CUDA library one. In practice, game programmers send a pointer of some Unity wrapper
graphic object to the action constructor, and this pointer is used for later registration inside
the CUDA library that implements the action.

3.4 A Complete Example

To clarify the whole process of Unity and CUDA interoperability, let’s look at an example
where it is assumed that the user want to create an Action that writes in a Unity 2D texture
from CUDA. An implementation of this example can be found in Appendix B. As mention in
Section 1, InteropUnityCUDA’s main purposes is to allow Unity extension by natives plugins
that can read and write Unity’s graphics object through CUDA. These plugins are not
provided by InteropUnityCUDA, which gives tools for this interoperability only. Notice that
such an example of how to implement 2D texture writing via InteropUnityCUDA can be found
in SampleBasic library on GitHub at https://github.com/davidAlgis/InteropUnityCUDA.
Upon the creation of:

• A new library: MyPlugin.

• A class in MyPlugin: MyActionTex++ that inherits from Action. It stores a pointer
to a texture, that is initialized by the constructor that receives the graphical object
from Unity call, using a simple function that is exported by MyPlugin library (this
implements the Factory pattern). In the Start method, it registers the pointer of
texture defined in constructor in its surface object, which is an equivalent of texture for
CUDA API. In OnDestroy method, it does the reverse. Its Update method calls the
CUDA kernel that fills the texture with come calculation.

• A class in Unity: MyActionTex# that inherits from ActionUnity that makes the link
between MyPlugin and MyActionTex++.

When the simulation begins (see Figure 3), the process is initiated by sending the native
pointer of the new Unity texture from MyActionTex# to MyActionTex++ (1). MyActionTex++
then forwards this pointer to InteropUnityCUDA (2), which returns a Texture object initialized
according to the graphics API (3). Following this, MyActionTex++ provides MyActionTex#
with a pointer to the newly created Action (4). MyActionTex# registers this Action with
the InteropUnityCUDA library, assigning it a unique identifier (5), and InteropUnityCUDA
stores the Action in a dictionary indexed by this ID (6). Finally, MyActionTex# calls the
Start method of the Action through InteropUnityCUDA using the unique ID (7), allowing
InteropUnityCUDA to retrieve the corresponding Action from the dictionary (8) and invoke
the Start method of MyActionTex++ (9). At this stage, MyActionTex++ registers the texture
for later CUDA access (10).

During the simulation update phase, MyActionTex# periodically calls the Update method
of the Action via InteropUnityCUDA using the unique ID (11). InteropUnityCUDA retrieves
the relevant Action using the ID from the dictionary (12) and invokes the Update method
of MyActionTex++ (13). In turn, MyActionTex++ executes a CUDA kernel that performs
read/write operations on the texture (14), and Unity updates the rendering using the texture
modified by CUDA (15).

At the conclusion of the simulation, MyActionTex# initiates the cleanup process by call-
ing the OnDestroy method of the Action via InteropUnityCUDA using the unique ID (16).
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C#
Unity

API C++
InteropUnityCUDA

C++
MyPlugin

1

2

3

4

5

dic<Action>

6

7 8

9

15

11 12
13

16

18

Awake

Update

End
17

10

14

19

Figure 3: Sequence diagram representing an example of usage of InteropUnityCUDA with the
command pattern. Each number corresponds to the step described in Section 3.2.

InteropUnityCUDA retrieves the associated Action from the dictionary (17) and invokes the
OnDestroy method of MyActionTex++ (18). Finally, MyActionTex++ unregisters the texture,
clearing it from CUDA usage (19).

Although InteropUnityCUDA introduces additional code complexity (as shown in Ap-
pendix B, it requires an Action in C#, an Action in C++, and dedicated CUDA code in-
stead of a single compute shader with minimal calls) this is offset when managing large-scale
projects with numerous graphic objects. Furthermore, compute shader syntax is generally
more cumbersome than CUDA’s, so the additional setup in InteropUnityCUDA becomes neg-
ligible in comparison to the advantages it offers when tackling large GPU computations.
There are several examples of use of InteropUnityCUDA, directly in project, in the Sample
folder.

3.5 Limitation of InteropUnityCUDA

InteropUnityCUDA comes with a few limitations. First, as it uses CUDA it works on Nvidia
GPU only. These devices represent the vast majority of GPU on the market (see R. Dow [6]).
However, there are some devices on which it doesn’t work, like Macbook Pro, PlayStation 5,
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etc. Additionally, as the interoperability is graphics API dependent, it needs an implemen-
tation for each graphics API and the registration of the graphics object pointer in CUDA
is made with CUDA interoperability functions. That is why the support of graphics API
depends on these functions and their future update by Nvidia. Today, InteropUnityCUDA
supports the two following API:

• OpenGL ES.

• DirectX 11.

4 Comparison InteropUnityCUDA/Compute Shader

4.1 New Available Features with InteropUnityCUDA

InteropUnityCUDA introduces a range of new capabilities for high-performance computing in
Unity by leveraging CUDA features not available in its compute shaders. For instance, it
enables multi-GPU support for distributing computations across multiple GPUs for intensive
tasks, and utilizes CUDA streams to facilitate asynchronous data transfers, reducing latency
and enhancing performance.

Among the new possibilities introduced by InteropUnityCUDA, is the change of language
paradigm. Indeed, compute shader is a C-like language; as for CUDA it works perfectly with
C++ language and benefits of all the advantage of C++, such as OOP or meta-programming
development. Additionally, CUDA gives access to a large panel of debugging tools, like
cuda-gdb, the NSight suite, or the possibility to use printf directly within a kernel. In
terms of memory management, InteropUnityCUDA supports advanced CUDA memory models,
including unified memory, pinned memory, and warp-level primitives, which facilitate efficient
data sharing and synchronization across threads. Additionally, it enables dynamic parallelism,
allowing kernels to launch other kernels, thereby supporting more complex computations
directly on the GPU. Besides, InteropUnityCUDA gives access to a wide range of functions
available in the different CUDA libraries as cuFFT, Thrust, cuBLAS, cuSolve, CUB, and
cuRAND. These libraries are widely used and have been extensively debugged and optimized.
Developers also benefit from access to a massive online repository of CUDA code. These
possibilities can be leveraged to speed up application development and execution in Unity.

Table 1 summarizes a comparison of InteropUnityCUDA features against compute shader
ones. This list is not exhaustive; CUDA is an extensive tool with numerous possibilities that
cannot be fully described here.
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Table 1: Feature comparison between Unity’s compute shaders and InteropUnityCUDA

Feature
Unity’s
Compute
Shader

InteropUnityCUDADescription

Multi-GPU Sup-
port

No Yes Distributes computations across multiple
GPUs, useful for large tasks and high-
performance applications.

CUDA Streams No Yes Enables asynchronous operations to over-
lap data transfer and calculations, reduc-
ing latency and improving performance.

Debugging Tools No Extensive Offers access to advanced CUDA debug-
ging tools like NSight, cuda-gdb, and
printf within kernels.

Dynamic Paral-
lelism

No Yes Supports launching kernels from within
other kernels, allowing more complex,
hierarchical computation structures and
adaptability within GPU programs.

Library Support Basic Math Extensive Supports CUDA libraries providing a wide
range of optimized functions.

C++ Advantages No Yes Offers C++ features like OOP and tem-
plates, enabling more structured and
maintainable code within CUDA.

Unified Memory
Access

No Yes Simplifies memory management by en-
abling both CPU and GPU access to a
shared memory pool, reducing the need for
explicit data transfers.

Advanced Mem-
ory Management

No Yes Provides access to pinned, mapped, and
managed memory, allowing faster and
more efficient data transfer between CPU
and GPU.

Warp-Level Prim-
itives

No Yes Supports warp-level functions like warp-
Shuffle and warpVote, enabling fine-
grained data sharing within thread groups
for efficiency.

Occupancy Con-
trol

No Yes Allows detailed control over GPU resource
allocation (e.g. shared memory and thread
block size) to optimize performance.

Extended Profil-
ing and Monitor-
ing

Limited Extensive Offers deep profiling tools (e.g. Nsight
Systems) to analyze memory patterns,
warp divergence, and cache utilization.

4.2 InteropUnityCUDA/Compute Shader Performance Comparison

Section 4.1 provides a list of functionalities accessible through InteropUnityCUDA library.
The focus now shifts to what is generally the main motivation for high-performance comput-
ing: computational efficiency. To explore this, four tests are proposed that compare different
types of computations on compute shaders, their equivalents using InteropUnityCUDA, and
a baseline CPU implementation to observe the speedup achieved through GPU acceleration.
The complete code and data are available in the github repository BenchmarkCSvsInterop-
UnityCUDA at https://github.com/davidAlgis/BenchmarkCSvsInteropUnityCUDA.
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Firstly, it should be made clear that these tests are not, and cannot be, representative
of all types of computations that can be made on GPU. However, the authors think that
they provide a correct view of the benefits and drawbacks of InteropUnityCUDA. With these
clarifications in mind, let’s take a closer look at the tests. Four tests were conducted:

1. GetData.

2. VectorAdd.

3. Reduce.

4. WavesFDM.

Each of them are discussed in dedicated sections below, but first, some general points
should be highlighted. As mentioned earlier, there is a compute shader code and its equiva-
lent using InteropUnityCUDA. The API for controlling compute shader does not offer timer
functions (like event management in CUDA) or simple synchronization function (like cudaDe-
viceSynchronize) to estimate the execution time of a given compute shader. For this reason,
after each test some data were read on CPU to force the synchronization between GPU and
CPU. This approach allows for the estimation of the execution time of the core computation
in addition to the extra data transfer between GPU and CPU7. The tests include comparisons
with a sequential CPU version, where no data is transferred to the GPU. This CPU version
offers a baseline for understanding the potential speedup of GPU computations. The test
procedures are detailed below.

4.2.1 Get Data

This test evaluates the data transfer performance between the GPU and CPU, which is a
fundamental aspect of GPGPU applications. Efficient data movement is crucial because it
can become a bottleneck in high-performance computing tasks, especially when dealing with
large datasets.

More specifically it measures the time taken to copy a compute buffer of size N from the
GPU memory to the CPU memory. For the Unity’s compute shader, it uses the
built-in GetData method. Some details about this method can be seen at this link
https://docs.unity3d.com/ScriptReference/ComputeBuffer.GetData.html. In contrast,
InteropUnityCUDA utilizes the cudaMemcpy function provided by CUDA for data
transfer. The CUDA documentation about this method is available with this link
https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/html/
group__CUDART__MEMORY_g48efa06b81cc031b2aa6fdc2e9930741.html.

In this test, the CPU version was not evaluated, as it would not make sense to measure
GPU-to-CPU data transfer performance on the CPU alone.

4.2.2 VectorAdd

This test evaluates the performance of a simple but fundamental parallel calculation: the
addition of two vectors. It is an example of a more general design pattern in parallel
programming: the binary map or transform, which involves applying a binary operator or
function to a couple of inputs (see McCool et al. [14]). It sums two vectors of N floats and
stores the result in a third vector, then copies the first float of the resulting vector back to the
CPU. Vector addition, while simple, is often part of more complex computations, making it a

7An alternative is to use the homemade package Compute Shader Performance Estimation available at this
address https://github.com/davidAlgis/com.studio-nyx.compute-shader-performance-estimation, which
utilizes functions to retrieve the execution time as measured by Unity, written in the Unity profiler. However,
since the focus is on comparing InteropUnityCUDA and compute shaders, a more flexible solution was chosen.
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useful baseline for comparing performance between Unity’s compute shader and InteropUni-
tyCUDA. This test allows us to examine both compute and memory access efficiency, providing
insights into how well each platform handles basic arithmetic operations on the GPU.

4.2.3 Reduce

This test applies a parallel reduction on an array of size N and copies the result from
the GPU to the CPU. For this test, the CUB library is utilized to perform the reduc-
tion using its DeviceReduce function. More details about this function is available in
CUB documentation at this address https://nvidia.github.io/cccl/cub/api/structcub_
1_1DeviceReduce.html#_CPPv4N3cub12DeviceReduceE. The results demonstrate impressive
performance; however, an equivalent implementation using compute shaders cannot be di-
rectly applied, as no similar library exists. Additionally, no open implementation of parallel
reduction for Unity’s compute shaders was found, so a custom implementation was developed.
This consists of doing a partial reduction into each block of threads of the compute shader,
and then to add their results to a global variable. To protect the access of this variable, a
spinlock is made thanks to some atomic functions.

Before resorting to the spinlock to sum the results of each block, we initially attempted
a more conventional approach: recursively calling the kernel to accumulate the sums. How-
ever, we were unable to achieve this due to the compute shaders inherent limitations. The
implementation of the spinlock itself proved challenging, notably because of an opaque doc-
umentation, requiring multiple attempts to get it working correctly. This implementation is
available in Appendix A.

It could be argued that this custom implementation is not directly comparable to CUB’s,
yet the comparison of their performance remains informative and highlights that the In-
teropUnityCUDA implementation requires significantly less effort for a far better result in
terms of computation times.

4.2.4 WavesFDM

This test solves the 2D waves equation d times using the finite difference method. Following
the work of Cords and Staadt [2], it calculates the evolution of the height of a 2D domain
from an initial filled circle wave at the center of the domain. The aim is to compute the
height of a 2D domain at time t+∆t based on the heights at times t and t−∆t. The domain
is discretized using uniform grids for times t + ∆t, t, and t − ∆t. A 2D texture array with
a resolution of N × N and size d is used to encode these grids. Denoting the height of the
domain at pixel coordinate (i, j) and at time n × ∆t by hn

i,j , the following explicit scheme is
applied for each frame and each pixel of the texture:

hn+1
i,j = a

(
hn

i+1,j + hn
i−1,j + hn

i,j+1 + hn
i,j−1

)
+ bhn

i,j − hn−1
i,j (1)

where a and b are constants defined by the problem properties. Finally, after having deter-
mined the new heights, a second kernel is invoked to swap the different height as follows:
hn−1

i,j = hn
i,j and hn

i,j = hn+1
i,j , then to store in a buffer the value of hn+1

0,0 , and finally to copy
this buffer from GPU to CPU for synchronization. The parameter d is defined to artificially
increase the computational load. In such a context, d = 10 is used.

4.2.5 Results and Discussion

These tests were run on a Nvidia GeForce RTX 2070 Super with an Intel Core i7-10700.
Moreover, in order to get a legitimate view of the performances of each test, they are executed
msample = 10000 times across different problem sizes N . Figure 4 shows the execution times
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for the CPU, InteropUnityCUDA (and so CUDA platform) and Unity’s compute shaders using
both OpenGL and DirectX 118.

Results on CPU show that for lighter workloads, such as in the VectorAdd and Reduce
tests, the sequential CPU approach is faster than the GPU for smaller values of N (no later
than 105) due to lower overhead. However, when the workload is more intensive, as in the
WavesFDM test, the GPU already overtakes the CPU even at low N . Globally, for large N
and whether using CUDA or compute shaders, the GPU versions consistently outperform the
CPU in all tests.

In the GetData test (see Figure 4a), measuring the time to copy a compute buffer from
GPU to CPU, OpenGL and CUDA perform roughly equivalently well and they both outper-
form DirectX 11 for N > 106, indicating a more efficient data transfer handling.

For the VectorAdd test (see Figure 4b), where two vectors are summed, apart from
DirectX 11 which has a reasonable variance, CUDA and OpenGL have a huge variance. The
result is a wide oscillation in performance measurement. These results are likely attributable

8These are the only two graphics APIs supported by InteropUnityCUDA, making them the only ones suitable
for comparison.

(a) (b)

(c) (d)

Figure 4: Performance comparison of the four tests using InteropUnityCUDA (and so CUDA
platform), Unity’s compute shaders (with 2 graphics API: DirectX 11 and OpenGL) and CPU
with 10000 samples. For Figure 4b the graph has been cropped on the time axis, to provide
a better view of DirectX 11 and CUDA performances. Indeed, for N ∈ [2 × 106, 5 × 106], the
execution time for OpenGL rises above 3 ms to reach 26.49 ms.
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to the fact that vector addition is a too small operation for the GPU to handle efficiently
when N < 5 × 105. CUDA gives slightly better results than DirectX 11. What’s more, they
both perform much better than OpenGL, which for N > 106 has a duration that increases
linearly to 26.49 ms for N = 5 × 107.

The Reduce test (see Figure 4c), involving parallel reduction on an array, highlights equiv-
alent performances between CUDA, DirectX 11 and OpenGL for small array. For N > 105

it highlights CUDA’s substantial performance advantage over DirectX 11 and OpenGL. It is
observed that the performance of CUDA improves as the array size increases, resulting in
execution times that are 20 to 30 times faster than those of the compute shader implemen-
tation. This is due to the optimized CUB library in CUDA, which lacks a direct compute
shader equivalent.

In the WavesFDM test (see Figure 4d) that solves the 2D wave equation using a finite
difference method, CUDA performs marginally better than both graphics API for every N ,
but the differences are not significant. It can be assumed that this comes from the efficient
texture reading in compute shader, and because this problem is memory bound (meaning
that there is not enough calculations to see any improvement).

Overall, the results indicate that while OpenGL and DirectX 11 can handle certain levels
of computational tasks efficiently, CUDA generally provides equivalent or superior perfor-
mance, especially for large data sets (N > 105 seems a correct threshold for these tests and
with the used device) and more complex operations. The significant performance benefits of
CUDA can be seen in all tests, making it a better choice even on a pure performance crite-
ria. The results underscore the benefits of using InteropUnityCUDA for leveraging CUDA’s
capabilities within Unity for performance-critical applications. Additionally, InteropUnity-
CUDA streamlines development by allowing user to utilize CUDA library functions, such as
the reduce in test above, which significantly accelerates the implementation process.

5 Conclusion and Future Works
For future works, adding support for more modern graphics APIs like Vulkan and DirectX 12
would enhance the versatility of InteropUnityCUDA. The interoperability between these APIs
and CUDA seems based on different techniques9 that the one used for the two supported
graphics API. In consequence, it will lead to completely different implementation. Further-
more, to increase the range of compatible devices, a support to HIP and SYCL could be
added, which would further expand device compatibility and ensure broader accessibility and
functionality for various user needs, but also imply to rename the plugin.

To conclude, in this paper, InteropUnityCUDA addresses several key limitations of Unity’s
compute shaders, including the lack of debugging tools, limited object-oriented support, ab-
sence of parallel libraries, and restricted meta-programming options. Moreover, Section 4
shows that even for basics tasks, when the size of the problem is large, InteropUnityCUDA
overtakes the Unity alternatives. It also opens up Unity’s existing GPGPU computing ca-
pabilities. Hence, the authors can only strongly advise you using our tool for addressing
complex problems or handling large-scale computations.
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A Compute Shader Code for Parallel Reduction

1 # pragma kernel Reduce
2

3 # define THREADS_PER_GROUP 1024
4

5 StructuredBuffer <float > arrayToSum ;
6 globallycoherent RWStructuredBuffer <float > resultReduce ;
7

8 RWStructuredBuffer <int > spinlock ;
9

10 int sizeArrayToSum ;
11 groupshared float partialSums [ THREADS_PER_GROUP ];
12

13 [ numthreads ( THREADS_PER_GROUP ,1 ,1)]
14 void Reduce (uint tid : SV_GroupIndex , uint3 groupIdx : SV_GroupID )
15 {
16 const uint i = groupIdx .x * THREADS_PER_GROUP + tid;
17 if (i < sizeArrayToSum )
18 partialSums [tid] = arrayToSum [i];
19 else
20 partialSums [tid] = 0;
21

22 GroupMemoryBarrierWithGroupSync ();
23

24 for (uint s = THREADS_PER_GROUP / 2; s > 0; s >>= 1)
25 {
26 if (tid < s)
27 partialSums [tid] += partialSums [tid + s];
28

29 GroupMemoryBarrierWithGroupSync ();
30 }
31

32 if (tid == 0)
33 {
34 int old = 1;
35 [ allow_uav_condition ]
36 while (old != 0)
37 InterlockedCompareExchange ( spinlock [0], 0, 1, old);
38

39 resultReduce [0] += partialSums [0];
40 InterlockedExchange ( spinlock [0], 0, old);
41 }
42 }

Listing 1: Compute shader code used for reduce in Section 4.

B A Full Example of Custom Action Creation
This example implements a custom and simple Action to use InteropUnityCUDA. This action
retrieves a texture, created from Unity; then this action writes into this texture through a
CUDA kernel. The steps are as follows:

1. Create a new library, named for instance ActionLib11.

2. Include PluginInteropUnityCuda to ActionLib.

3. A file my_action.h with a class MyAction should be created by deriving from Action
in PluginInteropUnityCuda. This class contains a constructor and the three methods

11All names used in the remainder of this section are examples for pedagogical purposes only.
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that should be overridden. In addition, an external method to create this action from
Unity is provided.

1 // my_action .h
2 # include " action .h"
3 # include " cuda_include .h"
4 # include " sample_kernels .cuh"
5 # include " texture .h"
6 # include " unityPlugin .h"
7

8 class MyAction : public Action
9 {

10 public :
11 // Initialization of MyAction with required parameters
12 MyAction (void * textureUnityPtr , int width , int height ) : Action ()
13 {
14 // Create a Texture object that can be registered / mapped to CUDA
15 _texture = CreateTextureInterop ( textureUnityPtr , width , height , 1);
16 }
17

18 int Start () override
19 {
20 _texture -> registerTextureInCUDA ();
21 _texture -> mapTextureToSurfaceObject ();
22 return 0;
23 }
24

25 int Update () override
26 {
27 // Example : kernel invocation from a sample project
28 kernelCallerWriteTexture (_texture -> getDimGrid (),
29 _texture -> getDimBlock (),
30 _texture -> getSurfaceObject (), GetTimeInterop ()

,
31 _texture -> getWidth (), _texture -> getHeight ());
32 return 0;
33 }
34

35 int OnDestroy () override
36 {
37 _texture -> unmapTextureToSurfaceObject ();
38 _texture -> unregisterTextureInCUDA ();
39 return 0;
40 }
41

42 private :
43 // Class attributes used in MyAction
44 Texture * _texture ;
45 };
46

47 extern "C"
48 {
49

50 UNITY_INTERFACE_EXPORT MyAction * UNITY_INTERFACE_API
51 createMyAction (void * textureUnityPtr , int resolutionTexture )
52 {
53 return (new MyAction ( textureUnityPtr , resolutionTexture ));
54 }
55 }

Listing 2: Implementation of my_action.h
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To integrate the custom action into Unity and register it with PluginInteropUnityCUDA,
the following steps should be completed:

1. A first C# class MyActionUnity should be implemented by deriving from ActionUnity
in ActionUnity.cs. This class serves as an intermediary, holding the necessary infor-
mation for the native code implementation (e.g. MyAction).

2. The function defined in step 4 createMyAction should be imported.

3. The member _actionPtr must be assigned the return value of the imported function
(e.g., a pointer to MyAction).

1 // MyActionUnity .cs
2 using System ;
3 using System . Runtime . InteropServices ;
4 using UnityEngine ;
5

6 public class MyActionUnity : ActionUnity
7 {
8 // Define the name of the native library
9 const string _myDllName = " ActionLib ";

10

11 [ DllImport ( _myDllName )]
12 private static extern IntPtr createMyAction ( IntPtr texturePtr , int width ,

int height );
13

14

15 // Constructor to initialize MyActionUnity
16 public ActionUnitySampleTexture ( Texture texture ) : base ()
17 {
18 _actionPtr = createMyAction ( texture . GetNativeTexturePtr (), texture .

width , texture . height );
19 }
20 }

Listing 3: Implementation of MyActionUnity.cs

4. A second C# class MyInteropHandler should be created by deriving from Intero-
pHandler in InteropHandler.cs. This class is responsible for creating the action
MyActionUnity and invoking the corresponding functions of PluginInteropUnityCUDA
to manage it.

5. The method InitializeActions() must be overridden to initialize the actions in Plug-
inInteropUnityCUDA. The action should be constructed, registered using the Register-
ActionUnity function, and started by invoking the CallActionStart method. Analo-
gously, the methods CallUpdateActions and CallOnDestroy should call the associated
function for MyAction.

6. The event function of InteropUnityCUDA (InitializeInteropHandler, UpdateIntero-
pHandler and OnDestroyInteropHandler) should be called manually. This let more
controls for user on InteropUnityCUDA event calls.

1 // MyInteropHandler .cs
2 using System . Runtime . InteropServices ;
3 using UnityEngine ;
4

5 class MyInteropHandler : InteropHandler
6 {
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7

8 // the id which will be use in registration of my action
9 private const string _MyActionName = " myAction ";

10 // contains the texture we want to read/write through CUDA
11 Texture2D _texture ;
12

13

14 public void Start ()
15 {
16 _texture = new Texture2D (1024 , 1024 , TextureFormat .RGBAFloat , false ,

true);
17 _texture .Apply ();
18

19 InitializeInteropHandler ();
20 }
21

22 public void Update ()
23 {
24 UpdateInteropHandler ();
25 }
26

27 public void OnDestroy ()
28 {
29 OnDestroyInteropHandler ();
30 }
31

32 protected override void InitializeActions ()
33 {
34 base. InitializeActions ();
35 // Construct an action using the specified parameters
36 MyAction myAction = new MyAction ( _texture );
37 // Register the action in PluginInteropUnityCUDA
38 RegisterActionUnity (myAction , MyActionName );
39 // Start the registered action
40 CallActionStart ( MyActionName );
41 }
42

43 protected override void CallUpdateActions ()
44 {
45 // Invoke the overridden Update method
46 CallActionUpdate ( MyActionName );
47 }
48

49 protected override void CallOnDestroy ()
50 {
51 // Invoke the overridden OnDestroy method
52 CallActionOnDestroy ( MyActionName );
53 }
54 }

Listing 4: Implementation of MyInteropHandler.cs
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