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Insurance Microeconomics: Problems and Solutions

Pierre Picard∗

12 February 2025

Abstract

This paper brings together problems in insurance microeconomics that can be used

in an intermediate level course. It starts with insurance demand and optimal insurance

contracts, including coinsurance, straight deductible contracts and umbrella policy. The

effects of a background risk and moral hazard on optimal insurance coverage are the

subject of specific problems. Ex post moral hazard in health insurance, self-insurance

and parametric insurance are also analyzed. Detailed solutions are provided.

∗CREST-Ecole Polytechnique; Email : pierre.picard@polytechnique.edu.
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1 Insurance demand - 1

1.1 Questions

Consider an individual with initial wealth w0 = 40. He may have an accident with probability

q = 1/2 and loss L = 20. He maximizes the expected utility of his final wealth wf , with a

von Neumann—Morgenstern utility function

U (wf ) = ln (wf )

This individual may take out an insurance contract with premium P and indemnity I paid

in the case of an accident.

Question 1

Consider the lottery on final wealth, where the individual has no insurance, that is

wf =

 40 with probability 1/2

20 with probability 1/2
.

Compute the certainty equivalent (CE) and the risk premium (RP) of the lottery. What is

the maximum insurance premium that the individual would accept to pay for a full coverage

policy (that is I = 20) if the alternative is not taking any insurance?

Question 2

In the (P, I) plane, isoutility curves correspond to insurance contracts with the same

expected utility for the individual and isoprofit curves correspond to insurance contracts

with the same expected profit for the insurer. Compute the equation of an isoutility curve

with expected utility u0 and the equation of an isoprofit curve with expected profit Π0.

Compute the slope of expected utility curves when I = 20.

Question 3

Which contract maximizes the expected utility of the individual under the constraint

that the insurer’s expected profit is zero? Illustrate the result with a figure.
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Question 4

The insurer incurs a fixed cost equal to 1 for each written contract. The expected profit

of a contract (P, I) is now

P − 1

2
I − 1.

What is the best contract for the individual under the constraint of zero expected profit?

Illustrate the result with a figure.

Question 5

Show that the individual prefers to take out the contract characterized at question 4

rather than not being insured.

Question 6

There is no fix cost but there is a variable cost : each unit paid to the policyholder costs

1 + 1
6 to the insurer. Hence the expected profit is now

P − 1

2
× 7

6
× I

Zero expected profit is thus equivalent to a proportional loading factor 1/6. What is the

best insurance contract for the individual under the constraint of zero expected profit?

Question 7

We still assume P = 7/12× I as in Question 6. Consider the two alternative situations

w0 = 60, L = 20 and w0 = 60, L = 30, with still q = 1/2 in both cases. Compare the

optimal contracts in these two cases to the optimal contract obtained at question 7.1

1This problem is drawn from Eléments de Microéconomie, 2. Exercices et Corrigés, by Bruno Julien and

Pierre Picard, Montchrestien-Lextenso Editions, 2011.
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1.2 Solution

Question 1

We have
1

2
ln 40 +

1

2
ln 20 = lnCE,

which gives

ln(40× 20)1/2 = lnCE,

and thus

CE = 20
√

2 ' 28.3.

We deduce

RP = 30− 20
√

2 ' 1.7.

The maximum premium that the individual would accept for full coverage is

40− CE = 40− 20
√

2 ' 11.7.

Question 2

The equation of an isoutility curve is

1

2
ln(40− P ) +

1

2
ln(20− P + I) = u0,

which may be rewritten as

I = P +
exp(2u0)

40− P − 20.

The slope in the (P, I) plane is

dI

dP
= 1 +

exp(2u0)

(40− P )2
.

When I = 20, we have u0 = 40− P and thus

dI

dP
= 2.
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This is illustrated in Figure 1.

The equation of an isoprofit curve is

P − I

2
= Π0,

or

I = 2(P −Π0).

Question 3

The maximum expected utility is reached at a tangency point between an indifference

curve and the zero-profit line (see Figure 1), which gives

I = 20,

P = 10.

Thus full coverage is optimal in this case.

Question 4
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The equation of an isoprofit curve is now written as

P − I

2
− 1 = Π0,

or

I = 2(P − 1−Π0)

The zero profit line shifts downwards with unchanged slope (see Figure 2) and the optimal

contract still provide full coverage I = 20, with a higher premium P = 11.

Question 5

The expected utility is ln 29 and we have 29 > 20
√

2, which shows that the individuals

still prefers purchasing insurance than not being insured.

Question 6

Now the zero profit line is given by

I =
12

7
P.

It goes through the origin of the axis in the (P, I) plane, but with lower slope than in the

previous cases (see Figure 3).
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The expected utility of the policyholder is written as

Eu(wf ) =
1

2
ln(40− P ) +

1

2
ln(20− P + I)

=
1

2
ln(40− 7

12
I) +

1

2
ln(20 +

5

12
I).

The optimal coverage is such that

dEu
dI

= − 7

2(480− 7I)
+

5

2(240 + 5I)

=
720− 70I

2(480− 7I)(240 + 5I)
= 0,

which gives

I =
72

7
' 10.3.

Thus, because of the variable cost, the optimal insurance contract involves partial cover-

age (i.e. I < 20).

Question 7

When w0 = 60 we have

Eu =
1

2
ln(60− 7

12
I) +

1

2
ln(40 +

5

12
I),
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which gives

dEu
dI

= − 7

2(720− 7I)
+

5

2(480 + 5I)

=
240− 70I

2(720− 7I)(480 + 5I)
= 0,

and thus

I =
24

7
' 3.43.

Hence the individual purchase less insurance when his wealth is larger. This is because we

are in the DARA case: a larger wealth makes the individual less risk averse, hence a lower

insurance demand.

When w0 = 60 and L = 30, we have

Eu(wf ) =
1

2
ln(60− 7

12
I) +

1

2
ln(30 +

5

12
I),

which gives

dEu
dI

= − 7

2(720− 7I)
+

5

2(360 + 5I)

=
1080− 70I

2(720− 7I)(480 + 5I)
= 0,

and thus

I =
108

7
' 15.43.

Hence the optimal coverage increases with the risk exposure. We may check that when w0

and L are multiplied by 3/2 (increasing from 40 and 20 to 60 and 30 respectively) the optimal

coverage is also multiplied by 3/2 (it is increasing from 72/7 to 108/7). This proportionality

results from the choice of the utility function u(wf ) = lnwf , which corresponds to constant

relative risk aversion, but it may not hold for other (concave) utility function. However,

we may keep in mind that the optimal insurance coverage depends at the same time from

the initial wealth (in particular, we may consider as an acceptable assumption that a larger

wealth makes individuals less risk averse, as in the case considered here) and from the risk

exposure.
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2 Insurance demand - 2

2.1 Questions

A risk averse individual with initial wealth w0 faces an insurable risk with loss L incurred in

the case of an accident, with L < w0. An accident occurs with probability q. This individual

may purchase insurance with indemnity I received if an accident occurs, and premium P .

Let wf the final wealth of the individual. He maximizes the expected utility of final wealth

Eu(wf ) where u(.) is a von Neumann-Morgenstern utility function, with u′ > 0, u′′ < 0.

Question 1

In this question and the following, it is assumed that the individual displays constant

absolute risk aversion (CARA), with α > 0 the index of absolute risk aversion. Compute

the upper bound of the insurance premium P the individual would agree to pay for a full

coverage, i.e. for an insurance policy such that I = L, if the only alternative choice were to

remain uninsured.

Question 2

In this question and the following we assume P = (1 + σ)qI, where σ ≥ 0 is the loading

factor, with (1 + σ)q < 1. Compute the optimal insurance coverage I1. Comment on the

result.

Question 3

We assume u(wf ) = ln(wf ). Compute the optimal insurance coverage I2 and comment

on the result.

2.2 Solution

Question 1

We may write u(wf ) = − exp{−αwf}. If the individual does not purchase insurance, his

expected utility is written as

Eu = −(1− q) exp{−αw0} − q exp{−α(w0 − L)},
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while it is

− exp{−α(w0 − P )},

under full coverage with insurance premium P . The upper bound of P under which full

insurance prefered to no insurance is obtained by equalizing these two expressions, which

gives

P =
1

α
ln[1− q + q exp{αL}].

Question 2

The individual’s expected utility is written as

Eu = −(1− q) exp{−α(w0 − (1 + σ)qI)}

− q exp{−α(w0 − L− (1 + σ)qI + I)},

and maximizing this expected utility with respect to I yields

I1 = L− 1

α
ln

[
(1− q)(1 + σ)

1− q(1 + σ)

]
,

with I1 < L if σ > 0 and I1 = L if σ = 0. We observe that I1 is increasing with L and α (if

σ > 0) and it does not depend on w0: there is no wealth effect on insurance demand in the

case of a CARA utility function.

Question 3

Now, the expected utility is written as

Eu = (1− q) ln[w0 − (1 + σ)qI]

+ q ln[w0 − L− (1 + σ)qI + I],

and maximizing this expected utility with respect to I gives

I2 =
L(1 + σ)(1− q)− w0σ
(1 + σ)[1− (1 + σ)q]

.

As in the previous question, we have I2 < L if σ > 0 and I2 = L if σ = 0. However, I2

is decreasing with respect to w0: there is a wealth effect because we are in the DARA case

when u(wf ) = ln(wf ).
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3 Insurance demand - 3

3.1 Problem

An individual owns initial wealth w0 and he faces an accident risk with loss L and probability

q ∈ (0, 1). He may purchase an insurance policy with indemnity I in the case of an accident,

and premium P , such that P = (1 + σ)qI,where σ is the loading factor such that σ > 0 and

(1+σ)q < 1. His attitude toward risk corresponds to the expected utility criterion, with von

Neumann-Morgenstern utility function

u(wf ) = (2awf + b)1/2,

where wf is the individual’s final wealth and parameters a and b are such that a > 0, 0 ≤

b < 1.

Question 1

Let w1 and w2 denote the final wealth of the individual in the absence of accident, and

in the case of an accident, respectively, that is w1 = w0 − P and w2 = w0 − P − L + I.

Write the linear relationship between w1 and w2 that defines the feasible lotteries. You may

simplify by denoting α = (1 + σ)q ∈ (0, 1).

Question 2

What is the optimal lottery, i.e. the values of w1 and w2 that maximize the individual’s

expected utility. You may denote

K =

[
(1− α)q

α(1− q)

]2
∈ (0, 1).

Deduce the values of P and I that define the optimal insurance contract. What is the limit

of I and P when σ goes to 0 ?

Question 3

What is the change in the optimal insurance indemnity when initial wealth w0 is in-

creasing, all other parameters being unchanged. Comment on the result. Answer the same

question when L is increasing.
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Question 4

We now consider a population of individuals with attitude toward risk characterized by

the same utility function as above. However, they do not own the same initial wealth w0

and their losses in the case of an accident are different. We assume that the loss is related

to initial wealth through the following equation

L = βw0 + L0,

with β > 0 and L0 ≥ 0. Hence, the larger the initial wealth, the larger the risk exposure.

Under which condition does insurance demand (measured through the optimal indemnity)

increase when initial wealth increase. Under which condition, is it proportional to initial

wealth.

3.2 Solution

Question 1

Straightforward calculation yields

(1− α)w1 + αw2 = w0 − αL,

which defines the set of feasible lotteries.

Question 2

Maximizing the expected utility

(1− q)u(w1) + qu(w2)

under the constraint defined at question 1 yields

(1− q)u′(w1)
qu′(w2)

=
1− α
α

,

which is obtained either through the Lagrange multiplier method, or directly from the equal-

ity between the marginal rate of substitution and the slope of the feasible lottery line. Using

the definition of the utility function, we deduce:
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w1 =
2a(w0 − αL) + αb(1−K)

2a[1− α(1−K)]
,

w2 = Kw1 −
b(1−K)

2a
,

and thus

P = w0 − w1

=
α[2aL− b(1−K)]− 2aαw0(1−K)

2a[1− α(1−K)]
.

Consequently, we have

I = w0 − w1 + L

= L− (1−K)[b+ 2a(w0 − αL)]

2a[1− α(1−K)]
,

with I < L when σ > 0. Since K → 1 and α → q when σ → 0, we deduce that I → L and

P → qL when σ → 0. In other words, there is partial coverage and the optimal contract

tends toward full coverage at actuarial price when the loading factor σ goes to zero.

Question 3

We observe that the optimal coverage I obtained at question 2 is decreasing with respect

to w0, which results from the fact that the individual displays DARA preferences, which can

be easily verified. Furthermore, I is increasing with respect to L: the larger the loss in the

case of an accident, the larger the optimal insurance indemnity.

Question 4

If L = βw0+L0, then w0 is increasing with respect to w0 if αβ > 1 and I is proportional

to w0 if L0 = 0, i.e. if the loss is proportinal to initial wealth, and b = 0, which corresponds

to the case of an index of relative risk aversion which is constant and equal to 1/2.
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4 Coinsurance

4.1 Problem

John and Paul have preferences that correspond to expected utility theory. John’s utility

function is

uJ (wf ) = ln (wf )

where wf denotes final wealth. John’s initial wealth is equal to 12. This initial wealth may

be reduced by a loss equal to 8, which occurs with probability 1/4. John can purchase a

coinsurance contract that reimburses proportion α ∈ [0, 1] of losses. Let α∗J be the optimal

value of α, i.e. the value of α that maximizes John’s expected utility of final wealth.

Question 1

What value of the insurance premium P should be paid by John if he chooses α = 1 and

the loading factor is σ = 0.2 ?

Question 2

Compute α∗J when σ = 0.2.

Question 3

Compute John’s expected utility for α = α∗J and compare this value with the expected

utility for α = 0 and α = 1.

Question 4

How does α∗J change when John’s initial wealth increases from 12 to 16 without change

in the risk exposure? Comment on this result.

Question 5

In this question, we assume that John’s utility function is written as

uJ (wf ) = − exp(−kwf ) avec k > 0.

Answer once again to Question 4 with this utility function. How does α∗J move when John’s

initial wealth increases from 12 to 16.
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Question 6

In this question John and Paul have the same utility function

uJ (wf ) = uP (wf ) = ln (wf )

but Paul’s initial wealth is 24 with a risk of loss equal to 16 with probability 1/4, while John

has an initial wealth 12 and a risk of loss equal to 8 with probability 1/4. Let α∗P be the

optimal value of α for Paul. Compare α∗J et α
∗
P .
2

4.2 Solution

Question 1

We have

P = 1.2× 1

4
× 8 = 2.4.

Question 2

The indemnity is 8α and the premium is equal to 2.4α when σ = 0.2. Hence, John’s

expected utility is witten as

EuJ (wf ) = E ln (wf )

=
1

4
ln(12− 8− 2.4α+ 8α) +

3

4
ln(12− 2.4α)

=
1

4
ln(4 + 5.6α) +

3

4
ln(12− 2.4α).

Maximizing EuJ (wf ) w.r.t. α yields

α∗J =
5

7
' 0.714.

Question 3
2This is inspired from a similar problem in Economic and Financial Decisions under Risk, by L. Eeckhoudt,

C. Gollier and H. Schlesinger, 2005, Princeton University Press.
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We have

EuJ (wf )|α=α∗J
=

1

4
ln(4 +

5.6× 5

7
) +

3

4
ln(12− 2.4× 5

7
)

=
1

4
ln(8) +

3

4
ln(

72

7
) ' 2.268,

EuJ (wf )|α=0 =
1

4
ln(4) +

3

4
ln(12) ' 2.210,

EuJ (wf )|α=1 = ln(12− 2.4) = ln(9.6) ' 2.262,

and thus

EuJ (wf )|α=0 < EuJ (wf )|α=1 < EuJ (wf )|α=α∗J
.

Hence, the individual would be in a better situation with full insurance than without insur-

ance, but partial insurance with coinsurance coeffi cient α∗J is the optimal choice.

Question 4

When initial wealth is equal ro 16, we have

EuJ (wf ) =
1

4
ln(8 + 5.6α) +

3

4
ln(16− 2.4α),

and maximizing EuJ (wf ) in that case yields

α∗J =
100

168
' 0.595.

Hence, John’s insurance demand decreases when his initial wealth increases. We are in the

DARA case, and an increase in initial wealth makes John’s less risk averse, hence a decrease

in his optimal insurance demand.

Question 5

We have

EuJ (wf ) = −E exp(−kwf )

= −1

4
exp{−k(4 + 5.6α)} − 3

4
exp{−k(12− 2.4α)}.

Maximizing EuJ (wf ) w.r.t. α gives

α∗J = 1− 1

8k
ln(

9

7
).

16



One may easily check that this optimal coinsurance rate is unchanged when the initial wealth

is 16 instead of 12. There is no wealth effect on insurance demand because we are in the

CARA case. The larger k (which is the index of absolute risk aversion), the larger α∗J , and

α∗J → 1 when k →∞.

Question 6

In the case of Paul, we have

EuP (wf ) =
1

4
ln(24− 16− 4.8α+ 16α) +

3

4
ln(24− 4.8α)

=
1

4
ln(4 + 5.6α) +

3

4
ln(12− 2.4α) + ln(2),

which shows that α∗P = α∗J = 5/7. This is because John and Paul display constant relative

risk aversion, and the ratio loss/initial wealth is the same for John and Paul.
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5 Straight deductible vs coinsurance - 1

5.1 Questions

An individual may suffer an accident with probability q and in that case the monetary loss

is X. This loss is uniformly distributed on [0, a], with a > 0. The probability distribution of

X (conditionnally on the fact that an accident occurs) is thus f(x) = 1/a if x ∈ [0, a] and

f(x) = 0 otherwise. This individual is an expected utility maximizer and he is risk averse.

He may take out an insurance contract that specifies an indemnity I(x) as a function of

damages x in case of accident, with premium P given by

P = (1 + σ)qEI(X),

where σ is the loading factor (with σ > 0) and E is the expected value operator.

We first consider a coinsurance contract C1 with premium P1 and indemnity schedule

I1(x) such that

I1(x) = αx,

with 0 < α < 1. We also consider a straight deductible contract C2 with premium P2 and

indemnity schedule I2(x) such that

I2(x) = max{0, x−D)

where D is the deductible such that 0 < D < a.

Question 1

Compute the value of the deductible D = D∗ for which P1 = P2. Note that D∗ is a

function of α and a. Compute also the corresponding value of the premium, which will be

denoted by P ∗.
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Question 2

Let wf be the random final wealth of this individual, given by

wf = w0 − P −X + I(X)

where w0 denotes the initial wealth, and denote w = w0 − P . Determine and represent

on a figure the cumulative distribution function of wf for contract C1. This cumulative

distribution function will be denoted by F1(wf ). Note that F1(wf ) has a discontinuity point.

Question 3

Determine and represent on a figure the cumulative distribution function of wf when

contract C2 with D = D∗ has been taken out by the individual. This cumulative distribution

function will be denoted by F2(wf ). Note that F2(wf ) has two discontinuity points.

Question 4

Show that the individual prefers contract C2 with D = D∗ to contract C1.

5.2 Solution

Question 1

We have P1 = P2 iff EI1(X) = EI2(X), with

EI1(X) =
∫ a
0 αx

dx

a
=
αa

2
,

EI2(X) =
∫ a
D(x−D)

dx

a
=

1

2a
(a−D)2.

This gives

D∗ = a(1−
√
α),

and

P ∗ = (1 + σ)q
αa

2
.

Question 2
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Using w = w0 − P gives wf = w − X + I(X). When I(X) = I1(X), we have wf =

w − (1 − α)X. Since X ∈ [0, a] and α ∈ (0, 1), we have wf ∈ [w − a(1 − α), w], and thus

F1(wf ) = 0 if wf < w− a(1−α) and F1(wf ) = 1 if wf ≥ w. If w− a(1−α) < wf < w, then

F1(wf ) is the probability of an accident with loss larger or equal to (w − wf )/(1 − α), and

thus in that case

F1(wf ) = q
∫ a
w−wf
1−α

dx

a

= q

[
1− w − wf

a(1− α)

]
.

Hence F1(wf ) is discontinuous at wf = w.

Question 3

We still denote w = w0−P and we have wf = w−X+max{0, X−D) when I(X) = I2(X).

In that case, we have wf ∈ [w −D,w], and thus F2(wf ) = 0 if wf < w −D and F2(wf ) = 1

if wf ≥ w.

We have wf = w − D when there is an accident with loss X larger or equal to D, and

thus

F2(w −D) = q
∫ a
D

dx

a
= q

a−D
a

.

When wf ∈ (w −D,w) there is an accident with loss X = w − wf and thus

F2(wf ) = Pr(X ≥ w − wf )

= q
∫ a
w−wf

dx

a
= q

a− w + wf
a

.
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Hence F2(wf ) is discontinuous at wf = w −D and wf = w.

In the figure, function F2(wf ) is represented when D = D∗ = a(1 −
√
α) and thus

w = w0 − P ∗.

Question 4

If D = D∗ and w = w0 − P ∗, then F1(wf ) ≥ F2(wf ) if wf ≤ w − a(1 −
√
α) and

F1(wf ) < F2(wf ) if wf ≥ w − a(1 −
√
α). Furthermore, dashed areas A and B are both

equal to aq(
√
α− α)2/2(1− α) in that case. Consequently, we have

∫ t
−∞[F1(wf )− F2(wf )]dwf ≥ 0 for all t,∫ t
−∞[F1(wf )− F2(wf )]dwf = 0 if t ≥ w.

Hence, F1 is more risky than F2 in the sense of Rothschild and Stiglitz, and thus the risk-

averse individual prefers insurance contract C2 with deductible D∗ to coinsurance contract

C1.
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6 Straight deductible vs coinsurance - 2

6.1 Problem

An individual with initial wealth w0 faces the risk of an accident with probability 3/4, and

in that case the loss X is equal to 20, 40 or 60 with equal probability 1/3. He is risk averse

with von Neumann-Morgenstern utility function u(wf ) such that u′ > 0 and u′′ < 0, where

wf denotes final wealth. His loss may be covered by an insurance contract that specifies

an indemnity I(X) and a premium P with loading 20%. We consider coinsurance contracts

where I(X) = αX and P = P1(α) with α ∈ [0, 1], and straight-deductible contracts where

I(X) = max{0, X −D} and P = P2(D) where D ∈ [0, 60] is the deductible. The individual

owns an initial wealth w0 and his final wealth is wf = w0 − P −X + I(X).

Question 1

Define functions P1(α) and P2(D).

Question 2

Let D∗(α) be the value of deductible D such that P1(α) = P2(D). Calculate D∗(α) for

α = 0.1, α = 0.2 and α = 0.5.

Question 3
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Consider the coinsurance contract with α = 0.5 and the straight deductible contract with

D = D∗(0.5), and denote w1f and w
2
f the random final wealth for these contracts, respectively.

Show that the individual prefers the straight-deductible policy to the coinsurance policy, by

using the fact that u(wf ) is a concave function.

6.2 Solution

Question 1

Straightforward calculations yield

P1(α) = 36α,

and

P2(D) =


36− 0.9D if D ∈ [∈ 0, 20],

30− 0.6D if D ∈ [20, 40],

18− 0.3D if D ∈ [40, 60].

Question 2

We obtain

D∗(0.1) = 48,

D∗(0.2) = 38,

D∗(0.5) = 20.

Obviously, the larger the coinsurance coeffi cient α, the lower the deductible D for which both

premiums are equal.

Question 3
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Using D∗(0.5) = 20 and P 1(0.5) = P 2(20) = 18 yields

Eu(w1f ) =
1

4
u(w0 − 18)

+
3

4
[
1

3
u(w0 − 28) +

1

3
u(w0 − 38) +

1

3
u(w0 − 48)]

<
1

4
u(w0 − 18)

+
3

4
u(w0 −

1

3
(28 + 38 + 48))

=
1

4
u(w0 − 18) +

3

4
u(w0 − 38)

= Eu(w2f ),

where the inequality follows from the concavity of function u(wf ).
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7 Umbrella policy

7.1 Problem

A firm owns two buildings. Each building has been valued at 40 and can be destroyed by fire

with probability 1/4. In case of a fire, the building is fully destroyed with no residual value.

Because these buildings are located far away from each other, the fire risks are independent.

The firm can purchase fire insurance at actuarial price (no loading). The firm’s managers

display risk aversion about the net value of the buildings W , defined as the sum of the

value of the buildings not destroyed by fire, minus the insurance premium plus the insurance

indemnity received in case of fire.

Question 1

The firm purchases a fire insurance coverage that pays the value of damages above a

deductible equal to 20 for each building that is destroyed by fire. In other words, for each

building, the insurer pays 20 in case of fire. This contract is called a policy with "deductible

per risk"(here each building corresponds to a risk). Compute the insurance premium of

the insurance policy with deductible per risk. Let P ∗ denote this premium. What is the

cumulative distribution function F1(W ) of the random variable W1 that corresponds to the

net value of the firm’s buildings under the deductible per risk policy?

Question 2

The insurer suggests an "umbrella policy" where the firm receives an indemnity equal to

the share of the aggregate loss (i.e., the total loss for the two buildings) over a deductible D.

We may assume that the most advantageous umbrella policy is such that 20 < D < 40. In

other words, if both buildings are destroyed by fire, the indemnity payment is 80−D and if

only one building is destroyed the indemnity is 40−D. Compute the value of the deductible

D∗ such that the umbrella policy induces the same premium P ∗ as the policy with deductible

per risk considered in question 1. What is the cumulative distribution function F2(W ) of the

random variable W2 that corresponds to the net value of the buildings under the umbrella

policy with deductible D∗.

Question 3
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Represent F1(W ) and F2(W ) in the same figure, and deduce the policy preferred by the

firm’s managers

7.2 Solution

Question 1

We have

P ∗ =
1

4
× 20 +

1

4
× 20 = 10.

There is no fire with probability 9/16, one fire with probability 6/16, and two fires with

probability 1/16, and thus

W1 =


70 with probability 9/16,

50 with probability 6/16,

30 with probability 1/16,

which gives

F1(W ) =



0 if W < 30,

1/16 if 30 ≤W < 50,

7/16 if 50 ≤W < 70,

1 if W ≥ 70.

Question 2

When 20 < D < 40, the insurance premium of the umbrella policy is

P =
6

16
(40−D) +

1

16
(80−D),

and using P = P ∗ = 10 gives D = D∗ = 160/7 ' 22.86.

We have W1 = 70 if no fire occurs and W2 = 70 − (160/7) = 330/7 ' 47.14 if there is

one or two fires. Hence, we have

F2(W )


0 if W < 330/7,

1/16 if 330/7 ≤W < 70,

1 if W ≥ 70.
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Question 3

When D = D∗ and P = P ∗, we have F1(W ) ≥ F2(W ) if W ≤ 330/7) and F1(W ) <

F2(W ) if W ≥ 330/7. Furthermore, dashed areas A and B are both equal to 15/14. Conse-

quently, we have

∫ t
−∞[F1(W )− F2(W )]dW ≥ 0 for all t,∫ t
−∞[F1(W )− F2(W )]dW = 0 if t ≥ 70.

Hence, F1 is more risky than F2 in the sense of Rothschild and Stiglitz, and thus the risk-

averse manager prefers the umbrella policy with deductible D∗ = 160/7 to the policy with

deductible per risk equal to 20.
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8 Background risk

8.1 Problem

An individual owns a random initial wealth W defined by

W = w0 + ε with probability 1/2,

W = w0 − ε with probability 1/2,

where ε and w0 are parameters such that 0 ≤ ε < 1 ≤ w0. The individual also receives a

random income ỹ ≥ 0. W and ỹ are independent random variables. Thus, the final wealth

Wf is

Wf = w0 + ε+ ỹ with probability 1/2,

Wf = w0 − ε+ ỹ with probability 1/2.

The individual is an expected-utility maximizer with von Neumann-Morgenstern utility func-

tion

u (Wf ) = ln (Wf ) .

Let

x̃ = w0 + ỹ

and denote

v (x) =
1

2
u (x+ ε) +

1

2
u (x− ε) .

Hence, the individual’s expected utility is Ev(x̃).
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Question 1

Find function φ(.) such that

v (x) = φ (u (x)) for all x

Hint : use the change of variable y = ln(x). Check that φ′ > 0, φ′′ < 0 if ε > 0, φ′′ = 0 if

ε = 0.

Question 2

Income ỹ is such that

ỹ = y0 with probability 1− q,

ỹ = y0 − L with probability q.

y0 is a non-random income and L is a loss in the case of an accident that occurs with

probability q, with 0 < q < 1 and 0 < L < y0. The individual can cover the loss L through

an insurance contract with indemnity I and actuarial premium P = qI.What is the optimal

insurance coverage for this individual?

Question 3

We now assume P = (1 + σ) qI, where σ > 0 is a loading factor. Compare the optimal

insurance demand when ε > 0 and when ε = 0.

Question 4

Show that you could anticipate the answer to question 3 by using a result on the effect

of a background risk on risk aversion.

8.2 Solution

Question 1
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Let y = ln(x). This gives

v (x) =
1

2
ln (x+ ε) +

1

2
ln (x− ε)

=
1

2
ln (ey + ε) +

1

2
ln (ey − ε)

=
1

2
ln(e2y − ε2)

=
1

2
ln(e2u(x) − ε2)

Hence, we have

v (x) = φ (u (x)) ,

where function φ (.) is defined by

φ (y) =
1

2
ln(e2y − ε2),

with

φ′ (y) =
e2y

e2y − ε2 > 0,

φ′′ (y) = − 2e2yε2

(e2y − ε2)2 ,

and φ′′ < 0 if ε > 0 and φ′′ = 0 if ε = 0.

Question 2

The individual’s expected utility is written as

Eu(Wf ) = (1− q)v(w0 + y0 − P ) + qv(w0 + y0 − L− P + I).

This corresponds to the expected utility of an individual with utility function v(.) who

owns a non-random initial wealth w0 + y0 and may suffer a loss L with probability q, this

individual being covered with an insurance contract with indemnity I and premium P . We

have v′(x) = φ′ (u (x))u′(x) > 0 and v′′(x) = φ′′ (u (x))u′(x)2 + φ′ (u (x))u′′(x) < 0, and

thus this individual displays risk aversion. When P = qI, insurance is purchased at actuarial

price, and full insurance I = L is optimal for this individual.

Question 3
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When ε > 0 we have φ′′ < 0 and thus function v(.) is "more concave" than function u(.).

In other words, v(.) is a concave transformation of u(.). This implies that the individual

with utility function v(.) displays more risk aversion (i.e., has a larger index of absolute risk

aversion) than with utility function u(.), when ε > 0, while u(.) ≡ v(.) if ε = 0. We deduce

that the insurance demand (i.e., the optimal indemnity I when σ > 0) is larger when ε > 0

than when ε = 0.

Question 4

Random variable ±ε with equal probability is a zero-mean background risk, which is

uncorrelated with the insurable loss L. This background risk makes the individual more

risk averse w.r.t. the insurable loss when he is "risk vulnerable". The fact that the index

of absolute risk aversion A(w) = −u”(w)/u′(w) is a decreasing convex function of the indi-

vidual’s wealth is a suffi cient condition for risk vulnerability. This is the case here because

A(w) = 1/w when u(w) = ln(w).
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9 Health insurance

9.1 Questions

Consider an individual whose von Neumann-Morgenstern utility U depends on two variables:

final wealth R and health state measured by real variable H. The larger H, the better the

individual’s health state. We assume

U(R,H) = u(R) +H,

with

u(R) =
1− exp{−αR}

α
, α > 0.

We have R = w0 − T where w0 is the initial wealth and T stands for the net payment made

by the individual for health care. Let m denote his health care expenditures, i.e. what he

pays to health care providers (doctors, hospitals, etc...) independently from insurance-linked

money transfers. In what follows, we assume that care units are such that m ∈ [0, 1].

The health state of the individual is characterized by an insitial state h0, by an illness that

may occur and whose severity is defined by a random variable X with support [a, b], a > 0,

and by health care expenditures m, with

H = h0 −X(1−m).

Hence, the larger the health care expenditures, the lower the consequences of the illness on

the individual’s health state.

The insurance indemnity schedule specifies an indemnity schedule I(m) and an insurance

premium P . Hence, we have

T = m+ P − I(m),

R = w0 − T = w0 − P −m+ I(m)

When the severity of illness is equal to x, the individual chooses the health care expen-

ditures m̂(x) that maximize his utility. In other words, m̂(x) maximizes

u(w − P −m+ I(m)) + h0 − x(1−m)
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with respect to m ≥ 0, or equivalently m̂(x) maximizes

u(w − P −m+ I(m)) + xm,

with respect to m ≥ 0. His final wealth and final health care then become random variable:

R(X) = w − P − m̂(X) + I(m̂(X)),

H(X) = h0 −X[1− m̂(X)].

According to the terms of the insurance contract, health expenditures are reimbursed in

a given proportion θ with actuarial premium, which gives

I(m) = θm,

P = θE[m̂(X)].

,

We also assume that parameter a is such that m̂(a) > 0 and thus m̂(x) > 0 for all x in

[a, b] since m̂(x) will be an increasing function.

Question 1

Write the first-order otimality condition for m̂(x) to be an optimal choice for illness

severity x, and deduce R(x).

Question 2

Deduce m̂(x) when the insurance contract is characterized by θ and P , and deduce P .

Question 3

The expected utility is written as

E[u(R(X)] + h0 − E[X(1− m̂(X))].

which depends on θ ∈ [0, 1]. Rewrite this expected utility as V (z) by using the change of

variable z = 1/(1− θ) ∈ [1,+∞).

Question 4

What is the optimal value of θ? You may assume E[X ln(X)] − E[X]E[ln(X)] < E[X].

Comment on the result.
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9.2 Solution

Question 1

When the severity of his illness is equal to x, the individual chooses m by maximizing

his utility

− 1

α
exp{−α(w − (1− θ)m− P )}+ xm.

His optimal choice m̂(x) satisfies the following first-order optimality condition

−(1− θ) exp{−αR(x)}+ x = 0,

where R(x) = w − (1− θ)m̂(x)− P . This gives

R(x) =
1

α
ln

(
1− θ
x

)
.

Question 2

The result obtained at question 1 gives

m̂(x) =
α(w − P ) + ln

(
x
1−θ

)
α(1− θ) .

Using P = θE[m̂(X)] then yields

E[R(X)] = w − (1− θ)E[m̂(X)]− P

= w − P

θ

=
1

α
E
[
ln

(
1− θ
X

)]
,

which gives

P = θw +
θ

α
E
[
ln

(
X

1− θ

)]
.

Question 3

The results at question 2 allow us to write

m̂(x) =
w − P −R(x)

1− θ

= w +
1

α
ln

(
1

1− θ

)
+

ln(x)− θE[ln(x)]

α(1− θ)
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and the optimal indemnity schedule maximizes

− 1

α
E [exp{−αR(X)}] + E[Xm̂(X)]

= − E[X]

α(1− θ)

+

[
E[X]w +

E[X]

α
ln

(
1

1− θ

)
+
E[X ln(X)]− θE[X]E[ln(X)]

α(1− θ)

]
with respect to θ ∈ [0, 1].

Let us consider z = 1/(1− θ) as the choice variable. Hence z maximizes

V (z) ≡ E[X] ln(z) + z[∆− E[X]],

in [1,+∞),where

∆ = E[X ln(X)]− E[X]E[ln(X)] > 0.

.

Question 4

We have

V ′(z) = ∆− E[X] +
E[X]

z
,

V ′′(z) = −E[X]

z2
< 0.

and

V ′(1) = ∆ > 0

If ∆ < E[X] then V (z) reaches a maximum in [1,+∞) when

z =
E[X]

E[X]−∆
> 1,

which gives

θ =
∆

E[X]
∈ (0, 1).

We observe that the possibility for the policyholder to choose his health care expensitures

without being monitored by the insurer leads to partial insurance (i.e. θ < 1) although

insurance is purchased at actuarial price. Providing incentives to the policyholder in this
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situation of ex post moral hazard is the motive for such a partial coverage. We may also

note that the optimal coverage coeffi cient θ does not depend on the policyholder’s absolute

risk aversion (measured by parameter α) contrary to what is obtained in usual insurance

demand problems.
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10 Moral hazard

10.1 Questions

Consider a risk-averse individual with initial wealth equal to 40 and loss equal to 20 in

the case of an accident. Such an accident occurs with probability 0.25 or 0.5 according to

whether the individual is cautious or not, respectively. The von Neumann - Morgenstern

utility function of this individual is ln(wf ) − ln(β) if he is cautious, and ln(wf ) otherwise,

where wf denotes his final wealth and β is a parameter larger than 1, but close to 1 (we may,

for instance, assume β = 1.01). Hence, ln(β) may be viewed as the disutility of cautiousness

(because being cautious requires effort). An insurance contract is characterized by indemnity

I paid by the insurer in the case of an accident, and premium P paid by the policyholder to

the insurer. Hence, we have

wf = 40− P if there is no accident,

wf = 20− P + I in the case of an accident.

Question 1

Assume that the insurer can verify whether the individual is cautious or not. Under this

assumption, an insurance contract may be written as (I, P, a) where a = 1 if the insurer

requires that the policyholder is cautious, and a = 0 otherwise. What are the contracts with

zero expected profit for the insurer? Among these contracts, what is the best one for the

policyholder?

Question 2

In what follows, we assume that the insurer cannot verify whether the policyholder is

cautious or not. Hence, the insurance contract is just written as (I, P ) and the policyholder

is free either to be cautious (a = 1) or not (a = 0). What is the behaviour of the policyholder

when I = 20 ? Deduce the insurance premium P that provides zero expected profit to the

insurer for such a contract. What is the optimal choice of the individual when he has only

two options: either to choose this contract with I = 20 and zero expected profit for the

insurer, or remaining uninsured?
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Question 3

What is the behaviour of the policyholder and what is the expected profit of the insurer

when (I, P ) = (16, 4). What is the optimal choice of the individual when he may either

choose this partial insurance contract or remain uninsured?3

10.2 Solution

Question 1

The expected profit is P −I/2 if a = 0 and P −I/4 if a = 1. The best contract maximizes

the individual’s expected utility with zero expected profit (i.e., the insurance premium is the

actuarial premium), and we know that this optimal contract provides full coverage to the

policyholder. Hence, we have just to compare (I, P, a) = (20, 10, 0) to (I, P, a) = (20, 5, 1).

For these full-insurance contracts, we have

E ln(wf ) = ln(30) when a = 0,

E ln(wf ) = ln(35)− ln(β) when a = 1.

For β < 7/6 ' 1.17, the optimal choice is a = 1.

Question 2

When I = 20, i.e. when there is full coverage, we have

E ln(wf ) = ln(40− P ) when a = 0,

E ln(wf ) = ln(40− P )− ln(β) when a = 1,

and obviously the policyholder chooses a = 0. Hence, for such a contract the zero-expected

profit premium is P = I/2 = 10, with expected utility E ln(wf ) = ln(30).

If the individual remains uninsured, his expected utility is

1

2
ln(40) +

1

2
ln(20)

if he chooses a = 0, and
3

4
ln(40) +

1

4
ln(20)− ln(β)

3This problem is drawn from Eléments de Microéconomie, 2. Exercices et Corrigés, by Bruno Julien and

Pierre Picard, Montchrestien-Lextenso Editions, 2011.
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if he chooses a = 1. Choosing a = 1 is the optimal choice if

ln(β) <
1

4
ln(40)− 1

4
ln(20),

or equivalently if β4 < 2, which holds when β is close to 1. Hence, the individual chooses

a = 1 when he is uninsured, and his expected utility is

3

4
ln(40) +

1

4
ln(20)− ln(β) ' 3.516− ln(β).

Hence, he prefers to remain uninsured if

3.516− ln(β) > ln(30).

This inequality holds if β < 1.12, hence if β is close to 1.

Question 3

When (I, P ) = (16, 4), we have

E ln(wf ) =
1

2
ln(36) +

1

2
ln(32) if a = 0,

E ln(wf ) =
3

4
ln(36) +

1

4
ln(32)− ln(β) if a = 1,

and thus the policyholder chooses a = 1 if ln(β) < 1
4 ln(3632) or β < 1.03. Then, his expected

utility is equal to 3.554− ln(β), which is larger than 3.516− ln(β), the no-insurance expected

utility. The partial coverage I = 16 provides enough incentives to the policyholder for him

to choose to be cautious, and this is preferable to remaining uninsured.

39



11 Self-insurance

11.1 Problem

An individual with initial wealth w0 may suffer from an accident that occurs with probability

q with loss L. Market insurance is unavailable but the loss in case of an accident may be

reduced by expenditures made beforehand and called "self-insurance". Let x be the self-

insurance expenditures. Thus, should an accident occur, the loss is a function of x : it is

written as L(x) with x ≥ 0. We assume L(0) > 0, L′(x) ≤ 0 and L′′(x) ≥ 0. We also assume

L′(x) < −1 for x small enough, for otherwise the individual would never make self-insurance

expenditures.

The final wealth of the individual is denoted by wf with

wf = w0 − x with probability 1− q,

wf = w0 − x− L(x) with probability q.

The individual chooses his self-insurance expenditures to maximize the expected utility

of final wealth Eu(wf ), which is written as

Eu(wf ) = (1− q)u(w0 − x) + qu(w0 − x− L(x))

where u(.) is a von Neumann-Moregenstern utility function.

Question 1

In this question and the following, we assume :

L(x) = `0 − `1x if 0 ≤ x ≤ `0/`1,

L(x) = 0 if x ≥ `0/`1,

with `0 > 0 and 1 < `1 < 1/q, and we may restrict attention to the case where 0 ≤ x ≤ `0/`1

since there is no loss anymore when x ≥ `0/`1,

Compute the self-insurance expenditures x∗ if the individual is risk-neutral.

Question 2

Let x̂(α) be the self-insurance expenditures if the individual displays constant absolute

risk aversion α > 0. Give a necessary and suffi cient condition for x̂(α) > 0.
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Question 3

Compute x̂(α) when x̂(α) > 0.

In the two following questions, we compare the self-insurance expenditures x∗ under risk

neutrality and x̂ under risk aversion, without restricting ourselves neither to the case of

CARA preferences, nor to the particular L(x) function used in questions 1 to 3. We assume

L(x) > 0 and L′(x) < 0 for all x ≥ 0.

Question 4

Derive a necessary and suffi cient condition for x∗ > 0 and a condition that defines x∗ if

x∗ > 0. Note that probability q and function L(x) are used in these conditions.

Question 5

We here consider the case where x∗ > 0. When the individual displays risk aversion, let

g(x) = Eu(wf ) denote his expected utility as a function of x. Derive the sign of g′(x∗) when

x∗ > 0. Deduce a comparison between x∗ and x̂. Comment on the result.

11.2 Solution

Question 1

When the individual is risk-neutral, we may assume u(wf ) = wf w.l.o.g, and thus

Eu(wf ) = w0 − x− qL(x)

= w0 − x− q[`0 − `1x]

= w0 − q`0 − x(1− q`1),

which is decreasing w.r.t. x because q`1 < 1. This gives x∗ = 0. The individual abstains

from any self-insurance when he is risk-neutral.

Question 2

When the individual displays constant absolute risk aversion at level α, we may assume

u(wf ) = − exp{−αwf}, which gives

Eu(wf ) = −(1− q) exp{−α(w0 − x)} − q exp{−α(w0 − x− L(x))

= −(1− q) exp{−α(w0 − x)} − q exp{−α(w0 − x− `0 + `1x)}.
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Hence, we have

∂Eu(wf )

∂x
= −α(1− q) exp{−α(w0 − x)} − αq(1− `1) exp{−α(w0 − x− `0 + `1x)},

∂2Eu(wf )

∂x2
= α2(1− q) exp{−α(w0 − x)}+ α2q(1− `1)2 exp{−α(w0 − x− `0 + `1x)} < 0,

Thus Eu(wf ) is a concave function of x and x̂(α) > 0 iff

∂Eu(wf )

∂x |x=0
= −α(1− q) exp{−αw0} − αq(1− `1) exp{−α(w0 − `0)} > 0.

A short calculation shows that this condition is equivalent to

α >
1

`0
ln

(
1− q

q(`1 − 1)

)
= α0.

In other words, the individual makes some self-insurance expenses iff his degree of absolute

risk aversion is larger than threshold α0.

Question 3

When α > α0 the optimal level of self-insurance x̂(α) is given by

∂Eu(wf )

∂x
= −α(1− q) exp{−α(w0 − x)} − αq(1− `1) exp{−α(w0 − x− `0 + `1x)} = 0.

A short calculation then gives

x̂(α) =
`0
`1
− 1

α`1
ln

(
1− q

q(`1 − 1)

)
.

Using q`1 < 1 shows that x̂′(α) > 0: the larger the individual’s risk aversion, the larger his

optimal self-insurance expenditures.

Question 4

Using L′′(x) ≥ 0 shows that Eu(wf ) = w0 − x − qL(x) is a concave function of x. Its

maximum is reached at x∗ > 0 iff

∂Eu(wf )

∂x |x=0
= −1− qL′(0) > 0,

hence qL′(0) < 1 is a necessary and suffi cient condition for x∗ > 0. In that case, x∗ is given

by
∂Eu(wf )

∂x |x=x∗
= −1− qL′(x∗) = 0.
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Question 5

We have

g(x) = (1− q)u(w0 − x) + qu(w0 − x− L(x)),

and

g′(x) = −(1− q)u′(w0 − x)− qu′(w0 − x− L(x))[1 + L′(x)],

g′′(x) = (1− q)u′′(w0 − x) + qu′′(w0 − x− L(x))[1 + L′(x)]2

− qu′(w0 − x− L(x))L′′(x),

and thus g′′(x) < 0. Hence g(x) is a concave function. When x∗ > 0, we have L′(x∗) = −1/q

and

g′(x∗) = −(1− q)u′(w0 − x∗) + qu′(w0 − x∗ − L(x∗))[
1

q
− 1].

Using u′′ < 0 yields

u′(w0 − x∗ − L(x∗)) > u′(w0 − x∗),

which implies g′(x∗) > 0. Since function g(x) is concave and increasing at x = x∗, we may

deduce that its maximum is reached at x = x̂ > x∗. In other words, the self-insurance

expenditures are larger when the individual is risk- averse than when he is risk-neutral.
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12 Self-insurance and market insurance

We consider the case of a risk-averse who may protect himself against the risk of an accident

by self-insurance and by market insurance. We denote:

• w0 his initial wealth,

• q the probability of an accident, with 0 < q < 1.

• L(x) the monetary value of the damages incurred in the case of an accident, where

x ≥ 0 denotes self-insurance expenditures (paid whether an accident occurs or not),

with L′(x) ≤ 0, L′′(x) ≥ 0 and L′(0) < −1,

• I the insurance indemnity paid in the case of an accident,

• P the insurance premium.

Final wealth wf > 0 is denoted w1 if there is no accident, and w2 in the case of an

accident, with

w1 = w0 − P − x,

w2 = w0 − P − x− L(x) + I,

and the insurance premium P is related tothe indemnity I through

P = (1 + σ)qI,

where σ ≥ 0 denotes the loading factor. We assume (1 + σ)q < 1.

The individual’expected utility is written as

Eu(wf ) = (1− q)u(w1) + qu(w2).

= (1− q)u(w0 − P − x) + qu(w0 − P − x− L(x) + I),

where u(wf ) is the utility function, with u′ > 0, u′′ < 0.
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We denote s = I − P the net indemnity paid in the case of an accident. Hence, we have

P = (1 + σ)q(s+ P ),

and we may write

P = π(σ)s,

where we denote

π(σ) =
(1 + σ)q

1− (1 + σ)q
> 0 avec π′(σ) > 0.

with π(0) = q/(1− q) and π(σ) > q/(1− q) if σ > 0.

In what follows, the size of the insurance cover is measured by s and the insurance price

by π(σ). With these notations, we have

w1 = w0 − π(σ)s− x,

w2 = w0 − x− L(x) + s.

Question 1

In this question, and in question 3 as well, self-insurance expenditures are considered as

fixed: hence, x is a fixed parameter, with loss L(x) in the case of an accident. Write the

equation that defines the set of feasible lotteries, i.e. the vectors (w1, w2) that can be reached

through an insurance cover s ≥ 0. Write this equation in a simple way by denoting

ŵ(x, σ) = (w0 − x)[1 + π(σ)]− π(σ)L(x).

Question 2

From now on, we assume u(wf ) = ln(wf ). What is the optimal lottery (w1, w2), i.e. the

lottery which maximizes E ln(wf ) in the set of feasible lotteries characterized at question

1? Deduce the optimal insurance choice, i.e. the optimal net indemnity s. This optimal

indemnity may be written as a function of π(σ) and ŵ(x, σ), and we will denote it as

ŝ(x, σ). How can we interpret ŝ(x, 0) ?
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Question 3

We denote U(x) the individual’s expected utility when he chooses his optimal insurance

cover ŝ(x, σ) and his self-insurance expenditures are equal to x. Optimal self-insurance

expenditures maximize U(x). Show that these optimal expenditures maximize ŵ(x, σ) with

respect to x. What are these optimal expenditures when function L(x) is defined by

L(x) =
a

x+ b
,

where parameters a and b are such that a > b2 > 0? These optimal self-insurance expendi-

tures depend on σ and will be written as x∗(σ).

Question 4

How does an increase in σ affect x∗(σ) ? What is illustrated in this example?

12.1 Solution

Question 1

We obtain

s =
w0 − x− w1

π(σ)
= w2 − w0 + x+ L(x),

which gives

w1 + π(σ)w2 = ŵ(x, σ),

where

ŵ(x, σ) = (w0 − x)[1 + π(σ)]− π(σ)L(x).

Question 2

Maximizing

E(wf ) = (1− q) ln(w1) + q ln(w2),

with respect to w1 and w2, under constraint

w1 + π(σ)w2 = ŵ(x, σ),
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leads to the following first-order optimality conditions

1− q
w1

− λ = 0,

q

w2
− λπ(σ) = 0,

where λ is a Lagrange multiplier. Equalizing the two values of λ provided by these equations

yields
(1− q)π(σ)

w1
=

q

w2
.

We deduce

w1 = (1− q)ŵ(x, σ),

w2 =
qŵ(x, σ)

π(σ)
,

which gives

ŝ(x, σ) = w2 − w0 + x+ L(x)

=
qŵ(x, σ)

π(σ)
− w0 + x+ L(x).

We note that ŝ(x, 0) = (1 − q)L(x), which means that the optimal net indemnity is equal

to the difference between the losses L(x) and the actuarial insurance premium qL(x), when

σ = 0. In other words, full coverage is optimal when insurance is purchased at actuarial

price.

Question 3

We obtain

U(x) = (1− q) ln[(1− q)ŵ(x, σ)] + q ln (qŵ(x, σ)/π(σ))

= ln (ŵ(x, σ)) + (1− q) ln(1− q) + q ln (q/π(σ)) .

Hence, maximizing U(x) is equivalent to maximizing ŵ(x, σ). When L(x) = a/(x + b), we

have

ŵ(x, σ) = (w0 − x)[1 + π(σ)]− π(σ)
a

x+ b
.

Optimal self-insurance is such that

∂ŵ(x, σ)

∂x
= −[1 + π(σ)] + aπ(σ)(x+ b)−2 = 0,
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which gives

x∗(σ) =

(
aπ(σ)

1 + π(σ)

)1/2
− b.

Question 4

We have

x∗′(σ) =
a

2
π(σ)−1/2[1 + π(σ)]−3/2π′(σ) > 0.

Hence, in this setting, self-insurance and market insurance are substitutable: an increase in

the insurance price (associated with an increase in the loading factor) leads the individual

to increase his self-insurance expenditures.
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13 Parametric insurance

13.1 Problem

A farmer owns an initial wealth w0, which includes the monetary value of its crop in the

absence of any weather hazard (hail, storm...). These hazards are called "accidents" below.

Such an accident occurs with probability q, and in that case the farmer’s crop is reduced by

an amount L, and his wealth then become w0 − L. The farmer displays constant absolute

risk aversion, with index of absolute risk aversion α > 0, and thus we may write his von

Neumann-Morgenstern utility function as u(wf ) = − exp(−αwf ), where wf is the farmer’s

final wealth.

Weather conditions in the region are characterized by index Y ∈ {0, 1} which is a random

variable correlated with the actual weather conditions of the farm, with Y = 1 in the case of

very unfavorable weather conditions and Y = 0 otherwise. We denote Z the random variable

defined by Z = L in the case of an accident (affecting the farm’s crop) and Z = 0, otherwise.

The joint probability distribution of Z and Y is defined inthe following table:

Z\Y 0 1

0 π00 π01 1− q

L π10 π11 q

1− p p

In this table, we denote π00 = P(Z = 0, Y = 0), π01 = P(Z = 0, Y = 1), etc..., with

π00 + π01 + π10 + π11 = 1, and with the marginal probability distributions in the last row

and the last column. In particular, the weather index takes the value 1with probability p.

We assume

P(Z = L | Y = 1) > P(Z = L | Y = 0),

which means that the crop is affected by an accident more frequently when the weather index

is bad than when it is good. This holds if

π11
π01

>
π10
π00

.
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We denote w00 the farmer’s final wealth if Z = 0, Y = 0, w01 his final wealth if Z =

0, Y = 1, etc... Hence, his expected utility is

Eu(wf ) = π00u(w00) + π01u(w01) + π10u(w10) + π11u(w11).

Insurers offer parametric insurance contracts with indemnity I when Y = 1, whetever

the actual loss of the farmer. The insurance premium P is such that

P = (1 + σ)pI,

where p = π01 + π11 is the probability of an insurance payment made to the farmer, and

σ > 0 is the loading factor. Hence, we have

w00 = w0 − P,

w01 = w0 − P + I,

w10 = w0 − P − L,

w11 = w0 − P − L+ I.

Question 1

Compute the optimal parametric indemnity I.

Question 2

Comment on the effect of parameters α, σ, L and w on this optimal parametric insurance

when π01 = 0.

13.2 Solution

Question 1

Using P = (1+σ)pI allows us to write Eu(wf ) as a function of I only, and the first-order
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optimality condition is written as

∂Eu(wf )

∂I
= −π00α(1 + σ)p exp(−αw00)

− π01α[(1 + σ)p− 1] exp(−αw01)

− π10α(1 + σ)p exp(−αw10)

− π11α[(1 + σ)p− 1] exp(−αw11)

= 0.

This yields

− π00α(1 + σ)p− π01α[(1 + σ)p− 1] exp(−αI)

− π10α(1 + σ)p exp(αL)− π11α[(1 + σ)p− 1] exp(αL− αI)

= 0,

which gives

I =
1

α

{
ln

[
1− (1 + σ)p

(1 + σ)p

]
+ ln

[
π01 + π11 exp(αL)

π00 + π10 exp(αL)

]}
.

Question 2

If π01 = 0, then the farmer always incur a loss if the weather index is bad. He may also

incur a loss if the index is good because π10 > 0. We have

I =
1

α
ln

{
[1− (1 + σ)p] exp(αL

(1 + σ)[π00 + π10 exp(αL)]

}
.

Hence, the optimal parametric coverage I is decreasing w.r.t. σ and increasing w.r.t. L.

Note that π00 + π10 exp(αL) > π00 + π10 = 1 − p implies I < L even if σ = 0. There is no

effect of initial wealth w on this optimal coverage (which reflects the absence of welath effect

in the CARA case). The effect α on I is ambiguous: hence, a larger degree of risk aversion

does not necessarily mean a larger demand for parametric insurance.
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