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A B S T R A C T

A better understanding of the ice-ocean couplings is required to better characterise the hydrosphere of the
icy moons. Using global numerical simulations in spherical geometry, we have investigated here the interplay
between rotating convection and a melting boundary. To do so, we have implemented and validated a phase
field formulation in the open-source code MagIC. We have conducted a parameter study varying the influence
of rotation, the vigour of the convective forcing and the melting temperature. We have evidenced different
regimes akin to those already found in previous monophasic models in which the mean axisymmetric ice crust
transits from pole-ward thinning to equator-ward thinning with the increase of the rotational constraint on
the flow. The derivation of a perturbative model of heat conduction in the ice layer enabled us to relate those
mean topographic changes to the underlying latitudinal heat flux variations at the top of the ocean. The phase
change has also been found to yield the formation of sizeable non-axisymmetric topography at the solid–liquid
interface with a typical size close to that of the convective columns. We have shown that the typical evolution
timescale of the interface increases linearly with the crest-to-trough amplitude and quadratically with the mean
melt radius. In the case of the largest topographic changes, the convective flows become quasi locked in the
topography due to the constructive coupling between convection and ice melting. The tentative extrapolation
to the planetary regimes yields (102 − 103) meters for the amplitude of non-axisymmetric topography at the
base of the ice layer of Enceladus and (103 − 104) meters for Titan.
1. Introduction

The presence of liquid water oceans has been evidenced on at
least four icy satellites of our solar system: Europa, Ganymede, Titan
and Enceladus (e.g. Soderlund et al., 2020). The determination of the
structural properties of their hydrosphere is one of the main objective
of the ongoing ESA’s JUICE and NASA’s Europa Clipper missions (Van
Hoolst et al., 2024; Roberts et al., 2023). In this context, it is necessary
to better understand the dynamics of the subsurface oceans and their
interplay with their overlying ice shelves. Oceans of the icy moons are
subjected to buoyancy forcing of thermal and solutal origins as well as
mechanical forcing such as libration or tides (Soderlund et al., 2023).
The aim of this study is to focus on thermally-driven flows and their
interaction with the overlying ice crust.

Using global numerical simulations, previous parameter studies
have delineated several dynamical physical regimes of rotating con-
vection in spherical geometry (Gastine et al., 2016; Long et al., 2020).
The relative influence of rotation is usually categorised in terms of
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E-mail address: gastine@ipgp.fr (T. Gastine).

boundary regimes defined as combinations of the dimensionless gov-
erning parameters relevant to the fluid problem, namely the Ekman
number 𝐸, the Rayleigh number 𝑅𝑎 and the Prandtl number 𝑃 𝑟 (to
be defined below). In the rapidly-rotating regime, the convective flow
is governed by a quasi-geostrophic balance which imposes a strong
alignment of the convective flows with the rotation axis. Multiple
alternating zonal jets can form (Ashkenazy and Tziperman, 2021; Bire
et al., 2022), reaching a typical width close to the so-called Rhines
scale (Rhines, 1975; Cabanes et al., 2024). On the other hand, when
the rotational constraint drops, the flow becomes three-dimensional
and the mean zonal flows occupies a decreasing fraction of the kinetic
energy content (Gastine et al., 2013; Yadav et al., 2016).

In addition to these zonal flow changes, the heat flux pattern also
evolves with the rotational constraint (Gastine and Aurnou, 2023): heat
flux at the outer boundary of the ocean may either peak near the equa-
tor (the so-called ‘‘equatorial cooling’’ regime) or close to the poles (the
‘‘polar cooling’’ regime) (Soderlund, 2019; Amit et al., 2020). The exact
parameter combination of 𝑅𝑎, 𝐸 and 𝑃 𝑟 which governs the transition
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Icarus 429 (2025) 116441 
between these two regimes is still a matter of debates and depends on
the nature of the mechanical boundary condition (Kvorka and Čadek,
2022), the radius ratio of the subsurface ocean (Bire et al., 2022) and
he coupling with the mean zonal flows (Gastine and Aurnou, 2023).

Using stress-free boundary conditions, Kvorka and Čadek (2022) report
a transition between equatorial and polar cooling when 𝑅𝑎 𝐸12∕7𝑃 𝑟−1 ≈
1, while Hartmann et al. (2024) rather favour 𝑅𝑎 𝐸3∕2 ∼ 1 when rigid
boundaries are employed (see also Bire et al., 2022). Although the
uncertainties remain sizeable, current estimates of the dimensionless
numbers of the sub-glacial oceans of the icy moons would most likely
lace them in a weakly-rotating convection regime rather prone to
olar cooling (Soderlund, 2019; Lemasquerier et al., 2023b).

In the case of a conducting ice layer, an increase of the heat
flux at the solid–liquid interface goes along with a thinning of the
overlying ice, such that the ice shell thickness is expected to be anti-
correlated with the heat flux pattern atop the ocean (Kvorka et al.,
2018; Kihoulou et al., 2023). This hypothesis prompts several au-
hors to interpret observations such as the chaos terrain in Europa’s
quatorial regions (Soderlund et al., 2014), the polar depressions on

Titan (Kvorka et al., 2018) or the poleward thinning of the ice crust on
nceladus (Čadek et al., 2019) in terms of the relative changes of the

underlying convective heat flux (see also Kvorka and Čadek, 2024).
Recent large eddy simulations which account for the local changes

f the melting temperature along the solid–liquid interface however
hallenged this interpretation (Ashkenazy and Tziperman, 2021; Kang

et al., 2022). Because of the melting point dependence on pressure (e.g.
Labrosse et al., 2018), the 20 km ice thickness variation between the
South pole and the equator of Enceladus (Hemingway and Mittal, 2019)

ould approximately yield a 0.2 K latitudinal difference at the base of
he ice crust (Lawrence et al., 2024). This thermal gradient could drive
arge-scale baroclinic flows and hamper the convective transport in the

polar regions (Kang, 2023), hence questioning the relation between
the heating pattern and the ice geometry. Using 2-D Cartesian models
in which the oceanic flows are driven by the latitudinal variations of
the melting temperature at the solid–liquid interface, Kang and Jansen
(2022) suggest that the heat transport is more efficient on larger icy
moons because of their higher gravity. Corresponding equilibrated ice
shells are then expected to become flatter for increasing body sizes.
Variations in salinity due to melting or freezing of water (Ashkenazy
nd Tziperman, 2021; Wong et al., 2022) or heat flux heterogeneities

at the ocean’s base or at the moon’s surface (Terra-Nova et al., 2023;
Lemasquerier et al., 2023b) are additional physical ingredients likely
to modify the interplay between oceanic flows and the overlying ice
layer. These competing interpretations also stem from the challenge to
raw reliable scaling laws able to bridge the gap between the control
arameters accessible to current numerical models and the relevant
lanetary regime (Jansen et al., 2023; Cabanes et al., 2024).

In current numerical simulations dedicated to the influence of ice
thickness variations on the oceanic flows, the ice crust is however
assumed to be static (e.g. Kang et al., 2022; Kang, 2023). This prohibits
the dynamical generation of topographic features associated with the
turbulent flows. The purpose of the present study is precisely to focus
on the interplay between rotating convection in spherical geometry and
generation of topography by melting or freezing of the overlying ice
crust. To do so, we consider a phase field formulation which allows to
model a two-phase fluid problem on a single fixed-grid domain (e.g.
Beckermann et al., 1999). This type of approach is a smoothed approx-
mation of the phase change which greatly simplifies the numerical
mplementation and has been shown to converge towards the exact

moving-boundary formulation (e.g. Hester et al., 2020). Among many
examples, let us cite the successful application of this method to the
study of Rayleigh–Bénard convection (RBC) with a melting boundary
in Cartesian geometry (Favier et al., 2019; Yang et al., 2023c), the
generation of topography in a turbulent shear flow (Couston, 2021;
Perissutti et al., 2024), the formation of pinnacles or scallops in melting
ice (Weady et al., 2022), or the influence of the aspect ratio of an
2 
iceberg on its melting (Hester et al., 2021a). All of these examples
showed complex dynamical interactions between the convective flow
attern and the morphology of the phase change interface which can
nly be captured with an explicit treatment of its dynamics. To date,

there is a scarce number of studies dedicated to rotating convection
with a dynamical phase change boundary. Using numerical simulations
in Cartesian geometry, Ravichandran and Wettlaufer (2021) examine
the melting of a solid layer above a convecting liquid domain rotating
bout its vertical axis. They report on quasi-steady states in which the
onvective columns are locked in the topographic troughs and crests of

the solid–liquid interface.
To our best knowledge, our present study is the first one to consider

 phase field formulation applied to convection in a global spherical
geometry. We would like to stress that this work should be regarded as
a first incremental step in the process of improving our understanding
of the dynamical interplay between oceanic flows and the overlying ice
ayers. As such, several effects relevant to the sub-glacial oceans of the
cy moons, such as salinity, creep of ice or the pressure dependence of

melting temperature, have been ignored in the present study.
The paper is organised as follows. The physical model including the

hase field formulation and its numerical implementation and valida-
tion is discussed in Section 2. Results of the numerical simulations are
described in Section 3, where we have split the analysis in terms of a
mean-field approach, discussing first the axisymmetric topography and
then the non-axisymmetric roughness. Tentative geophysical estimates
are discussed in Section 4 before concluding in Section 5.

2. Model and methods

2.1. A phase field model

We consider a spherical shell gap of inner radius 𝑟𝑖 and outer radius
𝑜 with 𝑑 = 𝑟𝑜 − 𝑟𝑖 and 𝜂 = 𝑟𝑖∕𝑟𝑜 which rotates with a constant

rotation rate 𝛺 about the 𝑧-axis. Convection is enforced by maintaining
 fixed temperature contrast 𝛥𝑇 between both boundaries. We explore
he uneven generation of topography associated with the freezing
nd melting which occurs at the fluid–solid interface for a melting
emperature comprised between the imposed temperatures at the top
nd bottom boundaries. The solid phase is motionless and located in
he outer part of the spherical volume. In the following, we consider
 dimensionless formulation of the Navier–Stokes equations under the
oussinesq approximation with a constant kinematic viscosity 𝜈 and
hermal diffusivity 𝜅. We employ the viscous diffusion time 𝑑2∕𝜈 as
he reference time scale and the imposed temperature contrast 𝛥𝑇
s the temperature scale. To model the phase changes, we adopt the

phase field formulation by Beckermann et al. (1999) combined with
 volume-penalisation technique (Angot et al., 1999; Hester et al.,

2021b). Practically, this method involves the time integration of a
continuous scalar quantity 𝜙 which continuously varies from 0 in the
liquid phase to 1 in the solid phase. A small dimensionless parameter
𝜖 = 𝜆∕𝑑, usually termed the Cahn number, then defines the ratio
between the microscopic thickness of the transition between the two
phases 𝜆 and the macroscopic domain size which is here the shell gap 𝑑.
Phase field methods represent a smoothed formulation of phase changes
which are easier to implement numerically, especially when using
pseudo-spectral methods, and converge to the exact moving boundary
formulation in the limit of vanishing 𝜖 (e.g. Caginalp, 1986). Using
the model recently derived by Hester et al. (2020), and used in many
subsequent studies (e.g. Weady et al., 2022; Yang et al., 2023c), the
overning equations for the velocity field 𝒖, the temperature 𝑇 and the
hase field 𝜙 then read

𝛁 ⋅ 𝒖 = 0, (1)

𝜕𝒖 + 𝒖 ⋅ 𝛁𝒖 + 2 𝒆𝑧 × 𝒖 = −𝛁𝑝 + 𝑅𝑎𝑔𝒆𝑟 + 𝛁𝟐𝒖 − 1 𝜙𝒖 , (2)

𝜕 𝑡 𝐸 𝑃 𝑟 𝜏𝑝𝜖2
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𝜕 𝑇
𝜕 𝑡 + 𝒖 ⋅ 𝛁𝑇 = 1

𝑃 𝑟∇
2𝑇 + 𝑆 𝑡 𝜕 𝜙

𝜕 𝑡 , (3)

5
6
𝑆 𝑡𝑃 𝑟 𝜕 𝜙

𝜕 𝑡 = 𝑎∇2𝜙 − 1
𝜖2

𝜙(1 − 𝜙)
[

𝑎(1 − 2𝜙) + 𝑇 − 𝑇
]

. (4)

In the above expressions 𝒆𝑟 and 𝒆𝑧 denote the unit vectors in the
adial and axial directions while 𝑔 = 𝑟∕𝑟𝑜 is the dimensionless gravity
rofile. 𝑇 is the dimensionless melting temperature, with 0 < 𝑇 <

1 delimiting the regimes for which both liquid and solid phases are
present within the spherical shell. In the limit of vanishing phase-
change interface 𝜖, Eq. (4) effectively imposes the so-called Stefan
onditions (Huppert, 1990; Worster, 2000), which relate the interface

velocity to the heat flux differences at the solid–liquid interface and
ensure that the phase change interface is isothermal according to
𝒏 ⋅

[

𝛁𝑇 (𝑆) − 𝛁𝑇 (𝐿)] = 𝑆 𝑡𝑃 𝑟 𝒗 ⋅ 𝒏, (5)

𝑇 = 𝑇, (6)

where 𝒏 is the unit vector normal to the interface, 𝒗 is the interface
velocity and the superscripts (𝑆) and (𝐿) respectively correspond to
he solid and liquid phases. Within the phase field formulation, the

interface is implicitly defined by the isosurface 𝜙 = 1∕2.
For simplicity, our model assumes that thermal diffusivity and

ensity are the same in both phases and we neglect any compositional
ffects (such as the dependence of the melting temperature on salinity
or example). Density could increase by about 20% in Ganymede’s
ydrosphere, most of the contrast being accommodated in the fluid
hase with values ranging from 950 kg/m3 in the ice crust to about
200 kg/m3 at the ocean’s base (e.g. Journaux et al., 2020, their

Table 2). Bearing in mind the possible unknowns in the transport
properties in the interiors of the icy moons, thermal diffusivity of ice
is expected to be larger than the one of liquid water by about a factor
 − 10 covering the range 𝜅 ∼ 10−7 − 10−6 m2/s (e.g. Abramson et al.,

2001; Vance et al., 2018). Additionally, the melting temperature does
ot depend on pressure, an effect that is potentially important for many

deep fluid systems from sub-glacial lakes on Earth (e.g. Couston, 2021)
o oceans in icy satellites (e.g. Labrosse et al., 2018; Kang, 2023). While

such thermobaric and salinity effects can be incorporated in our ap-
roach (see Hester et al., 2020; Yang et al., 2023b, for recent examples
nvolving salinity), we choose to ignore them in this preliminary study
nd defer the question of their contributions to future studies.

The set of Eqs. (1)–(4) is governed by four physical dimensionless
numbers: the Ekman number 𝐸, the Rayleigh number 𝑅𝑎, the Prandtl
number 𝑃 𝑟 and the Stefan number 𝑆 𝑡 expressed by

𝐸 = 𝜈
𝛺 𝑑2 , 𝑃 𝑟 = 𝜈

𝜅
, 𝑅𝑎 =

𝛼 𝑔𝑜𝛥𝑇 𝑑3
𝜈 𝜅 , 𝑆 𝑡 = 

𝑐𝑝𝛥𝑇
. (7)

In the above expressions, 𝑔𝑜 denotes the gravity at the outer bound-
ary, 𝑐𝑝 corresponds to the heat capacity, 𝛼 to the thermal expansion
coefficient and  to the latent heat per unit mass associated with the
solid–liquid transition.

The phase field formulation and the penalty method involve sev-
eral additional dimensionless parameters compared to more classical

onophasic models. The phase-change interface thickness controlled
y the Cahn number 𝜖 is chosen to be smaller than the thickness
f the Ekman boundary layers, which is the smallest relevant phys-
cal scale close to the phase change interface in our problem. This
hoice, while very constraining numerically, was motivated by sys-
ematic convergence tests carried out by gradually reducing 𝜖. While
arger values of the interface thickness might be relevant for modelling
ushy layers (Le Bars and Worster, 2006), we nevertheless opt for

this conservative approach in order to ensure a meaningful comparison
with monophasic simulations. In addition, our model also involves
two other dimensionless quantities: a volume-penalisation parameter
𝜏𝑝 and a parameter related to the phase field model, 𝑎 = 𝛾∕𝜆𝛥𝑇 ,
where 𝛾 expresses the curvature dependence of the melting temper-

Beckermann et al., 1999). This
ature expressed in units of 𝐾 𝑚 (see

3 
curvature effect is however very small in practice and only relevant
when considering dendritic growth or other microscopic phenomena.
To satisfy the standard isothermal Stefan condition (6), 𝛾 must remain
as small as possible, which is the case provided that the dimensionless
arameter 𝑎 remains of order one while 𝜖 ≪ 1 (Hester et al., 2020). In

practice, following Couston (2021) and Yang et al. (2023c), we adopt
= 1 for all the simulations considered in this study. Concerning the

penalisation term −𝜙𝒖∕(𝜏𝑝𝜖2) in Eq. (2), its role is to exponentially
attenuate the velocity inside the solid phase, effectively treating it as a
orous medium using a Darcy–Brinkman model (Le Bars and Worster,

2006). Although an optimal value for the parameter 𝜏𝑝 can be derived
in simple configurations (Hester et al., 2021a), we follow a different
approach in our setup which involves rotation and buoyancy force. The
alue of 𝜏𝑝 is practically adjusted for each simulation to ensure that the
inetic energy density of the solid phase remains smaller than that of

the fluid phase by a factor of at least 10−4.
Considering a simplified model without rotation and buoyancy,

Hester et al. (2020) report on the second-order convergence of the
phase-field equation (4) with respect to the interface thickness 𝜖 to-
wards the actual Stefan problem (5)–(6). In Appendix B, we examine
the convergence properties of the phase field formulation by defining
a weakly-supercritical quasi-stationary benchmark for rotating convec-
tion in spherical shell with a melting boundary. The convergence of our
hase field formulation is found to be more complex than anticipated
y Hester et al. (2020), with a gradual change in slope between first
nd second orders, similar to previous findings by Favier et al. (2019).
his difference is attributed to the influence of rotation and buoyancy,

two physical effects overlooked by Hester et al. (2020) in their analysis.
We adopt the spherical coordinates (𝑟, 𝜗, 𝜑) and assume rigid me-

hanical boundary conditions held at constant temperatures with 𝒖(𝑟 =
𝑖) = 𝒖(𝑟 = 𝑟𝑜) = 0 and 𝑇 (𝑟 = 𝑟𝑖) = 1 and 𝑇 (𝑟 = 𝑟𝑜) = 0. We assume
irichlet boundary conditions on the phase field with the outer (inner)
oundary in the solid (liquid) phase, i.e. 𝜙(𝑟 = 𝑟𝑜) = 1 and 𝜙(𝑟 = 𝑟𝑖) = 0.

2.2. Numerical methods

The numerical models considered in this study have been computed
using the open source code MagIC1 combined with the SHTns2 library
to handle the spherical harmonic transforms (see Schaeffer, 2013).

o enforce the divergence-free constraint on the velocity field, 𝒖 is
expressed in terms of poloidal and toroidal potentials following

𝒖 = 𝒖𝑃 + 𝒖𝑇 = 𝛁 × (𝛁 ×𝑊 𝒆𝑟) + 𝛁 ×𝑍𝒆𝑟 .

The quantities 𝑊 , 𝑍, 𝑝, 𝑇 and 𝜙 are expanded in spherical harmonics
p to a degree and order 𝓁max in the horizontal directions and in
hebyshev polynomials up to a degree 𝑁𝑟 in the radial direction. We

employ the pseudo-spectral formulation of the equations introduced
y Glatzmaier (1984) in which the nonlinear terms are handled in the
hysical grid space and then transformed to the spectral space using

spherical harmonic transforms (for details, see for instance Christensen
nd Wicht, 2015).

The equations are advanced in time using implicit-explicit (IMEX)
time schemes which handle the non-linear terms and the Coriolis force
explicitly and the linear terms implicitly. The explicit treatment of the
additional volume penalisation term entering Eq. (2) yields an extra
onstraint on the time step size 𝛿 𝑡 (Kolomenskiy and Schneider, 2009)

compared to classical convection problems, such that

max(𝛿 𝑡) < 𝐶 𝜏𝑝𝜖2, (8)

where 𝐶 is a Courant factor that depends on the IMEX time integrator.
In this study, we employ the third order backward difference scheme
(SBDF3) for most of the numerical simulations and the third-order

1 https://github.com/magic-sph/magic.
2 https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/shtns.

https://github.com/magic-sph/magic
https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/shtns
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Fig. 1. (a) Example of a steep function 𝑓 (𝑟) = 1
2

(

1 + t anh 𝑟−𝑟
2𝜖

)

represented using the Gauss–Lobatto grid (GL), the KTE mapping by Kosloff and Tal-Ezer (1993) with 𝛼1 = 0.993,
he JVH mapping by Jafari-Varzaneh and Hosseini (2015) and the BT mapping by Bayliss and Turkel (1992) with 𝛼1 = 40 and 𝛼2 = 0.4 for 𝜖 = 3 × 10−3 and 𝑟 = 4.7. (b) Absolute

value of the coefficients of the discrete cosine transform of 𝑓 as a function of the degree of the Chebyshev polynomial 𝑁 . (c) Grid spacing 𝛿 𝑟 as a function of 𝑟 for the same
mappings.
v

r

a

w
t

diagonally-implicit Runge–Kutta schemes ARS343 from Ascher et al.
(1997) for the most turbulent configurations (for a comparison for
convection problems, see Gopinath et al., 2022).

The phase field formulation involves large gradients of 𝜙 localised
round the melting radius 𝑟. Here we employ a Chebyshev collocation
echnique combined with mapping functions capable of handling such
teep fronts. Practically, the radial grid points are defined by

𝑟𝑘 = 1
2
(𝑟𝑜 − 𝑟𝑖) (𝑥𝑘) + 1

2
(𝑟𝑜 + 𝑟𝑖) with 𝑘 ∈ [1, 𝑁𝑟]

where 𝑥𝑘 = cos[(𝑘− 1)𝜋∕(𝑁𝑟− 1)] are the Gauss–Lobatto (GL) nodes and
a mapping function. Of particular interest are the mapping functions
hich allow to refine the resolution around localised regions of rapid
ariations, such as the ones introduced by Bayliss and Turkel (1992)
nd Jafari-Varzaneh and Hosseini (2015) (hereafter respectively BT
nd JVH). The latter one has in addition been designed to minimise
ibbs phenomena when solving Allen–Cahn type equations. For the
efinitions of the mapping functions, see Appendix A. The melt radius

𝑟 is however susceptible to substantially vary over the horizontal
directions in the case of large topography, making the tuning of the
mapping parameters difficult. In that case, it is also worthy considering
the mapping by Kosloff and Tal-Ezer (1993) (hereafter KTE) which
simply redistributes the native Gauss–Lobatto points more evenly in the
bulk of the domain.

As an illustrative example, Fig. 1(a) shows the radial profile of a
teep t anh function centred around the radius 𝑟 (which is typically
he kernel used in many phase field formulations, see Beckermann
t al., 1999) using the GL and KTE grids with 𝑁𝑟 = 193 and using

the JVH and BT mappings with 𝑁𝑟 = 97, while Fig. 1(b) shows the
corresponding Chebyshev spectra as a function of the degree of the
Chebyshev polynomial 𝑁 . To stress the differences in terms of grid
esolution, Fig. 1(c) shows the grid spacing 𝛿 𝑟𝑘 = |𝑟𝑘+1 − 𝑟𝑘| for 𝑘 ∈
[1, 𝑁𝑟 − 1] as a function of 𝑟. GL and KTE are coarse with only 3-4
collocation points distributed around the steep changes of the function.
Using the BT or the JVH mappings allows to reduce the grid spacing
y a factor five around the transition radius 𝑟 for half the number
f radial grid points used in the GL or KTE mappings. Comparison
f the spectra in Fig. 1(b) also shows that a much faster convergence
f the collocation method towards machine precision is achieved for
he former two mappings. Of practical interest for fluid problems with
oundary layers, we also note that the JVH mapping exhibits a slightly

slower convergence than the BT mapping but retains a better resolution
(i.e. a smaller grid spacing) at the spherical shell boundaries. The
chosen value of the interface thickness 𝜖 yields a constraint on the
maximum eligible grid spacing (Favier et al., 2019)
max(𝛿 𝑟) < 2𝜖 . (9) 𝑔

4 
This constraint combined with the time-step restriction due to the
olume-penalisation (8) makes the computation of phase field models

much more numerically-demanding than the classical rotating convec-
tion problems. For 𝜖 ≈ 10−3 − 3 × 10−3 considered here, the radial
resolution is about two to three times greater in phase field models
than in their monophasic counterparts to satisfy Eq. (9), while the time
step size 𝛿 𝑡 is about a factor ten smaller to fulfil Eq. (8). This limits the
ange of physical parameters 𝐸 and 𝑅𝑎 accessible to global numerical

modelling.

2.3. Diagnostics

The interface between the solid and liquid phases depends on the
ngular directions (𝜗, 𝜑) and evolves in time. Following Favier et al.

(2019) and Yang et al. (2023c), we choose to define it by

𝜙(𝑟 = 𝑟, 𝜗, 𝜑, 𝑡) = 1
2
. (10)

In the following, we employ angular brackets for spatial averaging and
overbars for time-averaging such that

⟨𝑓 ⟩𝑉 = 1
𝑉 ∫𝑉

𝑓d𝑉 , ⟨𝑓 ⟩𝑆 = 1
4𝜋 ∫

𝜋

0 ∫

2𝜋

0
𝑓 sin 𝜗d𝜗d𝜑,

⟨𝑓 ⟩𝜑 = 1
2𝜋 ∫

2𝜋

0
𝑓d𝜑, 𝑓 = 1

𝜏avg ∫

𝑡0+𝜏avg

𝑡0
𝑓d𝑡,

where 𝑡0 and 𝜏avg respectively denote the beginning and the width
of the time-average interval, and 𝑉 is the spherical shell volume. For
clarity, we define in the following the time-averaged mean melt radius

𝜉 = ⟨𝑟⟩𝑆 , (11)

and the corresponding thicknesses of the solid and liquid phases by

ℎ𝑆 = 𝑟𝑜 − 𝜉, ℎ𝐿 = 𝜉 − 𝑟𝑖 . (12)

The corresponding volumes are accordingly expressed by

𝑆 = ∫

2𝜋

0 ∫

𝜋

0 ∫

𝑟𝑜

𝑟(𝜗,𝜑)
𝑟2 sin 𝜗d𝑟d𝜗d𝜑, 𝐿 = 𝑉 − 𝑆 . (13)

For an easier comparison with standard monophasic convective models,
e define effective quantities based on the actual mean thickness and

emperature contrast of the fluid layer:

𝜂eff =
𝑟𝑖
𝜉

, 𝑅𝑎eff = 𝑅𝑎 𝑔𝑚𝛥𝑇ℎ3𝐿, 𝐸eff =
𝐸
ℎ2𝐿

, (14)

where 𝛥𝑇 = 1 − 𝑇 is the temperature contrast in the liquid and
= 𝜉 ∕𝑟 is the gravity at 𝜉 .
𝑚  𝑜 
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The kinetic energy content per unit volume can be decomposed in
poloidal and toroidal contribution following

𝐸𝐾 = 1
2
(

⟨𝒖2𝑃 ⟩𝑉 + ⟨𝒖2𝑇 ⟩𝑉
)

=
𝓁max
∑

𝓁=1
𝐸𝑃
𝓁 +

𝓁max
∑

𝓁=1
𝐸𝑇
𝓁 , (15)

where 𝐸𝑃
𝓁 (𝐸𝑇

𝓁 ) respectively denote the poloidal (toroidal) kinetic
energy content at the spherical harmonic degree 𝓁. The convective flow
elocity is accordingly measured by a Reynolds number defined on the

averaged liquid thickness ℎ𝐿

𝑅𝑒 = 𝑅𝑒
√

𝑉
𝐿

ℎ𝐿, 𝑅𝑒 =
√

2𝐸𝐾 . (16)

Heat transfer is characterised by the Nusselt number here defined at
the spherical shell boundaries

𝑁 𝑢 = 𝜂
d⟨𝑇 ⟩𝑆
d𝑟

|

|

|

|

|𝑟=𝑟𝑖

= 1
𝜂
d⟨𝑇 ⟩𝑆
d𝑟

|

|

|

|

|𝑟=𝑟𝑜

, (17)

where the factors involving the radius ratio 𝜂 come from the diffu-
ive temperature gradient. Again, for comparison purpose with stan-
ard models without phase change, it is insightful to also define an
quivalent Nusselt number

𝑁 𝑢eff = 𝑁 𝑢 ℎ𝐿
𝛥𝑇

𝜂eff
𝜂

. (18)

Following Schwaiger et al. (2019), the typical convective flow length-
scale is defined as the time-average of the peaks of the poloidal kinetic
energy spectra

𝓁𝑈 = argmax
𝓁

𝐸𝑃
𝓁 (𝑡) . (19)

To define a typical lengthscale for the topography of the solid–liquid
nterface, we proceed with a truncated spherical harmonic expansion
uch that

𝑟(𝜗, 𝜑, 𝑡) ≈
𝓁max
∑

𝓁=0

𝓁
∑

𝑚=−𝓁
𝜉𝓁𝑚(𝑡)𝑌𝓁𝑚(𝜗, 𝜑), (20)

where 𝑌𝓁𝑚 denotes the spherical harmonic function of degree 𝓁 and
rder 𝑚. Similarly to 𝓁𝑈 , we then define 𝓁𝜉 as the time average of the

peaks of the spectra defined by

𝓁𝜉 = argmax
𝓁

𝐸𝜉
𝓁(𝑡), 𝐸

𝜉
𝓁(𝑡) =

𝓁
∑

𝑚=−𝓁,𝑚≠0
|𝜉𝓁𝑚|

2 . (21)

Corresponding lengthscales at any radius read [𝑈 ,𝜉](𝑟) ≈ 𝜋 𝑟∕𝓁[𝑈 ,𝜉] (e.g.
Backus et al., 1996, §3.6.3).

2.4. Parameter coverage

We carried out 26 numerical simulations with 𝜂 = 0.8, 𝑃 𝑟 = 1 and
𝑆 𝑡 = 1 divided in four groups with fixed parameter pairs (𝐸 , 𝑅𝑎) and
increasing values of the melting temperature 𝑇. The Stefan number
𝑆 𝑡 defined by Eq. (7) controls the time-scale separation between the
temporal evolution of the phase-change interface and that of the flow.
While sub-glacial oceans are probably characterised by 𝑆 𝑡 ≫ 1 (using
∼ 3 × 105 J/kg, 𝑐𝑝 = 4 × 103 J/kg/K from Journaux et al. (2020) and a

emperature gradient of 0.04 K/km (Vance et al., 2018) yields 𝑆 𝑡 ≈ 40
for Europa), we choose to consider the less numerically-demanding
value 𝑆 𝑡 = 1 which speeds up the melting and freezing dynamics
leading to faster transients. Recent studies on thermal convection inter-
acting with a phase change boundary have shown that the value of the
Stefan number has only a marginal impact on the final quasi-stationary
equilibrium (Rabbanipour Esfahani et al., 2018; Purseed et al., 2020;
Yang et al., 2023c). Similarly, we choose to fix the value of the Prandtl
umber to 𝑃 𝑟 = 1 for numerical convenience, knowing that oceans are

more likely to be characterised by 𝑃 𝑟 ∼ (10).
Spatial resolutions, control parameters and main diagnostics of

hese simulations are listed in . A good indicator of the rotational
5 
Fig. 2. Numerical simulations carried out in this study located in a parameter space
onstructed using the effective Ekman and Rayleigh numbers 𝐸eff and 𝑅𝑎eff defined
n (14). Symbols with a black rim correspond to the configurations with no solid

phase (i.e. 𝑇 = 0). Each type of symbols corresponds to fixed values of 𝑅𝑎 and
𝐸 and increasing values of 𝑇. The errorbars correspond to the control parameters
constructed using min𝜗,𝜑(𝑟) and max𝜗,𝜑(𝑟). They highlight the maximum topography
f each model. For comparison purpose, the critical Rayleigh numbers for onset of

spherical shell convection with 𝑟𝑖∕𝑟𝑜 = 0.8 come from the study by Barik et al. (2023).
The solid black line corresponds to 𝑅𝑜𝑐 = 1 (Eq. (22)).

constraint on the convective flow is provided by the convective Rossby
umber

𝑅𝑜𝑐 =

√

𝑅𝑎eff𝐸2
eff

𝑃 𝑟 , (22)

introduced by Gilman (1977). Fig. 2 shows the location of the simula-
tions in terms of their effective Ekman and Rayleigh numbers once the
system has reached a quasi-stationary state. Estimates of the transport
properties in the subsurface oceans of the icy satellites yield Ekman and
Rayleigh numbers that range from 𝐸 ∼ 10−10 and 𝑅𝑎 ∼ 1016 for smaller
moons to 𝐸 ∼ 10−13 and 𝑅𝑎 ∼ 1024 for the larger ones (for details,
see e.g. Table 1 in Soderlund, 2019), which is way outside the ranges
considered in Fig. 2. We nonetheless see that our parameter choice
ields configurations where 𝑅𝑜𝑐 exceeds unity with 𝐸 = 10−3 and
𝑎 ∈ [3 × 106, 107, 3 × 107] (triangles) and configurations where 𝑅𝑜𝑐 < 1
ith 𝐸 = 3 × 10−4 and 𝑅𝑎 = 1.2 × 107 (squares) and 𝐸 = 3 × 10−5 and
𝑎 = 2.5 × 108 (circles), a physical regime expected to be relevant to the

ubsurface oceans of the icy moons (e.g. Soderlund, 2019, their Fig. 1).
or each group of simulations, an increase of 𝑇 goes along with a
ecrease of the effective Rayleigh number 𝑅𝑎eff and an increase of the
ffective Ekman number 𝐸eff, as expected from the gradual decrease
f the fluid layer thickness as 𝑇 increases. The errorbars attached
o each symbol correspond to the changes of the effective control
arameters when considering the extrema of the interface min𝜗,𝜑(𝑟)

and max𝜗,𝜑(𝑟) to evaluate them. Overall, increasing 𝑇 at fixed
𝐸 , 𝑅𝑎) yields a parameter path along which (i) 𝑅𝑜𝑐 decreases, hence
trengthening the rotational constraint; (ii) the supercriticality of the
onvective flow drops; and (iii) the topographic changes of the interface
ncrease.

Most of the numerical simulations have been initiated from a dif-
fusive state and a random noise temperature perturbation combined
with a spherically-symmetric phase field t anh profile centred around
𝑇. Simulations are run until a quasi-stationary state is reached at
which point diagnostics are computed. For the most demanding config-

urations, the simulations have been computed by restarting from setups
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Fig. 3. Three-dimensional renderings of snapshots of four selected simulations. For each simulation, the inner sphere shows the temperature at 𝑟 = 𝑟𝑖 + 0.02 atop the inner thermal
boundary layer, while the outer surface corresponds to the melting radius 𝑟. Equatorial and meridional slices show the temperature in the liquid and solid phase with two
different separated colourmaps.
with neighbouring parameters. While bistability is known to occur in
convective systems with phase change (Purseed et al., 2020; Yang et al.,
2023a), we have not observed such behaviour in our simulations.

3. Results

We first focus on selected simulations to highlight the interplay
between the convective flow and the shape of the solid–liquid interface.
Fig. 3 shows three-dimensional renderings of the temperature field for
four selected simulations with an increasing rotational constraint on the
flow, while Fig. 4 shows the corresponding Hammer projections of the
melt radius 𝑟.

The first case with 𝐸 = 10−3, 𝑅𝑎 = 3 × 107 and 𝑇 = 0.5
(Figs. 3a and 4a) corresponds to weakly-rotating convection with 𝑅𝑜𝑐 ≈
4. Similar to classical RBC, the thermal plumes are radially-oriented
and the convective pattern at the edge of the inner thermal boundary
layer forms a network of thin sheet-like upwellings surrounding broad
downwellings. The solid–liquid interface is almost spherical, with little
variations with 𝑟 ∈ [4.89, 4.94] (we recall that we use 𝜂 = 0.8 so that
𝑟 ∈ [4, 5]) and no preferred direction, indicating the weak rotational
constraint. The second model with 𝐸 = 10−3, 𝑅𝑎 = 107 and 𝑇 = 0.6
(Figs. 3b and 4b) corresponds to 𝑅𝑜𝑐 ≈ 2. The convective pattern is more
laminar than in the previous case due to a weaker effective Rayleigh
6 
number but remains similar regarding the influence of rotation. The
most striking difference comes from the solid–liquid interface which
now features large-scale topographic changes aligned with the rotation
axis outside the effective tangent cylinder, defined by the colatitudes
𝜗 = [ar csin 𝜂eff, 𝜋 − ar csin 𝜂eff]. Those features are reminiscent of the so-
called ‘‘banana cells’’, i.e the convective columns outside the tangent
cylinder of rotating spherical shells (e.g. Busse, 1970; Simitev and
Busse, 2003). For that particular case, the amplitude of topography
from trough to crest in the equatorial plane reaches about 15% of the
shell gap. Similar to previous findings in non-rotating convection (e.g.
Rabbanipour Esfahani et al., 2018; Yang et al., 2023c), cold plumes
detach from the thermal boundary layer in the cusps of the solid–liquid
interface (equatorial cut in Fig. 3b). The influence of rotation is more
pronounced in the third case with 𝑅𝑜𝑐 ≈ 0.7 (Figs. 3c and 4c). This
manifests itself by a stronger alignment of the thermal plume with the
rotation axis inside the tangent cylinder (meridional cut in Fig. 3c) and
vortical structures at the connection points of the convective sheets
(radial cut in Fig. 3c). The solid–liquid interface is made up of two main
contributions: (i) an overall large-scale latitudinal contrast with thinner
ice crust inside the effective tangent cylinder than outside; (ii) small-
scale columnar corrugations aligned with the rotation axis outside
the tangent cylinder. The decrease of the effective Ekman number
compared to the previous case goes along with smaller scale columnar
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Fig. 4. Hammer projections of snapshots of the melt radius 𝑟 for the four simulations shown in Fig. 3. In each panel, the dashed lines correspond to the location of the effective
tangent cylinder, i.e. 𝜗 = [ar csin 𝜂eff , 𝜋 − ar csin 𝜂eff].
convection and weaker topographic changes in the equatorial region.
This trend is confirmed in the last simulation with the smallest Ekman
number and 𝑅𝑜𝑐 ≈ 0.3 (Figs. 3d and 4d). In this rotationally-constrained
configuration, most of the topographic changes are axisymmetric with
a thinner ice thickness at the equator than at the poles. The melt
radius also shows secondary peaks right at the location of the tangent
cylinder, a feature reminiscent of the local flux maxima observed there
in rotating spherical shell convection (see Fig. 3 in Gastine and Aurnou,
2023).

Overall the increasing influence of rotation goes along with a to-
pography which transits from columnar troughs and crests outside the
effective tangent cylinder to an almost axisymmetric profile modulated
by small-scale roughness. This prompts us to separately investigate
the large-scale axisymmetric topography and the non-axisymmetric
features. In the following, we hence disentangle the axisymmetric
topography defined by

𝜉 = ⟨𝑟⟩𝜑 , (23)

from the fluctuating non-axisymmetric patterns defined by the follow-
ing standard deviation

𝜉′ =
(

⟨𝑟2⟩𝜑 − ⟨𝑟⟩

2
𝜑

)1∕2
. (24)

3.1. Axisymmetric topography

Fig. 5(a) shows latitudinal profiles of the mean axisymmetric melt
radius 𝜉 for a series of simulations with 𝐸 = 3 × 10−4 and 𝑅𝑎 =
1.2 × 107. An increase in 𝑇 goes along with thicker ice with increasing
latitudinal contrasts. For an easier comparison, Fig. 5(b) shows the
corresponding latitudinal variations of the ice thickness normalised
by its mean value, i.e. (𝑟𝑜 − 𝜉)∕(𝑟𝑜 − 𝜉). Relative changes in the ice
thickness are found to be quite similar from one simulation to another,
ranging between −0.2 and 0.2. The axisymmetric topography evolves
from configurations with thicker ice at the equator than at the poles
for 𝑇 < 0.7 to the opposite for 𝑇 > 0.75. Postponing for now
the question of the control parameters which govern this transition,
we note a good correlation between the profiles shown in Fig. 5(b)
and the outer boundary heat flux obtained in the monophasic rotating
convection models by Amit et al. (2020) (their Fig. 7) and by Kvorka
and Čadek (2022) (their Fig. 10).
7 
This raises the question of the feedback of the topography onto
the flow. To examine this issue, we have computed the equivalent 26
rotating spherical shell simulations without phase change adopting the
effective control parameters 𝑅𝑎eff, 𝐸eff and 𝜂eff. In addition, we have
also carried out 5 extra simulations without solid phase (i.e. 𝑇 = 0)
for each (𝑅𝑎, 𝐸) pair. Fig. 6 shows a comparison between the mean
radial profiles of temperature (panel a) and kinetic energy (panel b)for
numerical models with a phase change (solid lines) and their equivalent
counterparts without (dashed lines). Typical of rotating convection, the
temperature profile of the reference case with no solid phase (𝑇 =
0) is made up of three distinct parts: two thermal boundary layers
which accommodate most of the temperature contrast and a quasi-
linear temperature drop in the fluid bulk. The corresponding kinetic
energy profile features two localised maxima which mark the location
of the edges of the Ekman boundary layers. The increase of 𝑇 goes
along with a gradual decrease of the kinetic energy content due to
the shrinking of the fluid region. Temperature then follows a quasi-
linear conducting profile in the solid part. Models with or without phase
changes almost perfectly overlap for 𝑇 ≤ 0.75. They depart more
strongly for the largest melting temperature 𝑇 = 0.8, due to the largest
amplitude of topography in this configuration (recall Fig. 5a). In view
of the good agreement between the radial profiles, the average rms
properties of the convective flow are found to be little affected by the
phase change (see ).

Fig. 7 shows an additional comparison between models with and
without phase change for two configurations with large melting tem-
perature to enhance the topographic changes. Panels (a) and (b) corre-
spond to a weakly-rotating configuration with 𝐸 = 10−3, 𝑅𝑎 = 3 × 107,
𝑇 = 0.8 and 𝑅𝑜𝑐 ≈ 3.1. In this setup, the solid–liquid interface
presents significant changes in the azimuthal direction. Cold plumes
which detach from the upper boundary layer are mostly localised in the
cusps of the interface, while the hot upwellings are clustered in fluid
regions with a thinner ice crust. Despite those topographic changes, the
mean azimuthal zonal flows ⟨𝑢𝜑⟩𝜑 appear strikingly similar between
the phase field case and its monophasic counterpart. Equatorial zonal
flows are retrograde close to the outer boundary, a typical feature of
spherical-shell rotating convection when the convective Rossby number
exceeds one (e.g Gilman, 1977; Aurnou et al., 2007; Gastine et al.,
2013; Yadav et al., 2016). Zonal flow gradients are predominantly
radial, with no marked alignment with the axis of rotation, indicating
a weak rotational constraint. Their energetic content amounts to about



T. Gastine and B. Favier

Fig. 5. (a) Time and azimuthal average of the melt radius 𝜉 (see Eq. (23)) as a function of colatitude for a series of numerical simulations with 𝐸 = 3 × 10−4 and 𝑅𝑎 = 1.2 × 107
and increasing 𝑇. (b) Normalised thickness of the solid phase (𝑟𝑜 − 𝜉)∕(𝑟𝑜 − 𝜉) as a function of colatitude. The dotted lines in panel (a) correspond to the mean melt radius 𝜉,
while the vertical segments mark the location of the effective tangent cylinder.

Fig. 6. Comparison between models with a phase change and their equivalent convective models without for simulations with 𝐸 = 3 × 10−4 and 𝑅𝑎 = 1.2 × 107. (a) Time- averaged
radial profiles of temperature for increasing values of the melting temperature 𝑇. (b) Time-averaged radial profiles of kinetic energy. For comparison purpose, the grey lines in
panels (a) and (b) correspond to the setup with no solid phase (i.e. 𝑇 = 0). The dotted vertical lines in panel (b) correspond to 𝜉.

Fig. 7. Comparison between models with a phase change (upper half of each panel) with equivalent convective models without (lower halves). Panels (a) and (c) show snapshots
of the temperature in the equatorial plane, while panels (b) and (d) show the time and azimuthal average of 𝑢𝜑 in a meridional plane. Panels (a) and (b) correspond to a
weakly-rotating configuration with 𝐸 = 10−3, 𝑅𝑎 = 3 × 107, 𝑇 = 0.8, while (c) and (d) correspond to a rotationally-constrained setup with 𝐸 = 3 × 10−5, 𝑅𝑎 = 3 × 108, 𝑇 = 0.8. The
dashed lines mark the location of the solid–liquid interface.
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Fig. 8. (a) Time and azimuthal average of the relative heat flux (27) expressed at the
top of the liquid phase for a numerical simulation with 𝐸 = 3 × 10−4, 𝑅𝑎 = 1.2 × 107
and 𝑇 = 0.55. (b) Same quantities for a numerical simulation with 𝐸 = 3 × 10−4,
𝑅𝑎 = 1.2 × 107 and 𝑇 = 0.7. In both panels, the dashed vertical lines correspond to
the location of the tangent cylinder.

4% of the total kinetic energy in that case. Conversely, Fig. 7(c) and
(d) correspond to a rapidly-rotating configuration with 𝐸 = 3 × 10−5,
𝑅𝑎 = 2.5 × 108, 𝑇 = 0.8 which yields 𝑅𝑜𝑐 ≈ 0.3. In this setup,
topographic changes happen mostly in the latitudinal direction with
a thinner ice at the equator than at the poles. As such, the fluid
domain in the equatorial plane is therefore slightly thicker than its
quivalent without phase change (Fig. 7c). The typical size and shape

of the convective plumes nevertheless show a good agreement between
the two simulations. Zonal flow profiles (Fig. 7d) take the form of a
pair of alternated retrograde and prograde jets mostly localised outside
the tangent cylinder, very much alike those obtained in monopha-
sic spherical shell convection with rigid boundaries and comparable
convective Rossby numbers 𝑅𝑜𝑐 ≈ 0.3 (e.g. Cabanes et al., 2024,
rightmost simulation in their Fig. 5). Their energetic content remains
owever quite weak, about 3% of the total kinetic energy, a value in
ine with those reported by Cabanes et al. (2024) for similar effective

Ekman numbers 𝐸eff ≈ 10−4 (see their Table 1). Despite the sizeable
axisymmetric topographic variations, zonal flows appear little affected
by the phase change. Assessing the feedback between topography and
zonal jets would require reaching lower (larger) Ekman (Rayleigh)
numbers such that they represent a greater share of the kinetic energy.

We finally examine the differences in terms of heat flux at the top
of the fluid layer. To do so, we derive in Appendix D a perturbative
model for the diffusion of heat in a solid phase with an upper spherical
boundary held at a constant temperature 𝑇 = 0 and a lower quasi-
spherical boundary with topographic changes held at 𝑇 = 𝑇. Provided
the amplitude of topography remains small compared to the radius,
i.e. the spherical harmonic expansion coefficients from Eq. (20) fulfil
𝜉𝓁𝑚|∕𝜉 ≪ 1, we show in Appendix D that the temperature gradient

along the interface reads

𝜕(𝜗, 𝜑) ≈
∑

𝓁≠0,𝑚

𝜉𝓁𝑚
𝜉

𝑓𝓁(𝜂𝑆 )𝑌𝓁𝑚(𝜗, 𝜑) , (25)

with

𝑓𝓁(𝜂𝑆 ) =
𝓁 − 1 + (𝓁 + 2)𝜂2𝓁+1𝑆

2𝓁+1
, (26)
1 − 𝜂𝑆

9 
and 𝜂𝑆 = 𝜉∕𝑟𝑜 is the mean radius ratio of the solid phase and 𝜕
characterises the relative heat flux changes

𝜕(𝑟, 𝜗, 𝜑) =
𝜕𝑇
𝜕 𝑟 (𝑟, 𝜗, 𝜑) − d𝑇0

dr
(𝜉)

d𝑇0
dr

(𝜉)
, (27)

with
d𝑇0
d𝑟

= − 𝑇
ℎ𝑆𝜂𝑆

, (28)

the zeroth order diffusive temperature gradient in a spherical shell of
mean inner radius 𝜉 and outer radius 𝑟𝑜.

To evaluate this first-order model, Fig. 8 shows a comparison of
the relative variations of the axisymmetric heat flux ⟨𝜕⟩𝜑 for two
umerical simulations with 𝐸 = 3 × 10−4 and 𝑅𝑎 = 1.2 × 107 which
nly differ from their melting temperature with 𝑇 = 0.54 and a
hin ice thickness ℎ𝑆 = 0.15 (panel a) and 𝑇 = 0.8 and a thick

ice shell ℎ𝑆 = 0.65 (panel b). To also examine the influence of the
topography on the flow, we include in Fig. 8 the heat flux profiles of
the equivalent models without phase change. In that case, the relative
heat flux variations are expressed by

⟨𝜕⟩𝜑 =

𝜕⟨𝑇 ⟩𝜑
𝜕 𝑟 (𝑟𝑜, 𝜗) −

d⟨𝑇 ⟩𝑆
d𝑟

(𝑟𝑜)

d⟨𝑇 ⟩𝑆
d𝑟

(𝑟𝑜)

. (29)

The heat flux profiles shown in Fig. 8(a) look very much alike those
btained by Amit et al. (2020) in their so-called ‘‘polar-cooling’’ config-

urations (see the third panel in their Fig. 7). In this setup, the heat flux
s almost constant outside the tangent cylinder and increases gradually

inside to reach local maxima in the polar regions. We observe, on the
ne hand, an excellent agreement between the actual heat flux obtained
n the phase field simulation and the theoretical model expressed in

Eq. (27), and on the other hand, very similar profiles with or without
phase change. This latter observation indicates a negligible influence
of the axisymmetric topography on the heat flux, which comes to no
urprise given the small variations of the ice shell thickness in this

configuration (𝜉 ∈ [4.84, 4.88], see Fig. 5a). Fig. 8(b) corresponds to
a configuration with a smaller convective Rossby number 𝑅𝑜𝑐 ≈ 0.67.
n that case, and in line with previous findings of monophasic rotating
onvection (see, e.g. the first panel of Fig. 7 in Amit et al., 2020), the
eat flux peaks in the equatorial region, a hallmark of the so-called

‘equatorial cooling regime’’. More pronounced differences between the
onophasic and the phase field configurations are however observed:
hile the perturbative model still correctly accounts for the actual
eat flux, the configuration without phase changes now yields larger

latitudinal heat variations than observed in the case with a phase
hange. This clearly indicates than the purely spherical analogue can-
ot account for the heat flux changes for configurations with large
opographic variations (here 𝜉 ∈ [4.17, 4.46], see Fig. 5a).

3.2. Non-axisymmetric roughness

We now turn our attention to the non-axisymmetric topography,
characterised in terms of the standard deviation of 𝑟 along the
ongitudinal direction (Eq. (24)).

We have already seen in Fig. 4 significant regionalised differences
in the amplitude and size of the interface roughness depending on the
strength of the rotational constraint. To illustrate this phenomenon,
Fig. 9 shows mean latitudinal contrasts of 𝜉′ for two series of simu-
lations with increasing melting temperature and with either a weak
rotational constraint (𝐸 = 10−3, 𝑅𝑎 = 3 × 107, panel a) or a strong
influence of rotation (𝐸 = 3 × 10−5, 𝑅𝑎 = 2.5 × 108, panel b). For
the former series of simulations, an increase of 𝑇 goes along with a
gradual increase of the interface roughness. The configurations which
are the least influenced by rotation, i.e. 𝑇 ≤ 0.6 and 𝑅𝑜 > 3.5,
 𝑐
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Fig. 9. Mean latitudinal profile of non-axisymmetric topography (as defined in Eq. (24)) for two series of simulations with 𝐸 = 10−3, 𝑅𝑎 = 3 × 107 (panel a), and with 𝐸 = 3 × 10−5,
𝑅𝑎 = 2.5 × 108 (panel b). In each panel, the vertical segments mark the location of the tangent cylinder.
feature almost no latitudinal variation and 𝜉′ does not exceed 1% of
the shell gap. When 𝑇 ≥ 0.75, the amplitude of the non-axisymmetric
topography raises by one order of magnitude in the low-latitude regions
reaching max𝜗 𝜉′ ≈ 0.1. This corresponds to the columnar topographic
changes visible in Fig. 4(b). The second series of simulations features
more undulating profiles of overall weaker amplitude (Fig. 9b). The
amplitude of 𝜉′ follows a non-monotonic behaviour with the increase
of 𝑇. Latitudinal changes appear to be correlated with the variations
of the mean axisymmetric ice thickness with localised minima at the
equator and at the location of the tangent cylinder (see Fig. 3d).

To explore the time variability of the solid–liquid interface, we show
in Fig. 10 Hovmöller diagrams of the melt radius in the equatorial
plane 𝑟(𝜋∕2, 𝜑, 𝑡) for four simulations with 𝐸 = 10−3, 𝑅𝑎 = 3 × 107
and increasing values of 𝑇. The first two cases (𝑇 = 0.5 and 𝑇 =
0.6) present rapid temporal variability on time scales of less than one
tenth of the viscous diffusion time. Topography in the equatorial plane
mostly drifts westward and the crest-to-trough amplitude is about 2-
3% of the spherical shell gap. In the second case with 𝑇 = 0.6,
larger longer-lived topographic features with a larger amplitude are
occasionally observed (e.g. 𝑡 ≈ 5.2 and 𝜑 ≈ 3.5). This trend becomes
more pronounced in the third and fourth cases with 𝑇 = 0.69 and
𝑇 = 0.8. Topographic contrast increases and remains stable and
coherent over timespans that exceed the viscous diffusion time. We
only observe a very slow westward drift of the topographic features.
These latter two configurations are reminiscent of rotating convection
models in Cartesian geometry by Ravichandran and Wettlaufer (2021)
in which convective features are locked within the interface topog-
raphy. In contrast with the moderate feedback of the axisymmetric
topography on the convective flow discussed before, non-axisymmetric
roughness hence yields significant differences with classical rotating
convection without phase change. We recall that the Stefan number
𝑆 𝑡 is here fixed to unity across all simulations. While systematically
varying 𝑆 𝑡 is outside the scope of the current study, it would influence
the characteristic timescale of topographic features with larger Stefan
numbers leading to slower topography dynamics.

To quantify the typical time of variation of the topography, we
define the following auto-correlation function for each location (𝜗, 𝜑):

(𝜗, 𝜑, 𝜏) = 𝑟(𝜗, 𝜑, 𝑡 + 𝜏)𝑟(𝜗, 𝜑, 𝑡)
𝑟2(𝜗, 𝜑, 𝑡)

.

The correlation time of the topography at each point 𝜏𝜉 (𝜗, 𝜑) is then
defined as the full width at half maximum of , i.e.

(𝜗, 𝜑, 𝜏𝜉 ) = 1
2
. (30)

Fig. 11 shows an illustration of the time-averaged non-axisymmetric
topography (panel a) alongside the correlation time 𝜏 (𝜗, 𝜑) for a model
𝜉

10 
Fig. 10. Longitudinal Hovmöller diagrams for the melt radius in the equatorial plane
𝑟(𝜗 = 𝜋∕2, 𝜑, 𝑡) for four numerical simulations with 𝐸 = 10−3 and 𝑅𝑎 = 3 × 107 with
𝑇 = 0.5 (panel a), 𝑇 = 0.6 (panel b), 𝑇 = 0.69 (panel c) and 𝑇 = 0.8 (panel d).

with 𝐸 = 10−3, 𝑅𝑎 = 107 and 𝑇 = 0.6. Given that the topography
slowly evolves in that case, the time-averaging involved in panel (a)
has been conducted over the typical thermal diffusion time of the ice
crust 𝑃 𝑟ℎ2𝑆 ≈ 3.4 × 10−2, a value that is about one order of magnitude
below the typical time of variation of the topography in that case. For
both diagnostics, important regionalised differences are clearly visible
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Fig. 11. (a) Hammer projection of the time-averaged non-axisymmetric topography defined by |𝑟 − 𝜉| for a numerical model with 𝐸 = 10−3, 𝑅𝑎 = 107 and 𝑇 = 0.6. Time
averaging has been conducted over one thermal diffusion time of the ice layer, i.e. 𝑃 𝑟ℎ2

𝐿 ≈ 3.4 × 10−2. (b) Corresponding Hammer projection of the correlation time of the
topography expressed by Eq. (30). In each panel, the dashed lines mark the location of the effective tangent cylinder.
Fig. 12. Average of the correlation time of the topography (Eq. (30)) as a function of
the theoretical scaling (32). The solid line corresponds to a polynomial fit to the data.
Symbols convey the same meaning as in Fig. 2.

between flow regions inside and outside the tangent cylinder. Most
of the topographic changes, associated with the large scale columnar
troughs and crests already seen in Fig. 4(b), indeed reside outside
the tangent cylinder. This large-scale non-axisymmetric topography is
correlated with a corresponding increase of the typical time 𝜏𝜉 which
locally exceeds a few tenths of the viscous diffusion time.

To further analyse how 𝜏𝜉 relates to the roughness amplitude, we
define

̃ = − 𝜕⟨𝑇 ⟩𝜑
𝜕 𝑟 , ′ =

[

⟨

( 𝜕 𝑇
𝜕 𝑟

)2⟩

𝜑
−
⟨ 𝜕 𝑇
𝜕 𝑟

⟩2

𝜑

]1∕2

,

following the decomposition already adopted in Eqs. (23)–(24). An
horizontal and time average of Stefan’s condition (5) yields

𝑆 𝑡𝑃 𝑟 d𝜉
d𝑡

= 0 = ⟨̃⟩𝑆 −
𝑇𝑟𝑜

(𝑟𝑜 − 𝜉)𝜉
, (31)

where ⟨̃⟩𝑆 = 𝑁 𝑢 𝑟𝑖𝑟𝑜∕𝜉2. The typical time variability of the interface
roughness hence relates to the heat flux fluctuations, such that

𝑆 𝑡𝑃 𝑟 d⟨𝜉
′
⟩𝑆

d𝑡
≈ ⟨′

⟩𝑆 .

Following Yang et al. (2023c), we make the additional hypothesis that
the amplitude of the heat flux fluctuations are proportional to the
average heat flux, i.e. ⟨′

⟩𝑆 ∼ ⟨̃⟩𝑆 . This latter assumption yields

𝑆 𝑡𝑃 𝑟 d⟨𝜉
′
⟩𝑆

d𝑡
∼ 𝑁 𝑢 𝑟𝑖𝑟𝑜

𝜉2
,

and allows us to derive the following scaling relation for the typical
time of variation of the interface roughness

𝑆 𝑡𝑃 𝑟 2 ′

⟨𝜏𝜉⟩𝑆 ∼

𝑁 𝑢 𝜉⟨𝜉 ⟩𝑆 . (32)

11 
Fig. 13. Comparison between the convective flow wavenumber 𝓁𝑈 and the roughness
wavenumber 𝓁𝜉 . The solid line corresponds to the equality 𝓁𝜉 = 𝓁𝑈 . Symbols carry the
same meaning as in Fig. 2.

The proportionality between the correlation time and the Stefan num-
ber is expected since large 𝑆 𝑡 implies large latent heat and therefore
slower melting dynamics. This is also consistent with previous ob-
servation of melting rates being inversely proportional to the Stefan
number (Favier et al., 2019). Fig. 12 shows the validity of this scaling
relation, with little scatter in the data and a slope close to the expected
value of one. This a posteriori validates the assumption ⟨′

⟩𝑆⟨∕̃⟩𝑆 ≈
const. retained in the derivation.

3.3. Roughness wavelength and amplitude

To evaluate the horizontal size of topography, Fig. 13 shows a
comparison between the typical sizes of the convective flow and to-
pography, both quantities being evaluated by the spherical harmonic
degree where the corresponding spectra reach their maximum values
(Eqs. (19) and (21)). The two wavenumbers are found to be broadly
similar, indicating that the horizontal scale of topography follows that
of the underlying convective pattern, in agreement with previous find-
ings by e.g. Rabbanipour Esfahani et al. (2018) or Favier et al. (2019).
There is less of an agreement at larger degrees (smaller lengthscales),
for which several outliers exhibit topographic changes of larger length-
scale than that of the convective flow. We recall that the Stefan number
has been fixed to unity in all our simulations, whereas larger val-
ues could yield a smoothing of the small-scale topography variations.
Given the moderate changes of 𝓁𝑈 across the parameter space studied
here, we can however merely speculate on the possible increasing
disagreement between 𝓁𝜉 and 𝓁𝑈 for smaller-scale convective flows.

For the configurations where the correlation time of topography
exceeds the mean thermal diffusion time in the solid phase, i.e. 𝜏 >
𝜉
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Fig. 14. Comparison between the actual time-averaged heat flux fluctuations 𝜕 (panel a) and the theoretical model expressed in Eq. (25) (panel b) for a simulation with 𝐸 = 10−3,
𝑅𝑎 = 107 and 𝑇 = 0.6. This is the same configuration as the one shown in Figs. 4(b) and 11. In each panel, the dashed lines mark the location of the effective tangent cylinder.
𝑃 𝑟 ℎ2𝑆 , the roughness wavelength and amplitude can be related to
the heat flux fluctuations using the perturbative model expressed in
Eq. (25). Fig. 14 shows a comparison between the actual time-averaged
heat flux variations 𝜕 (panel a) and the model (panel b) for the same
numerical simulation already discussed in Fig. 11. Most of the heat
flux variations are localised outside the tangent cylinder and locked in
the columnar topography (Fig. 4b). The model – which we recall only
retains the first-order contributions in terms of amplitude of topography
– manages to accurately reproduce the observed heat flux variations.
In this configuration, the non-axisymmetric topography promotes heat
flux heterogeneities that can reach up to 20% of the average heat flux.
At this stage, it is however unclear whether the locking phenomenon
exemplified here will persist at stronger convective forcing (see e.g.
Yang et al., 2023c) or is promoted by the large-scale convective pattern
which develops at the moderate supercriticalities considered here.

Given the predominantly columnar nature of the interface rough-
ness in this configuration, one can tentatively approximate the topo-
graphic changes by one single sectoral spherical harmonic function of
degree and order 𝓁𝜉 . Within this limit, the heat flux variations in the
equatorial plane are approximated by

max
𝜗=𝜋∕2,𝜑

|𝜕| ≈ 2
|𝜉𝓁𝜉𝓁𝜉 |

𝜉
𝑓𝓁𝜉 (𝜂𝑆 ) max

𝜗=𝜋∕2,𝜑
|𝑌𝓁𝜉𝓁𝜉 |,

≈ 2
|𝜉𝓁𝜉𝓁𝜉 |

𝜉

𝑓𝓁𝜉 (𝜂𝑆 )

2𝓁𝜉𝓁𝜉 !

√

(2𝓁𝜉 + 1)!
4𝜋

.

(33)

For the model with 𝐸 = 10−3, 𝑅𝑎 = 107 and 𝑇 = 0.6, one gets 𝓁𝜉 = 11
and |𝜉𝓁𝜉𝓁𝜉 |∕𝜉 ≈ 3.4 × 10−3 which yields max𝜗=𝜋∕2,𝜑 |𝜕| ≈ 0.1, a value
slightly underestimated compared to the actual extrema of the heat flux
variations in the equatorial plane (Fig. 14a). Despite the rather crude
single mode approximation involved in Eq. (33), this equation allows to
directly relate the amplitude and dominant wavelength of the interface
topography to the corresponding heat flux heterogeneities, which can
prove useful for further order of magnitude estimates in the relevant
geophysical regime.

4. Geophysical implications

We already noticed earlier that the ice shell is either thicker in
the equatorial or in the polar regions depending on the influence of
rotation (Fig. 5). Earlier studies of monophasic rotating convection by
e.g. Amit et al. (2020) and Kvorka and Čadek (2022) characterised two
heat flux regimes termed ‘‘polar’’ and ‘‘equatorial cooling’’ in which
the heat flux is respectively larger in the polar or equatorial regions.
The two studies however disagree on the control parameter which
governs the transition between these two regimes. Amit et al. (2020)
advocate that polar cooling occurs when 𝑅𝑎 𝐸8∕5 > 10, while Kvorka
and Čadek (2022) obtain this regime whenever 1 < 𝑅𝑎 𝐸12∕7 < 10. This
latter combination of exponents on 𝑅𝑎 and 𝐸 is obtained by assuming
a transition between the heat transfer of rapidly-rotating convection
𝑁 𝑢 ∼ 𝑅𝑎 𝐸3∕2 (e.g. Julien et al., 2012) and its non-rotating RBC
counterpart 𝑁 𝑢 ∼ 𝑅𝑎1∕3 (see Gastine et al., 2016). The differences
NR

12 
Fig. 15. Relative contrasts of ice thickness (ℎℎ∕𝑙
𝑆 , Eq. (35)) and heat fluxes (ℎ∕𝑙 ,

Eq. (34)) inside and outside the effective tangent cylinder as a function of 𝑅𝑎eff 𝐸
3∕2
eff .

The relative changes of the size of the solidus ℎℎ∕𝑙
𝑆 (high-opacity symbols) have been

measured in the simulations with a phase change while the heat flux contrasts ℎ∕𝑙

(low-opacity symbols) come from the equivalent purely convective models. The symbols
carry the same meaning as in Fig. 2. For comparison purposes, the measures of ℎ∕𝑙

coming from the monophasic simulations from Kvorka and Čadek (2022) with rigid
boundaries (here KC2022) and from Hartmann et al. (2024) with 𝑟𝑖∕𝑟𝑜 = 0.8 (here
HSLV24) have been included. To account for the difference in the definition of the
gravity profile, the Rayleigh numbers provided by Kvorka and Čadek (2022) have been
rescaled by the average of their gravity profile over ours. For Enceladus, estimates
of ℎℎ∕𝑙

𝑆 come from Čadek et al. (2019), while the uncertainties on 𝐸 and 𝑅𝑎 come
from Soderlund (2019).

in the scaling exponents between the two studies could arise from the
different adopted mechanical boundary conditions.

Given the different regionalised dynamics in spherical shell convec-
tion (Wang et al., 2021; Gastine and Aurnou, 2023), we find however
more appropriate to define this transition in terms of the scaling be-
haviour of polar convection. In the limit of rapid rotation and moderate
supercriticalities, the heat transfer in the polar regions of spherical
shells with rigid boundaries closely follows the scaling behaviour ob-
tained in planar simulations, i.e. 𝑁 𝑢 ∼ 𝑅𝑎3𝐸4 (King et al., 2012;
Stellmach et al., 2014; Gastine and Aurnou, 2023). Assuming that
the transition between equatorial and polar cooling is defined by the
crossing between this scaling law and 𝑁 𝑢NR then yields a parameter
combination 𝑅𝑎 𝐸3∕2. This is in line with the recent study by Hartmann
et al. (2024) who report an enhancement of the polar heat transport
in spherical shell convection whenever 𝑅𝑎 𝐸3∕2 > 1 using a set of
numerical simulations with a fixed Rayleigh number of 𝑅𝑎 = 106 and
various Ekman numbers and radius ratios.

In terms of diagnostics, both regimes are usually characterised by
defining the relative differences of the axisymmetric heat flux inside
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and outside the tangent cylinder (e.g. Amit et al., 2020; Kvorka and
adek, 2022; Bire et al., 2022):

ℎ∕𝑙 =
[�̃�]𝜗TC

0 − [�̃�]𝜋−𝜗TC
𝜗TC

[�̃�]𝜗TC
0 + [�̃�]𝜋−𝜗TC

𝜗TC

, (34)

where 𝜗TC = ar csin 𝜂eff in the phase field models and 𝜗TC = ar csin 𝜂 with-
out phase change. In the above expression, the square brackets have
been employed to define angular averages between two colatitudes

[𝑓 ]𝜗2𝜗1 = 1
𝑆𝜗2
𝜗1

∫

𝜗2

𝜗1
𝑓 (𝜗) sin 𝜗 d𝜗, 𝑆𝜗2

𝜗1
= ∫

𝜗2

𝜗1
sin 𝜗 d𝜗 .

Here we accordingly define the relative differences in the axisymmetric
ice thickness:

ℎℎ∕𝑙𝑆 = −
[𝜉]𝜋−𝜗TC

𝜗TC
− [𝜉]𝜗TC

0

2𝑟𝑜 − [𝜉]𝜗TC
0 − [𝜉]𝜋−𝜗TC

𝜗TC

, (35)

where the minus sign has been introduced to ensure that the variations
f ℎℎ∕𝑙𝑆 carry the same sign as those in ℎ∕𝑙.

Fig. 15 shows ℎℎ∕𝑙𝑆 for the simulations with a phase change (coloured
igh-opacity symbols) and ℎ∕𝑙 for the corresponding models with-
ut phase change (coloured low-opacity symbols) as a function of
𝑎eff 𝐸

3∕2
eff . For comparison purposes, the simulations from Kvorka and

adek (2022) with rigid boundaries and from Hartmann et al. (2024)
ith 𝑟𝑖∕𝑟𝑜 = 0.8 have been included. Both diagnostics follow similar

rends. When the influence of rotation is the strongest, i.e. 𝑅𝑎eff 𝐸
3∕2
eff ≲

10, the heat flux is larger outside the tangent cylinder and the ice is
thinner there. For a limited range of parameters, 10 ≲ 𝑅𝑎eff 𝐸

3∕2
eff ≲ 100,

the heat flux is larger in the polar regions and ice is accordingly thicker
outside the tangent cylinder. For larger values, both diagnostics taper
off as the influence of rotation diminishes and the flow gradually loses
its preferred axis. The limited number of simulations as well as the
remaining scatter however prevent us to ascertain that 𝑅𝑎eff 𝐸

3∕2
eff is

the right parameter combination to describe the transition. In addition,
recent simulations by Song et al. (2024) show that the heat transfer
scaling rather adheres to 𝑁 𝑢 ∼ 𝑅𝑎3∕2𝐸2𝑃 𝑟−1∕2 in Cartesian geometry
with rigid boundaries for 𝐸 < 3 × 108 and 𝑅𝑎 𝐸4∕3 > 10. This is in
line with the findings by Stellmach et al. (2014) who also report the
ame diffusivity-free scaling of rotating convection whenever stress-free
oundary conditions are employed. In the geophysical regime relevant
o the icy satellites, this is hence plausible that the transition between
olar and equatorial cooling is rather governed by a 𝑅𝑎 𝐸12∕7 parameter
ombination.

With all these possible caveats in mind, we nevertheless tentatively
ocate in Fig. 15 the expected values for Enceladus for which ice shell
hickness models have been devised. Using topography and gravity
ata from Cassini, Čadek et al. (2019) for instance derived a model

of Enceladus’ ice shell thickness which is about 30 km thick at the
equator and reaches 15 (5) km near the North (South) pole. This

ould place this subsurface ocean in the polar cooling regime with
ℎ∕𝑙
𝑆 ∈ [0.13, 0.20]. Due to the uncertainties on the ocean thickness,
he estimated values for 𝐸 and 𝑅𝑎 respectively span the intervals
10−10, 10−11] and [1016, 1019] (e.g. Soderlund, 2019; Cabanes et al.,

2024). These estimates yield 𝑅𝑎 𝐸3∕2 > 10 a parameter combination
indeed compatible with the polar cooling regime obtained in numerical
models. The amplitude of ℎℎ∕𝑙𝑆 for Enceladus however exceeds the
largest contrast obtained in our simulations as well as – to a lesser
xtent – the largest heat flux contrasts ℎ∕𝑙 obtained by Kvorka and
adek (2022) and Hartmann et al. (2024) for their 𝑟𝑖∕𝑟𝑜 = 0.8 sim-

ulations. Simulations by Bire et al. (2022) conducted at lower Ekman
numbers also suggest a gradual drop of ℎ∕𝑙 when the radius ratio of the
ocean increases (see their Fig. 12). At this stage, this is hence unclear
whether the intrinsic heat flux fluctuations of rotating convection are
usceptible to reach a sufficient amplitude at the geophysical parame-
ers to explain the topographic changes of Enceladus’ ice. The strong

orth-South asymmetry could also originate from large scale basal

13 
heat flux heterogeneities or from temperature contrasts at Enceladus’
surface (e.g. Lemasquerier et al., 2023b). Ice shell models of Titan are
more uncertain but also suggestive of a polar cooling regime, with
or instance ℎℎ∕𝑙𝑆 ∼ 0.05 in the model by Lefevre et al. (2014). Due

to the least rotational constraint on Titan’s subsurface oceanic flows,
estimates of 𝑅𝑎 and 𝐸 from Soderlund (2019) yield 𝑅𝑎 𝐸3∕2 ∼ (104).
Because of the scatter of the numerical simulations beyond 𝑅𝑎 𝐸3∕2 ∼
100 (Fig. 15), it is uncertain whether such large scale topographic
hanges could be attributed to the convective fluctuations or are rather
romoted by large scale thermal heterogeneities at the base or at the
op of the fluid layer. At this stage, it is also important to recall that
everal physical ingredients such as salinity and thermobaric effects
ave been neglected in the current model and are likely to change the
nterplay between heat flux changes and mean topography (e.g. Kang,

2023).
Despite all the shortcomings of our models, the observation of long-

lived stable non-axisymmetric corrugations of the solid–liquid interface
n several simulations prompts us to attempt a re-scaling to the relevant

geophysical regime. To do so, we make the following bold assumptions:
(i) the non-axisymmetric topography can be described by one single
sectoral model of size 𝓁𝑈 ; (ii) the ice layer is in a quasi-equilibrated
conducting state that allows the application of the model Eq. (25)
which relates the heat flux variations to the topographic wavelength
nd amplitude. Given the estimated average radius ratio of the ice
ayers of the icy satellites, the single mode approximation (Eq. (33))

can be further simplified to
𝜕 𝜉 ∼ 𝜕

𝓁𝑈
∼

𝜕𝑈
𝜋 𝜉

, (36)

where 𝑈 is the dominant convective flow lengthscale. The studies
of the transfer functions of basal heterogeneous heat fluxes through a
rotating convective layer carried out by Terra-Nova et al. (2023) and
Lemasquerier et al. (2023b) suggest 𝜕 ∼ 2 − 4 for Enceladus (see also
Čadek et al., 2019, for similar estimates) and 𝜕 ∼ 0.1 − 0.5 for Titan
(Choblet et al., 2017). To provide an estimate of the lengthscale 𝑈 ,
we further assume that the oceanic flows are rotationally-constrained
and that the kinetic energy spectra of the zonal jets and the non-
xisymmetric residuals reach their maxima at similar scales, in practice
ound by previous studies to be close to the Rhines scale (e.g Guervilly

et al., 2019; Lemasquerier et al., 2023a). We therefore use the jet sizes
derived by Cabanes et al. (2024) to estimate 𝑈 , such that 𝑈 ∼
0.1𝐷 ∼ 2 km for Enceladus and 𝑈 ∼ 0.5𝐷 ∼ 100 km for Titan, with

the ocean depth. For both icy satellites, this yields 𝜕 𝜉 ∼ (10−3 −
0−2), depending on the amplitude of the heat flux variations. This

translates to non-axisymmetric topographic changes at the solid–liquid
nterface that could reach up to (102 − 103) meters for Enceladus
nd (103 − 104) meters for Titan. Considering 2-D thermo-mechanical
odels of the ice response to basal heat flux variations, Kihoulou et al.

(2023) demonstrated that the topographic changes in a conducting
ice shell strongly depend on the ice viscosity as well as on the vari-
ations of the melting temperature with pressure (see their Fig. 6).
Despite these uncertainties, their estimates of topographic changes are
lower than ours, typically covering the range of (102 − 103) m at
the ice-water interface (see also Kang, 2023). Again, accounting for
double-diffusive effects, ice creeping and temperature variations due
to pressure changes along the deformed boundary are susceptible to
change these conclusions.

5. Conclusion

Improving understanding of the dynamical coupling between the
cean and the overlying ice layer is of primary importance to better
haracterise the hydrosphere of the icy moons. In this study we have

developed a novel approach to model rotating convection with a phase
hange using a phase field formulation (e.g. Beckermann et al., 1999).

To examine the interplay between rotating convection and a melt-
ing boundary, we have conducted a series of numerical simulations
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in spherical geometry varying the control parameters – the Rayleigh
umber 𝑅𝑎 and the Ekman number 𝐸 – as well as the melting temper-
ture. We have split the analysis between the large-scale axisymmetric
opography and the non-axisymmetric features. For the former and in
ine with previous monophasic convection models, we have evidenced
wo regimes in which the mean axisymmetric heat flux either peaks
t the equator or at the poles with a corresponding regionalised ice
hinning. Transition between the two happens when 𝑅𝑎 𝐸3∕2 ≈ 10, a
arameter combination which is obtained when the scaling behaviour
f rotating convection in the polar regions of the spherical shell crosses
he one of classical RBC (Hartmann et al., 2024).

We have conducted numerical simulations of the equivalent
monophasic setups and we have derived a perturbative model of the
heat equilibrium in a quasi-spherical shell with bottom topographic
changes. This enabled us to show that the relative heat flux variations at
the top of the monophasic simulations usually provide a good guess of
the actual flux as long as the mean axisymmetric topographic changes
re small. As expected, departures between the configuration with a
hase change and their counterparts without become more pronounced
or large topographic variations.

Non-axisymmetric topography, termed roughness in this study,
ields significant differences with the usual rotating convective flow in
pherical shells. In particular, we have evidenced the formation of long-
ived large-scale columnar troughs and crests which develop for inter-

mediate rotational constraints. Convective upwellings are then locked
in the topographic changes of the solid–liquid interface. Although
our parameter coverage does not allow to determine the parameter
combination which governs the transition to locked-in convection (see
also Yang et al., 2023c), a tentative rescaling of the amplitude of this
non-axisymmetric topography to the planetary regime yields (102 −
103) meters for Enceladus and (103 − 104) meters for Titan. Those
values are substantially larger than current estimates by e.g. Corlies
t al. (2017) or Kang (2023). These differences could possibly arise
rom several simplifications of our model. We do not include the effect

of salinity (Ashkenazy and Tziperman, 2021; Wong et al., 2022), the
pressure dependence of the melting temperature (Labrosse et al., 2018;
Lawrence et al., 2024), the creep properties of ice (e.g. Weertman,
1983; Shibley and Goodman, 2024) the effect of tidal heating in the
ce crust (Beuthe, 2019; Běhounková et al., 2021), or the thermal

heterogeneities at the base of the ocean (Terra-Nova et al., 2023;
Lemasquerier et al., 2023b) or at the moon’s surface (Weller et al.,
2019). All those endogenic physical processes are possible candidates
susceptible to raise the complexity of the results described here. Ac-
counting for those effects could be the subject of future studies using
the phase change formalism discussed here.

On a longer term, improving our understanding of the interplay
etween oceanic flows and phase changes in the icy moons will also
equire to conduct numerical simulations at more extreme parameters.
hough numerically challenging (e.g. Song et al., 2024), this would

allow to consolidate the scaling relation which governs the transi-
tion between equatorial and polar cooling and to study the coupling
between mean zonal flows and topography (e.g. Hay et al., 2023).
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Appendix A. Mapping functions for Chebyshev collocation method

When the fluid domain features regions of rapid changes, con-
sidering mappings can significantly improve the convergence of the
Chebyshev pseudo-spectral approximation. The mapping introduced
by Kosloff and Tal-Ezer (1993) aims at reducing the grid points clus-
tering near the boundaries inherent in the native Gauss–Lobatto collo-
cation grid points. The amplitude of the grid stretching is governed by
a control parameter 𝛼1 ∈ [0, 1[. The mapping function is expressed by

 (𝑥) = ar csin(𝛼1𝑥)
ar csin 𝛼1

. (37)

The main purpose of the mapping defined by Bayliss and Turkel
(1992) is to refine the grid spacing around a particular interior point
𝑥 = 𝛼2. It is governed by two input parameters: 𝛼1 which controls the
stiffness of the grid refinement and 𝛼2 ∈ [−1, 1] which defines the centre
of the mapping function. It is defined by

 (𝑥) = 𝛼2 +
1
𝛼1

t an[𝜆(𝑥 − 𝑥0)], (38)

with

𝜆 =
ar ct an[𝛼1(1 − 𝛼2)]

1 − 𝑥0
, 𝑥0 =

ar ct an[𝛼1(1 + 𝛼2)] − 1
ar ct an[𝛼1(1 − 𝛼2)] + 1 .

Similarly to the mapping by Bayliss and Turkel (1992), the mapping
by Jafari-Varzaneh and Hosseini (2015) was also introduced to handle
teep localised fronts. It is governed by three input parameters: 𝛼1

and 𝛼2 retaining the same meaning as for the previous mapping and
𝛼3 ∈ [0.2, 0.9] being a small parameter that we keep to a fixed value of
𝛼3 = 0.4. It is defined by

 (𝑥) = 𝛼2 +
1
𝛼1

sinh
{

𝐴
[

t an(𝑥 ar ct an𝐶)
𝐶

− 1
]

+ 𝐵
}

(39)

with

𝐴 = 1
2
{

ar gsinh[𝛼1(1 − 𝛼2)] + ar gsinh[𝛼1(1 + 𝛼2)]
}

,

𝐵 = ar gsinh[𝛼1(1 − 𝛼2)],

=
[

|

|

|

|

ℑ
{ 1
𝐴

( i𝜋
2

− 𝐵
)

+ 1
}

|

|

|

|

+ 𝛼3

]−1
.

Appendix B. A benchmark for rotating convection in a spherical
shell with a phase change

To validate the numerical implementation of the phase field method
n the pseudo-spectral code MagIC, we consider a weakly nonlinear
onfiguration of rotating convection close to onset. Similarly to classi-

cal benchmarks of monophasic convection in spherical geometry (e.g.
Christensen et al., 2001; Marti et al., 2014), this allows to reach a
saturated state which takes the form of steadily drifting convective
olumns. This quasi-stationarity allows to benchmark well-defined in-
egrated diagnostics such as the total kinetic energy 𝐸𝐾 or the Nusselt

number 𝑁 𝑢 defined by (15) and (17) respectively. Here we adopt 𝐸 =
10−3, 𝑅𝑎 = 1.8 × 105, 𝑃 𝑟 = 1, 𝑆 𝑡 = 1, 𝑇 = 0.25 for a radius ratio 𝜂 = 0.35.
For this parameter combination, the solid–liquid interface equilibrates

https://www.paraview.org
https://www.paraview.org
https://www.paraview.org
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Fig. 16. Snapshots of the benchmark configuration with 𝐸 = 10−3, 𝑅𝑎 = 1.8 × 105, 𝑃 𝑟 = 1, 𝑆 𝑡 = 1, 𝑇 = 0.25 and 𝑟𝑖∕𝑟𝑜 = 0.35 for a numerical simulation with 𝜖 = 10−3. (a) Radial
velocity 𝑢𝑟 in the equatorial plane. (b) Hammer projection of the melt radius 𝑟. The dashed line in panel (a) marks the location of the solid–liquid interface 𝑟(𝜗 = 𝜋∕2, 𝜑).
Fig. 17. (a) Comparison of the radial profiles of kinetic energy for the benchmark configuration with decreasing values of the Cahn number 𝜖. (b) Comparison of the azimuthal
average of the melt radius 𝜉 for decreasing values of 𝜖. (c) 𝐿2 relative errors (Eq. (40)) of several diagnostic quantities as a function of 𝜖.
around the mean radius 𝜉 ≈ 1.09, which yields the following effective
quantities: 𝐸eff ≈ 3.4 × 10−3, 𝑅𝑎eff ≈ 1.5 × 104 and 𝜂eff ≈ 0.5. For this
Ekman number and radius ratio, the first unstable mode that becomes
linearly unstable in the equivalent monophasic convection problem
features an azimuthal wavenumber 𝑚 = 5 and a critical Rayleigh
number 𝑅𝑎𝑐 = 1.322 × 104 (Barik et al., 2023). This is closely followed
by the 𝑚 = 6 mode which has 𝑅𝑎𝑐 = 1.341 × 104. In order to define a
reproducible reference case, we hence initiate all the numerical models
using a thermal perturbation with a fivefold azimuthal symmetry.

Fig. 16 shows a snapshot of the radial velocity (panel a) and the
solid–liquid interface (panel b) for a numerical simulation with 𝜖 =
10−3. The solution takes the form of convective columns confined in
the lower half of the fluid domain. The interface features a fivefold
symmetry corrugation outside the effective tangent cylinder. Due to
the localised convective columns, the ice thickness is thinner near the
equator than the poles.

Fig. 17 illustrates the convergence of the phase field method for this
benchmark case when decreasing the Cahn number 𝜖. We recall that the
phase-field formulation converges towards the original Stefan problem
as 𝜖 vanishes. Panel (a) shows radial profiles of the kinetic energy,
while panel (b) shows the latitudinal profile of the axisymmetric melt
radius 𝜉. On decreasing 𝜖, the solid–liquid transition steepens, which
goes along with a gradual increase of the kinetic energy content and
an outward shift of the interface. Both diagnostics are suggestive of
a gradual convergence towards an asymptotic solution as 𝜖 → 0. To
examine this convergence in a more quantitative way, we compute in
Fig. 17(c) the 𝐿2 relative error between a given phase field model and
the reference solution, here defined by the simulation with the lowest
15 
value of 𝜖 = 7 × 10−4. We consider several diagnostics, either based on
mean radial profiles or mean latitudinal profiles:

‖𝑓‖𝐿2 ,𝑟 =
⎛

⎜

⎜

⎝

∫ 𝑟𝑜
𝑟𝑖

[

𝑓 (𝑟) − 𝑓ref(𝑟)
]2 𝑟2d𝑟

∫ 𝑟𝑜
𝑟𝑖

𝑓 2
refd𝑟

⎞

⎟

⎟

⎠

1∕2

,

‖𝑓‖𝐿2 ,𝜗 =

(

∫ 𝜋
0
[

𝑓 (𝜗) − 𝑓ref(𝜗)
]2 sin 𝜗d𝜗

∫ 𝜋
0 𝑓 2

ref sin 𝜗d𝜗

)1∕2

,

(40)

where 𝑓ref in the above equations correspond to the reference solution.
All diagnostics exhibit a similar trend with a slow convergence close to
first order for the largest values of 𝜖 and a gradual increase towards
the second order for 𝜖 ≈ 10−3. We note that a similar transition
from first to second order convergence has been observed in Favier
et al. (2019). The convergence of our phase field model is therefore
more complex than the second order reported by Hester et al. (2020).
In addition to the known influence of the penalty coefficient 𝜏𝑝 on
the convergence rate (Hester et al., 2021b), it is very likely that the
influence of rotation, which was not considered in Hester et al. (2020),
modifies the convergence behaviour of the phase field formulation.

To ease the future comparison of phase field models in spherical
geometry, Table 1 lists the values of several integrated diagnostics for
the benchmark configuration (𝜉, 𝐸𝐾 and 𝑁 𝑢) along with the temporal
and spatial resolution employed to ensure an appropriate convergence
of the models.

Appendix C. Table of results

lists the input dimensionless numbers, the main global diagnostics
as well as the numerical parameters of all the direct numerical simu-
lations considered in this study. All simulations have been computed
using 𝜂 = 𝑟 ∕𝑟 = 0.8, 𝑃 𝑟 = 1 and 𝑆 𝑡 = 1.
𝑖 𝑜
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Table 1
Table of results of the benchmark configuration. All the simulations have been conducted using the BT
mapping with 𝛼1 = 10, the third order SBDF3 time scheme and a penalty coefficient 𝜏𝑝 = 0.6.

𝜖 𝜉 𝐸𝐾 𝑁 𝑢 𝛿 𝑡 (𝑁𝑅 ,𝓁max)

7 × 10−3 1.063 11.93 1.112 8 × 10−6 (161, 213)
5 × 10−3 1.068 13.04 1.111 4 × 10−6 (161, 213)
4 × 10−3 1.072 14.25 1.116 10−6 (193, 213)
3 × 10−3 1.076 15.86 1.123 8 × 10−7 (257, 213)
2.5 × 10−3 1.078 16.81 1.127 4 × 10−7 (257, 213)
2 × 10−3 1.081 17.82 1.132 3 × 10−7 (257, 213)
1.5 × 10−3 1.083 18.94 1.138 2 × 10−7 (321, 320)
10−3 1.085 20.09 1.144 10−7 (385, 426)
7 × 10−4 1.087 20.77 1.147 10−7 (513, 533)
Table 2
Table of results. All the simulations have been computed with a phase field parameter 𝑎 = 1.
𝑇 𝜉 𝐸eff 𝑅𝑎eff 𝑅𝑒 𝑁 𝑢eff 𝓁𝑈 𝓁𝜉 𝜖 𝜏𝑝 (𝑁𝑅 ,𝓁max) (Map, 𝛼1 , 𝛼2)
𝐸 = 10−3 , 𝑅𝑎 = 3 × 106
0.00 – 10−3 3 × 106 297.3 9.54 12 – – – (65, 426) (GL,–,–)
0.44 4.87 1.325 × 10−3 1.073 × 106 170.9 6.66 14 13 2 × 10−3 0.40 (193, 426) (JVH, 20, 0.73)
– – 1.324 × 10−3 1.072 × 106 174.8 6.92 14 – – – (65, 426) (GL,–,–)
0.49 4.83 1.455 × 10−3 8.416 × 105 147.0 5.94 16 15 3 × 10−3 0.20 (193, 341) (JVH, 5, 0.64)
– – 1.455 × 10−3 8.416 × 105 154.6 6.44 16 – – – (65, 341) (GL,–,–)
0.69 4.58 2.972 × 10−3 1.663 × 105 66.9 3.88 18 18 3 × 10−3 0.40 (257, 213) (K TE, 0.99,−)
– – 2.972 × 10−3 1.663 × 105 68.4 4.03 21 – – – (65, 213) (GL,–,–)

𝐸 = 10−3 , 𝑅𝑎 = 107
0.00 – 10−3 107 559.9 14.39 9 – – – (97, 426) (GL,–,–)
0.46 4.90 1.241 × 10−3 3.825 × 106 324.0 9.48 12 11 5 × 10−3 0.20 (97, 213) (JVH, 20, 0.79)
– – 1.241 × 10−3 3.810 × 106 350.9 10.80 12 – – – (65, 341) (GL,–,–)
0.60 4.82 1.502 × 10−3 2.094 × 106 254.5 8.48 12 11 3 × 10−3 0.40 (129, 394) (JVH, 10, 0.62)
– – 1.506 × 10−3 2.084 × 106 263.2 9.14 13 – – – (65, 256) (GL,–,–)
0.69 4.71 1.993 × 10−3 1.037 × 106 181.0 6.90 14 13 3 × 10−3 0.40 (193, 341) (JVH, 7, 0.43)
– – 1.993 × 10−3 1.037 × 106 187.9 7.44 13 – – – (65, 256) (GL,–,–)

𝐸 = 10−3 , 𝑅𝑎 = 3 × 107
0.00 – 10−3 3 × 107 998.4 20.59 7 – – – (97, 512) (GL,–,–)
0.40 4.95 1.117 × 10−3 1.508 × 107 673.9 14.96 8 7 3 × 10−3 0.25 (257, 341) (JVH, 20, 0.894)
– – 1.117 × 10−3 1.508 × 107 725.9 17.46 8 – – – (65, 341) (GL,–,–)
0.45 4.93 1.150 × 10−3 1.321 × 107 630.0 14.34 8 8 3 × 10−3 0.25 (257, 341) (JVH, 10, 0.79)
– – 1.150 × 10−3 1.321 × 107 678.6 16.70 8 – – – (65, 341) (GL,–,–)
0.50 4.92 1.194 × 10−3 1.130 × 107 584.4 13.64 9 9 3 × 10−3 0.25 (257, 512) (JVH, 20, 0.78)
– – 1.195 × 10−3 1.129 × 107 626.9 15.84 8 – – – (65, 341) (GL,–,–)
0.55 4.89 1.255 × 10−3 9.400 × 106 533.6 12.88 9 10 3 × 10−3 0.25 (257, 341) (JVH, 10, 0.7)
– – 1.255 × 10−3 9.399 × 106 571.9 14.89 8 – – – (65, 341) (GL,–,–)
0.60 4.86 1.338 × 10−3 7.543 × 106 478.1 12.04 10 10 3 × 10−3 0.25 (257, 341) (JVH, 10, 0.62)
– – 1.338 × 10−3 7.543 × 106 513.2 13.88 9 – – – (65, 341) (GL,–,–)
0.65 4.83 1.469 × 10−3 5.694 × 106 417.1 11.06 10 11 3 × 10−3 0.25 (257, 341) (JVH, 10, 0.55)
– – 1.469 × 10−3 5.694 × 106 447.3 12.73 10 – – – (65, 341) (GL,–,–)
0.69 4.79 1.604 × 10−3 4.384 × 106 371.2 10.63 11 14 3 × 10−3 0.40 (193, 426) (JVH, 5, 0.46)
– – 1.604 × 10−3 4.384 × 106 391.0 11.54 11 – – – (65, 512) (GL,–,–)
0.75 4.70 2.056 × 10−3 2.391 × 106 277.2 8.81 14 13 3 × 10−3 0.30 (193, 341) (JVH, 5, 0.23)
– – 2.056 × 10−3 2.391 × 106 294.1 9.82 12 – – – (65, 341) (GL,–,–)
0.80 4.57 3.041 × 10−3 1.035 × 106 187.3 6.86 14 13 3 × 10−3 0.25 (257, 341) (JVH, 5, 0.04)
– – 3.041 × 10−3 1.035 × 106 197.8 7.76 13 – – – (65, 341) (GL,–,–)

𝐸 = 3 × 10−4 , 𝑅𝑎 = 1.2 × 107
0.00 – 3 × 10−4 1.2 × 107 517.6 13.39 20 – – – (97, 426) (GL,–,–)
0.44 4.90 3.681 × 10−4 4.848 × 106 308.5 9.52 26 26 10−3 1.51 (193, 512) (JVH, 100, 0.837)
– – 3.681 × 10−4 4.848 × 106 322.2 10.08 25 – – – (65, 293) (GL,–,–)
0.49 4.88 3.908 × 10−4 4.015 × 106 275.2 8.78 27 26 3 × 10−3 0.30 (193, 341) (JVH, 50, 0.796)
– – 3.908 × 10−4 4.015 × 106 292.8 9.50 26 – – – (65, 293) (GL,–,–)
0.54 4.85 4.187 × 10−4 3.245 × 106 246.3 8.25 28 27 3 × 10−3 0.30 (129, 341) (JVH, 50, 0.72)
– – 4.181 × 10−4 3.243 × 106 259.9 8.82 28 – – – (97, 341) (GL,–,–)
0.69 4.69 6.244 × 10−4 1.163 × 106 150.6 6.34 32 28 2 × 10−3 0.60 (257, 426) (BT, 10, 0.41)
– – 6.244 × 10−4 1.163 × 106 154.4 6.41 32 – – – (65, 341) (GL,–,–)
0.75 4.56 9.602 × 10−4 4.777 × 105 97.3 4.79 36 14 2 × 10−3 0.60 (257, 426) (BT, 10, 0.135)
– – 9.602 × 10−4 4.777 × 105 98.3 4.83 38 – – – (65, 341) (GL,–,–)
0.80 4.35 2.511 × 10−3 8.613 × 104 45.0 2.71 41 35 2 × 10−3 0.30 (385, 213) (BT, 5,−0.36)
– – 2.511 × 10−3 8.613 × 104 42.4 2.94 42 – – – (65, 341) (GL,–,–)

(continued on next page)
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Table 2 (continued).
𝑇 𝜉 𝐸eff 𝑅𝑎eff 𝑅𝑒 𝑁 𝑢eff 𝓁𝑈 𝓁𝜉 𝜖 𝜏𝑝 (𝑁𝑅 ,𝓁max) (Map, 𝛼1 , 𝛼2)
𝐸 = 3 × 10−5 , 𝑅𝑎 = 2.5 × 108
0.00 – 3 × 10−5 2.5 × 108 1968.3 28.87 28 – – – (129, 512) (GL,–,–)
0.50 4.93 3.432 × 10−5 1.008 × 108 1123.3 19.85 35 28 5 × 10−4 1.20 (385, 682) (JVH, 15, 0.82)
– – 3.432 × 10−5 1.008 × 108 1143.0 18.98 33 – – – (129, 512) (GL,–,–)
0.59 4.90 3.674 × 10−5 7.416 × 107 905.4 17.42 38 38 10−3 0.60 (257, 512) (JVH, 20, 0.79)
– – 3.674 × 10−5 7.416 × 107 952.0 16.86 35 – – – (97, 512) (GL,–,–)
0.69 4.83 4.344 × 10−5 4.297 × 107 669.8 13.98 41 30 10−3 0.40 (257, 512) (JVH, 20, 0.633)
– – 4.347 × 10−5 4.294 × 107 702.3 13.87 40 – – – (97, 512) (GL,–,–)
0.75 4.74 5.495 × 10−5 2.389 × 107 465.9 10.76 47 20 2 × 10−3 0.15 (385, 512) (K TE, 0.994,−)
– – 5.482 × 10−5 2.390 × 107 516.0 11.41 45 – – – (97, 512) (GL,–,–)
0.80 4.60 8.388 × 10−5 9.834 × 106 302.4 7.66 53 14 2 × 10−3 0.13 (257, 426) (JVH, 5, 0.24)
– – 8.394 × 10−5 9.824 × 106 324.6 8.40 55 – – – (97, 512) (GL,–,–)
t

Appendix D. Temperature diffusion in a quasi-spherical shell with
bottom topographic changes

We solve for the temperature diffusion ∇2𝑇 (𝑟, 𝜗, 𝜑) = 0 in a solid
with a spherical upper boundary located at 𝑟 = 𝑟𝑜 and a bottom bound-
ary which features topographic changes attributed to heat flux varia-
tions coming from the underlying fluid layer. In a time-averaged sense,
the latter boundary is described by the mean melt radius 𝑟(𝜗, 𝜑). We
assume fixed temperature at both boundaries with 𝑇 (𝑟 = 𝑟𝑜, 𝜗, 𝜑) = 0
and 𝑇 [𝑟 = 𝑟(𝜗, 𝜑), 𝜗, 𝜑] = 𝑇. Let us introduce the following spherical
harmonics expansions for the temperature and melt radius

𝑇 (𝑟, 𝜗, 𝜑) = 𝑇0(𝑟) +
+∞
∑

𝓁=1

𝓁
∑

𝑚=−𝓁
𝑇𝓁𝑚(𝑟)𝑌𝓁𝑚(𝜗, 𝜑),

𝑟(𝜗, 𝜑) = 𝜉 +
+∞
∑

𝓁=1

𝓁
∑

𝑚=−𝓁
𝜉𝓁𝑚𝑌𝓁𝑚(𝜗, 𝜑),

(41)

where 𝑌𝓁𝑚 is the spherical harmonic of degree 𝓁 and order 𝑚. Assuming
hat the topographic changes are small compared to the mean melt

radius 𝜉 (an approximation also considered by Kvorka and Čadek,
2024), the boundary condition at the solid–liquid interface, held at a
onstant temperature 𝑇, can be approximated by
𝑇 = 𝑇 (𝑟, 𝜗, 𝜑)

≈ 𝑇 (𝜉, 𝜗, 𝜑) +
∑

𝓁≠0,𝑚
𝜉𝓁𝑚𝑌𝓁𝑚(𝜗, 𝜑)

d𝑇0
d𝑟

(𝑟 = 𝜉) .

≈ 𝑇0(𝜉) +
∑

𝓁≠0,𝑚

[

𝑇𝓁𝑚(𝜉) + 𝜉𝓁𝑚
d𝑇0
d𝑟

(𝜉)
]

𝑌𝓁𝑚(𝜗, 𝜑) ,

(42)

where the quadratic terms that would involve products of spherical
harmonics expansions have been neglected (for a similar approach
pplied to magnetic diffusion, see Styczinski et al., 2022).

At the leading order, 𝑇0 is the solution of
1
𝑟2

d
d𝑟

(

𝑟2
d𝑇0
d𝑟

)

= 0, 𝑇0(𝑟 = 𝑟𝑜) = 0, 𝑇0(𝑟 = 𝜉) = 𝑇, (43)

which yields
d𝑇0
d𝑟

(𝑟 = 𝜉) = − 𝑇𝑟𝑜
ℎ𝑆𝜉

, ℎ𝑆 = 𝑟𝑜 − 𝜉, (44)

The first order terms are solution of

1
𝑟2

d
d𝑟

(

𝑟2
d𝑇𝓁𝑚
d𝑟

)

−
𝓁(𝓁 + 1)

𝑟2
𝑇𝓁𝑚 = 0, ∀(𝓁, 𝑚)

𝑇𝓁𝑚(𝑟 = 𝑟𝑜) = 0,
𝑇𝓁𝑚(𝑟 = 𝜉) = −𝜉𝓁𝑚

d𝑇𝑜
d𝑟

(𝑟 = 𝜉) .

(45)

We seek for solution of the form 𝑇𝓁𝑚(𝑟) = 𝛼 𝑟𝓁 + 𝛽 𝑟−𝓁−1. From the above
boundary conditions, one gets

𝛽 = −𝛼 𝑟2𝓁+1𝑜 , 𝛼 =
𝑇𝑟𝑜𝜉𝓁𝑚𝜉𝓁
(

2𝓁+1 2𝓁+1
) . (46)
ℎ𝑆 𝜉 − 𝑟𝑜

17 
This yields the following spherical harmonic coefficients of the temper-
ature field in the solid phase

𝑇𝓁𝑚(𝑟) =
𝑇𝑟𝑜
ℎ𝑆

𝜉𝓁𝑚𝜉𝓁
𝜉2𝓁+1 − 𝑟2𝓁+1𝑜

(

𝑟𝓁 −
𝑟2𝓁+1𝑜

𝑟𝓁+1

)

, ∀(𝓁, 𝑚) . (47)

From this expression, one can compute the temperature gradient along
he solidus, again neglecting the quadratic terms. Introducing

𝜕(𝑟, 𝜗, 𝜑) =
𝜕𝑇
𝜕 𝑟 (𝑟, 𝜗, 𝜑) − d𝑇0

dr
(𝜉)

d𝑇0
dr

(𝜉)
, (48)

one gets

𝜕 ≈
∑

𝓁≠0,𝑚

𝜉𝓁𝑚
𝜉

𝓁 − 1 + (𝓁 + 2)𝜂2𝓁+1𝑆

1 − 𝜂2𝓁+1𝑆

𝑌𝓁𝑚(𝜗, 𝜑) , (49)

where 𝜂𝑆 ≡ 𝜉∕𝑟𝑜 is the radius ratio of the solidus.

Data availability

Data will be made available on request.
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