

Review of conceptual and empirical approaches to characterize infiltration

Christelle Basset, Majdi Abou Najm, Rafael Angulo-Jaramillo, Vincenzo Bagarello, Behzad Ghanbarian, Simone Di Prima, Massimo Iovino, Laurent Lassabatère, Ryan Stewart

▶ To cite this version:

Christelle Basset, Majdi Abou Najm, Rafael Angulo-Jaramillo, Vincenzo Bagarello, Behzad Ghanbarian, et al.. Review of conceptual and empirical approaches to characterize infiltration. Vadose Zone Journal, 2025, 24 (1), pp.e20393. 10.1002/vzj2.20393 . hal-04945903

HAL Id: hal-04945903 https://hal.science/hal-04945903v1

Submitted on 13 Feb 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

INVITED REVIEW

Vadose Zone Journal 🛲 🖲

Review of conceptual and empirical approaches to characterize infiltration

Christelle Basset ¹ 💿 🕴 Majdi Abou Najm ¹ 💿 🕴 Rafael Angulo-Jaramillo ²	
Vincenzo Bagarello ³ Behzad Ghanbarian ^{4,5,6} Simone Di Prima ⁷	
Massimo Iovino ³ 💿 🕴 Laurent Lassabatère ² 💿 🕴 Ryan Stewart ⁸ 💿	

¹Department of Land, Air and Water Resources, University of California, Davis, California, USA

Accepted: 13 November 2024

²LEHNA UMR 5023, CNRS, ENTPE, Université Claude Bernard Lyon 1, Vaulx-en-Velin F-69518, France

³Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy

⁴Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas, USA

⁵Department of Civil Engineering, University of Texas at Arlington, Arlington, Texas, USA

⁶Division of Data Science, College of Science, University of Texas at Arlington, Arlington, Texas, USA

⁷Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, Potenza, Italy

⁸School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

Correspondence

Majdi Abou Najm, Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA. Email: mabounajm@ucdavis.edu

Assigned to Associate Editor Helen Dahlke.

Funding information

National Institute of Food and Agriculture, Grant/Award Number: W4188; The University of California–Davis, Agricultural Experiment Station

Abstract

Infiltration regulates the movement and storage of water at the soil-atmosphere interface and is, therefore, a key component of many related physical and biogeochemical processes. Numerous studies have examined infiltration over the past two centuries. These efforts have resulted in the development of numerous models that capture the effects of specific soil properties and initial and boundary conditions. This proliferation of models has advanced our collective ability to understand infiltration processes but has also made it challenging for researchers to select appropriate approaches for analyzing experimental infiltration data or for conducting basic research on soil parameters like saturated hydraulic conductivity or sorptivity. Here, we aimed to reduce this uncertainty by developing a comprehensive literature review of published infiltration models, including their underlying philosophies and evolution over the years. Through this effort, we compiled and examined 138 unique infiltration models. We grouped models into two major categories, empirical and conceptual, noting that boundaries between those two categories are at times debatable. After classifying and providing a full historical retrospective of these models, we examined specific model parameters and how their usage has changed

Karim Majdi Abou Najm inspired his father, his family and friends to ask the right questions and to be critical thinkers. Karim's journey ended on April 29, 2023, but his legacy continues. A first-friend to many, Karim found happiness in connecting people and in helping many friends realize their full potentials. As a brilliant computer science student, he enjoyed working on solutions for the betterment of humanity. The authors dedicate this work to his memory.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2025 The Author(s). Vadose Zone Journal published by Wiley Periodicals LLC on behalf of Soil Science Society of America.

with time. We also reviewed different methods applied to estimate infiltration parameters, as well as the challenges that arise when using such methods. Finally, we proposed a framework for identifying suitable models depending on field conditions, experimental plan, and data availability.

Plain Language Summary

Infiltration is the process of water movement in soils. Understanding infiltration is critical to our understanding of how nature functions, but infiltration is controlled by very complex phenomena. So to understand infiltration, we need to mathematically create models that simplify its complicated structure. Thinking of one soil aggregate as one large city with a complex road network can demonstrate how sophisticated the soil pore network is. As researchers tried to understand this complex process, wide range of concepts were developed over the past 200 years. Some are complex and try to use much information from the soil, while others try to simplify it and generalize things so we can estimate infiltration with simple formulas. This has led to the development of 138 different models, which we tried to categorize and explain in this paper. Our objective was to aid researchers in finding the right models for their application from this wide selection of models.

1 | INTRODUCTION

Water infiltration is one of the most important processes of the hydrologic cycle for assessing runoff, soil moisture, groundwater recharge, nutrients leaching, plant growth, and many other soil-related processes (Fodor et al., 2011; Singh, 2010; Zadeh et al., 2007). Because of its importance, infiltration has been widely studied for over two centuries (Ghorbani et al., 2009). This attention led to the development of numerous infiltration models, classified into two categories: conceptual and empirical models. Conceptual models are derived from fundamental and physical theories and typically account for soil properties and specific boundary and initial conditions, while empirical models are based on fitting experimentally measured data using defined mathematical functions (Assouline, 2013; Jacka et al., 2016).

Among the conceptual models, most equations were derived from Darcy's law and substantially influenced by approximating solutions and assumptions of Buckingham and Richardson–Richards. Although some researchers have questioned the validity of Buckingham's assumptions and Richardson–Richards' equations (Abou Najm et al., 2019; Beven, 2018; Germann, 2021; Hunt et al., 2013), several extensions and new applications of the Darcy-Buckingham–Richardson-Richards paradigm for saturated and unsaturated flow (hereafter referred to as Darcy-BRR and explained in depth in the following section) were developed as an attempt to estimate infiltration. For example, flow in infiltration models was mostly derived from an abstracted and often overly simplified soil pore structure of a bundle of cap-

illary tubes. Comparatively rare are advancements reporting progress in percolation theory, network models, and Stokes viscous approach (Beven, 2018; Germann, 2021; Hunt et al., 2013).

The abundance of developed equations motivated researchers to present reviews that investigate infiltration models. Some of these reviews were comprehensive summaries of conceptual and empirical equations (Barry et al., 2009; Clothier, 2001; Delleur, 2006; Kutilek and Nielsen, 1994; Raats et al., 2002). Others provided insight of the historical evolution of infiltration theory, including the classic solutions of the Richardson-Richards' equation (Assouline, 2013; Youngs, 1995). Building on these reviews (Assouline, 2013; Youngs, 1995), others have worked to identify models satisfactory for field applications. Typically, such models were fitted to measure infiltration data (e.g., cumulative infiltration vs. time of infiltration) for estimation of the parameters of fitted infiltration models. The ease and accuracy of estimated parameters were further assessed through evaluation techniques that identify the best fit infiltration models for different datasets (Fodor et al., 2011; Jacka et al., 2016; Bayabil et al., 2019; Nie et al., 2017b).

Most reviews on infiltration theory provided a comprehensive evaluation of the commonly used infiltration models developed over the past century, highlighting the seminal works of Green and Ampt (1911), Philip (1957a, 1957b), Parlange et al. (1982), Swartzendruber (1987b), and Haverkamp et al. (1990, 1994), along with key empirical equations by Kostiakov (1932), Horton (1940), Mezencev (1948), and Holtan (1961). These models are still extensively studied and

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licens

3 of 96

applied. However, in the last two decades, substantial efforts have been made on the abovementioned models, leading to theoretical improvements and a wider body of research on modeling infiltration. These advancements have ultimately led to a larger and more diverse set of infiltration models and to more open discussions on the validity and application of some of the dominant theoretical frameworks. To this end, it became challenging for researchers to select appropriate approach(es) for analyzing experimental infiltration data or for conducting basic research on soil parameters like saturated hydraulic conductivity or sorptivity. Therefore, a comprehensive and current review covering both past and recent model development is still needed.

Here, we present a comprehensive critical review that traces the development of conceptual and empirical models over the past two centuries through both historical and theoretical lenses. With this review, our objectives are to (1) build an inclusive historical retrospective of the evolution of the infiltration problem and its solutions, (2) highlight the diversity in form, origin, and theory among reviewed infiltration models, and (3) explore methods applied to estimate the basic model parameters, including saturated hydraulic conductivity and sorptivity. To this end, we aimed for models that provided theoretical advancements, novel frameworks, and unique empirical fits, and excluded papers that focused on iterative or incremental advancements of existing models, as well as papers that adapted these models to other uses (e.g., hydraulic characterization).

2 | UNDERLYING PHYSICS OF INFILTRATION PROCESSES

Water infiltrates because of two forces: capillarity and gravity (Buckingham, 1907). Absorption of water due to capillarity, also in some contexts referred to as sorptivity S (L $T^{-0.5}$), controls water movement at the early state of infiltration into dry soils; while the hydraulic conductivity K (L T^{-1}) dominates the infiltration process at steady state, which is mainly driven by gravity (Philip, 1957b). The hydraulic conductivity, K (L T^{-1}), varies rapidly and nonlinearly with matric head, ψ (L) (Richards, 1931). Integration of K (L T^{-1}) over a range of ψ (L) is defined as matric flux potential, φ (L² T⁻¹), which provides a useful approach to the infiltration problem in unsaturated soils (Raats, 1971). The relative importance of capillarity versus gravity during water infiltration in unsaturated soils is expressed by a scaling factor defined as the capillary length, λ_c (L) (Philip, 1985a). λ_c is equal to the inverse of a parameter α (L⁻¹) introduced by Gardner (1958) as a general description of soil textural and structural characteristics. α tends to be small in fine-textured soils with capillarity dominant, while large in coarse-textured soils where gravity is important. Typically, α

Core Ideas

- A total of 138 unique infiltration models were identified, spanning a wide range of theoretical and empirical boundaries.
- The proliferation of infiltration models created challenges for researchers in identifying which models to use.
- Extracting Ksat and sorptivity from infiltration data becomes a challenge with the increased number of models.
- Most of the developed infiltration models clustered theoretically around few early major milestones

is about 1 m⁻¹, and the range 0.1–5 m⁻¹ can be representative of the full moisture range in real soils (Philip, 1984a). Elrick and Reynolds (1992) suggested four values, that is, $\alpha = 36$, 12, 4, and 1 m⁻¹ for practical use of permeameters and infiltrometers in soils varying from coarse sands to compacted clays. The reader should note that the larger values (i.e., 12 and 36 m⁻¹) are for "sand fractions" and/or apply over small capillary ranges.

To determine water infiltration into soils, it is necessary to impose appropriate boundary conditions. Such boundaries may be classified as Dirichlet and Neumann boundary conditions.

- The Dirichlet boundary condition may be expressed in terms of pressure head or water content. Pressure head is typically controlled and can be constantly negative, equal to zero, constantly positive, or changing (typically falling from some positive value to some lesser positive value or zero) in a furrow, lake, or river.
- The Neumann boundary condition may be expressed in terms of water flux. This boundary condition specifies the rate at which water is entering or leaving the system, rather than the water content or pressure directly. It is typically found in sprinkling irrigation or rainfall-based measurements.

The boundary conditions may change from prescribed flux to prescribed head type conditions (and vice versa). For instance, when precipitation or irrigation rate q_0 exceeds infiltration capacity of the soil, ponding will occur. In this case, infiltration rate is no longer controlled by precipitation rate but instead by infiltration capacity of soil.

Furthermore, soil characteristics greatly affect water infiltration. Some soil characteristics of importance include:

- 1. Rigid versus deformable or shrink-swell soils
- 2. Isotropic versus anisotropic soils

- 3. The degree of heterogeneity of soils
- 4. Hydrophobicity
- 5. Presence of multi-porosity domains
- 6. Soil layering
- 7. Slope

Infiltration models are mostly designed to characterize infiltration into idealized soils, that is, rigid, homogeneous, isotropic, and non-hydrophobic. The cumulative infiltration curves, obtained by plotting the cumulative infiltration as function of time, reflect a characteristic concave shape demonstrating higher infiltration capacity at early stages that reaches a constant slope at steady state. However, real soils can have cumulative infiltration curves that exhibit convex, mixed, or non-standard shapes (e.g., Chen et al., 2020; Abou Najm et al., 2021; Pachepsky and Karahan, 2022).

Altogether, the physics underlying infiltration processes are highly complex. To select and apply appropriate model(s), it is important to understand how variables such as flow direction and dimensionality, driving forces, non-uniformities in drivers and media, and boundary conditions all interact. To guide the model selection process, we emphasized, in the first section of our review, the underlying physics of infiltration processes that encompass dimensions and directions, forces, processes, homogeneity versus heterogeneity and nonuniform flow drivers, as well as a brief discussion of common boundary conditions and dominant soil processes as could be inferred from field conditions and the shape of the cumulative infiltration curve. In the following sections, we provided a narrative of the history and evolution of major infiltration models, divided into (1) empirical models and (2) conceptual models divided as macro-scale depictions of flow in rigid versus deformable soils. Recently, modeling infiltration shifted from use of analytical to numerical methods, with the emergence of advanced computers.

3 | EVOLUTION OF THE BASIC FLOW MODELS FOR RIGID SOILS

We summarized basic and fundamental physical flow models used as the foundations for modeling infiltration in rigid (nonswelling) soils (Figure 1). Below, we present the equations that underpin most of the infiltration models reviewed in this paper.

The Navier–Stokes equation (Navier, 1823; Stokes, 1850) described laminar motion of incompressible fluids and could be used to describe fluids flowing through homogeneous and smooth surfaces in both horizontal and vertical directions:

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + \left(\vec{v}.\nabla\right)\vec{v}\right) = -\nabla P + \rho \vec{g} + \mu \nabla^2 \vec{v}$$
(1)

where v (L T⁻¹) is the velocity, $\frac{\partial \vec{v}}{\partial t}$ (L T⁻²) is the change of velocity with respect to time t (T), ∇P (M L⁻² T⁻²) is the pressure gradient, ρ (M L⁻³) is the fluid density, μ (M L⁻¹ T⁻¹) is the dynamic viscosity of the fluid, and g (L T⁻²) is the acceleration of gravity, and ∇ stands for the nabla or del operator, $\nabla = \frac{\partial}{\partial x} \vec{e_x} + \frac{\partial}{\partial y} \vec{e_y} + \frac{\partial}{\partial z} \vec{e_z}$. Based on Navier's work, Poiseuille (1844) derived a phys-

Based on Navier's work, Poiseuille (1844) derived a physical law, known as Hagen–Poiseuille equation, that describes the pressure drop, ΔP (M L⁻¹ T⁻²), in an incompressible and Newtonian fluid with laminar volumetric flow, Q (L³ T⁻¹), flowing through a cylindrical pipe of length l (L) and radius r(L):

$$Q = \frac{\pi \Delta P r^4}{8\mu l} \tag{2}$$

While the concept of infiltration was discussed and described in the literature before Darcy's work, Darcy (1856) formulated the first empirical quantitative description of flow through a saturated porous medium, known as **Darcy's law**, based on water infiltration experiments through sand beds, valid for both horizontal and vertical flow:

$$q = -K_{\rm s} \nabla h \tag{3}$$

where q (L T⁻¹) is the flux, K_s (L T⁻¹) is the saturated hydraulic conductivity, and ∇h (L L⁻¹) is the hydraulic gradient describing the difference in total hydraulic head h (L) between any two points within the porous medium.

A few decades after Darcy, Buckingham (1907) built on the earlier work of Lyman Briggs, his senior colleague at the U.S. Bureau of Soil, who introduced capillary flow due to capillary gradient. Buckingham's work resulted from deviations of the equilibrium between gravity and capillarity in unsaturated soils (Briggs, 1897). More about this development can be found in Germann (2021). Buckingham, who was unaware of the work of Darcy (Beven, 2018), extended Briggs' concepts and drew an analogy with Ohm's law and Fourier's law to define unsaturated water flow as a function of a gradient of attraction and a constant of proportionality, namely "capillary conductivity," based on two main assumptions:

- 1. The driving force for water flow in isothermal, rigid, unsaturated soil containing no solute membranes, and zero air pressure potential is the gradient between two points of the combination of matric ψ (L) and gravitational z (L) potentials, that is, $h = \psi + z$
- 2. The hydraulic conductivity of unsaturated soil is a function of water content θ (L³ L⁻³) or matric potential ψ (L).

Based on Buckingham's approach, vertical and 3D infiltration processes are generally considered to be in response to a combination of gravity and capillarity, and horizontal

FIGURE 1 Evolution of the basic flow models for rigid (i.e., non-swelling) soils. It is worth noting that nonuniform preferential flows were recognized long before the equilibrium concepts of Buckingham and Richardson–Richards (Brewer, 1960; Kubiena, 1938; Lawes et al., 1882; Schumacher, 1864). However, the nonuniform flow was not modeled until early 1980s.

infiltration is considered to be driven exclusively by capillarity. To this end, Buckingham's assumptions have become the fundamental "depictions of the underlying physics".

$$q = -K(\psi) \left(\nabla \psi + \mathbf{e}_z\right) = -K(\theta) \left(\nabla \psi + \mathbf{e}_z\right) \text{ vertical flow}$$
(4)

$$q = -K(\psi) \nabla \psi = -K(\theta) \nabla \psi$$
 horizontal flow (5)

where $\nabla \psi$ (L L⁻¹) is the matric hydraulic gradient, and $K(\psi)$ and $K(\theta)$ (L T⁻¹) are the unsaturated hydraulic conductivities as respective functions of ψ (L) and water content θ (L³ L⁻³), and e_z stands for the vertical axis. Equations (4) and/or (5) can be viewed as a generalization of Darcy's Law and can be referred to as the Buckingham–Darcy law.

In 1911, Green and Ampt modeled the capillary force resulting from the matric potential of unsaturated soils as a single-valued wetting front potential. Green and Ampt (1911) assumed a wetting front that goes downward at constant water content and, thus, constant matric potential ψ (L), as well as constant hydraulic conductivity K (L T⁻¹), since, in their conceptualization, water always moves within a saturated soil. The Green–Ampt (GA) model works best when a relatively sharp wetting front exists throughout the infiltration process. Such a distinct wetting front was adopted later by several infiltration models, such as those developed by Beven (1984), Li et al. (1976), Mein and Larson (1973), Selker et al. (1999a), Swartzendruber (2000), Selker and Assouline (2017), and Stewart (2019). The GA model has proven to be a useful framework for understanding and predicting infiltration.

Vadose Zone Journal 🟻

5 of 96

The next advancement, in theory, was to extend the sharp wetting front theory to nonsteady conditions, in which soil water content can change over time and space. Two different scientists (Richardson, 1922; Richards, 1931) independently developed similar solutions to this problem through a second-order convection-diffusion equation, conventionally known as Richards' equation (Equation 6 or 7). However, the resulting equation should rightly be called the **Richardson–Richards' equation**. Unfortunately, Richardson's work was barely noticed in the soil physics or hydrology literature, most likely because it was presented as part of a book on weather prediction (Raats & Knight, 2018).

As Richards (1931) attempted to extend Darcy– Buckingham work, he defined "the essential difference between flow through a porous medium which is saturated and flow through a medium which is unsaturated is that under the latter condition the pressure is determined by capillary forces and the conductivity depends on the moisture content of the medium" (Richards, 1931, p. 323). However, Richards constrained his derivation to low-pressure gradients and highlighted the need for different model approximations for high-pressure gradients: "For low pressure gradients it has been found by numerous investigators that this law (Darcy) is in exact agreement with experiment, and it is entirely analogous to the well-known law of Poiseuille for the flow of liquids through capillary tubes. However, both of these laws fail to hold for high pressure gradients. The limit within which they are true and the modifications which a second approximation requires can be determined only by exhaustive experiments on a wide range of materials" (Richards, 1931). The validity problem of Richards' assumption is related to the validity of Darcy's law. Very large hydraulic gradients will induce inertial forces that could dominate the flow, leading to larger Reynolds number (the ratio of inertial to viscous forces) beyond the range of validity of Darcy's law.

The Buckingham–Richarson-Richard's (BRR) equation can be derived by combining Darcy's equation and conservation of mass (along with Buckingham's paradigm under isothermal conditions in a homogeneous and rigid porous medium).

$$\frac{\partial \theta}{\partial t} = \nabla \left[D(\theta) \nabla \theta \right] + \nabla \left(K(\theta) \ e_z \right)$$
(6)

The equation is also written in terms of head:

$$C(\psi) \frac{\partial \psi}{\partial t} = \nabla \left[K(\psi) \nabla \psi \right] + \nabla \left(K(\psi) e_z \right)$$
(7)

The soil infiltration characteristics are hydraulic conductivity $K(\theta)$ or $K(\psi)$ (L T⁻¹), hydraulic diffusivity $D(\theta) = K(\psi) \frac{\partial \psi}{\partial \theta}$ (L² T⁻¹), and water-holding capacity $C(\psi) = \frac{\partial \theta}{\partial \psi} (1 \text{ L}^{-1}).$

The concept of water movement as a diffusion phenomenon, implicit in Buckingham's approach, and later in that of Richards as well as Green and Ampt's model, was explicitly proposed by Childs (1936a, 1936b) who studied the hypothesis of constant diffusivity. Later, Childs and Collis-Georges (1950) introduced the concept of concentration-dependent diffusivity characterized by the strong dependence of diffusivity on water content. Embracing this concept, Philip (1957a) developed, based on a Taylor Series expansion of Equation (6), the first specific quasi-analytical solution of the nonlinear Richards' equation, in the form of a power series in $t^{1/2}$ describing infiltration in a homogeneous, isotropic, and rigid porous medium. However, Philip's time expansion series converges only for finite t; thus, the solution becomes unreliable at infinite times. To this end, Philip (1957b) approximated his equation by the two first terms, describing one-dimensional, unsaturated infiltration for relatively short times. At this point, he defined the first term as "sorptivity" or "a term embracing both absorption and desorption". In his words, it is "a measure of the capillary uptake or removal of water." Later, in 1969, Philip showed that sorptivity can be determined from horizontal infiltration where water flow is mostly controlled by capillary absorption (Philip 1969a). The second term in Philip's two-term equation reflects gravity effects and can be assumed equal to the saturated hydraulic conductivity multiplied with a constant between 1/3 and 2/3 (Davidoff & Selim, 1986; Ghorbani et al., 2009; Swartzentruber & Young, 1974).

Following Philip's work, Parlange obtained, in a series of papers, a quasi-analytical solution for water infiltration, by first developing a one-dimensional absorption equation (Parlange, 1971a), which was then extended to infiltration to include gravity effects (Parlange 1971b), and further extended in subsequent papers to problems in two and three dimensions (Parlange 1971c, 1972a, 1972b).

The series of papers published by Philip and Parlange more than 50 years ago remains today the basis of our understanding of infiltration theory. However, a serious limitation of applying their quasi-analytical solutions emerges from the representativity of the initial and boundary conditions. Philip and Parlange's solutions often assume uniform initial water content throughout the soil profile. As for boundary conditions, these models assume a constant value of water pressure head at the soil surface. However, in natural settings, initial and boundary conditions can be highly variable with changing precipitation intensity, intermittent irrigation, and varying soil properties.

Later, the analysis of the highly nonlinear flow problem has been simplified and made tractable by applying the matric flux potential using Kirchhoff transformation. Raats (1971) defined the matric flux potential, φ (L² T⁻¹), by: $\varphi = \int_{W}^{\Psi} K(\bar{\psi}) d\bar{\psi} = \int_{\theta}^{\theta} D(\bar{\theta}) d\bar{\theta}$; where subscript *i* denotes the initial state. Using this definition, Redinger et al. (1984) and Campbell (1985) were the first to apply the Kirchhoff transform (K transform) of the matric potential ψ (L) to linearize the second-order spatial term in Richards' equation (Equation 7). Their method introduced a simple but efficient method of solution for homogeneous unsaturated soils. However, K transform depends on the soil's hydraulic properties and will therefore vary spatially with any spatial change in the hydraulic properties. Therefore, to characterize scaleheterogeneous soils, Ross (1990) used an inverse hyperbolic sine transform of ψ (L) in preference to the K transform. Later, Ross and Bristow (1990) capitalized on the numerical advantages of using the K transform to solve Richards' equation for water flow in scale-heterogeneous soils when the appropriate correction to spatial changes in soil properties is made.

Clearly, the BRR equation became the mainstream approach for modeling flow in unsaturated soils. Researchers developed simplified analytical approximations following Richards' paper, and later on, thanks to advancements in numerical computation, developed robust numerical models, particularly the HYDRUS software packages, which simulate water, heat, and solute movement in 1-D, 2-D, or 3-D porous media and provide numerical solutions to Richards' equation (Šimůnek et al., 1998, 1999, 2005, 2006). HYDRUS uses linear finite elements to numerically solve Richardson–Richards' equation for saturated or unsaturated water flow under uniform or nonequilibrium conditions, as well as Fickian-based advection–dispersion equations for solute transport. In 2008, Simunek and his coworkers described the entire history of the development of the various HYDRUS programs with related models and tools (Šimůnek et al., 2008). Later, Šimůnek et al. (2016) reviewed recent developments and applications of the HYDRUS program implemented after 2008.

In fact, the ubiquity and ease-of-use of Richards-based model frameworks transitioned research in the area of infiltration and unsaturated flow almost exclusively from a theoretical search for a better infiltration theory into an expanded field of highly applied and practical research. Therefore, many researchers have been applying Richards' equation to understand processes or develop solutions addressing environmental, agricultural, and ecological issues like irrigation efficiency, pollutant and nutrient transport, heat transfer, water recharge, and stormwater management (Lassabatère et al., 2010; Kandelous & Simunek, 2010; Goutaland et al., 2013; Slimene et al., 2017; Stewart et al., 2017; Autovino, 2018; Coppola et al., 2019; Fields et al., 2020).

Despite its widespread adoption, Richards' equation fails to adequately describe infiltration in different flow situations and scales (e.g., Beven, 2018; Germann, 2021 Hunt et al., 2013). Fundamentally, the Richards' equation was developed using equilibrium-based measurements, such that equilibrium between soil pressure head and water content is instantaneous, opposite to nonequilibrium conditions that occur during rapid flow (Šimůnek et al., 2003). Based on the theoretical dominance of capillary forces in unsaturated flow, Richards proposed an elegant hierarchy of active-inactive pores in which larger pores empty, while smaller pores conduct water in partially saturated soils. He stated that if "there is a steady flow of liquid through a porous medium which is only partially saturated, then the larger pore spaces contain air and the effective cross-sectional area of the water conducting region is reduced" (Richards, 1931). This hierarchy completely deactivates those larger pores "If these air spaces could in some way be filled with solid, the condition of the flow would be unchanged" (Richards, 1931). On the other hand, Germann's last published work was critical of Richards experiment "which relied on the application of air pressure to ensure that larger pores were empty at each potential and flow rate, was simply the wrong experiment for flows under more natural conditions" (Germann, 2021). Germann's stated that "while capillary flow relies on the strongest force extended on water in an unsaturated soil, the weaker force of viscosity can dominate during infiltration as a result of formation of film flows at and near the soil surface" (Germann, 2021). Similar criticism was levied by Hunt et al. (2013) and Beven (2018).

The inadequacies of the Darcy-BRR framework were also becoming apparent as interest increased in depicting preferential flow processes through a wide range of theoretical advancements (Jarvis, 2007; Šimůnek et al., 2003; Šimůnek et al., 2008). In particular, studies were increasingly noting pollutant and nutrient transport processes that were happening at faster rates or over greater distances than seemed possible based on the depictions provided by BRR-based models (Beven, 2010; Reichenberger et al., 2002; Zehe and Fluhler, 2001; Zheng and Gorelick, 2003). Other work at hillslope and watershed scales also indicated that BRR-based models did not accurately capture soil wetting and streamflow responses to precipitation, even when treated with parameter values deemed as "effective" for the larger scales (James et al., 2010; Nimmo et al., 2021; van Schaik et al., 2008).

These issues were first raised by Beven and Germann (1982), who demonstrated the importance of macropores and preferential water flow in soils, as well as identified the need for future comprehensive characterization of flow that goes beyond Richards' equation. Beven and Germann's pioneering work (1982) led to mainstream recognition and acknowledgment of the limitations of current physical theory. Thirty years later, many of the same discrepancies persisted, as noted by the revised work in Beven and Germann (2013).

The first theoretical attempt at addressing the discrepancies of Darcy-BRR framework was held by Beven and Germann (1981), who described flow in high-permeability domains by the kinematic wave approach. To this end, Beven and Germann (1981) developed a one-dimensional model of bulk flow in a combined micropore/macropore system by approximating the micropore (subscript *m*) flow, q_m (L T⁻¹), for various arrangements of macropores (subscript *f*) at different water contents, θ_f (L³ L⁻³):

$$q_{\rm m} = a_1 \,\theta_f^{b_1} \tag{8}$$

And the flow in macropores, q_f (L T⁻¹), by:

$$q_f = K_f a_2 \theta_f^{b_1} \tag{9}$$

where K_f (L T⁻¹) is the hydraulic conductivity of the macropores, a_1 (L T⁻¹), a_2 , and b_1 (dimensionless) are the fitting parameters.

Recognizing the importance of preferential and nonequilibrium flow that is not captured by Darcy-BRR framework, Gerke and van Genuchten (1993) transformed Richards' equation into a dual permeability model that describes two single-permeability media, one associated with macropores (fracture and inter-porosity domain) of high permeability and the other associated with micropores (matrix and intraporosity domain) of low permeability, with exchange possible through a permeable interface. This approach assumed constant fluid densities, no hysteresis in the hydraulic properties, and no effects of swelling, shrinking, temperature, air pressure, and solute concentration on water flow. Based on Richards' equation, Gerke and van Genuchten (1993) model uses the flow equations for the fast-flow region (subscript f) and the matrix (subscript m), respectively, as follows:

$$\frac{\partial \theta_{f}\left(\psi_{f}\right)}{\partial t} = \nabla \left[K_{f}\left(\psi_{f}\right)\left(\nabla \psi_{f} + \mathbf{e}_{z}\right)\right] - s_{f}\left(\psi_{f}\right) - \frac{\Gamma_{w}}{w_{f}}$$
(10)

And

$$\frac{\partial \Theta_m\left(\Psi_m\right)}{\partial t} = \nabla \left[K_m\left(\Psi_m\right)\left(\nabla \Psi_m + \mathbf{e}_z\right)\right] - s_m\left(\Psi_m\right) + \frac{\Gamma_w}{1 - w}$$
(11)

where $s(\psi)(T^{-1})$ is the sink-source term, w_f (L³ L⁻³) is the ratio of the volume occupied by the fast-flow region and relative to the total volume, and $\Gamma_w(T^{-1})$ is a space- and timedependent exchange term describing the transfer of water between the two pore systems.

Other further approaches for modeling preferential and nonequilibrium flow in the vadose zone have used the kinematic approach (Jarvis, 1994; Jarvis & Larsson, 1998; Larsbo & Jarvis, 2003), Darcy-BRR (Lewandowska et al., 2004), or Green and Ampt (Stewart, 2018; Weiler, 2005) by describing water movement in the soil matrix in combination with a depiction of water flow through macropores.

4 | EVOLUTION OF BASIC FLOW CHARACTERIZATION FOR DEFORMABLE SOILS

Many soils have clay minerals or other particles (e.g., organic substrates) that change volume when wetting and drying, which causes the soil matrix to deform and typically leads to excessive error when infiltration models developed for rigid soils are applied. Therefore, substantial research efforts have been devoted to characterizing water movement through deformable soils with time-variable pore structures. Here, we list the basic conceptual models developed to characterize water flow into deformable soils (Figure 2).

Using Darcy's law, Biot (1955) first described the flow of fluids in deformable anisotropic soils by studying the problem of soil consolidation through the mixture theory in the absence of gravity effects:

$$v_{\text{liquid}} - v_{\text{solid}} = -\frac{k}{\theta\mu} \nabla P$$
 (12)

where v_{liquid} and v_{solid} are the vertical velocity components of the liquid and solid phases, respectively, and k (L²) is the solid permeability.

Then, mass conservation of the solid (Equation 13) and liquid (Equation 14) phases, yielded (Bowen, 1980):

$$\frac{\partial \theta}{\partial t} - \nabla \left[(1 - \theta) v_{\text{solid}} \right] = 0 \tag{13}$$

$$\frac{\partial \theta}{\partial t} + \nabla \left(\theta v_{\text{liquid}}\right) = 0 \tag{14}$$

BASSET ET AL.

Later, researchers' attention was skewed toward characterizing soils that shrink and swell in volume when drying and wetting, namely, shrink-swell soils. To understand the behavior of shrink-swell soils, the soil shrinkage curve (SSC) was developed describing the change in soil volume as function of the change in water content from a fully saturated state to a completely dry state. The SSC is generally sigmoidal in shape and is represented by numerous models (McGarry and Malafant, 1987; Tariq and Durnford, 1993; Braudeau et al., 1999; Crescimanno and Provenzano, 1999; Chertkov 2000, 2003; Peng and Horn, 2005; Cornelis et al., 2006a, 2006b; Lu and Dong, 2017; Chen and Lu, 2018; Gupt et al., 2022).

Different modeling analogs of Richardson–Richards' equation were developed to study and solve the problem of infiltration into shrink-swell soils. For instance, Philip (1969b) modified Richardson–Richards' equation for rigid soil and developed the standard Fokker–Planck equation (FPE; Equation 15) describing flow in unsaturated swelling media:

$$\frac{\partial \theta}{\partial t} = \nabla \left[D(\theta) \nabla \theta \right] + \nabla \left[\left(1 - \gamma_w \right) K(\theta) \ e_z \right]$$
(15)

where γ_w (dimensionless) is the wet specific gravity of the swelling soil.

Smiles and Raats (2005) reformulated the standard (FPE) by including the dimensionless constant, here called α_{swell} , defined as a water content-dependent value and as an average over a defined pressure range, to deal with curvilinearity in the shrinkage curve:

$$\frac{\partial \theta}{\partial t} = \nabla \left[D\left(\theta\right) \nabla \theta \right] + \nabla \left[\left(1 - \alpha_{\text{swell}} \gamma_{w} \right) K\left(\theta\right) \, \mathbf{e}_{z} \right] \quad (16)$$

Furthermore, a special form of the (FPE) was investigated by Su (2009), who considered the inclusion of a dimensionless parameter β_{swell} , the order of fractional derivative, which enables a clear explanation of the anomalous infiltration into swelling porous media:

$$\frac{\partial^{\beta_{\text{swell}}\theta}}{\partial t^{\beta_{\text{swell}}}} = \nabla \left[D\left(\theta\right) \nabla\theta \right] + \nabla \left[\left(1 - \alpha_{\text{swell}} \gamma_w \right) K\left(\theta\right) \, \mathbf{e}_z \right]$$
(17)

Another governing equation for water movement in swelling soils was provided by Giraldez and Sposito (1985) who used a generalized version of the Richardson–Richards equation:

$$\frac{\rho_b}{\rho} \frac{\partial \theta}{\partial t} = \nabla \left[D\left(\theta\right) \nabla \theta \right] + \nabla H \tag{18}$$

where ρ_b (M L⁻³) is the soil bulk density and ρ (M L⁻³) is the fluid density. *H* (L T⁻¹) is a gravity-envelope-pressure parameter given by:

$$H = K(\theta) \left(1 - \rho_{b,w} \bar{V} \right) \tag{19}$$

FIGURE 2 Evolution of the basic flow models for deformable (i.e., swelling) soils.

where ρ_{hw} (M L⁻³) is the wet bulk density (subscript w) and \bar{V} (L³ M⁻¹) is the slope of the shrinkage curve.

Furthermore, Feddes et al. (1988) extended Richardson-Richards' equation to characterize water flow in swelling/cracked soils by adding two sink-source terms, s_r (T⁻¹) quantifying the volume of water extracted from soil by roots, and s_f (T⁻¹) quantifying the horizontal infiltration from soil cracks (subscript f) into the soil matrix:

$$\frac{\partial \theta}{\partial t} = \nabla \left[K \left(\psi \right) \left(\nabla \psi + \mathbf{e}_z \right) \right] - s_r + s_f \tag{20}$$

Shifting from Richardson-Richards' equation, Davidson (1984), and later Weiler (2005), built on the classic GA model to characterize infiltration into macroporous soils. Neither approach, however, describes the dynamic shrinkage and swelling processes. In response, Stewart (2018) combines the GA model with a multidomain framework previously developed by Stewart et al. (2016), allowing for variations in properties of the different porosity domains, and therefore a better characterization of the dynamic properties of shrink-swell soils.

Another approach toward modeling water movement through shrink-swell soils was developed by Bennethum and Cushman (1996) who derived a new constitutive theory for multiphase, multicomponent, three-scale, and swelling systems with interfaces. This effort resulted in a generalized form of Darcy's law where flow is governed by gravity and the Gibbs free energy, temperature, and concentration gradients:

$$q = \kappa^{L} \left[-\phi^{L} \rho^{L} \nabla \left(\tilde{A}^{L} - \frac{1}{\rho^{L}} \sigma \right) + \left(\frac{1}{\rho^{L}} \sigma^{L} + \frac{1}{\rho^{L}} P^{L} \right) \nabla \left(\phi^{L} \rho^{L} \right) + \phi^{L} \rho^{L} g^{L} - \phi^{L} \rho^{L} E^{L} \nabla T^{0} + \sum_{j=1}^{N-1} \phi^{L} \rho^{L} \tilde{\mu}^{L_{j}} \nabla C^{L_{j}} \right]$$

$$(21)$$

where L = lA refers to the fluid phase in the particle at the macroscale, B and C refer to the liquid and air phase at the mesoscale, respectively, κ (L³ T M⁻¹) is the second-order positive semi-definite tensor, ϕ (L³ L⁻³) is the volume fraction, ρ (M L⁻³) is the fluid density, E (L² T⁻² T⁰⁽⁻¹⁾) is the entropy, \tilde{A} (L² T⁻²) is the specific Helmholtz free energy, ∇T^0 (T°) is the temperature gradient, $\tilde{\mu}$ (L⁴ M T⁻²) is the chemical potential, and ∇C (M L⁻⁴) is the concentration gradient.

5 **PORE-SCALE MODELS**

The infiltration process in soils through which air is replaced by water is typically investigated using Richards' equation at the continuum scale, which requires the determination of soil hydraulic properties, such as water retention and unsaturated hydraulic conductivity curves. During infiltration within the complex structure of soils, one observes phenomena such as irregular wetting front and hydraulic non-equilibrium that are controlled by pore-scale characteristics of soils. Therefore, to better understand infiltration at the continuum scale,

one should first investigate it at the pore scale—the scale of processes taking place within porous media. Different visualization tools were used to investigate the pore scale such as X-ray microcomputed tomography, confocal microscopy, and optical microscopy (Geistlinger & Ataei-Dadavi, 2015; Krummel et al., 2013; Liu and Song, 2015; Song et al., 2020). Magnetic resonance imaging has also been used to detect tracers and characterize complex flows in soils including heterogeneous systems (e.g., Lehoux et al., 2016; Raimbault et al., 2021).

Several pore-scale approaches emerged to address fluid flow and transport in the complex geometry and topology of porous media, as well as to solve physics within the given domain at the pore scale (Liu et al., 2006; Martys & Hagedorn, 2002; Valvatne & Blunt, 2004; Wilkinson, 1984; Prodanovic & Bryant, 2006; Blunt et al., 2013). The most widely used approaches for pore-scale modeling are lattice Boltzmann methods, smoothed particle hydrodynamics approach, computational fluid dynamics-based techniques, and pore-network models (Blunt, 2017).

Here, we present a brief summary of the emergence of pore-scale models and their co-evolution to broaden our review aspects, as well as our understanding of the modeling and application of flow into porous media. Mapping the pore space of porous media into a network of connected pores was first developed by Fatt (1956a, 1956b, 1956c) who stressed the inadequacy of parallel tube models to describe the complex structure of soils and rocks. Fatt (1956a) proposed a regular 2D network of tubes with various pore size distributions, which evolved to a ball-and-stick network proposed by Chandler et al. (1982) and Koplik (1982), and then to a biconical pore network proposed by Toledo et al. (1994). Recognizing that real porous media are threedimensional, Rose (1957) developed the first computer-based network characterized by 3D lattices, which were further used to study hysteresis (Nicholson, 1968), dispersion (Torelli and Scheidegger, 1971), and waterfloods (Simon & Kelsey, 1971, 1972).

Since the 1980s up to now, research in pore-scale modeling evolved from the computation of simple two-phase flow processes and relative permeability (Blunt & King, 1991; Blunt et al., 1992; Heiba et al., 1984; Koplik & Lasseter, 1985; Larson et al., 1981; Mogensen & Stenby, 1998) to a huge range of pore-scale events, for example, wettability, threephase flow, hysteresis, mass transfer between phases, and to a more accurate abstraction of porous media (Blunt, 2001; Blunt et al., 2002; Blunt & Scher, 1995; Bultreys et al., 2015; Dong & Blunt, 2009; Joekar-Niasar et al., 2008, 2009; Raoof & Hassanizadeh, 2010; Wilkinson & Willemsen, 1983).

For instance, Pomchaitaward et al. (2003) applied a lattice Boltzmann method to study capillary infiltration in porous spheres and cubes. They further validated their approach by BASSET ET AL.

comparing the results of their lattice-Boltzmann simulations with those obtained from a continuum model based on the kinetic of capillary infiltration. Later, Tzavaras et al. (2017) used pore-network modeling to simulate infiltration at the pore scale. In their study, the structure of pores and their topology were adapted from a loess soil sample. Using the same pore size distribution, they generated two types of pore networks: structured and random. The former was based on the measured topology, while the latter on the basis of random pore connection. Their pore networks, however, were only composed of $16 \times 16 \times 32$ nodes. The authors compared their pore-scale simulation from pore-network modeling with the continuum-scale simulations obtained by solving the Richards' equation. More specifically, the horizontally averaged dynamics of water content and water potential at the two scales were compared. Although reasonable agreements were found, the authors stated that assuming fluid phases were immiscible and incompressible led to unrealistic air trapping in the studied pore networks.

6 | **PERCOLATION THEORY**

Concepts from the percolation theory were widely applied in conjunction with network modeling to study flow and transport in complex porous media (Hunt et al., 2014; Hunt & Sahimi, 2017; Sahimi, 2011). Percolation theory addresses the effect of geometrical and topological properties of the pore space, particularly pore size distribution and connectivity at both small and large scales. An important feature within percolation theory is the presence of a percolation threshold (critical fraction) below which the network is not connected and, therefore, there is no macroscopic flow or transport. The basic concept of percolation threshold has also been broadly referred to in soil physics using other terms such as residual water saturation or critical air-filled porosity.

Early percolation models were based on networks (or lattices) composed of bonds and sites. Bonds act like links (or pore throats) connecting sites (or pore bodies). The early advancement in percolation theory for vertical downward infiltration was described by Glass and Yarrington (1996) as "gravity fingering in porous media" emphasizing that water mainly percolates due to gravity. More specifically, Glass and Yarrington (1996) proposed a modified invasion percolation approach for the immiscible displacement of a nonwetting fluid (e.g., air) by a wetting one (e.g., water). They further found that their modified invasion percolation model yielded substantially different structures in the wetting front compared to the standard invasion percolation. Within their framework, gravity and capillary fingering, as well as capillary facilitation, contributed to the determination of wetting front and its structure. In their own words, they stated that, "results suggest capillary forces to stabilize downward infiltration events either in very narrow or very wide pore-size distribution media. While this stabilization is intuitive for wide pore-size distributions, gravity fingering has generally been considered to dominate as the pore-size distribution narrows."

Later, Glass et al. (2000) expanded these efforts and developed a macroscale growth "structural" model to model invasion percolation at the near pore scale. Under non-negligible viscous forces conditions, Glass et al. (2000) redefined (1) the total pore filling pressure to incorporate viscous losses within the invading phase (e.g., water) from one hand and (2) the viscous effect to reduce randomness caused by capillary forces at the front. By comparing their simulations with CO_2 -water experiments where viscous forces were negligible, Glass et al. (2000, 2001) found a fair agreement between simulations and experimental data. However, for trichloroethylene-water experiments, discrepancies between simulations and measured data were considerable. It is worth mentioning that the viscosity of trichloroethylene is nearly 40 times greater than that of CO_2 .

Another approach toward modeling infiltration was developed by Hunt (1998) who presented random percolation theory and accordingly applied statistics of clusters showing that cumulative infiltration was analogous to electrical polarization. Using such an analogy, Hunt (1998) derived a general expression for cumulative infiltration including the two-term Philip (1957b) model as a special case (see his eq. 42).

More recently, Hunt et al. (2017) developed a theoretic model for vertical infiltration using concepts from random percolation theory. They proposed a two-term relationship for transient and steady-state infiltration. Hunt et al. (2017) assumed that the transient term describes solute transport under saturating conditions and the steady-state term represents advection fluid.

$$I(t) = \frac{x_0}{t_{x0}} t + \frac{x_0}{t_{x0}^{1/D_b}} t^{\frac{1}{D_b}}$$
(22)

where $D_b = 1.861$ represents the backbone fractal dimension in three dimensions (Hunt et al., 2014), x_0 denotes the characteristic length scale (e.g., typical pore diameter), and t_{x0} is the time required for fluid to traverse the distance x_0 . By setting $D_b = 1.861$, the exponent in the transient term is found to be approximately 0.54 (= 1/1.861), which is close to the 0.5 exponent in Philip's equation (1957b). Using experimental data from Sharma et al. (1980), Hunt et al. (2017) scaled infiltration data and demonstrated that a much better agreement with actual data was obtained when infiltration data were scaled using the percolation theory exponent (e.g., 0.54). They concluded that the exponent 0.54 might be a better approximation than 0.5.

7 | BUNDLE OF CAPILLARY TUBES APPROACH

Most of the fundamental flow concepts (described in Sections 2 and 3) modeled water flow into porous media while characterizing the pore space with bundles of capillary tubes of either similar or varying radii. By simplifying the pore space topology, such models do not capture the fundamental randomness of porous media characterized by a wide distribution of interconnected channels and pore sizes. However, the different models based on bundles of capillary tubes developed later can still provide an improved representation of complex pore structures, while their formulation remains an open theoretical and experimental challenge.

One of the early infiltration models based on the bundle of capillary tubes approach was developed by Chu (1993). In his study, first soil water retention data were used to determine pore size distribution. Then, the Hagen-Poiseuille equation was applied to calculate hydraulic conductivity of each individual tube. Chu (1993) considered a scale factor to match theoretical and experimental saturated hydraulic conductivities. He generalized the GA model to describe water flow in all tubes determined from water retention data and then applied the van Genuchten model to derive a special case. Chu (1993) showed that his model captured spatial variation in the wetting front-an improvement over the traditional GA model, which assumes a constant depth front. In another study, Chu (1994) used the same approach but replaced the van Genuchten model with the Brooks-Corey model to represent water retention data. Using a Yolo light clay soil sample, he compared his theoretical results with those by the Philip model and found reasonable agreement between the two models.

Recently, a more advanced approach based on the bundle of capillary tubes was proposed to predict pore size distribution using non-Newtonian fluids offering new possibilities for improving porous media characterization (Abou Najm & Atallah, 2016; Atallah & Abou Najm, 2019; Basset et al., 2019; Hauswirth et al., 2019). Experimental evidence was presented validating the ability of a non-Newtonian fluid at different concentrations to infer the pore structure of simple and synthetic porous media using the Abou Najm Atallah (ANA) model (Atallah and Abou Najm, 2019; Hauswirth et al., 2019) and that of dual-porosity media using the dual-permeability ANA-2 model (Basset et al., 2019).

8 | SUMMARY OF THE INFILTRATION MODELS

Building on the fundamental physical flow models for rigid and deformable/swelling soils (Sections 2 and 3), several concepts were derived across the years to estimate infiltration for a specific porous media under specific boundaries and initial conditions. Empirical models were also developed describing infiltration with fitted data derived from either field or laboratory experiments. Here, we present a comprehensive summary of the evolution of 138 infiltration models. Our summary is by no means an exhaustive list of all the attempts of infiltration modeling in literature.

We illustrated the historical evolution of infiltration models as listed in Table 1, in an ascending historical order based on their year of publication. Table 1 summarizes those models based on their category, origin, and assumptions, as well as the type and behavior of infiltration. For additional information and formulation, Table 1 is further expanded into Tables A1 and A2 to describe the model parameters, equations, and concepts.

From a historic timeline demonstrating the evolution of knowledge from earlier theories into the most recent conceptual models based on citations (Figure 3), we identified areas that witnessed the most developments versus areas that have been understudied. Studies based on Darcy's law, the Richardson–Richards–Buckingham paradigm, and the Green–Ampt models are very common, while models based on Stokes' work and other earlier theories are areas for possible investigation and advancements.

One additional finding from our inclusive survey is that almost all infiltration models for early- and transient-time behavior, except for Abou Najm et al. (2021) and Di Prima et al. (2021), were designed to reflect typical infiltration results from infiltration experiments revealing a concave cumulative infiltration curve. The concave curve demonstrates higher infiltration capacity at early stages that reaches a constant slope at a steady state. This concave shape mimics what we call "perfect" infiltration conditions with no water-repellency, preferential flow, or any other factors present. However, different soils and field conditions can alter this behavior leading to cumulative infiltration curves that exhibit convex, mixed, or non-standard shapes. More recently, Pachepsky and Karahan (2022) analyzed the soil water infiltration global database called SWIG developed by Rahmati et al. (2018). By analyzing 5023 infiltration curves, they found 12 types of cumulative infiltration curve shapes. Nearly onethird of the SWIG database showed a non-classic shape. They applied a classification tree approach to divide those data into non-classic shapes. Their results showed that measurement method, clay content, and organic matter were among the most influential predictors of the shape type. In fact, non-classic shapes were previously reported and associated with soil structure and hydrophobicity (Angulo-Jaramillo et al., 2019). Given different land use and field conditions, different structural interactions come into play such as soil water-repellency, hydrophobicity, and preferential flow paths. As an attempt to model infiltration behavior covering the full range of shapes, Abou Najm et al. (2021) introduced a soil water-repellency

parameter, α_{WR} (T⁻¹) that can be used with any infiltration model. α_{WR} accounts for water repellency using an exponential scaling factor that mimics the attenuation of infiltration rates observed at the start of infiltration (Figure 4). The α_{WR} family of models originated by Abou Najm et al. (2021) presented a macroscopic approach addressing water repellency (Di Prima et al., 2021; Yilmaz et al., 2022); other more microscopic and process-based approaches can be found in Shillito et al. (2020) and Hammecker et al. (2022).

Figure 5, which illustrates arc diagrams tracing the evolution of model advancements using the citations within the article in Table 1, further shows how conceptual models are interrelated and how newer models built on the foundations of previous models, particularly Darcy, Buckingham, Richardson-Richards, and GA. However, we noticed that starting around 1990, the citations of these classic works began to decrease. Instead, new models started to build on one another, citing only earlier works that were one or two steps away, but not many of those models compiled the entire chain of references to the original or fundamental source. This is evidenced by the fact that the blue arc/links should have been denser on the left side; instead, Figure 5 demonstrates the relatively small number of citations that the original flow papers received (e.g., Darcy or Buckingham), with the interesting exception of the GA model.

Therefore, the literature has tended to treat earlier classic models like Darcy and Richardson–Richards as accepted laws rather than fundamental studies to be cited. Another way to interpret this result is that the origins of many infiltration models became obscured and overlooked as model variations proliferated. To this end, Figure 5 clearly provides alarming evidence, not only for the observation that papers Darcy and Richardson–Richards are no longer cited regularly (of course we believe they should), but for what this can imply, which is a general belief, that flow theory in porous media is resolved and related macroscopic laws are utterly determined, and that the challenges are more on the application and mathematical interpretation of current theories.

To demonstrate this issue further, we present Table 2 that gathers some data from a literature search carried out in Google Scholar and Scopus. The first two columns in Table 2 represent the actual number of citations to the papers that we considered (column 1), whereas the last two columns refer to the number of mentions of those references in papers (with or without citations). Table 2 shows how the literature refers to Darcy and Richards' work using key terms such as law, model, equation, or theory and in many instances not citing them. For example, Darcy (1856) was cited 8067 times, but the terms Darcy law or Darcy model or Darcy equation were mentioned a total of 21,381 times in the literature. We noticed that the keyword "law" is used more commonly to represent Darcy,

						Boundary conc	litions	Assumpti	suo		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity D(θ) (L ² T ⁻¹) and/or Hydraulic Conductivity K(θ) or K(ψ) (L T ⁻¹)	Driving forces for infiltration	- Cited (mentioned in text) origins
Green and Ampt (1911)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		$x (h_0 > 0) $ [constant head]	Yes	Rapidly varying <i>D</i> , nearly constant <i>K</i>	Hydrostatic pressure, capillarity, and gravity	Darcy (1856); Buckingham (1907)
Kostiakov (1932)	Empirical	Arbitrary	Arbitrary	1D, local and field-scale, surface	Early and transient state						Experimental infiltration data
Horton (1940)	Empirical	Arbitrary	Arbitrary	1D, local and field-scale, surface	Early and steady-state						Experimental infiltration data
Mezencev (1948)	Empirical	Arbitrary	Arbitrary	1D, local and field-scale, Surface	Early, transient, and steady-state						Experimental infiltration data —Kostiakov (1932)
Hansen (1955)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state		x ($h_0 > 0$) [constant head]	No	<i>K</i> is constant within the transmission zone, then <i>K</i> within the wetting zone decreases toward the wetting front	Capillarity and gravity	[Darcy's law]
Philip (1957a)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and transient (implicit)		$\begin{array}{c} x\\ (h_0\leq 0)\end{array}$	No	D and K are non-linear, strongly varying functions of θ	Capillarity and gravity	Buckingham (1907); Richards (1931)
Philip (1957b)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state (explicit)		x $(h_0 \leq 0)$	No	D approaches a delta function	Capillarity and gravity	Philip (1957a)
											(Continues)

TABLE 1 Summary of 138 infiltration models.

13 of 96

TABLE 1 (Continued)										
						Boundary cond	itions	Assumpti	ions		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Holtan (1961)	Empirical	Arbitrary	Arbitrary	1D, local and field-scale, surface	Early, transient, and steady-state						Experimental infiltration data
Overton (1964)	Semi- empirical	Arbitrary	Arbitrary	1D, local and field-scale, surface	Early, transient, and steady-state						Holtan (1961)
Huggins and Monke (1966)	Semi- empirical	Arbitrary	Arbitrary	1D, local and field-scale, surface	Early, transient, and steady-state						Holtan (1961)
Fok and Hansen (1966)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface (furrow)	Early, transient, and steady-state		$\begin{array}{l} x \\ (h_0 > 0) \\ [constant head] \end{array}$	No	<i>K</i> is the constant within the transmissio zone, then within the wetting zone, <i>K</i> decreases toward the wetting front	Capillarity n and gravity	Hansen (1955) [Darcy's law]
Philip (1967)	Conceptual	Rigid, scale- heterogeneous, anisotropic, non-hydrophobic, filat surface	Single	1D, field-scale, surface	Early and transient		$(h_0 \leq 0)$	No	K varies spatially with ψ in a mutually consistent way	1 Capillarity and gravity	Richards (1931); Philip (1957a, 1957b) [Darcy's law]
Philip (1968)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, subsurface (point sources and spherical cavities)	Steady-state		$(h_0 \leq 0)$	No	D is constant, $Krepresented by anexponential function o\psi (Gardner, 1958)$	Capillarity and gravity of	Richards (1931) [Darcy's law]
											(Continues)

						Boundary cond	litions	Assumpti	suo		
gory Soil type	Soil type	_ •	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
eptual Rigid, homoge isotropid non-hyd flat surf	Rigid, homoge isotropio non-hyd flat surf	neous, c, irophobic, ace	Single	3D, local scale, surface (shallow pond)	Steady-state		$\begin{array}{c} x\\ (h_0 \leq 0) \end{array}$	No	D is constant, $Krepresented by anexponential function of\psi (Gardner, 1958)$	Capillarity and gravity	Richards (1931); Philip (1968) [Darcy's law]
:eptual Rigid, homoge isotropid non-hyc flat surf	Rigid, homoge isotropi non-hyc flat surf	neous, c, trophobic, ace	Single	ID, 2D, and 3D, local scale, surface and subsurface (cylindrical and spherical cavities)	Early, transient, and steady-state		$\begin{array}{c} x \\ (h_0 \leq 0) \end{array}$	° X	(A) D and K are non-linear, strongly varying functions of θ (B) D is constant, K represented by an exponential function of ψ (Gardner, 1958) (C) D approaches deltt function, very sharp peak in K then K varies very slowly near saturation	Capillarity and gravity	Darcy (1856); Buckingham (1907); Richards (1931); Philip (1957a, 1957b, 1967, 1968)
eptual Rigid, homoge isotropi non-hyc flat surf	Rigid, homoge isotropii non-hyc	neous, c, irophobic, ace	Single	1D, local scale, surface	Early and transient		x $(h_0 \leq 0)$	No	D vary markedly with θ and rapidly near saturation	Capillarity	Philip (1957a, 1957b, 1969a)
:eptual Rigid, homoge isotropi non-hyc flat surf	Rigid, homoge isotropi non-hyo flat surf	eneous, c, frophobic, îace	Single	1D, local scale, surface	Early, transient, and steady-state		$(h_0 \leq 0)$	No	D vary markedly with θ and rapidly near saturation, very sharp peak in K then K varies very slowly near saturation	Capillarity and gravity	Philip (1957a, 1969a); Parlange (1971a)
											(Continues)

TABLE 1 (Continued)										
						Boundary cond	itions	Assumpti	suo		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Parlange (1971c)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D and 3D, local scale, surface	Early and transient		x $(h_0 \leq 0)$	No	Arbitrary	Capillarity	Philip (1969a); Parlange (1971a, 1971b)
Philip (1971)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, filat surface	Single	2D and 3D, local scale, surface and Subsurface (point and line sources)	Steady-state	<i>x</i> [constant rainfal] rate]		No	D is constant, $Krepresented by anexponential function of\psi (Gardner, 1958)$	Capillarity and gravity	Philip (1968, 1969a)
Parlange (1972a)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, filat surface	Single	2D and 3D, local scale, Subsurface (cavity)	Steady-state		$(h_0 \leq 0)$	No	D and K strongly depend on θ	Capillarity and gravity	Philip (1968, 1969a); Parlange (1971a, 1971b, 1971c)
Parlange (1972b)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D and 3D, local scale, subsurface (cavity)	Early and transient		$(h_0 \leq 0)$	No	D and K strongly depend on θ	Capillarity and gravity	Philip (1969a); Parlange (1971a, 1971b, 1971c, 1972a)
Smith (1972)	Semi- Empirical	Arbitrary	Arbitrary	1D, local and field-scale, surface	Steady-state						Extensive numerical solutions of Richards (1931)
Philip (1972)	Conceptual	Rigid, scale- heterogeneous, anisotropic, non-hydrophobic, flat surface	Single	2D and 3D, field-scale, surface and subsurface (point and line sources)	Steady-state	<i>x</i> [constant rainfal] rate]		No	D is constant, K depends exponentially on ψ and z	Capillarity and gravity	Philip (1968, 1969a, 1971)
											(Continues)

Neumann (prescribed m (prescribed water content or pressure)n(prescribed water content or pressure)ient, x $(h_0 \le 0)$ state x constant rainfall rate]	tion Infiltration behavior al scale, Early, transic and steady-st and steady-st and steady-st	nosity Type of main infiltrat ngle 1D, loca surface surface 1D, loca	Si S
sient, x state $(h_0 \leq 0)$ sient, x sient, x rate [constant rainfall rate]	Early, transie and steady-st Early, transie and steady-st	l scale, l scale,	ngle ID, local scale, surface ngle ID, local scale, surface ID, local scale,
sient, <i>x</i> -state [constant rainfall rate]	Early, transie and steady-st	l scale,	ngle ID, local scale, surface ngle ID, local scale.
		l scale.	ngle 1D. local scale.
x x x Before ponding After ponding [constant rainfall [constant head rate] $h_0 > 0$]	Early and steady-state		surface
tate x $(h_0 \leq 0)$	Transient sta	ll scale,	agle 1D, local scale, surface
$\begin{array}{c} x\\ (h_0\leq 0)\end{array}$	Early state	ll scale,	agle ID, local scale, surface

17 of 96

						Boundary condi	tions	Assumpti	ons		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Swartzendruber (1974)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state	<i>x</i> Before ponding [constant rainfall rate]	x After ponding [constant head $h_0 > 0$]	Yes	Rapidly varying D, very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Mein and Larson (1973)
Morel-Seytoux and Khanji (1974)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		$\begin{array}{l} x\\ (h_0 > 0)\\ [constant head] \end{array}$	Yes	Rapidly varying D, very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, gravity, and air resistance	Green and Ampt (1911); Mein and Larson (1973) [Darcy's law]
Morel-Seytoux (1976)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state	<i>x</i> Before ponding [Arbitrary rainfall rate]	x After ponding [arbitrary head $h_0 > 0$]	No	Arbitrary	Hydrostatic pressure, capillarity, gravity, and air resistance	Mein and Larson (1973); Morel-Seytoux and Khanji (1974) [Darcian sense]
Li et al. (1976)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		$\begin{array}{l} x \\ (h_0 > 0) \\ [constant head] \end{array}$	Yes	Rapidly varying <i>D</i> , nearly constant <i>K</i>	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911)
Brutsaert (1977)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		x $(h_0 \leq 0)$	Yes	D and K are represented by Averjanov–Irmay formula (1964)	Capillarity and gravity	Green and Ampt (1911); Richards (1931); Philip (1957a, 1969a); Parlange (1971a)
											(Continues)

						Boundary condi	tions	Assumpt	suo		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Collis-George (1977)	Empirical	Arbitrary	Arbitrary	1D, local and field-scale, surface	Early, transient, and steady-state						Experimental infiltration data
Hachum and Alfaro (1977)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state	<i>x</i> Before ponding [variable rainfall rate]	x After ponding [variable head $h_0 > 0$]	Yes	Rapidly varying D, very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Mein and Larson (1973) [Darcy's equation]
Smith and Parlange (1978;	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state	<i>x</i> Before ponding [arbitrary rainfall rate]	x After ponding I [arbitrary head $h_0 > 0$]	No	(1) D approaches a delta function, very sharp peak in K then K varies very slowly near saturation (2) $dK/d\theta$ and D increase rapidly and in similar fashion, K varies rapidly near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Philip (1957b, 1969a); Parlange (1971b); Talsma and Parlange (1972)
Batu (1978)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D, local scale, surface (single and periodic strip sources)	Steady-state		$(h_0 \leq 0)$	No	D is constant, $Krepresented by anexponential function of\psi (Gardner, 1958)$	Capillarity and gravity f	Philip (1968, 1969a, 1971)
Kutilek (1980)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state	x Before ponding [constant rainfall rate]	x After saturation $(h_0 = 0)$	No	D approaches a delta function	Capillarity and gravity	Philip (1957a)
											(Continues)

Vadose Zone Journal 2006 @

						Boundary condi	itions	Assumpti	Suo		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Parlange (1980)) Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state		x $(h_0 \le 0)$ and $(h_0 > 0)$ [constant head]	No	(1) D approaches a delta function, very sharp peak in K then K varies very slowly near saturation (2) $dK/d\theta$ and D increase rapidly and in similar fashion	Hydrostatic pressure, capillarity, and gravity	[Darcy's law]
Parlange et al. (1982)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		$(h_0 \leq 0)$	No	D approaches a delta function, very sharp peak in K then K varies very slowly nea saturation	Capillarity and gravity r	Philip (1957a, 1969a); Parlange (1980)
Scotter et al. (1982)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, surface	Steady-state		$\begin{array}{l} x \\ (h_0 > 0) \\ [constant head] \end{array}$	No	D is constant, $Krepresented by anexponential function o\psi (Gardner, 1958)$	Hydrostatic pressure, f capillarity, and gravity	Wooding (1968)
Fok et al. (1982)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D, local, surface (furrow)	Early, transient, and steady-state		$\begin{array}{c} x \\ (h_0 > 0) \\ [constant head] \end{array}$	No	<i>K</i> is constant within the transmission zone, then within the wetting zone <i>K</i> decreases toward the wetting front	Hydrostatic pressure, g capillarity, and gravity	Hansen (1955); Fok and Hansen (1966) [Darcy's law]
Brakensiek and Rawls (1983)	Conceptual	Rigid, heterogeneous, two-layer (surface crust + subsoil), isotropic, non-hydrophobic, flat surface	Dual	1D, local scale, surface	Early and Steady-state	<i>x</i> Before ponding [constant rainfall rate]	x After ponding [constant head $h_0 > 0$]	Yes	Rapidly varying D , very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911)
											(Continues)

TABLE 1 ((Continued)										
						Boundary condi	tions	Assumpt	ions		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Reynolds et al. (1983)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, subsurface (Well	Steady-state		x $(h_0 > 0)$ [constant head]	No	Constant saturated K	Hydrostatic pressure and gravity	[Darcy's law]
Novak and Soltesz (1984)	Empirical	Swelling/ cracked, heterogeneous, anisotropic, non-hydrophobic, flat surface	Multi	1D, Local and field-scale, surface	Early, transient, and steady-state						Experimental infiltration data
Fok and Chian, (1984)	g Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D, local scale, surface (furrow)	Early, transient, and steady-state		x $(h_0 > 0)$ [constant head]	No	<i>K</i> is constant within the transmission zone, then within the wetting zone <i>K</i> decreases toward the wetting front	Hydrostatic pressure, capillarity, and gravity	Fok and Hansen (1966); Fok et al. (1982)
Philip (1984a)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D, local scale, subsurface (cylindrical cavities)	Steady-state		$x (h_0 \le 0)$	No	D is constant, $Krepresented by anexponential function of\psi (Gardner, 1958)$	Capillarity and gravity	Philip (1957b, 1969a)
Philip (1984b)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, subsurface (spherical cavities)	Steady-state		x $(h_0 \leq 0)$	No	D is constant, $Krepresented by anexponential function of\psi (Gardner, 1958)$	Capillarity and gravity	Philip (1968, 1969a); Philip (1984a)
Beven (1984)	Conceptual	Rigid, Scale- Heterogeneous, Anisotropic, Non- hydrophobic, Sloping surface	Single -	1D, field-scale, surface	Early and Steady-state	<i>x</i> Before ponding [constant rainfall rate]	x After ponding [constant head $h_0 > 0$]	Yes	Rapidly varying <i>D</i> , saturated <i>K</i> decreases as an exponential function of depth	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Mein and Larson (1973) [Darcy's law]
											(Continues)

						Boundary condi	tions	Assumpti	suo		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity D(θ) (L ² T ⁻¹) and/or Hydraulic Conductivity K(θ) or K(ψ) (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Germann (1985)	Conceptual	Rigid, Heterogeneous, Isotropic, Non- hydrophobic, Flat surface	Multi	1D, local scale, surface	Steady-state	<i>x</i> [constant rainfall rate]		No	Kinematic K	Gravity	Beven and Germann (1981, 1982)
Warrick et al. (1985)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state		$x (h_0 \le 0)$	No	Arbitrary	Capillarity and gravity	Richards (1931); Philip (1957a)
Reynolds et al. (1985)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, subsurface (well)	Steady-state		x $(h_0 > 0)$ [constant head]	No	<i>D</i> is constant, <i>K</i> represented by an exponential function o ψ (Gardner, 1958)	Hydrostatic pressure, f capillarity, and gravity	Scotter et al. (1982); Reynolds et al. (1983)
Parlange et al. (1985)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state		$x (h_0 \le 0)$ and $(h_0 > 0)$ [constant head]	No	$dK/d\theta$ and D increas, rapidly and in similar fashion	e Hydrostatic pressure, capillarity, and gravity	Parlange (1980)
Chu (1985)	Conceptual	Rigid, heterogeneous, three-layer (surface crust + till layer + subsoil), isotropic, non-hydrophobic, flat surface	Triple	1D, local scale, surface	Early and steady-state	<i>x</i> Before ponding [arbitrary rainfall rate]	x After ponding [arbitrary head $h_0 > 0$]	Yes	Rapidly varying <i>D</i> , very sharp peak in <i>K</i> to a constant <i>K</i> near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Brakensiek and Rawls (1983)
											(Continues)

						Boundary cont	ditions	Assumpt	ions		
	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
r and 985)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D and 3D, local scale, Subsurface (cylindrical and spherical cavities)	Steady-state		$\begin{array}{c} x\\ (h_0 \leq 0) \end{array}$	No	D is constant, $Krepresented by anexponential function (\psi (Gardner, 1958)$	Capillarity (weak) and of gravity	Philip (1957b, 1984a, 1984b)
985b)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D and 3D, local scale, Subsurface (Cavities)	Steady-state	Any		No	<i>D</i> is constant, <i>K</i> represented by an exponential function ψ (Gardner, 1958)	Capillarity and gravity of	Van de Hulst (1949); Philip (1957b, 1984a, 1984b); Waechter and Philip (1985)
1986a)	Conceptual	Rigid, homogeneous, isotropic and anisotropic, non-hydrophobic, flat surface	Single	3D, local scale, subsurface (spheroidal cavities)	Steady-state		$x (h_0 \leq 0)$	No	<i>D</i> is constant, <i>K</i> represented by an exponential function (ψ (Gardner, 1958)	Capillarity and gravity of	Philip (1957b, 1984a, 1984b, 1985b)
1986b)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D and 3D, local scale, subsurface (discs, cylinders, spheres)	Steady-state		x $(h_0 \leq 0)$	No	<i>D</i> is constant, <i>K</i> represented by an exponential function ω ψ (Gardner, 1958)	Capillarity and gravity of	Van de Hulst (1949); Philip (1957b, 1984a, 1984b, 1985b, 1986a)
and (1987)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and transient state		$x (h_0 \leq 0)$	No	Arbitrary	Capillarity and gravity	Philip (1957a)

23 of 96

	med in igins	1856); und 1911)	Philip	bham [h]	lgham]	gham ships]	e et al.	Continues)
	Cited (mentic text) or	Darcy (Green a Ampt (]	Richard (1931); (1957a)	[Darcy- Bucking approac	[Buckin	[Darcy, Bucking relation	Parlang (1985)	U
	Driving forces for infiltration	Hydrostatic pressure, capillarity, and gravity	Hydrostatic pressure, capillarity, and gravity	Hydrostatic Cpressure, capillarity, and gravity	Capillarity and gravity	Hydrostatic of pressure, capillarity, and gravity	Hydrostatic pressure, d capillarity, and gravity	
ions	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Rapidly varying <i>D</i> , nearly constant <i>K</i>	Arbitrary	D and K depend on a single free parameter and readily measured soil hydraulic properties	K represented by an exponential function of ψ (Gardner, 1958)	K represented by an exponential function ψ (Gardner, 1958)	D approaches a delta function, $dK/d\theta$ and D increase rapidly an in similar fashion, K varies rapidly near saturation	
Assumpt	Step- function moisture profile	Yes	No	No	No	No	No	
itions	Dirichlet (prescribed water content or pressure)	x ($h_0 > 0$) [constant head]	$ \begin{array}{l} x \\ (h_0 \leq 0) \\ \text{and} \\ (h_0 > 0) \\ [\text{constant head}] \end{array} $	x After ponding [constant head $h_0 > 0$]	$x (h_0 \le 0)$	x ($h_0 > 0$) [constant head]	$\begin{aligned} x \\ (h_0 \leq 0) \\ and \\ (h_0 > 0) \\ [constant head] \end{aligned}$	
Boundary cond	Neumann (prescribed flux)			<i>x</i> Before ponding [constant rainfall rate]				
	Infiltration behavior	Early and Steady-state	Early, transient, and steady-state	Early, transient, and steady-state	Early and steady-state	Steady-state	Early, transient, and steady-state	
	Type of infiltration	1D, local scale, surface	1D, local scale, surface	1D, local scale, surface	1D, local scale, surface	3D, local scale, surface	ID, local scale, surface	
	Porosity domain	Single	Single	Single	Multi	Single	Single	
	Soil type	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Rigid, heterogeneous, isotropic, non-hydrophobic, flat surface	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	
	Category	r Conceptual	r Conceptual	Conceptual	Conceptual	Conceptual	Conceptual	
	Model	Swartzendrubei (1987a)	Swartzendrubei (1987b)	Broadbridge and White (1988)	Yeh (1989)	Reynolds and Elrick (1990)	Haverkamp et al. (1990)	

24 of 96

(Continued)	
-	
E)	
Г	
B	
\mathbf{A}	

						Boundary condi	itions	Assumpti	Suo			
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins	
Smith (1990)	Conceptual	Rigid, heterogeneous, two-layer (surface crust + subsoil), isotropic, non-hydrophobic, flat surface	Dual	1D, local scale, surface	Early, transient, and steady-state	<i>x</i> Before ponding [variable rainfall rate]	x After ponding [variable head $h_0 > 0$]	No	<i>K</i> represented as function of θ using Brooks and Corey (1964) and van Genuchten (1980)	Hydrostatic pressure, capillarity, and gravity	Philip (1957b); Parlange (1971b); Talsma and Parlange (1972); Smith and Parlange (1978) [Darcy's lawl, [Richards' equation]	
Schmid (1990)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and Steady-state	<i>x</i> Before ponding [variable rainfall rate]	x After ponding [variable head $h_0 > 0$]	Yes	Rapidly varying D, very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, and gravity	Mein and Larson (1973)	
Ankeny et al. (1991)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, surface	Steady-state		$(h_0 \leq 0)$	No	D is constant, $Krepresented by anexponential function of\psi (Gardner, 1958)$	Capillarity and gravity f	Wooding (1968)	
Swartzendrubé and Hogarth (1991)	sr Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		$x (h_0 > 0)$ [constant head]	No	Arbitrary	Hydrostatic pressure, capillarity, and gravity	Richards (1931); Swartzendruber (1987b)	
Philip (1992)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		x ($h_0 > 0$) [Falling head]	Yes	Rapidly varying <i>D</i> , nearly constant <i>K</i>	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911)	

25 of 96

(Continues)

						Boundary cond	itions	Assumpti	suo		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity D(θ) (L ² T ⁻¹) and/or Hydraulic Conductivity K(θ) or K(ψ) (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
White et al. (1992)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, surface	Steady flow		$x (h_0 \le 0)$	No	D is constant, $Krepresented by anexponential function of\psi (Gardner, 1958)$	Capillarity and gravity	Wooding (1968) [Darcy's equation]
Barry et al. (1993)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local, surface	Early, transient, and steady-state		$ \begin{array}{l} x \\ (h_0 \leq 0) \\ \text{and} \\ (h_0 > 0) \\ [\text{constant head}] \end{array} $	No	D represented as function of θ using Bruce and Klute (1956), K depends strongly on the soil moisture characteristic curve	Hydrostatic pressure, capillarity, and gravity	Richards (1931) [Darcy's law]
Fonteh and Podmore (1993	Conceptual)	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D, local scale, surface (Furrow)	Early and steady-state		$\begin{array}{l} x \\ (h_0 > 0) \\ [constant head] \end{array}$	Yes	Rapidly varying D, very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Hansen (1955); Fok and Chiang (1984)
Smith et al. (1993)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state	<i>x</i> Before ponding/post hiatus [arbitrary rainfal rate]	x During rainfall hiatus $(h_0 \le 0)$ I After ponding [arbitrary head $h_0 > 0$]	Ň	K represented as function of θ using Brooks and Corey (1964)	Hydrostatic pressure, capillarity, and gravity	Parlange et al. (1982) [Darcy flow] [Richards' equation]
Philip (1993)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state	<i>x</i> Before ponding [arbitrary rainfal rate]	x After ponding Il [arbitrary head $h_0 > 0$]	Yes	Rapidly varying D, very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911)
											(Continues)

						Boundary condi	tions	Assumpt	ions		
	Category	Soil type 6	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		$\begin{array}{l} x \\ (h_0 > 0) \\ [constant head] \end{array}$	Yes	Rapidly varying D, constant K near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Philip (1957a)
hd (1994)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D, local scale, subsurface (cylinders)	Steady-state		$(h_0 \leq 0)$	Ŷ	Arbitrary	Capillarity and gravity	Philip (1968, 1984a, 1984b, 1985b); Waechter and Philip (1985)
al.	Conceptual	Rigid, k homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state		$\begin{array}{l} x \\ (h_0 \leq 0) \\ \text{and} \\ (h_0 > 0) \\ \text{Falling head} \end{array}$	No	D is constant, $Krepresented by anexponential function of\psi (Gardner, 1958)$	Capillarity	Philip (1957a, 1969a)
()04)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	ID, 2D and 3D, local scale, surface and subsurface	Early and steady-state	<i>x</i> Before ponding [arbitrary rainfall rate]	x After ponding [arbitrary head $h_0 > 0$]	No	D is constant, $Krepresented by anexponential function of\psi (Gardner, 1958)$	Capillarity and gravity	Buckingham (1907); Richards (1931); Greenberg (1971)
i	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		x $(h_0 > 0)$ [constant head]	Yes	Rapidly varying <i>D</i> , constant <i>K</i> near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Philip (1957a)
											(Continues)

27 of 96

15391663, 2025, 1, Downloaded from https://access.onlinelibrary.wiley.com/doi/10.1002/vzj2.20993 by Cochrane France, Wiley Online Library on [11/02/025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

						Boundary condi	tions	Assumption	ons		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Corradini et al. (1994)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state	<i>x</i> [arbitrary rainfall rate]		No	<i>K</i> represented as function of θ using Brooks and Corey (1964)	Capillarity and gravity	Parlange et al. (1980); Smith et al. (1993) [Richards' equation]
Smettem et al. (1994)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, surface	Early State		$x (h_0 \leq 0)$	No	D increases sharply with increasing θ , K varies rapidly near saturation	Capillarity	Parlange (1971 a); Turner and Parlange (1974)
Haverkamp et al. (1994)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D and 3D, local scale, surface	Early, transient, and steady-state		$x (h_0 \le 0)$ and $(h_0 > 0)$ [constant head]	No	$dK/d\theta$ and D increase rapidly and in similar fashion, K varies rapidly near saturation	Hydrostatic pressure, capillarity, and gravity	Parlange et al. (1982); Smetten et al. (1994); Haverkamp et al. (1990)
Barry et al. (1995)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		x $(h_0 > 0)$ [constant head]	No	$dK/d\theta$ and D increase rapidly and in similar fashion, K varies rapidly near saturation	Hydrostatic pressure, capillarity, and gravity	Richards (1931); Philip (1957a); Parlange et al. (1980); Haverkamp et al. (1990)
Elrick et al. (1995)	Semi- empirical	Arbitrary	Single	1D, local and field-scale, surface	Transient and steady-state		x ($h_0 > 0$) [Falling head]				Experimental infiltration data; Richards (1931)
Sommer and Mortensen (1996)	Conceptual	Deformable, homogeneous, anisotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		x $(h_0 > 0)$ [constant head]	Yes	Rapidly varying <i>D</i> , nearly constant <i>K</i>	Liquid pressure or hydrostatic pressure, and capillarity	Biot (1955) [Darcy's law]
											(Continues)

28 of 96

						Boundary condi	tions	Assumpti	suo		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Srivastava et al (1996)	. Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		$x (h_0 > 0)$ [constant head]	Yes	Rapidly varying <i>D</i> , nearly constant <i>K</i>	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Mein and Larson (1973)
Preziosi et al. (1996)	Conceptual	Deformable, homogeneous, anisotropic, non-hydrophobic, filat surface	Single	1D, local scale, surface	Early and steady-state		$\begin{array}{l} x \\ (h_0 > 0) \\ [constant head] \end{array}$	Yes	Rapidly varying <i>D</i> , nearly constant <i>K</i>	Liquid pressure or hydrostatic pressure, and capillarity	Darcy (1856); Bowen (1980)
Corradini et al. (1997)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state	<i>x</i> Before ponding/ post hiatus [arbitrary rainfall rate]	xDuring rainfallhiatus $(h_0 \leq 0)$ After ponding[arbitrary head $h_0 > 0$]	No	K represented as function of θ using Brooks and Corey (1964)	Hydrostatic pressure, capillarity, and gravity	Parlange et al. (1985); Smith et al. (1993); Corradini et al. (1994) [Darcy's law] [Richards' equation]
Parlange et al. (1997)	Conceptual	Arbitrary	Arbitrary	1D, local scale, surface	Early and steady-state	Any		No	D approaches a delta function, very sharp peak in K then K varies very slowly near saturation	Hydrostatic pressure, capillarity, and gravity	Parlange et al. (1980) [Richards' equation]
Wu and Pan (1997)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, surface	Early, transient, and steady-state		$ \begin{array}{l} x \\ (h_0 \leq 0) \\ \text{and} \\ (h_0 > 0) \\ [\text{constant head}] \end{array} $	No	<i>K</i> represented by an exponential function o ψ (Gardner, 1958)	Hydrostatic f pressure, capillarity, and gravity	Richards (1931); Warrick et al. (1985); Reynolds and Elrick (1990)
											(Continues)

	T ⁻¹) and/or	T^{-1}) and/or	Diffusivity D T ⁻¹) and/or
Dirichlet S Neumann (prescribed fi Infiltration (prescribed water content n behavior flux) or pressure) p	Dirichlet S Neumann (prescribed fi Type of Infiltration (prescribed water content n infiltration behavior flux) or pressure) p	Dirichlet S Neumann (prescribed fi Porosity Type of Infiltration (prescribed water content n ioil type domain infiltration behavior flux) or pressure) p	Dirichlet S Neumann (prescribed fi Porosity Type of Infiltration (prescribed water content n Category Soil type domain infiltration behavior flux) or pressure p
Early and x steady-state $(h_0 > 0)$ [constant head]	1D, local scale, Early and x surface steady-state $(h_0 > 0)$ [constant head]	tigid, Single ID, local scale, Early and x onogeneous, surface steady-state $(h_0 > 0)$ sotropic, on-hydrophobic, at surface the add lat surface the add lat surface the add laterate the add	ConceptualRigid,Single1D, local scale,Early and x homogeneous,surfacesteady-state $(h_0 > 0)$ isotropic,isotropic,isotropic,[constant head]non-hydrophobic,flat surfacesurface
Early and x) steady-state $(h_0 > 0)$ [constant head]	1D, local scale, Early and x surface (furrow) steady-state $(h_0 > 0)$ [constant head]	tigid, Triple ID, local scale, Early and x eterogeneous, surface (furrow) steady-state $(h_0 > 0)$ hree-layer $(h_0 > 0)$ surface scal + till surface scal + till syst + subsoil), sotropic, $(n_0 > 0)$ on-hydrophobic, $(n_0 > 0)$	$ \begin{array}{c cccc} \mbox{Conceptual} & \mbox{Rigid}, & \mbox{Triple} & \mbox{ID}, \mbox{local scale}, & \mbox{Early and} & x \\ & \mbox{heterogeneous}, & \mbox{surface} (furrow) & \mbox{steady-state} & (h_0 > 0) \\ & \mbox{three-layer} & & & & & & & & & & & & & & & & & & &$
Early, transient, x and steady-state $(h_0 \le 0)$ and $(h_0 > 0)$ [constant head]	1D, local scale, Early, transient, x surface and steady-state $(h_0 \le 0)$ and $(h_0 > 0)$ [constant head]	tigid,Dual1D, local scale,Early, transient, x eterogeneous,surfaceand steady-state $(h_0 \leq 0)$ wo-layer (surfaceand steady-stateandrust + subsoil),insotropic, $(h_0 > 0)$ nisotropic,on-hydrophobic,fonstant head]	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Early, transient, x x and steady-state Before ponding/ During rainf post hiatus hiatus hiatus [arbitrary rainfall ($h_0 \le 0$) rate] After pondir [arbitrary he $h_0 > 0$]	1D, local scale, Early, transient, x x x surface and steady-state Before ponding/ During rainf post hiatus hiatus hiatus [arbitrary rainfall ($h_0 \le 0$) rate] After pondir [arbitrary he	tigid, Dual 1D, local scale, Early, transient, x x eterogenous, surface and steady-state Before ponding/ During rainf wo-layer (surface post hiatus hiatus rust + subsoil), rust + subsoil), rate] $After pondiron-hydrophobic, h_0 \le 0farbitrary rainfall (h_0 \le 0)farbitrary rainfall (h_0 \le 0)farbitrary hefarbitrary he$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Early and steady-state Early and Early, transient, and steady-state and steady-state Before post h [arbitr rate]	ID. local scale, Early and surface steady-state ID. local scale, Early and surface (furrow) steady-state surface (furrow) steady-state ID. local scale, Early, transient, surface and steady-state Surface Early, transient, surface and steady-state Before and steady-state surface and steady-state	tigid, Single ID, local scale, Early and steady-state sotropic, on-hydrophobic, Triple ID, local scale, Early and eterogeneous, Triple ID, local scale, Early and eterogeneous, three-layer surface (furrow) steady-state subsoil), sotropic, on-hydrophobic, and steady-state subsoil), nisotropic, and subsoil at surface	ConceptualRigid.SingleID. local scale.Early and steady-statehomogeneous, isotropic, non-hydrophobic, flat surfaceSingleID. local scale, steady-stateEarly and steady-stateConceptualRigid, heterogeneous, three-layerTripleID. local scale, steady-stateEarly and steady-stateConceptualRigid, heterogeneous, three-layerTripleID. local scale, steady-stateEarly and steady-stateConceptualRigid, non-hydrophobic, flat surfaceDualID. local scale, stady-stateEarly, transient, and steady-stateConceptualRigid, non-hydrophobic, flat surfaceDualID. local scale, surfaceEarly, transient, and steady-stateConceptualRigid, non-hydrophobic, non-hydrophobic, non-hydrophobic, flat surfaceDualID. local scale, surfaceEarly, transient, and steady-stateConceptualRigid, non-hydrophobic, flat surfaceDualID. local scale, and steady-stateEarly, transient, posth surfaceConceptualRigid, non-hydrophobic, flat surfaceDualID. local scale, and steady-stateEarly, transient, posth itate
	Type of infiltration 1D, local scale, surface (furrow surface surface, surface surface surface surface surface	Porosity oll typePorosity infiltrationioll typedomaininfiltrationiugid,SingleID, local scale,omogeneous,surfacesurfacesotropic,rippleID, local scale,sotropic,surfacesurfacesotropic,surfacesurfacesotropic,bualID, local scale,surfacesurfacesurfacesurfacebualsurfacesurfacebualID, local scale,surfacebualsurfacesurfacebualsurfacesurfacebualsurfacesurfacebualsurfacesurfacesurfacesurfacebualID, local scale,surfacebualID, local scale,surfacebualsurfacesurfac	Conceptual CategorySoil type domainPorosity infiltrationConceptualRigid,SingleID, local scale,homogeneous, isotropic, non-hydrophobic, flat surfaceSingleID, local scale,conceptualRigid,TripleID, local scale,surfaceSingleID, local scale,homogeneous, isotropic, non-hydrophobic, flat surfaceID, local scale,conceptualRigid,TripleID, local scale,surfaceSurfaceSurfaceSurfaceconceptualRigid,TripleSurfaceconceptualRigid,DualID, local scale,sourfaceSurfaceSurfaceSurfaceconceptualRigid,DualID, local scale,layer + subsoil), isotropic, non-hydrophobic,DualID, local scale,conceptualRigid,DualID, local scale,surfacetwo-layer (surfaceSurfacecrust + subsoil), anisotropic, non-hydrophobic,DualID, local scale,crust + subsoil), isotropic, non-hydrophobic, flat surfaceSurfacecrust + subsoil), isotropic, non-hydrophobic,Surfaceflat surfacetwo-layer (surfacecrust + subsoil), isotropic, non-hydrophobic,Surfaceflat surfacetwo-layer (surfacetuon-hydrophobic, isotropic,surfacetuon-hydrophobic, isotropic,surfacetuon-hydrophobic, isotropic,surface

TABLE 1 ((Continued)										
						Boundary condi	tions	Assumpti	ons		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Selker et al. (1999a)	Conceptual	Rigid, Scale- heterogeneous, anisotropic, non-hydrophobic, flat surface	Single	1D, Field-scale, surface	Early and steady-state		x ($h_0 > 0$) [constant head]	Yes	Rapidly varying <i>D</i> , saturated <i>K</i> function ol depth following linear, power law and exponential relationship	Hydrostatic f pressure, capillarity, and gravity	Green and Ampt (1911); Beven (1984)
Wu et al. (1999)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, surface	Early, transient, and steady-state		$ \begin{array}{l} x \\ (h_0 \leq 0) \\ (h_0 > 0) \\ (h_0 > 0) \end{array} $ [constant head]	No	K represented by an exponential function of ψ (Gardner, 1958)	Hydrostatic f pressure, capillarity, and gravity	Philip (1957a); Reynolds and Elrick (1990); Wu and Pan (1997) [Richards [*] equation]
Novak et al. (2000)	Conceptual	Swelling/ cracked, heterogeneous, isotropic, non-hydrophobic, flat surface	Multi	1D, local scale, surface	Early, transient, and steady-state		$\begin{array}{l} x \\ (h_0 \leq 0) \\ (h_0 > 0) \\ (h_0 > 0) \end{array}$ [constant head]	No	Arbitrary	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Feddes et al. (1988) [Darcy's law] [Richards' equation]
Corradini et al. (2000)	. Conceptual	Rigid, heterogeneous, two-layer (surface crust + subsoil), isotropic, non-hydrophobic, flat surface	Dual	1D, local scale, surface	Early, transient, and steady-state	<i>x</i> Before ponding/post hiatus [arbitrary rainfall rate]	xDuring rainfallhiatus $(h_0 \le 0)$ (After ponding[arbitrary head $h_0 > 0$]	No	<i>K</i> represented as function of θ using Brooks and Corey (1964); either layer may be less permeable	Hydrostatic pressure, capillarity, and gravity	Smith et al. (1993, 1999); Corradini et al. (1994, 1997) [Darcy's law] [Richards' equation]
											(Continues)

31 of 96

						Boundary condi	tions	Assumpti	ions		
	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
lruber	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		$x (h_0 > 0)$ [Variable head]	Yes	Rapidly varying <i>D</i> , nearly constant <i>K</i>	Hydrostatic pressure, capillarity, and gravity	Darcy (1856); Green and Ampt (1911)
aju (1)	Semi- analytical	Rigid, scale- heterogeneous (at the field scale), anisotropic, non-hydrophobic, flat surface	Single	1D, local and field-scale, surface	Early, transient, and steady-state	<i>x</i> Before ponding [arbitrary rainfall rate]	x After ponding [arbitrary head $h_0 > 0$]	(1) Yes (2) No	 At the local scale, rapidly varying D, constant K near saturation, At the field-scale, saturated At varies spatially and represented by a correlated lognormal 	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911)
2001)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and Steady-state		$\begin{array}{l} x \\ (h_0 > 0) \\ [constant head] \end{array}$	Yes	Rapidly varying <i>D</i> , nearly constant <i>K</i>	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911)
i et al.	Semi- analytical	Rigid, scale- heterogeneous, anisotropic, non-hydrophobic, sloping surface	Single	1D, field-scale, surface	Early, transient, and steady-state	<i>x</i> Before ponding [arbitrary rainfall rate]	<i>x</i> Downslope after ponding (no run-on) (1) After ponding [arbitrary head $h_0 > 0$] (2)	°	 (1) Saturated Saturated K varies spatially and represented as a log-distributed random variable with PDF (2) Effective Saturated K represented empirically 	Hydrostatic pressure, capillarity, and gravity	Govindaraju et al. (2001)
											(Continue:

	- Cited (mentioned in text) origins	Green and Ampt (1911); Philip (1957b); Elrick et al. (1995)	Green and Ampt (1911); Philip (1969a); Talsma and Parlange (1972); Parlange (1980); Parlange et al. (1982)	Green and Ampt (1911)	Green and Ampt (1911) [Buckingham- Darcy law]	Govindaraju et al. (2001); Corradini et al. (2002)	(Continues)
	Driving forces for infiltration	Hydrostatic pressure, capillarity, and gravity	Capillarity and gravity d	Hydrostatic pressure, capillarity, and gravity	Hydrostatic pressure, capillarity, and gravity	Hydrostatic pressure, capillarity, a and gravity	
ions	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity (L T ⁻¹)	Rapidly varying <i>D</i> , very sharp peak in <i>K</i> to a constant <i>K</i> near saturation	D and K lie between the assumption of sharp wetting front an the assumption of D and $dK/d\theta$ proportional	Rapidly varying D , nearly constant K	Rapidly varying D , nearly constant K	Saturated K varies spatially and represented as a log-distributed randor variable with PDF	
Assumpt	Step- function moisture profile	Yes	°N	Yes	Yes	No	
tions	Dirichlet (prescribed water content or pressure)	x $(h_0 > 0)$ [constant and Falling head]	x $(h_0 = 0)$	x $(h_0 > 0)$ [Variable head]	x $(h_0 > 0)$ [constant head]	x Downslope after ponding (no run-on) After ponding [variable head $h_0 > 0$]	
Boundary condi	Neumann (prescribed flux)					<i>x</i> Before ponding [Variable rainfall rate]	
	Infiltration behavior	Early and Steady State	Early and Steady-state	Early and Steady-state	Early and steady-state	Early, transient, and steady-state	
	Type of infiltration	1D, local scale, surface	ID, local scale, surface	1D, local scale, surface	1D, local scale, surface	ID, field-scale, surface	
	Porosity domain	Single	Single	Single	Dual	Single	
	Soil type	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Rigid, heterogeneous, isotropic, non-hydrophobic, flat surface	Rigid, scale- heterogeneous, anisotropic, non-hydrophobic, sloping surface	
	Category	Conceptual	Conceptual	Conceptual	Conceptual	Semi- analytical	
	Model	Elrick et al. (2002)	Parlange et al. (2002)	Warrick et al. (2005)	Weiler (2005)	Govindaraju et al. (2006)	

33 of 96

						Boundary condi	tions	Assumpti	suo		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Morbidelli et al (2006)	. Semi- analytical	Rigid, scale- heterogeneous, anisotropic, non-hydrophobic, sloping surface	Single	1D, field-scale, surface	Early, transient, and steady-state	<i>x</i> Before ponding [variable rainfall rate]	<i>x</i> After ponding [variable head $h_0 > 0$]	No	Saturated <i>K</i> varies spatially and represented as a log-distributed random variable with PDF	Hydrostatic pressure, capillarity, and gravity	Govindaraju et al. (2001, 2006); Corradini et al. (2002)
Lassabatère et al. (2006)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, surface	Transient and Steady-state		$(h_0 \leq 0)$	No	<i>K</i> represented as function of θ using Brooks and Corey (1964)	Capillarity and gravity	Philip (1969); Smetten et al. (1994); Haverkamp et al. (1994)
Chen and Youn (2006)	g Conceptual	Rigid, infinitely deep, homogeneous, isotropic, non-hydrophobic, sloping surface	Single	1D, local scale, surface	Early and Steady-state	<i>x</i> Before ponding [arbitrary rainfal] rate]	x After ponding I [arbitrary head $h_0 > 0$]	Yes	Rapidly varying D, very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911) [Darcy's law]
Warrick and Lazarovitch (2007)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D, local scale, surface (strip source)	Early, transient, and steady-state		x $(h_0 > 0)$ [constant head]	No.	Arbitrary	Hydrostatic pressure, capillarity an gravity	Turner and Parlange ((1974); Smetten et al. (1994); Haverkamp et al. (1994) [Richards' equation]
Warrick et al. (2007)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D, local scale, surface (furrow)	Early, transient, and steady-state		x ($h_0 > 0$) [constant head]	°Z	Arbitrary	Hydrostatic pressure, capillarity anc gravity	Haverkamp et al. (1994); Warrick and Lazarovitch (2007) [Richards' equation]
											(Continues)

34 of 96

TABLE 1 (Continued)

BASSET ET AL.

						Boundary condit	tions	Assumpti	ons		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Assouline et al. (2007)	Conceptual	Arbitrary	Arbitrary	Arbitrary	Early, transient, and steady-state	<i>x</i> Before ponding [Variable rainfall rate]	x After ponding [variable head $h_0 > 0$]	No	Arbitrary	Hydrostatic pressure, capillarity, and gravity	Smith et al. (2002); Brutsaert (2005)
Germann et al. (2007)	Conceptual	Rigid, heterogeneous, isotropic, non-hydrophobic, flat surface	Multi	1D, local scale, surface	Steady-state	<i>x</i> [constant rainfall rate]		Yes	Saturated K is time-variant	Gravity	[Stokes flow]
Essig et al. (2009)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, sloping surface	Single	ID, local scale, surface	Early and Steady-state	<i>x</i> Before ponding [constant rainfall rate]	xBefore pondingand aftersaturation $(h_0 = 0)$ After ponding[constant head $h_0 > 0$]	Yes	Rapidly varying D, very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, and gravity	[Darcy; Buckingham law] [Darcy's law]
Valiantzas (2010)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early, transient, and steady-state		$ \begin{array}{l} x \\ (h_0 \leq 0) \\ and \\ (h_0 > 0) \\ [constant head] \end{array} $	No	D and K lie between the assumption of sharp wetting front and the assumption of D and $dK/d\theta$ proportional	Hydrostatic pressure, (capillarity, and gravity	Philip (1957a, 1957b); Talsma and Parlange (1972) [Darcy's law] [Richards' equation]
Su (2010)	Conceptual	Swelling, heterogeneous, isotropic, non-hydrophobic, flat surface	Multi	ID, local scale, surface	Early, transient, and steady-state		x $(h_0 \leq 0)$	No	constant <i>D</i> and linear <i>K</i> as function of θ (Fleming et al., 1984)	Capillarity and gravity	Philip (1969b); Smiles and Raats (2005);- Su (2009) [Richards' equation]
											(Continues)

Vadose Zone Journal 🛲 🖲
	Neumann Itration (prescribed avior flux)	Iype of Infiltration (prescribed infiltration behavior flux)	Neumann Porosity Type of Infiltration (prescribed domain infiltration behavior flux)
3/	ly, transient, x steady-state Before ponding post hiatus [arbitrary rainf rate]	 ID, local scale, Early, transient, x surface and steady-state Before ponding post hiatus [arbitrary rainfrate] 	Dual 1D, local scale, Early, transient, x surface and steady-state Before ponding ce post hiatus post hiatus farbitrary rainf rate] rate]
	ly and ady-state	ID, local scale, Early and surface Steady-state	Single ID, local scale, Early and surface Steady-state
ala	ly, transient, <i>x</i> steady-state Before ponding [arbitrary rainf rate]	ID, local and Early, transient, <i>x</i> field-scale, and steady-state Before ponding surface [arbitrary rainf rate]	Single 1D, local and Early, transient, <i>x</i> field-scale, and steady-state Before ponding surface tarbitrary rainf rate]
	ly and tdy-state	ID, local scale, Early and surface steady-state	Single 1D, local scale, Early and surface steady-state

TABLE 1 (Continued)

36 of 96

						Boundary condi	tions	Assumpt	ions		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity $K(\theta)$ or $K(\psi)$ (L T ⁻¹)	Driving forces for infiltration	Cited (mentioned in text) origins
Almedeij and Esen (2014)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state	<i>x</i> Before ponding [constant rainfall rate]	x After ponding [constant head $h_0 > 0$]	Yes	Rapidly varying D, very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Mein and Larson (1973)
Bautista et al. (2014)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D, local scale, surface (furrow)	Early, transient, and steady-state		x $(h_0 > 0)$ [Variable head]	oN	Arbitrary	Hydrostatic pressure, Capillarity and gravity	Richards (1931); Haverkamp et al. (1994); Warrick and Lazarovitch (2007); Warrick et al. (2007)
Lassabatere et al. (2014)	Conceptual	Rigid, heterogeneous, isotropic, non-hydrophobic, flat surface	Dual	1D and 3D, local scale, surface	Early, transient, and steady-state		x $(h_0 \leq 0)$	Ŷ	K represented as function of θ using van Genuchten; Mualem model (Mualem, 1976; van Genuchten, 1980)	Capillarity and gravity	Gerke and van Genuchten (1993); Haverkamp et al. (1994) [Buckingham; Darcy law] [Richards' equation]
Vatankhah (2015)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		x $(h_0 > 0)$ [arbitrary head]	Yes	Rapidly varying D, very sharp peak in K to a constant K near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Almedeij and Esen (2014)
											(Continues)

TABLE 1 (Continued)

37 of 96

(Continued)
1
LE
B
L

						Boundary cond	itions	Assumpti	ons		
							Dirichlet	Step-	Diffusivity $D(\theta) (L^2 - T^{-1})$ and/or Hydraulic		I
						Neumann	(prescribed	function	Conductivity	Driving	Cited
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	(prescribed flux)	water content or pressure)	moisture profile	$K(\theta)$ or $K(\psi)$ (L T ⁻¹)	forces for infiltration	(mentioned in text) origins
Bautista et al. (2016)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	2D, local scale, surface (furrow)	Early, transient, and steady-state		x ($h_0 > 0$) [Variable head]	oZ	Arbitrary	Hydrostatic pressure, capillarity anc gravity	Richards (1931); Haverkamp et al. (1994); Warrick and Lazarovitch (2007); Warrick et al. (2007); Bautista et al. (2014, 2016)
Nie et al. (2017a)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early and steady-state		$\begin{array}{l} x\\ (h_0 > 0)\\ [constant head] \end{array}$	Yes	Rapidly varying D , nearly constant K	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911), Valiantzas (2010) [Darcy's equation]
Selker and Assouline (2017)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	1D, local scale, surface	Early state		$\begin{array}{l} x\\ (h_0 > 0)\\ [constant head] \end{array}$	Yes	Rapidly varying <i>D</i> , nearly constant <i>K</i>	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911)
Stewart and Abou Najm (2018a)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic, flat surface	Single	3D, local scale, surface	Transient and steady-state		$ \begin{array}{l} x \\ (h_0 \leq 0) \\ \text{and} \\ (h_0 > 0) \\ [\text{constant head}] \end{array} $	No	K represented as function of ψ using Brooks and Corey (1964)	Hydrostatic pressure, capillarity, and gravity	Philip (1957a); Philip (1969a); Reynolds and Elrick (1990); Wu and Pan (1997); Wu et al. (1999)
Stewart (2018)	Conceptual	Shrink-swell, Heterogeneous, Isotropic, Non- hydrophobic, Flat surface	Dual	1D, local scale, surface	Early and steady-state	<i>x</i> Before ponding [constant rainfal rate]	x After ponding I [constant head $h_0 > 0$]	Yes	Rapidly varying <i>D</i> , very sharp peak in <i>K</i> to a constant <i>K</i> near saturation	Hydrostatic pressure, capillarity, and gravity	Green and Ampt (1911); Selker and Assouline (2017)

(Continues)

	tioned in origins	kamp (1994); nge et al.); rds); Philip a)	n and (1911); n and ann); Gerke an (; Selker); Selker); Selker) y's law]	rds (1931)	rids (1931)
	Cited (men) text)	Haver et al. et al. Parlan (1982 Richa (1931) (1957)	Greer Ampt Bever Germ (1982 and V (1993 and A and A (2017 (1993	Richa	Richa
	Driving forces for infiltration	Hydrostatic pressure, capillarity, and gravity	Hydrostatic pressure, capillarity, and gravity	Gravity	Hydrostatic n pressure, capillarity, and gravity
ions	Diffusivity $D(\theta)$ (L ² T ⁻¹) and/or Hydraulic Conductivity (L T ⁻¹)	Arbitrary	Rapidly varying <i>D</i> , very sharp peak in <i>K</i> to a constant <i>K</i> near saturation	 K represented using Torricelli's law K represented as function of <i>w</i> using Brooks and Corey (1964) 	<i>K</i> represented as function of θ using va Genuchten model (1980)
Assumpt	Step- function moisture profile	No	Yes	No	No
tions	Dirichlet (prescribed water content or pressure)	$x (h_0 \leq 0)$	x After ponding [constant head $h_0 > 0$]		$x (h_0 \le 0)$ and $(h_0 > 0)$ [constant head]
Boundary condi	Neumann (prescribed flux)		<i>x</i> Before ponding [constant rainfall rate]	<i>x</i> [constant rainfall rate]	
	Infiltration behavior	Early and transient State	Early and Steady-state	Early, transient, and steady-state	Early, transient, and steady-state
	Type of infiltration	1D, local scale, surface	ID, local scale, surface	1D, local scale, surface	1D, local scale, surface
	Porosity domain	Single	Dual	Single	Single ,
	Soil type	Rigid, homogeneous, isotropic, non-hydrophobic flat surface	Rigid, heterogeneous, isotropic, non-hydrophobic flat surface	Rigid, homogeneous, isotropic, non-hydrophobic flat surface	Deformable, scale- heterogeneous, anisotropic, non-hydrophobic flat surface
	Category	Conceptual	Conceptual	Conceptual	Conceptual
	Model	Rahmati et al. (2019)	Stewart (2019)	Baiamonte (2020)	Su et al. (2020)

TABLE 1 (Continued)

(Continued)
-
LE
B
$\mathbf{T}\mathbf{A}$

						Boundary cone	litions	Assumpti	ons		
Model	Category	Soil type	Porosity domain	Type of infiltration	Infiltration behavior	Neumann (prescribed flux)	Dirichlet (prescribed water content or pressure)	Step- function moisture profile	Diffusivity D(θ) (L ² T ⁻¹) and/or Hydraulic Conductivity K(θ) or K(ψ) (L T ⁻¹)	Driving forces for infiltration	- Cited (mentioned in text) origins
Poulovassilis and Argyrokastritis (2020)	Conceptual	Rigid, homogeneous, isotropic, non-hydrophobic. flat surface	Single	1D, local scale, surface	Early, transient, and steady-state		x $(h_0 \leq 0)$	No	Arbitrary	Capillarity and gravity	Richards (1931); Philip (1957a, 1957b)
Abou Najm et al. (2021) ^a	Semi- conceptual	Arbitrary	Arbitrary	Arbitrary	Arbitrary	Any		No	Arbitrary	Arbitrary	1
Di Prima et al. (2021) ^a	Conceptual	Rigid, homogeneous, isotropic, hydrophobic, flat surface	Single	3D, local scale, surface	Transient and steady-state		$x (h_0 \leq 0)$	No	<i>K</i> represented as function of θ using Brooks and Corey (1964)	Capillarity and gravity	Haverkamp et al. (1994); Lassabatère et al. (2006); Abou Najm et al. 2021)
^a All infiltration mo	dels were designe	ed to reflect theoretic.	al infiltration	results revealing a co	oncave cumulative inf	filtration curve, exc	cept for Abou Najm et	al. (2021) ar	d Di Prima et al. (2021) m	odels that reflect c	umulative infiltration

curves exhibiting concave, convex, mixed, or non-standard shapes.

Vadose Zone Journal 🛲 🛛 🛛 🛛 41 of 96

while the keyword "equation" generally represents Richards. On the other hand, soil water characteristic models, which are required to model infiltration processes under the Darcy-BRR paradigm, gained wide adoption. For example, Table 2 shows the citation impact of the van Genuchten model, which had 32,113 citations or nearly four times as many citations than either Darcy (1856) or Richards (1931). This result suggests that the van Genuchten (1980) model was published recently enough in the literature to continue being cited as a primary source.

Therefore, our analysis raises the question of the reliability and validity of citations as quality indicators in infiltration research. We conclude that the assessment of infiltration theory in literature based on citations does not often reflect its impact and relevance for the new concepts being addressed.

FIGURE 4 All infiltration models are based on the basic physical flow models and mimic the concave shape infiltration curve, except for Abou Najm et al. (2021), Di Prima et al. (2021), and Yilmaz et al. (2021) who captured the multi-shaped cumulative infiltration curve behavior in water-repellent soils.

9 | MODEL PARAMETERIZATION

9.1 | Evolution of the infiltration parameterization

9.1.1 | Hydraulic conductivity K

Saturated hydraulic conductivity, K_s (L T⁻¹), was originally defined by Darcy (1856) as a measure of the water infiltration through the soil porous medium and later described as a function of permeability k (L²), density, ρ (M L⁻³), and kinematic viscosity, η (M L⁻¹T⁻¹) of a fluid through an empirical equation developed by Kozeny (1927):

$$K_s = k \left(\frac{\rho g}{\eta}\right) \tag{23}$$

Unsaturated hydraulic conductivity, K (L T⁻¹), was introduced by Buckingham (1907), symbolized by $K(\theta)$ (L T⁻¹) as a function of the water content θ (L³ L⁻³), and by $K(\psi)$ as a function of the matric potential ψ (L). Accordingly, Wind (1955) proposed an empirical equation relating $K(\psi)$ (L T⁻¹) to the matric potential ψ (L) as follows:

$$K(\psi) = b^* \psi^{-a^*}$$
 (24)

where b^* (L² T⁻¹) and a^* (dimensionless) are empirical parameters.

Although there exist numerous models in the literature, we only summarize selected empirical and/or theoretical equations developed to illustrate the relationship between the unsaturated ($K(\theta)$ or $K(\psi)$) and the saturated (K_s) hydraulic conductivities, as summarized in Table 3.

Using the exponential equation developed by Gardner (1958) in Table 3, Raats (1971) defined the saturated hydraulic conductivity K_s (L T⁻¹), in terms of the matric flux potential, φ (L² T⁻¹), as follows:

$$K_s = \frac{\alpha \varphi}{1 - e^{\alpha \psi_i}} \tag{25}$$

where $\Psi_i(L)$ is the initial matric head.

Considering that the matrix flux potential is defined by:

$$\varphi = \int_{h_i}^0 K(h) \ dh \tag{26}$$

A well-known equation for estimating K_s (L T⁻¹) was derived from Equation (25) for soils initially at "field capacity" or drier conditions (Ankeny et al., 1991; Raats, 1971; Reynolds et al., 1985; Scotter et al., 1982; Stewart & Abou Najm, 2018a, 2018b; Wu & Pan, 1997 Yeh, 1989):

$$K_s = \alpha^* \varphi \tag{27}$$

Although the hydraulic conductivity improved our understanding of infiltration problem, researchers realized that solving this problem was still so far from complete. Thus, they recognized the need for an additional soil property that could improve the estimation of water infiltration. This major characteristic is the soil sorptivity, symbolized by *S*, that describes the water absorption by capillarity.

9.1.2 \mid Sorptivity S

Philip (1957b) introduced the sorptivity S_0 (L T^{-0.5}), as the first term in his two-term equation of cumulative, one-

TABLE 2 Citation analysis involving Darcy, Richards, and van Genuchten theories.

Cited theory (references list)	No. of records by Google scholar [Scopus] (on September 26, 2023)	Theory mentioned in text	No. of records by Scopus (on September 26, 2023)
Darcy (1856)	8067 [ND]	"Darcy* law" or "Darcy* model*" or "Darcy* equation"	21,381
		a) "Darcy* law"	16,131
		b) "Darcy* model*"	3603
		c) "Darcy* equation"	3209
Richards (1931)	7936 [4484]	"Richard* model*" or "Richard* equation*"	8763
		a) "Richard* model*"	2295
		b) "Richard* equation*"	6584
van Genuchten (1980)	32,113 [19,904]	"van Genuchten model*" or "van Genuchten equation" or "van Genuchten parameter*"	2068

Note: The asterisk is used as a trick for a better Scopus search- it can search for the alternative spellings of the same word.

dimensional, unsaturated infiltration I (L) with negative or zero head surface boundary condition $(h_0 \le 0 \text{ and } \theta_0 \le \theta_s)$:

$$I = S_0 t^{0.5} + At (28)$$

After he introduced the term sorptivity in 1957, Philip undertook a series of successive events to entrench soil sorptivity into literature. In 1969, Philip (1969a) first developed an analytical equation describing sorptivity, S_0 (L T^{-0.5}), for an unsaturated soil with a constant diffusivity D (L² T⁻¹) independent of θ (L³ L⁻³):

$$S_0 = 2\left(\theta_o - \theta_i\right) \left(\frac{D}{\pi}\right)^{0.5} \tag{29}$$

Then, in 1973, he introduced the concept of flux concentration function $F(\theta)$ to describe the water absorption by capillary. He defined this concept as the ratio of water flux at any location in the profile $i(t) - K_i$, to the infiltration rate at surface, $i_0(t) - K_i$, where K_i (L T⁻¹) is the initial hydraulic conductivity. In 1974, Philip and Knight further used this concept to estimate the sorptivity S_0 (L T^{-0.5}):

FIGURE 5

cited in the corresponding papers.

ABLE 3 Empirical equations for	r the unsaturated hydraulic conductivities $K(\theta)$ and $K(w)$.	
E		Deferment
Equation		Reference
Unsaturated hydraulic conductivity	y $K(\theta)$ or $K(S_e)$	
$K(\theta) = K_s S_e^n \theta < \theta_s$ $K(\theta) = K_s \theta = \theta_s$		Brooks and Corey (1964)
$K(\theta) = K_s e^{\alpha(\theta - \theta_s)}$		Davidson et al. (1969)
$K(\theta) = K_s \left(\frac{\theta}{\theta_s}\right)^n$		Campbell (1974)
$K(\theta) = K_s S_e^{0.5} \left[\int_0^{S_e} \frac{dS_e}{\psi} / \int_0^1 \frac{dS_e}{\psi} \right]^2$		Mualem (1976)
$K(\theta) = K_s S_e^2 \int_0^{S_e} \frac{dS_e}{\psi^2} / \int_0^1 \frac{dS_e}{\psi^2}$		Burdine (1953)
$K(\theta) = K_s S_e^{0.5} [1 - (1 - S_e^{1/m_{ssc}})^{m_s}]$	sec] ²	Mualem's model applied on van Genuchten (1980) model for water retention curve (WRC)
$K(\theta) = K_s e^{\beta_l(\theta - \theta_s)}$		Libardi et al. (1980)
$K(\theta) = K_{s} \left(\frac{S_{e}}{S_{ea}}\right)^{0.5} \left[\frac{1 - (1 - S_{e}^{1/m_{SSC}})^{m_{SSC}}}{1 - (1 - S_{ea}^{1/m_{SSC}})^{m_{SSC}}}\right]^{2}$		van Genuchten et al. (1991)
$K(\theta) = K_s e^{-a_{sn}(\theta_s - \theta)^{b_{sn}}}$		Setiawan and Nakano (1993)
$K(\theta) = K_s S_e^{\alpha_k} \{ \frac{1}{2} erfc [erfc^{-1}(2S_e)]$	$(1+\frac{\beta_k\sigma_k}{\sqrt{2}}])^{\gamma_k}$	Kosugi (1999)
$K(\theta) = K_s \left[\frac{\frac{\rho_g}{\phi} - 1 + \theta - \theta_c}{\frac{\rho_g}{\phi} - \theta_c}\right]^{\frac{\lambda_g}{3 - D_g}} \theta_x \le \theta < $	$<\phi$	Ghanbarian et al. (2016)
$K(\theta) = K_s \left[\frac{\frac{\mu_s}{\phi} - 1 + \theta_x - \theta_c}{\frac{\beta_s}{\phi} - \theta_c}\right]^{3 - D_s} \left(\frac{\theta - \theta_c}{\theta_x - \theta_c}\right)^2$		
$\theta_c \le \theta < \theta_x$		
Unsaturated hydraulic conductivity	y $K(\psi)$	
$K(\psi) = K_s S_e^{3.5}$		Averjanov (1950)
$K(\psi) = K_s e^{\alpha \psi}$		Gardner (1958)
$K(\Psi) = K_s e^{\alpha(\Psi - \Psi_{str})} \Psi < 0 and K(\Psi)$	$=K_{s}\psi\geq0$	Rijtema (1965) (See Fredlund et al., 1994)
$K(\Psi) = K_s \left\{ \frac{1}{2} \operatorname{erfc}\left[\frac{\ln(\psi/\beta_k) - \gamma_k^2}{\gamma_k \sqrt{2}}\right] \right\}^{\delta_k} \left\{ \frac{1}{2} \right\}$	$erfc[rac{\ln(\psi/eta_k)}{\gamma_k\sqrt{2}}]$ }2	Das and Kluitenberg (1995) (See Leij et al., 1997)
$\begin{split} S_e &= \frac{\theta - \theta_r}{\theta_z - \theta_r}; \ S_{eo} = \frac{\theta_o - \theta_r}{\theta_z - \theta_r}\\ \theta_o, \ \theta_r, \ \dot{\theta}_s, \ \theta_c, \ \text{and} \ \theta_x \ \text{are arbitrary, ress}\\ \text{switches to universal percolation scal}\\ \psi_{str} \ (\text{L}) \ \text{is the suction at the air-entry}\\ \text{All other model parameters are fitted} \end{split}$	idual, saturated, critical, and the crossover water content at v ling from percolation theory, respectively. point. parameters.	which fractal scaling from critical path analysis

 $S_{0}^{2} = 2 \int_{0}^{\theta_{0}} \frac{\left[\theta - \theta_{i}\right] D(\theta)}{F(\theta)} d\theta$ (30)

where θ_i and θ_o (L³ L⁻³) are the initial (t = 0) and specific (t > 0) water contents, respectively, and $F(\theta)$ stands for the flux concentration function.

Many estimates for sorptivity S_0 (L T^{-0.5}) have relied on the use of the flux concentration function $F(\theta)$ as shown in Table 4.

Another approximation for sorptivity, S_0 (L T^{-0.5}), was derived by equating the GA equation (considering a surface pressure of zero, i.e., $h_0 = 0$) to Philip's two-term infiltration equation (Collis-George, 1977):

$$S_0^2 = 2\psi_{wf} \left(\theta_0 - \theta_i\right) K_s \tag{31}$$

where ψ_{wf} (L) is the wetting front potential.

Later, Philip (1985a) introduced the macroscopic capillary length, λ_c (L), typically equivalent to the wetting front potential, ψ_{wf} (L) as follows:

$$\lambda_c = \frac{1}{K_0 - K_i} \int_{\theta_i}^{\theta_o} D(\theta) \, d\theta \tag{32}$$

Based on Philip's definition of λ_c , White and Sully (1987) reformulated the sorptivity, S_0 (L T^{-0.5}) by substituting Equation (29) into (32), with F = 0 for $\theta = \theta_i$ and F = 1 for $\theta =$ θ_0 :

$$S_0^2 = \frac{\lambda_c \left(K_0 - K_i\right) \left(\theta_0 - \theta_i\right)}{b} \tag{33}$$

TABLE 4 Main approximations of the flux concentration function $F(\theta)$ and sorptivity S_0^2 (L² T⁻¹) (See Table 1.1 in Angulo-Jaramillo et al., 2016).

F(heta)	$S_0^2 (L^2 T^{-1})$	Reference
$\frac{\theta - \theta_i}{\theta_o - \theta_i}$	$2(\theta_{o}-\theta_{i})\int_{\theta_{i}}^{\theta_{o}}D(\theta)d\theta$	Philip and Knight (1974)
$\frac{2(\theta - \theta_i)}{\theta_0 + \theta - 2\theta_i}$	$\int_{ heta_i}^{ heta_o} (heta_o + heta - 2 heta_i) D(heta) d heta$	Parlange (1975)
$\left(\frac{\theta- heta_i}{ heta_o- heta_i} ight)^{0.5}$	$2(\theta_{\rm o}-\theta_i)^{0.5}\int_{\theta_i}^{\theta_0}(\theta-\theta_i)^{0.5}D(\theta)d\theta$	Brutsaert (1976)
$\exp\{-[\operatorname{inverfc}(\frac{\theta-\theta_i}{\theta_o-\theta_i})]^2\}$	$2D\int_{ heta_i}^{ heta_o}rac{ heta- heta_i}{\exp\{-[ext{inverfc}(rac{ heta- heta_i}{ heta_o- heta_i})]^2\}}d heta$	Crank (1979)

where *b* is a dimensionless constant. White and Sully (1987) showed that b = 0.5 exactly for soils exhibiting a stepfunction infiltration front (Philip and Knight, 1974) and $b = \pi/4$ if soil diffusivity $D(\theta)$ is constant (Philip, 1969a). For general field soils, White and Sully (1987) suggested b = 0.55, since the actual infiltration fronts do not tend to be as sharp as a step function.

Using the matric flux potential term, φ (L² T⁻¹), Reynolds and Elrick (1990) redefined the sorptivity S_0 (L T^{-0.5}) as follows:

$$S_0^2 = \frac{\varphi\left(\theta_0 - \theta_i\right)}{b} \tag{34}$$

Now for the case of ponded head infiltration ($h_0 \ge 0$ and $\theta_0 = \theta_s$), the sorptivity, here defined as S_H (L T^{-0.5}), was related to S_0 (L T^{-0.5}) (Haverkamp et al., 1990; White and Sully, 1987) by:

$$S_H^2 = S_0^2 + 2h_0 K_s \left(\theta_s - \theta_i\right) \tag{35}$$

The Reynolds and Elrick (1990) expression in Equation (34) can also be applied to Equation (35) to define the sorptivity S_H (L T^{-0.5}) as follows:

$$S_H^2 = \left(\theta_s - \theta_i\right) \, \left(\frac{\varphi}{b} + 2h_0 K_s\right) \tag{36}$$

Recently, Lassabatère et al. (2021) proposed a specific scaling procedure to simplify the computation of sorptivity. In addition, the same authors proposed a specific mixed formulation to ease the numerical computation of sorptivity, when the final state corresponds to water ponding and for very low initial water contents (Lassabatère et al., 2023). These authors demonstrated that the saturated part of sorptivity, $2h_0K_s(\theta_s - \theta_i)$ must not be forgotten and its omission may lead to erroneous modeling of water infiltration.

9.2 | Methods and challenges behind *K* and *S* estimation in literature

There are many techniques to measure infiltration in laboratory and in field. Starting with characterization of the $K(\theta)$ or

 $K(\psi)$ functions, the commonly used methods are the instantaneous profile (Watson., 1966) and the plane of zero flux (Arya et al., 1975) methods. These methods are further divided between direct approaches, in which both θ and ψ are measured within the soil profile, and indirect approaches, in which one variable is measured, while estimating the other variable is determined from a separate water retention curve $\theta(\psi)$. In principle, these methods are simple; however, complications often arise in practice leading to complex and time-consuming measurements. To simplify the field determination of $K(\theta)$ and $K(\psi)$ and therefore the extensive labor requirements, these two functions can be determined using the empirical equations illustrated in Table 3 once the water retention curve $\theta(\psi)$ is determined (Dane & Hruska, 1983; Libardi et al., 1980; Zachmann et al., 1981). However, this simplification can show a disagreement between the $\theta(\psi)$ curves as determined in situ and on undisturbed core samples-a common disadvantage among all described methods. In addition, applying the widely used equations of $K(\theta)$ and $K(\psi)$ (Table 3) involves the determination of the saturated hydraulic conductivity K_s , which gives rise to more efforts and challenges in knowing the soil heterogeneity (Fodor et al., 2011), the spatial and seasonal variability of K_s (Farkas et al., 2006; Gülser et al., 2016), as well as its scale dependency (Lai & Ren, 2007).

To determine the saturated hydraulic conductivity K_s as well as soil sorptivity S_0 or S_H (noted hereafter as $S_{0/H}$), different experimental tools were designed to measure oneor multi-dimensional flow that can include early, transient, and steady-state flow stages depending on the approach being applied. Starting with single and double ring-infiltrometers, these tools were built to determine the saturated hydraulic conductivity either under constant- (Di Prima et al., 2016; Olson & Swartzendruber, 1960; Parr & Bertrand, 1960; Ronnqvist, 2018; Schiff, 1953; Touma et al., 2007; Xu et al., 2012) or falling-head conditions (Angulo-Jaramillo et al., 2003; Bagarello et al., 2004; Elrick et al., 1995). In a series of papers, Bouwer (1960, 1963, 1986) introduced a simple field measurement cylinder, which can be used to determine the two parameters, saturated hydraulic conductivity, K_s , and wetting front potential, ψ_{wf} , required to apply the GA approach. Bouwer's cylinder infiltrometer is discussed in

detail in Selker's vadose zone book (Selker et al., 1999b). Moving to the disc infiltrometer developed by Perroux and White (1988), referred to also as a tension infiltrometer (Watson & Luxmoore, 1986), this tool involved supplying water to the soil surface under controlled suction (Latorre et al., 2015; Smettem & Clothier, 1989; Zhang, 1997). These techniques are all non-destructive and allow rapid flow measurements if steady flow can be quickly achieved depending on the ring size, soil texture, and soil structure. However, while driving discs, rings and cylinders into the soil, some disturbance, such as compaction, fracturing, or smearing, almost inevitably occurs (Bouma & Dekker, 1981). In addition to soil disturbance, the large spatial variability of K_s and $S_{0/H}$ can affect the precision and accuracy of the measured parameters (Logsdon & Jaynes, 1996; Sharma et al., 1980). To overcome the challenges of soil heterogeneity and spatial variability of K_s , the rainfall simulator can be used as an alternative experimental tool (Bradford et al., 1987; Lassu et al., 2015; Di Prima et al., 2018). However, infiltrometers are still the most widely used devices for measuring field infiltration rates due to their simple application in the field (Rahmati et al., 2018). However, more complex parameter estimation models need to be developed to consider soil behavior such as swelling (Gérard-Marchant et al., 1997). Indeed, failure to take deviant behavior into account can lead to an underestimation, or even unrealistic values, of both sorptivity and hydraulic conductivity.

Different infiltration models are employed to determine K_s and $S_{0/H}$ from the multi-dimensional infiltration measured using ring, cylinder, and disc infiltrometers. Among these models, numerous conceptual equations relate the onedimensional cumulative infiltration I_{1D} to both parameters, K_s and either S_0 (Barry et al., 1993; Philip, 1957b, 1969a; Talsma & Parlange, 1972) or S_H (Barry et al., 1993; Parlange, 1980; Smith & Parlange, 1978; Swartzendruber, 2000; Valiantzas, 2010). These relationships reveal the relevance and applicability of estimating these two properties by fitting analytical equations numerically to infiltration data. In this context, the two-term equation derived by Philip (1957b) has been extensively used to determine K_s and S_0 due to its explicit numerical application (Equation 28). In one application, S_0 (L T^{-0.5}) is estimated by plotting I_{1D} (L), measured into a uniform unsaturated soil profile, against $t^{0.5}$ (T^{0.5}) during the very early stage of infiltration. The slope of the linear relationship (I_{1D} vs. $t^{0.5}$) allows the determination of S_0 . A (L T⁻¹), on the other hand, can be estimated by plotting I_{1D} (L) against t (T) for larger times of infiltration. The slope of the linear relationship $(I_{1D}$ vs. t) allows the determination of A, which is further used to estimate the saturated hydraulic conductivity K_s (L T⁻¹). Specifically, $A = mK_s$ with $1/3 \le m \le 2/3$ (Philip, 1969a; Talsma, 1969; Talsma & Parlange, 1972; Youngs, 1968). A value of m = 0.363 may be

appropriate for soils with a relatively low initial water content (Philip, 1987), while a value of m = 2/3 is often used (Fodor et al., 2011; Whisler and Bouwer, 1970). In some studies, m = 1 and hence $A = K_s$ (Davidoff & Selim, 1986; Ghorbani et al., 2009; Swartzendruber and Young, 1974). It is crucial to note that Philip's equation is no longer valid for very large times reaching the steady state and should be restricted to the modeling of the transient state (Philip, 1957b).

A second set of models, based on three-parameter equations, are also fitted to infiltration data measured at any given time. In addition to K_s and $S_{0/H}$, each of these equations depend on a dimensionless constant symbolized by β_0 (Brutsaert, 1977), A₀ (Swartzendruber, 1987b; Swartzendruber & Hogarth, 1991), δ (Parlange et al., 1982, 1985, 2002; Haverkamp et al., 1990), or β (Haverkamp et al., 1994) that also needs to be estimated failing to be able to be calculated simply analytically. Brutsaert (1977) recommended the value $\beta_0 = 2/3$ for practical applications. Swartzendruber (1987b) showed that A_0 can be equal to $\frac{4K_s}{3S_H}$. Parlange et al. (1982, 1985) defined $\delta = \frac{1}{(\theta_s - \theta_i)(K_s - K_i)} \int_{\theta_i}^{\theta_s} (K_s - K) d\theta$, where K_i (L T⁻¹) is the initial soil hydraulic conductivity and δ can take values from 0 to 1, with an approximate used value of 0.8 or 0.85. Haverkamp et al. (1994) further replaced δ by a new dimensionless constant, β , which varies from 0.3 (sand) to 1.7 (silt), with an average value of 0.6 according to Lassabatère et al. (2009) who fitted the analytical model to analytically generated data to quantify the best values of constants β and γ .

A third set of 1D infiltration equations, based on the approach of Green and Ampt (1911), also leads to the estimation of K_s and $S_{0/H}$ under constant- (Almedeij & Esen, 2014; Li et al., 1976; Salvucci & Entekhabi, 1994; Selker & Assouline, 2017; Stone et al., 1994; Swamee et al., 2012; Vatankhah, 2015) or falling-head ponding conditions (Elrick et al., 2002; Philip, 1992). By fitting the equations to one-dimensional infiltration data, we can estimate the parameters, K_s (L T⁻¹), and wetting front potential, ψ_{wf} (L). Then, the parameter S_H can be deduced from Equation (36), with h_0 (L), θ_s , and θ_i (L³ L⁻³) measured directly from the field.

In addition, the quasilinear analysis of steady-state infiltration, Q_{inf} (L³ T⁻¹), using the 3D infiltration equations (Ankeny et al., 1991; Reynolds et al., 1983, 1985; Reynolds & Elrick, 1990; Scotter et al., 1982; Wooding, 1968) allows the determination of parameters K_s and φ , and thus leads to the estimation of S_0 from Equation (34) or S_H from Equation (35) or (36). Haverkamp et al. (1994) proposed an implicit formulation for the 1D infiltration model and Smettem et al. (1994) extended it to define the 3D cumulative infiltration, I_{3D} (L T⁻¹), from a surface disk infiltrometer, adding the term γ (average value $\gamma = 0.75$) to represent 3D geometrical effects as:

$$\frac{2\Delta K^2}{S^2} t = \frac{1}{1-\beta} \frac{2\Delta K}{S^2} \left(I(t) - K_i t \right)$$
$$-\frac{1}{1-\beta} \ln \left(\frac{\exp\left(\frac{2\beta K}{S^2} \left(I(t) - K_i t \right) \right) + \beta - 1}{\beta} \right)$$
(37a)

$$I_{3D} = I_{1D} + \frac{\gamma S_0^2 t}{r \left(\theta_s - \theta_i\right)}$$
(37b)

where $\Delta K = (K_s - K_i)$ and r(L) stands for the disc radius. Equation (37a) defines an implicit formulation that does not ease the computation of the cumulative infiltration. Consequently, Haverkamp et al. (1994) have proposed two simplified expansions that are valid at transient and steady state, respectively (Haverkamp et al., 1994; Lassabatère et al., 2006):

$$I_{3D} = S_0 t^{0.5} + \left(\frac{2-\beta}{3} \left(K_s - K_i\right) + K_i + \frac{\gamma S_0^2}{r \left(\theta_s - \theta_i\right)}\right) t$$
(38)
$$I_{3D}, \infty = \left(K_s + \frac{\gamma S_0^2}{r \left(\theta_s - \theta_i\right)}\right) t + \frac{1}{2(1-\beta)} ln \left(\frac{1}{\beta}\right) \frac{S_0^2}{K_s - K_i}$$
(39)

Note that more precise approximate expansions may be defined for the transient state according to the number of terms considered (Lassabatère et al., 2009; see Appendix).

Based on Haverkamp et al. (1994) approach, BEST methods were designed to estimate the whole set of unsaturated hydraulic parameters, offering a complete hydraulic characterization of soils. The BEST-Slope method was pioneered by Lassabatère et al. (2006) and was followed by BEST-Intercept (Yilmaz et al., 2010) and BEST-Steady methods (Bagarello et al., 2014). The three methods consider the same hydraulic function for defining water retention and hydraulic conductivity functions, with the use of van Genuchten (1980) model along with the Burdine condition and Brook and Corey (1964) model for describing the hydraulic conductivity. The three methods consider the same pedo-transfer functions to relate soil texture (i.e., particle size distribution) to hydraulic shape parameters but differ in the use of experimental infiltration data to estimate the scale of hydraulic parameters. The infiltration data are obtained by a Beerkan infiltration run, which consists of water infiltrating through a single ring under ponded conditions (Aiello et al., 2014; Braud et al., 2005; Di Prima et al., 2016, 2018, 2020; Lassabatère et al., 2019a)

BEST-Slope and BEST-Intercept use the last/steady part of the cumulative infiltration to fit the asymptotic model (Equation 39) to estimate either the slope $a = K_s + \frac{\gamma S_0^2}{r(\theta_s - \theta_i)}$ or the

intercept $b = \frac{1}{2(1-\beta)} \ln(\frac{1}{\beta}) \frac{S_0^2}{K_s - K_i}$ relating the hydraulic conductivity and the sorptivity. The two methods reduce the number of unknowns from two (K_s, S_0) to one (S_0) , which strengthens the robustness of the inversion. Then, the two methods fit the two-term equation (Equation 38) to the first part of the cumulative infiltration (transient part) to derive the value of sorptivity S_0 . The part of the curves assigned to the transient state is defined by a specific iterative procedure that defines a validity time as a function of the estimated values of (K_s, S_0) . BEST-Steady only considers the steadystate part and fits the asymptotic model (Equation 39) to the steady part of the cumulative infiltration data. The estimation of the intercept and of the slope leads to a system with two equations and two unknowns, leading to simultaneous estimations of the couple (K_s, S_0) . Lastly, the scale parameter is estimated from the knowledge of sorptivity and saturated hydraulic conductivity (Lassabatère et al., 2006, Equation 8).

Bagarello et al. (2013, 2014, 2017) used these explicit expansions to propose two simplified versions of the BEST methods, transient (TSBI) and steady (SSBI), to determine K_s of an initially rather nonconductive soil ($K_i = 0$). The TSBI method (Bagarello et al., 2013, 2014) is based on the explicit transient relationship (Equation 38) which, divided by $t^{0.5}$, results in a linear relationship between $I_{3D}/t^{0.5}$ and $t^{0.5}$ with slope b_1 (L T⁻¹), defined by:

$$b_1 = \frac{\gamma S_0^2}{r\left(\theta_s - \theta_i\right)} + \frac{2 - \beta}{3} K_s \tag{40}$$

The slope b_1 (L T⁻¹) can be estimated by a linear regression analysis of the $(I_{3D}/t^{0.5}, t^{0.5})$ data collected during the transient phase of the infiltration run. The intercept of the regression line $(I_{3D}/t^{0.5}, t^{0.5})$ indicates the sorptivity S_0 (L T^{-0.5}). Then, solving for K_s gives:

$$K_s = \frac{b_1}{\frac{b\gamma}{r\alpha} + \frac{2-\beta}{3}}$$
(41a)

$$K_s = \frac{b_1}{\frac{\gamma\gamma_w}{r\alpha^*} + \frac{2-\beta}{3}}$$
(41b)

where γ_w is a dimensionless constant (White & Sully, 1987) related to the shape of the wetting (or drainage) front and α^* corresponds to the ratio between the matrix flux potential and the saturated hydraulic conductivity, $\alpha^* = \frac{K_s}{\varphi}$ (Bagarello et al., 2017). Note that the two methods SSBI and TSBI make use of the relation between sorptivity and hydraulic conductivity $S_0^2 = \gamma_w$ ($\theta_s - \theta_i$) φ (Bagarello et al., 2017).

The SSBI method, on the other hand, is based on the explicit steady-state expansion (Equation 39). The slope, b_2

(L T⁻¹), of the linear relationship between I_{3D} and *t* collected during the steady-state phase of the infiltration run is defined as:

$$b_2 = K_s + \frac{\gamma S_0^2}{r\left(\theta_s - \theta_i\right)} \tag{42}$$

Solving for K_s gives:

$$K_s = \frac{b_2}{\frac{b\gamma}{r\alpha} + 1}$$
(42a)

$$K_s = \frac{b_2}{\frac{\gamma\gamma_w}{r\sigma^*} + 1} \tag{42b}$$

BEST methods have been used for many applications and in many contexts and encountered several difficulties with real soils for some types of situations (water repellency, preferential flows, and self-sealing soils). Di Prima et al. (2021) recently pioneered a new BEST method dedicated to water-repellent soil. Lassabatère et al. (2023) proposed an improvement of the same method by developing a three-term expansion to describe the transient state. Regarding preferential flows, Lassabatère et al. (2019b) developed BEST-2K for the hydraulic characterization of dual-permeability soils. This version allows the characterization of the soil as the combination of matrix and fast-flow regions, with the complete characterization of the unsaturated hydraulic parameters of the two regions.

Alternatively, further approaches were developed based on model variations that solve for K_s and include different parameters including Stewart and Abou Najm (2018b), Iovino et al. (2021), and Kargas et al. (2022).

10 | DECISION-MAKING FRAMEWORK FOR MODEL SELECTION

We present a decision-support framework aimed at guiding researchers in selecting suitable infiltration models that align with their specific study conditions, including underlying assumptions, soil types, and available information. This framework includes four interconnected stages, each influencing model selection, and ultimately helping users identify the best-suited infiltration model for their conditions (Figure 6).

In stage 1, researchers should specify soil and field conditions and connect those conditions with the problem statement at hand. This stage sets the expectations from the models given the field conditions and the problem that needs to be addressed. Soils may range from homogeneous to highly heterogeneous, including fine to coarse, water-repellent, sealed, or macroporous types. In stage 2, researchers should develop, assess, or reevaluate an experimental plan, which can be constrained by budget, personnel, or equipment availability among other factors. The researchers should identify the type, frequency, and scale of data available (or needed) including infiltration tests, boundary conditions (prescribed pressure vs. prescribed flow), and any necessary auxiliary tests to characterize different soil types encountered in the field. For example, characterizing macroporous soils may require a combination of tension infiltrometer and Beerkan experiments to account for both matrix and macropore systems.

In stage 3, researchers should examine data generated from the experimental plan, which can reveal or confirm various soil and field conditions, as well as infiltration behavior. Pachepsky and Karahan (2022) detected 12 major cumulative infiltration curve shapes that indicate different infiltration behaviors. Furthermore, other critical data can be measured, such as soil particle distribution, water content, soil water repellency, and more. For instance, the water drop penetration time test can be combined with organic matter measurements to assess soil water repellency.

In stage 4, researchers should identify which group of infiltration models is the most suitable to describe water infiltration for their soil conditions, along with any auxiliary data or information that is available. For example, when fitting a model to infiltration data without other measurements, it is crucial to limit the number of parameters to two or three at most. Therefore, models with fewer parameters are recommended like Green and Ampt (1911) or Philip (1957b) if only cumulative infiltration data are available. Also, researchers should stick with one-dimensional (1D) in that case, since multi-dimensional models (2D/3D) require accounting for spatial variability in soil properties, moisture content, and infiltration dynamics, which involves the estimation of additional parameters to accurately represent 3D infiltration. More complex models like BEST and multi-dimensional models (2D/3D) are only recommended if additional auxiliary data are available.

The infiltration curve shape should also be considered in stage 4. For example, a concave infiltration curve that is typical in homogeneous and initially dry soils can be modeled using many different infiltration models for homogeneous soils (i.e., option A), such as Green and Ampt (1911), Philip (1957b), Parlange et al. (1982), Haverkamp et al. (1994), Lassabatère et al. (2006), Valiantzas (2010), and Rahmati et al. (2019), among others. However, soils with very low permeability or those requiring long experiments might show exclusively concave shapes, requiring transientstate model expressions to avoid overestimation of infiltration rates. Highly permeable coarse-textured soils or initially wet homogeneous soils may produce linear-shaped curves, best

49 of 96

FIGURE 6 A decision-making framework to guide researchers in selecting the most suitable model for their specific study conditions.

modeled using steady-state expressions. Water-repellent soils may display convex curves exhibiting strong WR (convex), moderate WR (convex followed by a linear portion, i.e., convex-linear), or light WR (almost linear), requiring models that account for water repellency such as Abou Najm et al. (2021) and the BEST-WR model of Di Prima et al. (2021) (i.e., option B). Other unique conditions (or their combinations) such as soil heterogeneity, including the presence of macropores, lithofacies with contrasting properties, layering, and sealing, may result in nonuniform infiltration curves (e.g., concave-convex, convex-concave, or extra concavity). Under such conditions, models that characterize infiltration into heterogeneous soils (i.e., option C) are more appropriate. We emphasize that the presence of macropores (due to bioturbation or plant root systems) with high infiltration rates often exhibit a linear shape pointing to the use of models incorporating preferential paths such as Weiler (2005), Germann et al. (2007), Lassabatère et al. (2014), and Stewart (2019), among others (i.e., option D).

11 | CONCLUSION

It is a challenge to choose which infiltration model to use, and which procedures to follow for estimating hydraulic properties. The proliferation of infiltration models has led to better understanding and quantification, but also to confusion regarding the origins, assumptions, and limitations of different approaches. While many reviews have covered different aspects of infiltration processes and modeling, until now there has not been a comprehensive and objective examination of infiltration models in the literature. This gap motivated us to develop a literature review that summarizes and organizes the many distinct conceptual and empirical infiltration models that have been developed over the past two centuries. We identified 138 unique infiltration models and categorized them based on characteristics such as conceptual versus empirical equations, application to rigid versus deformable swelling soils, one-dimensional versus multi-dimensional infiltration, unsaturated to completely saturated porous media, and so on.

Most of the developed infiltration models clustered theoretically around major milestones that were achieved by six or seven major contributions. Our citation analysis determined that Darcy's law, the Richardson–Richards–Buckingham paradigm, and the GA models were very common sources for subsequent advancements, while models building on Stokes' work and other earlier theories represent potential areas for further investigation and advancement. We proposed a framework for the selection of suitable infiltration models given field conditions, data availability, and experimental constraints.

We end our critical review by embracing how the evolution of infiltration models has led to incremental advancements along with limited improvements in characterizing the inherent variability of soil systems, preferential flows, water repellency, and surface processes. With that being said, we should always aspire to develop practical and adaptive models to characterize the infiltration behavior by treating all theories with the critical lens of a curious scientist and step outside the comfort zone secured with some of our basic assumptions, theories, and boundary conditions.

AUTHOR CONTRIBUTIONS

Christelle Basset: Conceptualization; data curation; formal analysis; investigation; methodology; visualization; writing-original draft; writing-review and editing. Majdi Abou Najm: Conceptualization; data curation; formal analysis; funding acquisition; investigation; methodology; project administration; resources; supervision; visualization; writing-original draft; writing-review and editing. Rafael Angulo-Jaramillo: Formal analysis; investigation; validation; writing-review and editing. Vincenzo Bagarello: Formal analysis; investigation; validation; writing-review and editing. Behzad Ghanbarian: Formal analysis; investigation; validation; writing—review and editing. Simone Di Prima: Formal analysis; investigation; validation; writingreview and editing. Massimo Iovino: Formal analysis; investigation; validation; writing-review and editing. Laurent Lassabatère: Formal analysis; investigation; validation; writing-review and editing. Ryan Stewart: Data curation; formal analysis; investigation; validation; writing-review and editing.

ACKNOWLEDGMENTS

Majdi Abou Najm and Christelle Basset were partly supported by The University of California–Davis, Agricultural Experiment Station, and The Multistate Hatch Program W4188 of the of the National Institute of Food and Agriculture, U.S. Department of Agriculture (USDA). Ryan Stewart was supported in part by the Virginia Agricultural Experiment Station and the Hatch Program of the USDA. Behzad Ghanbarian acknowledges the University of Texas at Arlington for financial supports through faculty startup fund. Simone Di Prima was supported by the project PRIN 2022 PNRR—MILETO (P2022587PM), funded by the European Union—Next Generation EU.

ORCID

Christelle Basset b https://orcid.org/0000-0002-3874-8028 Majdi Abou Najm b https://orcid.org/0000-0002-8434-2520 Behzad Ghanbarian b https://orcid.org/0000-0002-7002-4193

Simone Di Prima https://orcid.org/0000-0002-5066-3430 Massimo Iovino https://orcid.org/0000-0002-3454-2030 Laurent Lassabatère https://orcid.org/0000-0002-8625-5455

Ryan Stewart D https://orcid.org/0000-0002-9700-0351

REFERENCES

- Abou Najm, M R., & Atallah, N. M. (2016). Non-Newtonian fluids in action: revisiting hydraulic conductivity and pore size distribution of porous media. *Vadose Zone Journal*, 15(9), vzj2015-06. https://doi. org/10.2136/vzj2015.06.0092
- Abou Najm, M. R., Stewart, R. D., Di Prima, S., & Lassabatere, L. (2021). A simple correction term to model infiltration in waterrepellent soils. *Water Resources Research*, 57(2), e2020WR028539. https://doi.org/10.1029/2020WR028539
- Abou Najm, M., Lassabatere, L., & Stewart, R. D. (2019). Current insights into nonuniform flow across scales, processes, and applications. *Vadose Zone Journal*, 18(1), 190113. https://doi.org/10.2136/ vzj2019.10.0113
- Aiello, R., Bagarello, V., Barbagallo, S., Consoli, S., Di Prima, S., Giordano, G., & Iovino, M. (2014). An assessment of the Beerkan method for determining the hydraulic properties of a sandy loam soil. *Geoderma*, 235, 300–307.
- Ali, S., Ghosh, N. C., Singh, R., & Sethy, B. K. (2013). Generalized explicit models for estimation of wetting front length and potential recharge. *Water Resources Management*, 27, 2429–2445. https://doi. org/10.1007/s11269-013-0295-2
- Almedeij, J., & Esen, I. I. (2014). Modified Green-Ampt infiltration model for steady rainfall. *Journal of Hydrologic Engineering*, 19(9), 04014011. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000944
- Angulo-Jaramillo, R., Bagarello, V., Di Prima, S., Gosset, A., Iovino, M., & Lassabatere, L. (2019). Beerkan estimation of soil transfer parameters (BEST) across soils and scales. *Journal of Hydrology*, 576, 239–261.
- Angulo-Jaramillo, R., Bagarello, V., Iovino, M., & Lassabatère, L. (2016). An introduction to soil and water infiltration. In *Infiltration measurements for soil hydraulic characterization* (pp. 1–42). Springer.
- Angulo-Jaramillo, R., Elrick, D., Parlange, J.-Y., Gérard-Marchant, P., & Haverkamp, R. (2003). Analysis of short-time single-ring infiltration under falling-head conditions with gravitational effects. In *Hydrology Days Proceedings* (pp. 16–23). Colorado State University. http://dx. doi.org/10.25675/10217/200003
- Ankeny, M. D., Ahmed, M., Kaspar, T. C., & Horton, R. (1991). Simple field method for determining unsaturated hydraulic conductivity. *Soil Science Society of America Journal*, 55(2), 467–470. https://doi.org/ 10.2136/sssaj1991.03615995005500020028x
- Arya, L. M., Farrell, D. A., & Blake, G. R. (1975). A field study of soil water depletion patterns in presence of growing soybean roots:I. Determination of hydraulic properties of the soil. *Soil Science*

Society of America, 39(3), 424–430, https://doi.org/10.2136/ sssaj1975.03615995003900030021x

- Assouline, S. (2013). Infiltration into soils: Conceptual approaches and solutions. Water Resources Research, 49(4), 1755-1772. https://doi. org/10.1002/wrcr.20155
- Assouline, S., Selker, J. S., & Parlange, J. Y. (2007). A simple accurate method to predict time of ponding under variable intensity rainfall. Water Resources Research, 43(3). https://doi.org/10.1029/ 2006WR005138
- Atallah, N. M., & Abou Najm, M. R. (2019). Characterization of synthetic porous media using non-Newtonian fluids: Experimental evidence. European Journal of Soil Science, 70(2), 257-267. https:// doi.org/10.1111/ejss.12746
- Autovino, D., Rallo, G., & Provenzano, G. (2018). Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agricultural Water Management, 203, 225-235.
- Averjanov, S. F. (1950). About permeability of subsurface soils in case of incomplete saturation. English Collection, 7, 19-21.
- Bagarello, V., Castellini, M., Di Prima, S., Giordano, G., & Iovino, M. (2013). Testing a simplified approach to determine field saturated soil hydraulic conductivity. Procedia Environmental Sciences, 19, 599-608. https://doi.org/10.1016/j.proenv.2013.06.068
- Bagarello, V., Di Prima, S., & Iovino, M. (2017). Estimating saturated soil hydraulic conductivity by the near steady-state phase of a Beerkan infiltration test. Geoderma, 303, 70-77. https://doi.org/10. 1016/j.geoderma.2017.04.030
- Bagarello, V., Di Prima, S., Iovino, M., & Provenzano, G. (2014). Estimating field-saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment. Hydrological Processes, 28(3), 1095-1103. https://doi.org/10.1002/hyp.9649
- Bagarello, V., Iovino, M., & Elrick, D. (2004). A Simplified fallinghead technique for rapid determination of field-saturated hydraulic conductivity. Soil Science Society of America Journal, 68(1), 66-73. https://doi.org/10.2136/sssaj2004.6600
- Baiamonte, G. (2020). Analytical solution of the richards equation under gravity-driven infiltration and constant rainfall intensity. Journal of Hydrologic Engineering, 25(7), 04020031. https://doi.org/10.1061/ (asce)he.1943-5584.0001933
- Barry, D. A., Parlange, J. Y., Haverkamp, R., & Ross, P. J. (1995). Infiltration under ponded conditions: 4. An explicit predictive infiltration formula. Soil Science, 160(1), 8-17. https://doi.org/10.1097/ 00010694-199507000-00002
- Barry, D. A., Parlange, J. Y., Sander, G. C., & Sivaplan, M. (1993). A class of exact solutions for Richards' equation. Journal of Hydrology, 142(1-4), 29-46. https://doi.org/10.1016/0022-1694(93) 90003-R
- Barry, D. A., Parlange, M. B., Parlange, J. Y., Liu, M. C., Steenhuis, T. S., Sander, G. C., Lockington, D. A., Li, L., Stagnitti, F., Assouline, S., Selker, J., Jeng, D. S., Li, L., Haverkamp, R., & Hogarth, W. B. (2009). Infiltration and ponding. In M. C. Donoso, (Ed.), Water interactions with energy, environment, food and agriculture (Vol. II, pp. 245-269). Eolss Publishers Co.
- Basha, H. A. (1994). Multidimensional steady infiltration with prescribed boundary conditions at the soil surface. Water Resources Research, 30(7), 2105-2118. https://doi.org/10.1029/94WR00484
- Basset, C. N., Abou Najm, M. R., Ammar, A., Stewart, R. D., Hauswirth, S. C., & Saad, G. (2019). Physically based model for extracting dualpermeability parameters using non-Newtonian fluids. Vadose Zone Journal, 18(1), 1-13. https://doi.org/10.2136/vzj2018.09.0172

- Batu, V. (1978). Steady infiltration from single and periodic strip sources. Soil Science Society of America Journal, 42(4), 544-549. https://doi.org/10.2136/sssaj1978.03615995004200040033x
- Bautista, E., Warrick, A. W., & Schlegel, J. L. (2014). Wetted-perimeterdependent furrow infiltration and its implication for the hydraulic analysis of furrow irrigation systems. In W. C. Huber (Eds.), Proceedings of the 2014 World Environmental and Water Resources Congress (pp. 1727–1735). American Society of Civil Engineer. https://doi.org/ 10.1061/9780784413548.171
- Bautista, E., Warrick, A. W., Schlegel, J. L., Thorp, K. R., & Hunsaker, D. J. (2016). Approximate furrow infiltration model for time-variable ponding depth. Journal of Irrigation and Drainage Engineering, 142(11), 04016045. https://doi.org/10.1061/(asce)ir.1943-4774. 0001057
- Bayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., & Steenhuis, T. S. (2019). Evaluating infiltration models and pedotransfer functions: Implications for hydrologic modeling. Geoderma, 338, 159-169. https://doi.org/10.1016/j.geoderma.2018.11.028
- Bennethum, L. S., & Cushman, J. H. (1996). Multiscale, hybrid mixture theory for swelling systems-II: Constitutive theory. International Journal of Engineering Science, 34(2), 147-169. https://doi.org/10. 1016/0020-7225(95)00090-9
- Beven, K. J. (2010). Preferential flows and travel time distributions: defining adequate hypothesis tests for hydrological process models. Hydrological Processes, 24(12), 1537-1547.
- Beven, K. (1984). Infiltration into a class of vertically non-uniform soils. Hydrological Sciences Journal, 29(4), 425-434. https://doi.org/10. 1080/02626668409490960
- Beven, K. (2018). A century of denial: Preferential and nonequilibrium water flow in soils, 1864-1984. Vadose Zone Journal, 17(1), 1-17. https://doi.org/10.2136/vzj2018.08.0153
- Beven, K., & Germann, P. (1982). Macropores and water flow in soils. Water Resources Research, 18(5), 1311-1325. https://doi.org/ 10.1029/WR018i005p01311
- Beven, K., & Germann, P. (2013). Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. https://doi. org/10.1002/wrcr.20156
- Beven, K., & Germann, P. (1981). Water flow in soil macropores II. A combined flow model. Journal of Soil Science, 32(1), 15-29. https:// doi.org/10.1111/j.1365-2389.1981.tb01682.x
- Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26(2), 182-185. https:// doi.org/10.1063/1.1721956
- Blunt, M. J. (2001). Flow in porous media-Pore-network models and multiphase flow. In Current opinion in colloid and interface science. https://doi.org/10.1016/S1359-0294(01)00084-X
- Blunt, M. J. (2017). Multiphase flow in permeable media: A pore-scale perspective. Cambridge University Press.
- Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., & Pentland, C. (2013). Pore-scale imaging and modelling. Advances in Water Resources, 51, 197-216. https://doi.org/10. 1016/j.advwatres.2012.03.003
- Blunt, M. J., Jackson, M. D., Piri, M., & Valvatne, P. H. (2002). Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Advances in Water Resources, 25(8-12), 1069-1089. https://doi.org/10.1016/ S0309-1708(02)00049-0
- Blunt, M. J., & Scher, H. (1995). Pore-level modeling of wetting. Physical Review E, 52(6), 6387. https://doi.org/10.1103/PhysRevE.52. 6387

- Blunt, M., King, M. J., & Scher, H. (1992). Simulation and theory of two-phase flow in porous media. *Physical Review A*, 46(12), 7680. https://doi.org/10.1103/PhysRevA.46.7680
- Blunt, M., & King, P. (1991). Relative permeabilities from two- and three-dimensional pore-scale network modelling. *Transport in Porous Media*, 6, 407–433. https://doi.org/10.1007/BF00136349
- Bouma, J., & Dekker, L. W. (1981). A method for measuring the vertical and horizontal Ksat of clay soils with macropores. *Soil Science Society of America Journal*, 45(3), 662–663. https://doi.org/10.2136/ sssaj1981.03615995004500030046x
- Bouwer, H. (1960). A study of final infiltration rates from cylinder infiltrometers and irrigation furrows with an electrical resistance network. *Transactions of the 7th International Congress of Soil Science*, 1, 448–456.
- Bouwer, H. (1963). Theoretical effect of unequal water levels on the infiltration rate determined with buffered cylinder infiltrometers. *Journal* of Hydrology, 1(1), 29–34.
- Bouwer, H. (1986). Intake rate: Cylinder infiltrometer. In A. Klute (Ed.), Methods of soil analysis: Part 1 physical and mineralogical methods (pp. 825–844). American Society of Agronomy, Soil Science Society of Agronomy. https://doi.org/10.2136/sssabookser5.1.2ed.c32
- Bowen, R. M. (1980). Incompressible porous media models by use of the theory of mixtures. *International Journal of Engineering Science*, 18(9), 1129–1148. https://doi.org/10.1016/0020-7225(80)90114-7
- Bradford, J. M., Ferris, J. E., & Remley, P. A. (1987). Interrill soil erosion processes: I. Effect of surface sealing on infiltration, runoff, and soil splash detachment. *Soil Science Society of America Journal*, 51(6), 1566–1571. https://doi.org/10.2136/sssaj1987. 03615995005100060029x
- Brakensiek, D. L., & Rawls, W. J. (1983). Agricultural management effects on soil water processes, part II: Green and Ampt parameters for crusting soils. *Transactions of the American Society of Agricultural Engineers*, 26(6), 1753–1757. https://doi.org/10.13031/2013.33838
- Braud, I., De Condappa, D., Soria, J. M., Haverkamp, R., Angulo-Jaramillo, R., Galle, S., & Vauclin, M. (2005). Use of scaled forms of the infiltration equation for the estimation of unsaturated soil hydraulic properties (the Beerkan method). *European Journal of Soil Science*, 56(3), 361–374. https://doi.org/10.1111/j.1365-2389.2004. 00660.x
- Braudeau, E., Costantini, J. M., Bellier, G., & Colleuille, H. (1999). New device and method for soil shrinkage curve measurement and characterization. *Soil Science Society of America Journal*, 63(3), 525–535. https://doi.org/10.2136/sssaj1999.03615995006300030015x
- Briggs, L. J. (1897). *Mechanics of soil moisture*. U.S. Government Printing Office.
- Broadbridge, P., & White, I. (1988). Constant rate rainfall infiltration: A versatile nonlinear model: 1. Analytic solution. *Water Resources Research*, 24(1), 145–154. https://doi.org/10.1029/ WR024i001p00145
- Brooks, R., & Corey, A. (1964). *Hydraulic properties of porous media* (Hydrology Paper No. 3). Colorado State University.
- Brutsaert, W. (1976). The concise formulation of diffusive sorption of water in a dry soil. Water Resources Research, 12(6), 1118–1124. https://doi.org/10.1029/WR012i006p01118
- Brutsaert, W. (1977). Vertical infiltration in dry soil. *Water Resources Research*, *13*(2), 363–368. https://doi.org/10.1029/ WR013i002p00363
- Brutsaert, W. (2005). Hydrology: An introduction. Cambridge University Press.

- Buckingham, E. (1907). *Studies on the movement of soil moisture*. (Bureau of Soils Bulletin no. 38). USDA.
- Bultreys, T., Van Hoorebeke, L., & Cnudde, V. (2015). Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks. *Advances in Water Resources*, 78, 36–49. https://doi.org/10.1016/j.advwatres.2015.02.003
- Burdine, N. (1953). Relative permeability calculations from pore size distribution data. *Journal of Petroleum Technology*, 5(3), 71–78.
- Campbell, G. S. (1974). A simple method for determining unsaturated conductivity from moisture retention data. *Soil Science*, *117*(6), 311– 314.
- Campbell, G. S. (1985). Soil physics with BASIC: Transport models for soil-plant systems. Elsevier.
- Chandler, R., Koplik, J., Lerman, K., & Willemsen, J. F. (1982). Capillary displacement and percolation in porous media. *Journal of Fluid Mechanics*, 119, 249–267. https://doi.org/10.1017/ S0022112082001335
- Chen, L., & Young, M. H. (2006). Green-ampt infiltration model for sloping surfaces. *Water Resources Research*, 42(7). https://doi.org/10. 1029/2005WR004468
- Chen, P., & Lu, N. (2018). Generalized equation for soil shrinkage curve. Journal of Geotechnical and Geoenvironmental Engineering, 144(8), 04018046.
- Chen, J., McGuire, K. J., & Stewart, R. D. (2020). Effect of soil water-repellent layer depth on post-wildfire hydrological processes. *Hydrological Processes*, 34(2), 270–283.
- Chertkov, V. Y. (2000). Modeling the pore structure and shrinkage curve of soil clay matrix. *Geoderma*, 95(3-4), 215–246.
- Chertkov, V. Y. (2003). Modelling the shrinkage curve of soil clay pastes. *Geoderma*, 112(1–2), 71–95.
- Childs, E. C., & Collis-George, N. (1950). The permeability of porous materials. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 201(1066), 392–405. https://doi.org/10.1098/rspa. 1950.0068
- Childs, E. C. (1936a). The transport of water through heavy clay soils. *The Journal of Agricultural Science*, 26(1), 114–127.
- Childs, E. C. (1936b). The transport of water through heavy clay soils. III. *The Journal of Agricultural Science*, 26(4), 527–545.
- Chu, S. T. (1985). Modeling infiltration into tilled soil during nonuniform rainfall. *Transactions of the American Society of Agricultural Engineers*, 28(4), 1226–1229. https://doi.org/10.13031/2013.32415
- Chu, S. T. (1993). Capillary-tube infiltration model. Journal of Irrigation and Drainage Engineering, 119(3), 514–521.
- Chu, S. T. (1994). Capillary-tube infiltration model with Brooks-Corey parameters. *Transactions of the ASAE*, 37(4), 1205–1208.
- Clothier, B. E. (2001). Infiltration. In Soil and environmental analysis: Physical methods, revised, and expanded (pp. 239–280). CRC Press.
- Collis-George, N. (1977). Infiltration equations for simple soil systems. Water Resources Research, 13(2), 395–403. https://doi.org/10.1029/ WR013i002p00395
- Coppola, A., Dragonetti, G., Sengouga, A., Lamaddalena, N., Comegna, A., Basile, A., Noviello, N., & Nardella, L. (2019). Identifying optimal irrigation water needs at district scale by using a physically based agro-hydrological model. *Water*, 11(4), 841.
- Cornelis, W. M., Corluy, J., Medina, H., Diaz, J., Hartmann, R., Van Meirvenne, M., & Ruiz, M. E. (2006a). Measuring and modelling the soil shrinkage characteristic curve. *Geoderma*, 137(1-2), 179–191.
- Cornelis, W. M., Corluy, J., Medina, H., Hartmann, R., Van Meirvenne, M., & Ruiz, M. E. (2006b). A simplified parametric model to describe

the magnitude and geometry of soil shrinkage. European Journal of Soil Science, 57(2), 258-268.

- Corradini, C., Govindaraju, R. S., & Morbidelli, R. (2002). Simplified modelling of areal average infiltration at the hillslope scale. Hydrological Processes, 16(9), 1757-1770. https://doi.org/10.1002/ hyp.394
- Corradini, C., Melone, F., & Smith, R. E. (1994). Modeling infiltration during complex rainfall sequences. Water Resources Research, 30(10), 2777-2784. https://doi.org/10.1029/94WR00951
- Corradini, C., Melone, F., & Smith, R. E. (1997). A unified model for infiltration and redistribution during complex rainfall patterns. Journal of Hydrology, 192(1-4), 104-124. https://doi.org/10.1016/S0022-1694(96)03110-1
- Corradini, C., Melone, F., & Smith, R. E. (2000). Modeling local infiltration for a two-layered soil under complex rainfall patterns. Journal of Hydrology, 237(1-2), 58-73. https://doi.org/10.1016/ S0022-1694(00)00298-5
- Corradini, C., Morbidelli, R., Flammini, A., & Govindaraju, R. S. (2011). A parameterized model for local infiltration in two-layered soils with a more permeable upper layer. Journal of Hydrology, 396(3-4), 221-232. https://doi.org/10.1016/j.jhydrol.2010.11.010
- Crank, J. (1979). The mathematics of diffusion (2nd ed.). IOP Publishing Ltd. https://doi.org/10.1088/0031-9112/26/11/044
- Crescimanno, G., & Provenzano, G. (1999). Soil shrinkage characteristic curve in clay soils: Measurement and prediction. Soil Science Society of America Journal, 63(1), 25-32. https://doi.org/10.2136/sssaj1999. 03615995006300010005x
- Dane, J. H., & Hruska, S. (1983). In-situ determination of soil hydraulic properties during drainage. Soil Science Society of America Journal, 47(4), 619-624. https://doi.org/10.2136/sssaj1983. 03615995004700040001x
- Darcy, H. (1856). Les fontaines publiques de la ville de Dijon. Recherche, 647,659.
- Das, B. S., & Kluitenberg, G. J. (1995). Using pore size distribution to model the unsaturated hydraulic conductivity of soil. In Vadose Zone Hydrology: Cutting Across Disciplines. (pp. 31-32). University of California, Davis.
- Davidoff, B., & Selim, H. M. (1986). Goodness of fit for eight water infiltration models. Soil Science Society of America Journal, 50(3), 759-764. https://doi.org/10.2136/sssaj1986.03615995005000030039x
- Davidson, M. R. (1984). A Green-Ampt model of infiltration in a cracked soil. Water Resources Research, 20(11), 1685-1690.
- Davidson, J. M., Stone, L. R., Nielsen, D. R., & Larue, M. E. (1969). Field measurement and use of soil-water properties. Water Resources Research, 5(6), 1312-1321.
- Delleur, J. W. (2006). The handbook of groundwater engineering (2nd ed.). CRC Press.
- Delleur, J. W. (1998). The handbook of groundwater engineering (1st ed.). Taylor & Francis.
- Di Prima, S., Concialdi, P., Lassabatere, L., Angulo-Jaramillo, R., Pirastru, M., Cerdà, A., & Keesstra, S. (2018). Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration. Catena, 167, 373-384. https://doi.org/10.1016/ j.catena.2018.05.013
- Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., & Angulo-Jaramillo, R. (2016). Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20-34. https://doi.org/10.1016/j.geoderma.2015.08.006
- Di Prima, S., Stewart, R D., Abou Najm, M R., Ribeiro Roder, L., Giadrossich, F., Campus, S., Angulo-Jaramillo, R., Yilmaz, D.,

Roggero, P. P., Pirastru, M., & Lassabatere, L. (2021), BEST-WR: An adapted algorithm for the hydraulic characterization of hydrophilic and water-repellent soils. Journal of Hydrology, 603, 126936. https:// doi.org/10.1016/i.jhvdrol.2021.126936

- Di Prima, S., Stewart, R D., Castellini, M., Bagarello, V., Abou Najm, M R., Pirastru, M., Giadrossich, F., Iovino, M., Angulo-Jaramillo, R., & Lassabatere, L. (2020). Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions. Journal of Hydrology, 589, 125159.
- Dong, H., & Blunt, M. J. (2009). Pore-network extraction from microcomputerized-tomography images. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 80(3), 036307. https://doi.org/ 10.1103/PhysRevE.80.036307
- Elrick, D E., Parkin, G. W., Reynolds, W. D., & Fallow, D. J. (1995). Analysis of early-time and steady state single-ring infiltration under falling head conditions. Water Resources Research, 31(8), 1883-1893. https://doi.org/10.1029/95WR01139
- Elrick, D. E., Angulo-Jaramillo, R., Fallow, D. J., Reynolds, W. D., & Parkin, G. W. (2002). Infiltration under constant head and falling head conditions. In P. A. C. Raats, D. Smiles, & A. W. Warrick (Eds.), Environmental mechanics: Water, mass and energy transfer in the biosphere. American Geophysical Union. https://doi.org/10.1029/ 129GM04
- Elrick, D. E., & Reynolds, W. D. (1992). Methods for analyzing constant-head well permeameter data. Soil Science Society of America Journal, 56(1), 320-323. https://doi.org/10.2136/sssaj1992. 03615995005600010052x
- Enciso-Medina, J., Martin, D., & Eisenhauer, D. (1998). Infiltration model for furrow irrigation. Journal of Irrigation and Drainage Engineering, 124(2), 73-80. https://doi.org/10.1061/(asce) 0733-9437(1998)124:2(73)
- Essig, E. T., Corradini, C., Morbidelli, R., & Govindaraju, R. S. (2009). Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results. Journal of Hydrology, 374(1-2), 30-42. https://doi.org/10.1016/j.jhydrol.2009.05.017
- Fallow, D. J., Elrick, D. E., Reynolds, W. D., Baumgartner, N., & Parkin, G. W. (1994). Field measurement of hydraulic conductivity in slowly permeable materials using early-time infiltration measurements in unsaturated media. ASTM Special Technical Publication, 1142, 375-375. https://doi.org/10.1520/stp23898s
- Farkas, C., Gyuricza, C., & Birkás, M. (2006). Seasonal changes of hydraulic properties of a Chromic Luvisol under different soil management. Biologia, 61, S344-S348. https://doi.org/10.2478/s11756-006-0186-6
- Fatt, I. (1956a). The network model of porous media. II. Dynamic properties of a single size tube network. Petroleum Transactions AIME, 207(7), 160-163.
- Fatt, I. (1956b). The network model of porous media-I. Capillary pressure characteristics. Petroleum Transactions AIME, 207, 144-159.
- Fatt, I. (1956c). The network model of porous media III. Dynamic properties of networks with tube radius distribution. Petroleum Transactions AIME, 207(7), 164-181.
- Feddes, R. A., Kabat, P., Van Bakel, P. J. T., Bronswijk, J. J. B., & Halbertsma, J. (1988). Modelling soil water dynamics in the unsaturated zone-State of the art. Journal of Hydrology, 100(1-3), 69-111. https://doi.org/10.1016/0022-1694(88)90182-5
- Fields, J. S., Owen, Jr, J. S., Stewart, R. D., Heitman, J. L., & Caron, J. (2020). Modeling water fluxes through containerized soilless

substrates using HYDRUS. Vadose Zone Journal, 19(1), e20031. https://doi.org/10.1002/vzj2.20031

- Fodor, N., Sándor, R., Orfanus, T., Lichner, L., & Rajkai, K. (2011). Evaluation method dependency of measured saturated hydraulic conductivity. *Geoderma*, 165(1), 60–68. https://doi.org/10.1016/j. geoderma.2011.07.004
- Fok, Y. S., Chung, S. K., & Liu, C. C. K. (1982). Two-dimensional exponential infiltration equations. *Journal of the Irrigation & Drainage Division—ASCE*, 108(4), 231–241. https://doi.org/10.1061/jrcea4. 0001391
- Fok, Y., & Chiang, S. (1984). 2-D Infiltration equations for furrow irrigation. *Journal of Irrigation and Drainage Engineering*, 110(2), 208–217. https://doi.org/10.1061/(asce)0733-9437(1984)110:2(208)
- Fok, Y.-S., & Hansen, V. E. (1966). One-Dimensional infiltration into homogeneous soil. *Journal of the Irrigation and Drainage Division*, 92(3), 35–47. https://doi.org/10.1061/jrcea4.0000432
- Fonteh, M. F., & Podmore, T. (1993). A physically based infiltration model for furrow irrigation. *Agricultural Water Management*, 23(4), 271–284. https://doi.org/10.1016/0378-3774(93)90040-H
- Fredlund, D. G., Xing, A., & Huang, S. (1994). Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. *Canadian Geotechnical Journal*, 31(4), 533–546.
- Gardner, W. R. (1958). Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. *Soil Science*, 85(4), 228–232. https://doi.org/10.1097/ 00010694-195804000-00006
- Geistlinger, H., & Ataei-Dadavi, I. (2015). Influence of the heterogeneous wettability on capillary trapping in glass-beads monolayers: comparison between experiments and the invasion percolation theory. *Journal of Colloid and Interface Science*, 459, 230–240.
- Gérard-Marchant, P., Angulo-Jaramillo, R., Haverkamp, R., Vauclin, M., Groenevelt, P., & Elrick, D. E. (1997). Estimating the hydraulic conductivity of slowly permeable and swelling materials from single-ring experiments. *Water Resources Research*, 33(6), 1375–1382.
- Gülser, C., Ekberli, I., & Candemir, F. (2016). Spatial variability of soil physical properties in a cultivated field. *Eurasian Journal of Soil Science (EJSS)*, 5(3), 192–200. https://doi.org/10.18393/ejss.2016.3. 192-200
- Gerke, H. H., & van Genuchten, M. Th. (1993). A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. *Water Resources Research*, 29(2), 305–319. https://doi.org/10.1029/92WR02339
- Germann, P. F. (1985). Kinematic wave approach to infiltration and drainage into and from soil macropores. *Transactions of the Ameri*can Society of Agricultural Engineers, 28(3), 745–0749. https://doi. org/10.13031/2013.32331
- Germann, P. F. (2021). HESS Opinions: Unsaturated infiltration-the need for a reconsideration of historical misconceptions. *Hydrology* and Earth System Sciences, 25(2), 1097–1101.
- Germann, P., Helbling, A., & Vadilonga, T. (2007). Rivulet approach to rates of preferential infiltration. *Vadose Zone Journal*, 6(2), 207–220. https://doi.org/10.2136/vzj2006.0115
- Ghanbarian, B., Hunt, A. G., & Daigle, H. (2016). Fluid flow in porous media with rough pore-solid interface. *Water Resources Research*, 52(3), 2045–2058.
- Ghorbani Dashtaki, S., Homaee, M., Mahdian, M. H., & Kouchakzadeh, M. (2009). Site-dependence performance of infiltration models. *Water Resources Management*, 23, 2777–2790. https://doi.org/10. 1007/s11269-009-9408-3

- Giraldez, J. V., & Sposito, G. (1985). Infiltration in swelling soils. Water Resources Research, 21(1), 33–44. https://doi.org/10.1029/ WR021i001p00033
- Glass, R. J., Conrad, S. H., & Peplinski, W. (2000). Gravity-destabilized nonwetting phase invasion in macroheterogeneous porous media: Experimental observations of invasion dynamics and scale analysis. *Water Resources Research*, 36(11), 3121–3137.
- Glass, R. J., Conrad, S. H., & Yarrington, L. (2001). Gravity-destabilized nonwetting phase invasion in macroheterogeneous porous media: Near-pore-scale macro modified invasion percolation simulation of experiments. *Water Resources Research*, 37(5), 1197–1207.
- Glass, R. J., & Yarrington, L. (1996). Simulation of gravity fingering in porous media using a modified invasion percolation model. *Geoderma*, 70(2–4), 231–252.
- Goutaland, D., Winiarski, T., Lassabatere, L., Dubé, J. S., & Angulo-Jaramillo, R. (2013). Sedimentary and hydraulic characterization of a heterogeneous glaciofluvial deposit: Application to the modeling of unsaturated flow. *Engineering Geology*, 166, 127–139.
- Govindaraju, R. S., Corradini, C., & Morbidelli, R. (2006). A semianalytical model of expected areal-average infiltration under spatial heterogeneity of rainfall and soil saturated hydraulic conductivity. *Journal of Hydrology*, *316*(1-4), 184–194. https://doi.org/10.1016/j. jhydrol.2005.04.019
- Govindaraju, R. S., Corradini, C., & Morbidelli, R. (2012). Local- and field-scale infiltration into vertically non-uniform soils with spatiallyvariable surface hydraulic conductivities. *Hydrological Processes*, 26(21), 3293–3301. https://doi.org/10.1002/hyp.8454
- Govindaraju, R. S., Morbidelli, R., & Corradini, C. (2001). Areal infiltration modeling over soils with spatially correlated hydraulic conductivities. *Journal of Hydrologic Engineering*, 6(2), 150–158.
- Green, H. W., & Ampt, G. A. (1911). Studies on soil physics: Flow of air and water through soils. *The Journal of Agriculture Science*, 4(1), 1–24.
- Gupt, C. B., Prakash, A., Hazra, B., & Sreedeep, S. (2022). Predictive model for soil shrinkage characteristic curve of high plastic soils. *Geotechnical Testing Journal*, 45(1), 101–124.
- Hachum, A. Y., & Alfaro, J. F. (1977). Water infiltration and runoff under rain applications. *Soil Science Society of America Journal*, 41(5), 960–966. https://doi.org/10.2136/sssaj1977. 03615995004100050031x
- Hammecker, C., Siltecho, S., Angulo Jaramillo, R., & Lassabatère, L. (2022). Modelling of water infiltration into water repellent soils. *Hydrology and Earth System Sciences Discussions*, 1–24.
- Hansen, V. E. (1955). Infiltration and soil water movement during irrigation. Soil Science, 79(2), 93–106. https://doi.org/10.1097/00010694-195502000-00002
- Hauswirth, S. C., Abou Najm, M. R., & Miller, C. T. (2019). Characterization of the pore structure of porous media using non-Newtonian fluids. *Water Resources Research*, 55(8), 7182–7195. https://doi.org/ 10.1029/2019WR025044
- Haverkamp, R., Parlange, J. Y., Starr, J. L., Schmitz, G., & Fuentes, C. (1990). Infiltration under ponded conditions: 3. A predictive equation based on physical parameters. *Soil Science*, 149(5), 292–300. https:// doi.org/10.1097/00010694-199005000-00006
- Haverkamp, R., Ross, P. J., Smettem, K. R. J., & Parlange, J. Y. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer:
 2. Physically based infiltration equation. *Water Resources Research*, 30(11), 2931–2935. https://doi.org/10.1029/94WR01788

- area and relative permeability using pore-network modeling. *Transport in Porous Media*, 74, 201–219. https://doi.org/10.1007/s11242-007-9191-7
- Kandelous, M. M., & Šimůnek, J. (2010). Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agricultural Water Management, 97(7), 1070–1076.
- Kargas, G., Koka, D., & Londra, P. A. (2022). Evaluation of soil hydraulic parameters calculation methods using a tension infiltrometer. *Soil Systems*, 6(3), 63.
- Koplik, J. (1982). Creeping flow in two-dimensional networks. Journal of Fluid Mechanics, 119, 219–247. https://doi.org/10.1017/ S0022112082001323
- Koplik, J., & Lasseter, T. J. (1985). Two-phase flow in random network models of porous media. *Society of Petroleum Engineers Journal*, 25(01), 89–100. https://doi.org/10.2118/11014-PA
- Kostiakov, A. N. (1932). On the dynamics of the coefficient of water percolation in soils and the necessity of studying it from the dynamic point of view for the purposes of amelioration. *Transactions of 6th Committee International Society of Soil Science*, 1, 7–21.
- Kosugi, K. (1999). General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution. *Soil Science Society of America Journal*, 63(2), 270–277. https://doi.org/10.2136/sssaj1999. 03615995006300020003x
- Kozeny, J. (1927). Ueber kapillare leitung des wassers im boden. Sitzungsberichte der Akademie der Wissenschaften in Wien, 136, 271.
- Krummel, A. T., Datta, S. S., Münster, S., & Weitz, D. A. (2013). Visualizing multiphase flow and trapped fluid configurations in a model three-dimensional porous medium. *AIChE Journal*, 59(3), 1022–1029.
- Kutílek, M. (1980). Constant-rainfall infiltration. *Journal of Hydrology*, 45(3-4), 289–303. https://doi.org/10.1016/0022-1694(80)90025-6
- Kutílek, M., & Krejca, M. (1987). Three-parameter infiltration equation of the Philip solution type. *Vodohospodársky Časopis*, 35, 52–61.
- Kutílek, M., & Nielsen, D. R. (1994). Soil hydrology: Textbook for students of soil science, agriculture, forestry, geoecology, hydrology, geomorphology and other related disciplines. Catena Verlag.
- Kutilek, M., Zayani, K., Haverkamp, R., Parlance, J. Y., & Vachaud, G. (1991). Scaling of the Richards equation under invariant flux boundary conditions. *Water Resources Research*, 27(9), 2181–2185. https://doi.org/10.1029/91WR01550
- Lai, J., & Ren, L. (2007). Assessing the size dependency of measured hydraulic conductivity using double-ring infiltrometers and numerical simulation. *Soil Science Society of America Journal*, 71(6), 1667–1675. https://doi.org/10.2136/sssaj2006.0227
- Lambe, T. W., & Whitman, R. V. (1979). *Soil mechanics*. John Wiley & Sons.
- Larsbo, M., & Jarvis, N. (2003). MACRO 5.0: A model of water flow and solute transport in macroporous soil: Technical description (Vol. 1). Department of Soil Sciences, Swedish University of Agricultural Sciences.
- Larson, R. G., Scriven, L. E., & Davis, H. T. (1981). Percolation theory of two phase flow in porous media. *Chemical Engineering Science*, *36*(1), 57–73. https://doi.org/10.1016/0009-2509(81)80048-6
- Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J. M., Cuenca, R., Braud, I., & Haverkamp, R. (2006). Beerkan estimation of soil transfer parameters through infiltration experiments-BEST. *Soil Science Society of America Journal*, 70(2), 521–532. https://doi.org/10.2136/ sssaj2005.0026

- Haverkamp, R., Kutilek, M., Parlange, J. Y., Rendon, L., & Krejca, M. (1988). Infiltration under ponded conditions: 2. Infiltration equations tested for parameter time-dependence and predictive use. *Soil Science*, *145*(5), 317–329.
- Heiba, A. A., Davis, H. T., & Scriven, L. E. (1984, April 15–18). Statistical network theory of three-phase relative permeabilities. [Paper presentation]. SPE Enhanced Oil Recovery Symposium, Tulsa, OK. https://doi.org/10.2118/12690-MS
- Holtan, H. N. (1961). A concept for infiltration estimates in watershed engineering (Vol. 41). USDA-ARS.
- Horton, R. E. (1941). An approach toward a physical interpretation of infiltration capacity. *Soil Science Society of America*, *5*(C), 399–417. https://doi.org/10.2136/sssaj1941.036159950005000C0075x
- Horton, R. E. (1940). The infiltration-theory of surface-runoff. *Eos*, 21(2), 541–541. https://doi.org/10.1029/TR021i002p00541-1
- Huggins, L. F., & Monke, E. J. (1966). *The mathematical simulation of the hydrology of small watersheds* (IWRRC Technical Reports, Paper 1). Indiana Water Resources Research Center.
- Hunt, A. G., Ewing, R. P., & Horton, R. (2013). What's wrong with soil physics? *Soil Science Society of America Journal*, 77(6), 1877–1887. https://doi.org/10.2136/sssaj2013.01.0020
- Hunt, A. G., Holtzman, R., & Ghanbarian, B. (2017). A percolationbased approach to scaling infiltration and evapotranspiration. *Water*, 9(2), 104.
- Hunt, A. G., & Sahimi, M. (2017). Flow, transport, and reaction in porous media: Percolation scaling, critical-path analysis, and effective medium approximation. *Reviews of Geophysics*, 55(4), 993–1078.
- Hunt, A., Ewing, R., & Ghanbarian, B. (2014). *Percolation theory for flow in porous media* (Vol. 880). Springer.
- Hunt, A. G. (1998). General theory of the scale dependence of the Hydraulic Conductivity. *Eos*, 79(45), 378.
- Iovino, M., Abou Najm, M. R., Angulo-Jaramillo, R., Bagarello, V., Castellini, M., Concialdi, P., Di Prima, S., Lassabatere, L., & Stewart, R. D. (2021). Parameterization of a comprehensive explicit model for single-ring infiltration. *Journal of Hydrology*, 601, 126801.
- Jačka, L., Pavlásek, J., Pech, P., & Kuráž, V. (2016). Assessment of evaluation methods using infiltration data measured in heterogeneous mountain soils. *Geoderma*, 276, 74–83. https://doi.org/10.1016/j. geoderma.2016.04.023
- James, A. L., Mcdonnell, J. J., Tromp-Van Meerveld, I., & Peters, N. E. (2010). Gypsies in the palace: Experimentalist's view on the use of 3-D physics-based simulation of hillslope hydrological response. *Hydrological Processes*, 24(26), 3878–3893.
- Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. *European Journal of Soil Science*, *58*(3), 523–546.
- Jarvis, N. J., & Larsson, M. H. (1998). *The MACRO model (version 4.3): Technical description*. Swedish University of Agricultural Sciences.
- Jarvis, N. (1994). The MACRO Model (version 3.1). Technical description and sample simulations. Swedish University of Agricultural Sciences.
- Joekar Niasar, V., Hassanizadeh, S. M., Pyrak-Nolte, L. J., & Berentsen, C. (2009). Simulating drainage and imbibition experiments in a highporosity micromodel using an unstructured pore network model. *Water Resources Research*, 45(2), W02430. https://doi.org/10.1029/ 2007WR006641
- Joekar-Niasar, V., Hassanizadeh, S. M., & Leijnse, A. (2008). Insights into the relationships among capillary pressure, saturation, interfacial

library.wiley.com/

ditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

- Lassabatère, L., Angulo-Jaramillo, R., Soria-Ugalde, J. M., Šimůnek, J., & Haverkamp, R. (2009). Numerical evaluation of a set of analytical infiltration equations. *Water Resources Research*, 45(12). https://doi. org/10.1029/2009WR007941
- Lassabatère, L., Di Prima, S., Angulo-Jaramillo, R., Keesstra, S., & Salesa, D. (2019a). Beerkan multi-runs for characterizing water infiltration and spatial variability of soil hydraulic properties across scales. *Hydrological Sciences Journal*, 64(2), 165–178.
- Lassabatère, L., Di Prima, S., Bouarafa, S., Iovino, M., Bagarello, V., & Angulo-Jaramillo, R. (2019b). BEST-2K method for characterizing dual-permeability unsaturated soils with ponded and tension infiltrometers. *Vadose Zone Journal*, 18(1), 1–20. https://doi.org/10.2136/ vzj2018.06.0124
- Lassabatère, L., Peyneau, P.-E., Yilmaz, D., Pollacco, J., Fernández-Gálvez, J., Latorre, B., Moret-Fernández, D., Di Prima, S., Rahmati, M., Stewart, R D., Abou Najm, M., Hammecker, C., & Angulo-Jaramillo, R. (2021). A scaling procedure for straightforward computation of sorptivity. *Hydrology and Earth System Sciences*, 25(9), 5083–5104.
- Lassabatère, L., Peyneau, P.-E., Yilmaz, D., Pollacco, J., Fernández-Gálvez, J., Latorre, B., Moret-Fernández, D., Di Prima, S., Rahmati, M., Stewart, R D., Abou Najm, M., Hammecker, C., & Angulo-Jaramillo, R. (2023). Mixed formulation for an easy and robust numerical computation of sorptivity. *Hydrology and Earth System Sciences*, 27(4), 895–915.
- Lassabatère, L., Yilmaz, D., Peyrard, X., Peyneau, P. E., Lenoir, T., Šimůnek, J., & Angulo-Jaramillo, R. (2014). New analytical model for cumulative infiltration into dual-permeability soils. *Vadose Zone Journal*, *13*(12), vzj2013–10. https://doi.org/10.2136/vzj2013. 10.0181
- Lassabatère, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J. P., Winiarski, T., & Delolme, C. (2010). Effect of the settlement of sediments on water infiltration in two urban infiltration basins. *Geoderma*, 156(3-4), 316–325.
- Lassu, T., Seeger, M., Peters, P., & Keesstra, S. D. (2015). The Wageningen rainfall simulator: set-up and calibration of an indoor nozzle-type rainfall simulator for soil erosion studies. *Land Degradation and Development*, 26(6), 604–612. https://doi.org/10.1002/ldr.2360
- Latorre, B., Peña, C., Lassabatère, L., Angulo-Jaramillo, R., & Moret-Fernández, D. (2015). Estimate of soil hydraulic properties from disc infiltrometer three-dimensional infiltration curve: Numerical analysis and field application. *Journal of Hydrology*, 527, 1–12. https://doi. org/10.1016/j.jhydrol.2015.04.015
- Lehoux, A. P., Rodts, S., Faure, P., Michel, E., Courtier-Murias, D., & Coussot, P. (2016). Magnetic resonance imaging measurements evidence weak dispersion in homogeneous porous media. *Physical Review E*, 94, 053107. https://doi.org/10.1103/PhysRevE.94.053107
- Leij, F. J., Russell, W. B., & Lesch, S. M. (1997). Closed-form expressions for water retention and conductivity data. *Groundwater*, 35(5), 848–858.
- Lewandowska, J., Szymkiewicz, A., Burzyński, K., & Vauclin, M. (2004). Modeling of unsaturated water flow in double-porosity soils by the homogenization approach. *Advances in Water Resources*, 27(3), 283–296.
- Li, R.-M., Simons, D. B., & Stevens, M. A. (1976). Solutions to Green-Ampt infiltration equation. *Journal of the Irrigation* and Drainage Division, 102(2), 239–248. https://doi.org/10.1061/ JRCEA4.0001092

- Libardi, P. L., Reichardt, K., Nielsen, D. R., & Biggar, J. W. (1980). Simple field methods for estimating soil hydraulic conductivity. *Soil Science Society of America Journal*, 44(1), 3–7. https://doi.org/10. 2136/sssaj1980.03615995004400010001x
- Liu, J., & Song, R. (2015). Investigation of water and CO2 flooding using pore-scale reconstructed model based on micro-CT images of Berea sandstone core. *Progress in Computational Fluid Dynamics, An International Journal*, 15(5), 317–326.
- Liu, M., Meakin, P., & Huang, H. (2006). Dissipative particle dynamics with attractive and repulsive particle-particle interactions. *Physics of Fluids*, 18(1). https://doi.org/10.1063/1.2163366
- Logsdon, S. D., & Jaynes, D. B. (1996). Spatial variability of hydraulic conductivity in a cultivated field at different times. *Soil Science Society of America Journal*, 60(3), 703–709. https://doi.org/10.2136/ sssaj1996.03615995006000030003x
- Lu, N., & Dong, Y. (2017). Correlation between soil-shrinkage curve and water-retention characteristics. *Journal of Geotechnical and Geoenvironmental Engineering*, 143(9), 04017054.
- Mandal, A. C., & Waechter, R. T. (1994). Steady infiltration in unsaturated soil from a buried circular cylinder: The separate contributions from top and bottom halves. *Water Resources Research*, 30(1), 107–115. https://doi.org/10.1029/93WR02468
- Martys, N. S., & Hagedorn, J. G. (2002). Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann methods. *Materials and Structures/Materiaux et Constructions*, 35, 650–658. https://doi.org/10.1617/13973
- McGarry, D., & Malafant, K. W. J. (1987). The analysis of volume change in unconfined units of soil. Soil Science Society of America Journal, 51(2), 290–297. https://doi.org/10.2136/sssaj1987. 03615995005100020005x
- Mein, R. G., & Larson, C. L. (1973). Modeling infiltration during a steady rain. Water Resources Research, 9(2), 384–394. https://doi.org/ 10.1029/WR009i002p00384
- Mezencev, V. J. (1948). Theory of formation of the surface runoff. *Meteorology, Hydrology and Water Management*, 3, 33–40.
- Mogensen, K., & Stenby, E. H. (1998). A dynamic two-phase pore-scale model of imbibition. *Transport in Porous Media*, 32, 299–327. https:// doi.org/10.1023/a:1006578721129
- Morbidelli, R., Corradini, C., & Govindaraju, R. S. (2006). A field-scale infiltration model accounting for spatial heterogeneity of rainfall and soil saturated hydraulic conductivity. *Hydrological Processes*, 20(7), 1465–1481. https://doi.org/10.1002/hyp.5943
- Morel-Seytoux, H. J. (1976). Derivation of equations for rainfall infiltration. *Journal of Hydrology*, 31(3-4), 203–219. https://doi.org/10. 1016/0022-1694(76)90125-6
- Morel-Seytoux, H. J., & Khanji, J. (1974). Derivation of an equation of infiltration. Water Resources Research, 10(4), 795–800. https://doi. org/10.1029/WR010i004p00795
- Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. *Water Resources Research*, 12(3), 513–522. https://doi.org/10.1029/WR012i003p00513
- Navier, C. L. (1823). Mémoire sur les lois du mouvement des fluides. Mémoires de l'Académie Des Sciences de l'Institut de France, 1823, 389–440.
- Nicholson, D. (1968). Capillary models for porous media. Part 2.— Sorption desorption hysteresis in three dimensional networks. *Transactions of the Faraday Society*, 64, 3416–3424. https://doi.org/10. 1039/TF9686403416

- Nie, W.-B., Li, Y.-B., Fei, L.-J., & Ma, X.-Y. (2017a). Approximate explicit solution to the Green-Ampt infiltration model for estimating wetting front depth. *Water*, 9(8), 609.
- Nie, W., Ma, X., & Fei, L. (2017b). Evaluation of infiltration models and variability of soil infiltration properties at multiple scales. *Irrigation and Drainage*, 66(4), 589–599. https://doi.org/10.1002/ird. 2126
- Nimmo, J. R., Perkins, K. S., Plampin, M. R., Walvoord, M. A., Ebel, B. A., & Mirus, B. B. (2021). Rapid-response unsaturated zone hydrology: Small-scale data, small-scale theory, big problems. *Frontiers in Earth Science*, 123, 613564.
- Novák, V., Šimunek, J., & Genuchten, M. Th. (2000). Infiltration of water into soil with cracks. *Journal of Irrigation and Drainage Engineering*, *126*(1), 41–47. https://doi.org/10.1061/(asce)0733-9437(2000) 126:1(41)
- Novák, V., & Soltesz, A. (1984). Infiltration of water into cracked soil. ILRI Publication, 37, 148–151.
- Olson, T. C., & Swartzendruber, D. (1960). Model study of the doublering infiltrometer in layered systems. In *Transactions from the 7th International Congress of Soil Science* (pp. 441–447). International Society of Soil Science.
- Overton, D. (1964). *Mathematical refinement of an infiltration equation for watershed engineering*. Department of Agricultural Services.
- Pachepsky, Y., & Karahan, G. (2022). On shapes of cumulative infiltration curves. *Geoderma*, 412, 115715.
- Parlange, J. Y. (1971a). Theory of water-movement in soils: 1. Onedimensional absorption. *Soil Science*, 111(3), 170–174. https://doi. org/10.1097/00010694-197103000-00004
- Parlange, J. Y. (1971b). Theory of water-movement in soils: 2. Onedimensional infiltration. *Soil Science*, 111(3), 170–174.
- Parlange, J. Y. (1971c). Theory of water movement in soils: 3. Two and three dimensional absorption. *Soil Science*, 112(5), 313–317. https:// doi.org/10.1097/00010694-197202000-00004
- Parlange, J. Y. (1980). Water transport in soils. Annual Review of Fluid Mechanics, 12, 77–102.
- Parlange, J. Y., Barry, D. A., & Haverkamp, R. (2002). Explicit infiltration equations and the Lambert W-function. Advances in Water Resources, 25, 1119–1124. https://doi.org/10.1016/S0309-1708(02) 00051-9
- Parlange, J. Y., Haverkamp, R., & Touma, J. (1985). Infiltration under ponded conditions: 1. Optimal analytical solution and comparison with experimental observations. *Soil Science*, *139*(4), 305–311. https://doi.org/10.1097/00010694-198504000-00003
- Parlange, J. Y., Lisle, I., Braddock, R. D., & Smith, R. E. (1982). The three-parameter infiltration equation. *Soil Science*, *133*(6), 337–341. https://doi.org/10.1097/00010694-198206000-00001
- Parlange, J. Y. (1975). On solving the flow equation in unsaturated soils by optimization: Horizontal infiltration. *Soil Science Society of America Journal*, 39(3), 415–418. https://doi.org/10.2136/sssaj1975. 03615995003900030019x
- Parlange, J. Y. (1972a). Theory of water movement in soils: 4. Two and three dimensional steady infiltration. *Soil Science*, 113(2), 96–101.
- Parlange, J. Y. (1972b). Theory of water movement in soils: 5. unsteady infiltration from spherical cavities. *Soil Science*, 113(3), 156–161. https://doi.org/10.1097/00010694-197203000-00002
- Parlange, J. Y. (1972c). Theory of water movement in soils: 8.: Onedimensional infiltration with constant flux at the surface. *Soil Science*, *114*(1), 1–4. https://doi.org/10.1097/00010694-197207000-00001
- Parlange, J.-Y., Barry, D. A., Parlange, M. B., Hogarth, W. L., Haverkamp, R., Ross, P. J., Ling, L., & Steenhuis, T. S. (1997). New approximate analytical technique to solve Richards equation for arbi-

trary surface boundary conditions. *Water Resources Research*, 33(4), 903–906.

- Parr, J. F., & Bertrand, A. R. (1960). Water infiltration into soils. Advances in Agronomy, 12, 311–363.
- Peng, X., & Horn, R. (2005). Modeling soil shrinkage curve across a wide range of soil types. *Soil Science Society of America Journal*, 69(3), 584–592. https://doi.org/10.2136/sssaj2004.0146
- Perroux, K. M., & White, I. (1988). Designs for disc permeameters. Soil Science Society of America Journal, 52(5), 1205–1215. https://doi. org/10.2136/sssaj1988.03615995005200050001x
- Philip, J. R. (1957a). The theory of infiltration: 1. The infiltration equation and its solution. *Soil Science*, 83(5), 345–358. https://doi.org/10. 1097/00010694-195705000-00002
- Philip, J. R. (1957b). The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. *Soil Science*, 84(3), 257–264. https://doi.org/10.1097/00010694-195709000-00010
- Philip, J. R. (1967). Sorption and infiltration in heterogeneous media. Australian Journal of Soil Research, 5(1), 1–10. https://doi.org/10. 1071/SR9670001
- Philip, J. R. (1968). Steady infiltration from buried point sources and spherical cavities. *Water Resources Research*, 4(5), 1039–1047. https://doi.org/10.1029/WR004i005p01039
- Philip, J. R. (1971). General theorem on steady infiltration from surface sources, with application to point and line sources. *Soil Science Society of America Journal*, 35(6), 867–871. https://doi.org/10.2136/ sssaj1971.03615995003500060010x
- Philip, J. R. (1972). Steady infiltration from buried, surface, and perched point and line sources in heterogeneous soils: I. Analysis. *Soil Science Society of America Journal*, 36(2), 268–273. https://doi.org/10.2136/ sssaj1972.03615995003600020020x
- Philip, J. R. (1973). On solving the unsaturated flow equation: 1. The flux-concentration relation. *Soil Science*, 116(5), 328–335. https:// doi.org/10.1097/00010694-197311000-00002
- Philip, J. R. (1985a). Reply to "comments on steady infiltration from spherical cavities." Soil Science Society of America Journal, 49(3), 788–789. https://doi.org/10.2136/sssaj1985. 03615995004900030059x
- Philip, J. R. (1985b). Scattering functions and infiltration. Water Resources Research, 21(12), 1889–1894. https://doi.org/10.1029/ WR021i012p01889
- Philip, J. R. (1986). Steady infiltration from buried discs and other sources. Water Resources Research, 22(7), 1058–1066. https://doi. org/10.1029/WR022i007p01058
- Philip, J. R. (1987). The infiltration joining problem. Water Resources Research, 23(12), 2239–2245. https://doi.org/10.1029/ WR023i012p02239
- Philip, J. R. (1992). Falling head ponded infiltration. Water Resources Research, 28(8), 2147–2148. https://doi.org/10.1029/92WR00704
- Philip, J. R. (1993). Variable-head ponded infiltration under constant or variable rainfall. *Water Resources Research*, 29(7), 2155–2165. https://doi.org/10.1029/93WR00748
- Philip, J. R. (1998). Infiltration into crusted soils. Water Resources Research, 34(8), 1919–1927. https://doi.org/10.1029/98WR01207
- Philip, J. R., & Knight, J. H. (1974). On solving the unsaturated flow equation: 3. New quasi-analytical technique. *Soil Science*, *117*(1), 1– 13. https://doi.org/10.1097/00010694-197401000-00001
- Philip, J. R. (1969a). Theory of infiltration. Advances in Hydroscience, 5, 215–296. https://doi.org/10.1016/b978-1-4831-9936-8.50010-6
- Philip, J. R. (1969b). Hydrostatics and hydrodynamics in swelling soils. Water Resources Research, 5(5), 1070–1077. https://doi.org/10.1029/ WR005i005p01070

- Philip, J. R. (1984a). Steady infiltration from circular cylindrical cavities. Soil Science Society of America Journal, 48(2), 270–278. https://doi. org/10.2136/sssaj1984.03615995004800020008x
- Philip, J. R. (1984b). Steady infiltration from spherical cavities. Soil Science Society of America Journal, 48(4), 724–729. https://doi.org/10. 2136/sssaj1984.03615995004800040006x
- Poiseuille, J. L. (1844). *Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres*. Imprimerie Royale.
- Pomchaitaward, C., Manas-Zloczower, I., & Feke, D. L. (2003). Lattice Boltzmann simulation of capillary infiltration in agglomerates and beds of fine particles. *Advanced Powder Technology*, 14(3), 295–311.
- Poulovassilis, A., & Argyrokastritis, I. (2020). A new approach for studying vertical infiltration. *Soil Research*, 58(5), 509. https://doi.org/10. 1071/SR19266
- Preziosi, L., Joseph, D. D., & Beavers, G. S. (1996). Infiltration of initially dry, deformable porous media. *International Journal of Multiphase Flow*, 22(6), 1205–1222. https://doi.org/10.1016/0301-9322(96)00035-3
- Prodanović, M., & Bryant, S. L. (2006). A level set method for determining critical curvatures for drainage and imbibition. *Journal of Colloid and Interface Science*, 304(2), 442–458. https://doi.org/10. 1016/j.jcis.2006.08.048
- Raats, P. A. C., & Knight, J. H. (2018). The contributions of Lewis Fry Richardson to drainage theory, soil physics, and the soilplant-atmosphere continuum. *Frontiers in Environmental Science*, 6. https://doi.org/10.3389/fenvs.2018.00013
- Raats, P. A. C. (1971). Steady infiltration from point sources, cavities, and basins. Soil Science Society of America Journal, 35(5), 689–694. https://doi.org/10.2136/sssaj1971.03615995003500050020x
- Raats, P. A. C., Smiles, D., & Warrick, A. W. (2002). Environmental mechanics: Water, mass and energy transfer in the biosphere. American Geophysical Union.
- Rahmati, M., Latorre, B., Lassabatere, L., Angulo-Jaramillo, R., & Moret-Fernández, D. (2019). The relevance of Philip theory to Haverkamp quasi-exact implicit analytical formulation and its uses to predict soil hydraulic properties. *Journal of Hydrology*, 570, 816–826. https://doi.org/10.1016/j.jhydrol.2019.01.038
- Rahmati, M., Weihermüller, L., Vanderborght, J., Pachepsky, Y A., Mao, L., Sadeghi, S. H., Moosavi, N., Kheirfam, H., Montzka, C., Van Looy, K., Toth, B., Hazbavi, Z., Al Yamani, W., Albalasmeh, A A., Alghzawi, Ma' Z., Angulo-Jaramillo, R., Antonino, A. C. D., Arampatzis, G., ... Vereecken, H. (2018). Development and analysis of the Soil Water Infiltration Global database. *Earth System Science Data*, *10*(3), 1237–1263. https://doi.org/10.5194/essd-10-1237-2018
- Raimbault, J., Peyneau, P.-E., Courtier-Murias, D., Bigot, T., Gil Roca, J., Béchet, B., & Lassabatère, L. (2021). Investigating the impact of exit effects on solute transport in macroporous media. *Hydrology and Earth System Sciences*, 25, 671–683. https://doi.org/10.5194/hess-25-671-2021
- Raoof, A., & Hassanizadeh, S. M (2010). A new method for generating pore-network models of porous media. *Transport in Porous Media*, 81, 391–407. https://doi.org/10.1007/s11242-009-9412-3
- Redinger, G. J., Campbell, G. S., Saxton, K. E., & Papendick, R. I. (1984). Infiltration rate of slot mulches: Measurement and numerical simulation. *Soil Science Society of America Journal*, 48(5), 982–986. https://doi.org/10.2136/sssaj1984.03615995004800050006x
- Reichenberger, S., Amelung, W., Laabs, V., Pinto, A., Totsche, K. U., & Zech, W. (2002). Pesticide displacement along preferential flow pathways in a Brazilian Oxisol. *Geoderma*, 110(1–2), 63–86.

- Reynolds, W. D., & Elrick, D. E. (1990). Ponded infiltration from a single ring: I. Analysis of steady flow. *Soil Science Society of America Journal*, 54(5), 1233–1241. https://doi.org/10.2136/sssaj1990. 03615995005400050006x
- Reynolds, W. D., Elrick, D. E., & Clothier, B. E. (1985). The constant head well permeameter: Effect of unsaturated flow. *Soil Science*, 139(2), 172–180. https://doi.org/10.1097/00010694-198502000-00011
- Reynolds, W. D., Elrick, D. E., & Topp, G. C. (1983). A reexamination of the constant head well permeameter method for measuring saturated hydraulic conductivity above the water table. *Soil Science*, *136*(4), 250. https://doi.org/10.1097/00010694-198310000-00008
- Reynolds, W. D., & Elrick, D. E. (1985). In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the α -parameter using the Guelph permeameter. *Soil Science*, 140(4), 292–302.
- Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. *Journal of Applied Physics*, 1(5), 318–333. https://doi.org/ 10.1063/1.1745010
- Richardson, L. F. (1922). Weather prediction by numerical process Cambridge University Press. *Monthly Weather Review*.
- Rijtema, P. E. (1965). An analysis of actual evapotranspiration. Pudoc.
- Rönnqvist, H. (2018). Double-ring infiltrometer for in-situ permeability determination of dam material. *Engineering*, 10(6), 320–328.
- Rose, W. (1957). Studies of waterflood performance: III. Use of network models (Circular no. 237). State of Illinois Department of Registration and Education.
- Ross, P. J. (1990). Efficient numerical methods for infiltration using Richards' equation. *Water Resources Research*, 26(2), 279–290.
- Ross, P. J., & Bristow, K. L. (1990). Simulating water movement in layered and gradational soils using the Kirchhoff transform. *Soil Science Society of America Journal*, 54(6), 1519–1524. https://doi.org/ 10.2136/sssaj1990.03615995005400060002x
- Sahimi, M. (2011). Flow and transport in porous media and fractured rock: from classical methods to modern approaches. John Wiley & Sons.
- Salvucci, G. D., & Entekhabi, D. (1994). Explicit expressions for Green-Ampt (delta function diffusivity) infiltration rate and cumulative storage. *Water Resources Research*, 30(9), 2661–2663. https://doi. org/10.1029/94WR01494
- Schiff, L. (1953). The effect of surface head on infiltration rates based on the performance of ring infiltrometers and ponds. *Eos, Transactions American Geophysical Union*, 34(2), 257–266.
- Schmid, B. H. (1990). Derivation of an explicit equation for infiltration on the basis of the Mein-Larson model. *Hydrological Sciences Journal*, 35(2), 197–208. https://doi.org/10.1080/02626669009492418
- Scotter, D. R., Clothier, B. E., & Harper, E. R. (1982). Measuring saturated hydraulic conductivity and sorptivity using twin rings. *Australian Journal of Soil Research*, 20(4), 295. https://doi.org/10.1071/ SR9820295
- Selker, J. S., & Assouline, S. (2017). An explicit, parsimonious, and accurate estimate for ponded infiltration into soils using the Green and Ampt approach. *Water Resources Research*, 53(8), 7481–7487. https://doi.org/10.1002/2017WR021020
- Selker, J. S., Duan, J., & Parlange, J. Y. (1999a). Green and Ampt infiltration into soils of variable pore size with depth. *Water Resources Research*, 35(5), 1685–1688. https://doi.org/10. 1029/1999WR900008
- Selker, J. S., McCord, J. T., & Keller, C. K. (1999b). Vadose zone processes. CRC Press.

- Serrano, S. E. (2001). Explicit solution to Green and Ampt infiltration equation. Journal of Hydrologic Engineering, 6(4), 336-340.
- Setiawan, B. I., & Nakano, M. (1993). On the determination of unsaturated hydraulic conductivity from soil moisture profiles and from water retention curves. Soil Science, 156(6), 389-395.
- Sharma, M. L., Gander, G. A., & Hunt, C. G. (1980). Spatial variability of infiltration in a watershed. Journal of Hydrology, 45(1-2), 101-122. https://doi.org/10.1016/0022-1694(80)90008-6
- Shillito, R. M., Berli, M., & Ghezzehei, T. A. (2020). Quantifying the effect of subcritical water repellency on sorptivity: A physically based model. Water Resources Research, 56(11), e2020WR027942.
- Simon, R., & Kelsey, F. J. (1971). The use of capillary tube networks in reservoir performance studies: I. Equal-viscosity miscible displacements. Society of Petroleum Engineers Journal, 11(02), 99-112. https://doi.org/10.2118/3068-pa
- Simon, R., & Kelsey, F. J. (1972). The use of capillary tube networks in reservoir performance studies: II. Effect of heterogeneity and mobility on miscible displacement efficiency. Society of Petroleum Engineers Journal, 12(04), 345-351. https://doi.org/10.2118/3482-pa
- Šimůnek, J., van Genuchten, M. Th., & Šejna, M. (2006). The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media Technical manual (Version 1.0).
- Šimůnek, J., Jarvis, N. J., van Genuchten, M. Th., & Gärdenäs, A. (2003). Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology, 272(1-4), 14-35.
- Šimůnek, J., Šejna, M., & van Genuchten, M. Th. (1999). The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media: Version 2.0. US Salinity Laboratory, Agricultural Research Service, US Department of Agriculture.
- Šimůnek, J., & van Genuchten, M. Th. (2008). Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone Journal, 7(2), 782-797. https://doi.org/10.2136/vzj2007.0074
- Šimůnek, J., van Genuchten, M. T., & ChuŠejna, M. (2008). Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal, 7(2), 587-600. https://doi.org/10.2136/vzj2007.0077
- Šimůnek, J., van Genuchten, M. Th., & Šejna, M. (2016). Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7), 1-25. https://doi.org/10.2136/ vzj2016.04.0033
- Šimůnek, J., van Genuchten, M. Th., & Sejna, M. (2005). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Research Reports, 3, 1-240.
- Šimunek, J., Šejna, M., & van Genuchten, M. Th. (1998). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media: Version 2.0 (Report IGWMC-TPS, 70). International Ground Water Modeling Center, Colorado School of Mines.
- Singh, V. P. (2010). Entropy theory for derivation of infiltration equations. Water Resources Research, 46(3). https://doi.org/10.1029/ 2009WR008193
- Slimene, E. B., Lassabatere, L., Šimůnek, J., Winiarski, T., & Gourdon, R. (2017). The role of heterogeneous lithology in a glaciofluvial deposit on unsaturated preferential flow-a numerical study. Journal of Hydrology and Hydromechanics, 65(3), 209-221.

- Smettem, K. R. J., & Clothier, B. E. (1989). Measuring unsaturated sorptivity and hydraulic conductivity using multiple disc permeameters. Journal of Soil Science, 40(3), 563-568. https://doi.org/10.1111/ i.1365-2389.1989.tb01297.x
- Smettem, K. R. J., Parlange, J. Y., Ross, P. J., & Haverkamp, R. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 1. A capillary-based theory. Water Resources Research, 30(11), 2925-2929. https://doi.org/10.1029/94WR01787
- Smiles, D. E. (1974). Infiltration into a swelling material. Soil Science, 117(3), 140-147. https://doi.org/10.1097/00010694-197403000-00002
- Smiles, D. E., & Raats, P. A. (2005). Hydrology of swelling clay soils. In Encyclopedia of hydrological sciences: Part 6. Soils. (pp. 1011-1026). John Wiley & Sons. https://doi.org/10.1002/0470848944. hsa071
- Smith, R E. (1972). The infiltration envelope: Results from a theoretical infiltrometer. Journal of Hydrology, 17(1-2), 1-22. https://doi.org/ 10.1016/0022-1694(72)90063-7
- Smith, R E., Corradini, C., & Melone, F. (1993). Modeling infiltration for multistorm runoff events. Water Resources Research, 29(1), 133-144. https://doi.org/10.1029/92WR02093
- Smith, R. E. (1990). Analysis of infiltration through a two-layer soil profile. Soil Science Society of America Journal, 54(5), 1219-1227. https://doi.org/10.2136/sssaj1990.03615995005400050004x
- Smith, R. E., Corradini, C., & Melone, F. (1999). A conceptual model for infiltration and redistribution in crusted soils. Water Resources Research, 35(5), 1385-1393. https://doi.org/10.1029/ 1998WR900046
- Smith, R. E., & Parlange, J.-Y. (1978). A parameter-efficient hydrologic infiltration model. Water Resources Research, 14(3), 533-538. https://doi.org/10.1029/WR014i003p00533
- Smith, R. E., Smettem, K. R. J., Broadbridge, P., & Woolhiser, D. A. (2002). Infiltration theory for hydrologic applications. American Geophysical Union.
- Sommer, J. L., & Mortensen, A. (1996). Forced unidirectional infiltration of deformable porous media. Journal of Fluid Mechanics, 311(1), 193. https://doi.org/10.1017/S002211209600256X
- Song, R., Peng, J., Sun, S., Wang, Y., Cui, M., & Liu, J. (2020). Visualized experiments on residual oil classification and its influencing factors in waterflooding using micro-computed tomography. Journal of Energy Resources Technology, 142(8), 83003.
- Srivastava, P., Costello, T. A., & Edwards, D. R. (1996). A direct, approximate solution to the modified Green-Ampt infiltration equation. Transactions of the American Society of Agricultural Engineers, 39(4), 1411-1413. https://doi.org/10.13031/2013.27633
- Stewart, R. D. (2018). A dynamic multidomain Green-Ampt infiltration model. Water Resources Research, 54(9), 6844-6859. https://doi.org/ 10.1029/2018WR023297
- Stewart, R. D. (2019). A generalized analytical solution for preferential infiltration and wetting. Vadose Zone Journal, 18(1), 1-10. https:// doi.org/10.2136/vzj2018.08.0148
- Stewart, R. D., & Abou Najm, M. R. (2018a). A comprehensive model for single ring infiltration I: Initial water content and soil hydraulic properties. Soil Science Society of America Journal, 82(3), 548-557. https://doi.org/10.2136/sssaj2017.09.0313
- Stewart, R. D., & Abou Najm, M. R. (2018b). A comprehensive model for single ring infiltration II: Estimating field-saturated hydraulic conductivity. Soil Science Society of America Journal, 82(3), 558-567. https://doi.org/10.2136/sssaj2017.09.0314

- Stewart, R. D., Abou Najm, M. R., Rupp, D. E., & Selker, J. S. (2016). Modeling multidomain hydraulic properties of shrink-swell soils. *Water Resources Research*, 52(10), 7911–7930.
- Stewart, R. D., Lee, J. G., Shuster, W. D., & Darner, R. A. (2017). Modelling hydrological response to a fully-monitored urban bioretention cell. *Hydrological Processes*, *31*(26), 4626–4638.
- Stokes, G. G. (1850). On the effect of the internal friction of fluids on the motion of pendulums—Section III. *Transactions of the Cambridge Philosophical Society*.
- Stone, J. J., Hawkins, R. H., & Shirley, E. D. (1994). Approximate form of Green-Ampt infiltration equation. *Journal of Irrigation* and Drainage Engineering, 120(1), 128–137. https://doi.org/10.1061/ (ASCE)0733-9437(1994)120:1(128)
- Stroosnijder, L. (1976). Infiltratie en herverdeling van water in grond. Verslagen van Landbouwkundige Onderzoekingen 847.
- Su, H., Jia, Y., Gan, Y., Ni, G., Niu, C., Liu, H., Jin, T., & Yao, Y. (2020). Soil water movement model for deformable soils. *Journal of Water* and Climate Change, 11(4), 1191–1202. https://doi.org/10.2166/wcc. 2019.262
- Su, N. (2009). Equations of anomalous absorption onto swelling porous media. *Materials Letters*, 63(28), 2483–2485. https://doi.org/10. 1016/j.matlet.2009.08.039
- Su, N. (2010). Theory of infiltration: Infiltration into swelling soils in a material coordinate. *Journal of Hydrology*, 395(1–2), 103–108. https://doi.org/10.1016/j.jhydrol.2010.10.019
- Swamee, P K., Rathie, P N., & de S M Ozelim, L. C. (2012). Explicit equations for infiltration. *Journal of Hydrology*, 426–427, 151–153. https://doi.org/10.1016/j.jhydrol.2012.01.020
- Swartzendruber, D. (1974). Infiltration of constant-flux rainfall into soil as analyzed by the approach of Green and Ampt. *Soil Science*, *117*(5), 272–281. https://doi.org/10.1097/00010694-197405000-00006
- Swartzendruber, D. (2000). Derivation of a two-term infiltration equation from the Green-Ampt model. *Journal of Hydrology*, 236(3–4), 247–251. https://doi.org/10.1016/S0022-1694(00)00297-3
- Swartzendruber, D., & Hogarth, W. L. (1991). Water infiltration into soil in response to ponded-water head. *Soil Science Society of America Journal*, 55(6), 1511–1515. https://doi.org/10.2136/sssaj1991. 03615995005500060001x
- Swartzendruber, D., & Youngs, E. G. (1974). A comparison of physically-based infiltration equations. *Soil Science*, 117(3), 165– 167.
- Swartzendruber, D. (1987a). *Rigorous derivation and interpretation* of the Green and Ampt equation. Infiltration Development and Application. Water Resources Research Center, University of Hawaii.
- Swartzendruber, D. (1987b). A quasi-solution of Richards' Equation for the downward infiltration of water into soil. Water Resources Research, 23(5), 809–817. https://doi.org/10.1029/ WR023i005p00809
- Talsma, T. (1969). In situ measurement of sorptivity. Soil Research, 7(3), 269. https://doi.org/10.1071/sr9690269
- Talsma, T., & Parlange, J. Y. (1972). One-dimensional vertical infiltration. Australian Journal of Soil Research, 10(2), 143–150. https://doi. org/10.1071/SR9720143
- Tariq, A. U. R., & Durnford, D. S. (1993). Analytical volume change model for swelling clay soils. *Soil Science Society of America Journal*, 57(5), 1183–1187. https://doi.org/10.2136/sssaj1993. 03615995005700050003x
- Toledo, P. G., Scriven, L. E., & Davis, H. T. (1994). Pore-space statistics and capillary pressure curves from volume-controlled porosimetry.

SPE Formation Evaluation, 9(01), 46–54. https://doi.org/10.2118/ 19618-PA

- Torelli, L., & Scheidegger, A. E. (1971). Random maze models of flow through porous media. *Pure and Applied Geophysics PAGEOPH*, 89, 32–44. https://doi.org/10.1007/BF00875202
- Touma, J., Voltz, M., & Albergel, J. (2007). Determining soil saturated hydraulic conductivity and sorptivity from single ring infiltration tests. *European Journal of Soil Science*, 58(1), 229–238. https://doi. org/10.1111/j.1365-2389.2006.00830.x
- Turner, N. C., & Parlange, J. Y. (1974). Lateral movement at the periphery of a one-dimensional flow of water. *Soil Science*, 118(2), 70–77.
- Tzavaras, J., Köhne, M., & Vogel, H.-J. (2017). From pore scale to continuum scale modeling of infiltration. Advances in Water Resources, 103, 108–118.
- Valiantzas, J. D. (2010). New linearized two-parameter infiltration equation for direct determination of conductivity and sorptivity. *Journal* of Hydrology, 384(1-2), 1–13. https://doi.org/10.1016/j.jhydrol.2009. 12.049
- Valvatne, P. H., & Blunt, M. J. (2004). Predictive pore-scale modeling of two-phase flow in mixed wet media. *Water Resources Research*, 40(7). https://doi.org/10.1029/2003WR002627
- van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. *Soil Science Society of America Journal*, 44(5), 892–898. https://doi.org/10.2136/sssaj1980. 03615995004400050002x
- van Genuchten, M. Th., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils (EPA/600/2-91/065). U. S. Environmental Protection Agency.
- Van De Hulst, H. C. (1949). On the attenuation of plane waves by obstacles of arbitrary size and form. *Physica*, 15(8-9), 740–746. https://doi. org/10.1016/0031-8914(49)90079-8
- Van Schaik, N., Schnabel, S., & Jetten, V. G. (2008). The influence of preferential flow on hillslope hydrology in a semi-arid watershed (in the Spanish Dehesas). *Hydrological Processes: An International Journal*, 22(18), 3844–3855.
- Vatankhah, A. R. (2015). Discussion of "modified green-ampt infiltration model for steady rainfall" by J. Almedeij and I. I. Esen. *Journal of Hydrologic Engineering*, 20(4). https://doi.org/10.1061/(ASCE)HE. 1943-5584.0001110
- Waechter, R. T., & Philip, J. R. (1985). Steady two- and threedimensional flows in unsaturated soil: The scattering analog. *Water Resources Research*, 21(12), 1875–1887. https://doi.org/10.1029/ WR021i012p01875
- Wang, Z., Feyen, J., Nielsen, D. R., & van Genuchten, M. Th. (1997). Two-phase flow infiltration equations accounting for air entrapment effects. *Water Resources Research*, 33(12), 2759–2767.
- Warrick, A. W., & Lazarovitch, N. (2007). Infiltration from a strip source. Water Resources Research, 43(3). https://doi.org/10.1029/ 2006WR004975
- Warrick, A. W., Lazarovitch, N., Furman, A., & Zerihun, D. (2007). Explicit infiltration function for furrows. *Journal of Irrigation and Drainage Engineering*, 133(4), 307–313. https://doi.org/10.1061/ (asce)0733-9437(2007)133:4(307)
- Warrick, A. W., Lomen, D. O., & Yates, S. R. (1985). A generalized solution to infiltration. *Soil Science Society of America Journal*, 49(1), 34–38. https://doi.org/10.2136/sssaj1985.036159950049000 10006x

- Warrick, A. W., Zerihun, D., Sanchez, C. A., & Furman, A. (2005). Infiltration under variable ponding depths of water. Journal of Irrigation and Drainage Engineering, 131(4), 358-363.
- Watson, K. K. (1966). An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials. Water Resources Research, 2(4), 709-715. https://doi.org/10.1029/ WR002i004p00709
- Watson, K. W., & Luxmoore, R. J. (1986). Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Science Society of America Journal, 50(3), 578-582. https://doi.org/10.2136/ sssai1986.03615995005000030007x
- Weiler, M. (2005). An infiltration model based on flow variability in macropores: Development, sensitivity analysis and applications. Journal of Hydrology, 310(1-4), 294-315. https://doi.org/10.1016/j. jhydrol.2005.01.010
- Whisler, F. D., & Bouwer, H. (1970). Comparison of methods for calculating vertical drainage and infiltration for soils. Journal of Hydrology, 10(1), 1-19. https://doi.org/10.1016/0022-1694(70) 90051-X
- White, I., & Sully, M. J. (1987). Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resources Research, 23(8), 1514-1522. https://doi.org/10.1029/ WR023i008p01514
- White, I., Sully, M. J., & Perroux, K. M. (1992). Measurement of surfacesoil hydraulic properties: Disk permeameters, tension infiltrometers, and other techniques. Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice, 30, 69-103.
- Wilkinson, D. (1984). Percolation model of immiscible displacement in the presence of buoyancy forces. Physical Review A, 30(1), 520. https://doi.org/10.1103/PhysRevA.30.520
- Wilkinson, D., & Willemsen, J. F. (1983). Invasion percolation: A new form of percolation theory. Journal of Physics A: Mathematical and General, 16(14), 3365. https://doi.org/10.1088/0305-4470/16/ 14/028
- Wind, G. P. (1955). A field experiment concerning capillary rise of moisture in a heavy clay soil. Netherlands Journal of Agricultural Science, 3(1), 60-69. https://doi.org/10.18174/njas.v3i1.17827
- Wooding, R. A. (1968). Steady infiltration from a shallow circular pond. Water Resources Research, 4(6), 1259-1273. https://doi.org/10.1029/ WR004i006p01259
- Wu, L., & Pan, L. (1997). A generalized solution to infiltration from single-ring infiltrometers by scaling. Soil Science Society of America Journal, 61(5), 1318-1322. https://doi.org/10.2136/sssaj1997. 03615995006100050005x
- Wu, L., Pan, L., Mitchell, J., & Sanden, B. (1999). Measuring saturated hydraulic conductivity using a generalized solution for single-ring infiltrometers. Soil Science Society of America Journal, 63(4), 788-792. https://doi.org/10.2136/sssaj1999.634788x
- Xu, X., Lewis, C., Liu, W., Albertson, J. D., & Kiely, G. (2012). Analysis of single-ring infiltrometer data for soil hydraulic properties esti-

mation: Comparison of BEST and Wu methods. Agricultural Water Management, 107, 34-41. https://doi.org/10.1016/j.agwat.2012.01. 004

- Yeh, T.-C. J. (1989). One-dimensional steady state infiltration in heterogeneous soils. Water Resources Research, 25(10), 2149-2158. https://doi.org/10.1029/WR025i010p02149
- Yilmaz, D., Di Prima, S., Stewart, R D., Abou Najm, M R., Fernandez-Moret, D., Latorre, B., & Lassabatere, L. (2022). Three-term formulation to describe infiltration in water-repellent soils. Geoderma, 427, 116127.
- Yilmaz, D., Lassabatère, L., Angulo-Jaramillo, R., Deneele, D., & Legret, M. (2010). Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone Journal, 9(1), 107-116. https://doi.org/10.2136/vzj2009.0039
- Youngs, E. G. (1968). An estimation of sorptivity for infiltration studies from moisture moment considerations. Soil Science, 106(3), 157-163. https://doi.org/10.1097/00010694-196809000-00001
- Youngs, E. G. (1995). Developments in the physics of infiltration. Soil Science Society of America Journal, 59(2), 307-313. https://doi.org/ 10.2136/sssaj1995.03615995005900020005x
- Zachmann, D. W., DuChateau, P. C., & Klute, A. (1981). The calibration of the richards flow equation for a draining column by parameter identification. Soil Science Society of America Journal, 45(6), 1012-1015. https://doi.org/10.2136/sssaj1981.03615995004500060002x
- Zadeh, K. S., Shirmohammadi, A., Montas, H. J., & Felton, G. (2007). Evaluation of infiltration models in contaminated landscape. Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering, 42(7), 983-988. https://doi. org/10.1080/10934520701373000
- Zehe, E., & Flühler, H. (2001). Preferential transport of isoproturon at a plot scale and a field scale tile-drained site. Journal of Hydrology, 247(1-2), 100-115.
- Zhang, R. (1997). Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61(4), 1024-1030. https://doi.org/10.2136/sssaj1997. 03615995006100040005x
- Zheng, C., & Gorelick, S. M. (2003). Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale. Groundwater, 41(2), 142-155.

How to cite this article: Basset, C., Abou Najm, M., Angulo-Jaramillo, R., Bagarello, V., Ghanbarian, B., Prima, S. D., Iovino, M., Lassabatère, L., & Stewart, R. (2025). Review of Conceptual and empirical approaches to characterize infiltration. Vadose Zone Journal, 24, e20393.

https://doi.org/10.1002/vzj2.20393

APPENDIX

TABLE A1 Summary of model parameters.

Symbol	Unit	Description
Characteristics		
А	L^2	Area
Ã	$L^2 T^{-2}$	Specific Helmholtz free energy
b_R	$L T^{-1}$	Conductance of a rivulet (Germann et al., 2007)
С	$M L^{-3}$	Concentration
d	L	Depth
D	$L^2 T^{-1}$	Diffusivity
D_b	Dimensionless	Backbone fractal dimension in three dimensions (Hunt et al., 2014, 2017)
е	$L^{3} L^{-3}$	Void ratio
Е	$L^2 T^{-2} T^{0-1}$	Entropy
Ε	$M L^{-1} T^{-2}$	Energy
g	L T ⁻²	Acceleration of gravity
h	L	Total head
i	$L T^{-1}$	Infiltration rate
Ι	L	Cumulative infiltration
\bar{K}	$L T^{-1}$	Averaged hydraulic conductivity
k _{rc}	Dimensionless	Relative water conductivity accounting for air-confining condition (Wang et al., 1997)
k	L^2	Permeability
Κ	$L T^{-1}$	Hydraulic conductivity
1	L	Thickness
L	L	Length
Р	$M L^{-1} T^{-2}$	Pressure
q	$L T^{-1}$	Flux
q_0	$L T^{-1}$	Precipitation/rainfall rate
Q_0	$L^{3} T^{-1}$	Volumetric Precipitation/rainfall rate
Q	$L^{3} T^{-1}$	Volumetric flow rate
Q_{inf}	$L^3 T^{-1}$	Volumetric infiltration rate
r	L	Radius
S	Dimensionless	Slope
S	T^{-1}	Sink-source term
S_0	L T ^{-0.5}	Sorptivity of the soil alone (with $h_0 = 0$)
S_H	L T ^{-0.5}	Sorptivity including the effect of the constant ponded head h_0
S_e	$L^{3} L^{-3}$	Saturation degree
t	Т	Time
t _c	Т	Critical time between transient and steady-state infiltration
t _s	Т	Travel time under steady-state conditions
T_c	Т	Sorptive time
T_S	Т	Duration of rainfall
T	T°	Temperature

(Continues)

TABLE A1 (Continued)

Symbol	Unit	Description
υ	$L T^{-1}$	Velocity
V	L^3	Volume
\bar{V}	Dimensionless	Slope of the shrinkage curve
w	L	Width
w_f	Dimensionless	Ratio of the volume occupied by each fast-flow region to total pore volume (called β in Stewart, 2019)
W	L	Perimeter
W^*	L	Adjusted wetted perimeter (Bautista et al., 2014, 2016; Warrick et al., 2007)
z	L	Vertical distance in the <i>z</i> -direction (+ downward)
θ	$L^2 T^{-1}$	Volumetric infiltration rate per unit length
σ	$M T^{-1} T^{-2}$	Stress
μ	$M T^{-1} T^{-1}$	Dynamic viscosity of the fluid
γ_w	Dimensionless	Wet specific gravity
$ ho_b$	M L ⁻³	Soil bulk density
μ	$L^4 M^{-1} T^{-2}$	Chemical potential
ν	Dimensionless	Geometrical aspect ratio
ϕ	$L^{3} L^{-3}$	Volume fraction
θ	$L^{3} L^{-3}$	Volumetric water content
ω	$M M^{-1}$	Gravimetric water content
φ	$L^2 T^{-1}$	Matric flux potential
<i>u</i> ²	Dimensionless	Anisotropy
λ	Dimensionless	Pore size distribution index
ø	$L^{3} L^{-3}$	Porosity
Г	T-1	Transfer of water between two pore systems
ψ	L	Matric head
ψ_{str}	L	Air entry value
ψ_{wf}	L	Wetting front potential
γ_0	Degrees	Slope angle of the infiltration surface
ε	Dimensionless	Surface roughness coefficient
λ_c	L	Macroscopic capillary length (called λ_s in Wu & Pan, 1997; Wu et al., 1999; Abou Najm et al., 2018a, 2018b)
κ	$L^{3} T M^{-1}$	Second order positive semi-definite tensor (Bennethum & Cushman, 1996)
$\alpha_{\mu\nu}$	L^{-1}	Rate of water repellency attenuation (Abou Najm et al., 2021)
Υ	Dimensionless	Ratio of volume occupied by border cracks to total crack volume (Stewart, 2018)
Model constants		
а	Dimensionless	Wu and Pan (1997); Wu et al. (1999); Stewart and Abou Najm (2018a, 2018b)
<i>a</i> ₁	L^{-1}	originally called a (Beven & German, 1981; Germann, 1985)
<i>a</i> ₂	Dimensionless	originally called a' (Beven & German, 1981; Germann, 1985)
<i>a</i> ₃	Dimensionless	Lambe and Whitman (1979); Su et al. (2020)
<i>a</i> ₄	Dimensionless	Originally called <i>a</i> (Govindaraju et al., 2012)
<i>a</i> *	Dimensionless	Originally called <i>a</i> (Basha, 1994)
<i>a</i> ′	Dimensionless	Originally called <i>a</i> (Wind, 1995)
a_{sn}	Dimensionless	Originally called <i>a</i> (Setiawan & Nakano, 1993)
A	$L T^{-1}$	Mezencey (1948): Philip (1957a, 1957b)

(Continues)

15391663, 2025, 1, Downloaded from https://access.onlinelibrary.wiley.com/doi/10.1002/vzj2.20993 by Cochrane France, Wiley Online Library on [11/02/025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

TABLE A1 (Continued)

Symbol	Unit	Description
A_0	Dimensionless	Swartzendruber (1987b); Swartzendruber and Hogarth (1991)
A_1	T^{-1}	Originally called A (Holtan, 1961; Huggins & Monke; 1966; Overton, 1964)
A^*	Dimensionless	Originally called A (Smith, 1972)
A'	Dimensionless	Originally called A (Warrick et al., 1985)
<i>A''</i>	Dimensionless	Originally called A (Lambe & Whitman, 1979; Su et al., 2020)
b	Dimensionless	White et al. (1992); Fallow et al. (1994); Wu and Pan (1997); Wu et al. (1999); Stewart and Abou Najm (2018a, 2018b)
b_0	Dimensionless	Originally called b (Broadbridge & White, 1988)
\boldsymbol{b}_1	Dimensionless	Originally called b (Beven & German, 1981; Germann, 1985)
b_2	Dimensionless	Originally called b (Swartzendruber, 1974)
b^*	Dimensionless	Originally called <i>b</i> (Basha, 1994)
<i>b</i> ′	T^{-1}	Originally <i>b</i> (Wind, 1995)
b _{sn}	Dimensionless	Originally called b (Setiawan & Nakano, 1993)
В	Dimensionless	Chu (1985)
B'	Dimensionless	Originally <i>B</i> (Warrick et al., 1985)
<i>B''</i>	Dimensionless	Originally called <i>B</i> (Lambe & Whitman, 1979; Su et al., 2020)
с	L	Wu et al. (1999)
c_0	Dimensionless	Originally called c (Poulovassilis & Argyrokastritis, 2020)
<i>c</i> ₁	Dimensionless	Corradini et al. (1997, 2011)
c_2	Dimensionless	Corradini et al. (1997, 2011)
<i>c</i> ₃	Dimensionless	Corradini et al. (1997, 2011)
c_4	Dimensionless	Originally called <i>c</i> (Swartzendruber, 1974)
С	Dimensionless	Reynolds et al. (1983, 1985)
<i>C</i> ′	Dimensionless	Originally C (Warrick et al., 1985)
C_1	$L T^{-0.5}$	Kutilek and Krejca (1987)
C_2	$L T^{-1}$	Kutilek and Krejca (1987)
C_3	L T ^{-1.5}	Kutilek and Krejca (1987)
d_1	Dimensionless	Corradini et al. (2011)
D_{g}	Dimensionless	Originally called <i>D</i> (Ghanbarian et al., 2016)
f	L ⁻¹	Beven (1984)
f_i	Dimensionless	Morel-Seytoux and Khanji (1976)
F_1	Dimensionless	Ali et al. (2013)
F_2	Dimensionless	Ali et al. (2013)
F_3	Dimensionless	Ali et al. (2013)
G	Dimensionless	Reynolds and Elrick (1990)
k_1	Dimensionless	Originally called k (Overton, 1964)
k'	L T ⁻¹	Originally called k (Kostiakov, 1932)
<i>k</i> ′′	Dimensionless	Originally called k' (Mezencev, 1948)
K_F	Dimensionless	Horton (1940, 1941)
m _{ssc}	Dimensionless	Originally called <i>m</i> (Su et al., 2020; van Genuchten, 1980)
<i>m</i> ′	Dimensionless	Lambe and Whitman (1979); Su et al. (2020)
n	Dimensionless	Brooks and Corey (1964); Lassabatère et al. (2006); Essig et al. (2009)
<i>n</i> ₁	Dimensionless	Originally called <i>n</i> (Swartzendruber, 1974)

(Continues)

15391663, 2025, 1, Downloaded from https://access.onlinelibrary.wiley.com/doi/10.1002/vzj2.20993 by Cochrane France, Wiley Online Library on [11/02/025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

TABLE A1 (Continued)

•	96	539
		1663,
		, 202
		5, 1,
		Dowi
		nload
		ed fro
		om ht
		tps://
		acses
		s.onl
		inelib
		rary.
		wiley
		.com
		doi/1
		0.100
)2/vzj
		2.203
		393 b
		y Coc
		shrano
		e Frai
		1ce, V
		Viley
		Onlii
		ne Lil
		orary
		on [1
		1/02/
		2025
		. See
		the T
		erms
		and
		Cond
		itions
		(http
		s://on
		lineli
		brary
		.wile
		y.com
		ı/term
		rs-anc
		1-con
		dition
		IS) ON
		Wile
		y On
		line L
		ibrar
		y for
		rules
		of use
		;; OA
		artic
		les ar
		e gov
		ernec
		1 by t
		he ap
		plicat
		sle Ci
		reativ
		e Cor
		nmor
		1s Lic
		zense

n _{ssc} n' n" n* P P	Dimensionless Dimensionless Dimensionless Dimensionless	Originally called <i>n</i> (Su et al., 2020; van Genuchten, 1980) Originally <i>n</i> (Kostiakov, 1932) Originally called <i>n</i> ' (Mezencev, 1948)
n' n'' n* P P	Dimensionless Dimensionless Dimensionless	Originally <i>n</i> (Kostiakov, 1932) Originally called <i>n</i> ' (Mezencev, 1948)
n" n* P P	Dimensionless Dimensionless	Originally called n' (Mezencev, 1948)
n* p P	Dimensionless	
p P	Dimonsionlass	Originally called <i>n</i> (Selker et al., 1999a)
Р	Dimensionless	Philip (1993); Corradini et al. (1994, 1997)
	Dimensionless	Holtan (1961); Huggins and Monke (1966)
t_0	Т	Smith (1972)
t _S	Т	Srivastava et al. (1996); Chen and Young (2006)
α	L^{-1}	Gardner (1958); Philip (1968); Warrick et al. (1985); Ankeny et al. (1991)
α ₁	Dimensionless	Originally called α (Corradini et al., 2000, 2011; Smith et al., 1999)
α ₃	Dimensionless	Lambe and Whitman (1979); Su et al. (2020)
α_{swell}	Dimensionless	Originally called α (Smiles & Raats, 2005; Su, 2009, 2010)
α_k	Dimensionless	Originally called α (Das & Kluitenberg, 1995; Kosugi, 1999)
α*	Dimensionless	Originally called α (Smith, 1972)
α'	Dimensionless	Originally called α (Srivastava et al., 1996)
β_0	Dimensionless	Brutsaert (1977); Selker and Assouline (2017); called A and α in Stewart (2018, 2019), respectively
β	Dimensionless	Haverkamp et al. (1994); Lassabatère et al. (2006, 2014); Rahmati et al. (2019)
β_1	T^{-1}	Originally called β (Novak & Soltesz, 1984)
β_2	Dimensionless	Originally called β (Philip, 1972)
β_3	Dimensionless	Originally called β (Morel-Seytoux & Khanji, 1974, 1976)
β_4	Dimensionless	Originally called β (Su, 2010)
β^*	Dimensionless	Originally called β (Selker et al., 1999a)
β'	Dimensionless	Originally β (Srivastava et al., 1996)
β_{swell}	Dimensionless	Originally called β (Smiles & Raats, 2005; Su, 2009, 2010)
β_l	Dimensionless	Originally called β (Libardi et al., 1980)
β_{g}	Dimensionless	Originally called β (Ghanbarian et al., 2016)
β_k	Dimensionless	Originally called β (Das & Kluitenberg, 1995; Kosugi, 1999)
δ	Dimensionless	Parlange et al. (1985, 2002); Haverkamp et al. (1990); Smith et al. (1993); Corradini et al. (1994), originally called α in Parlange et al. (1982)
δ'	Dimensionless	Originally called δ (Srivastava et al., 1996)
γ	Dimensionless	Haverkamp et al. (1994); Lassabatère et al. (2006, 2014); Warrick and Lazarovitch (2007); Warrick et al. (2007)
γ_k	Dimensionless	Originally called δ (Das & Kluitenberg, 1995
γ_k	Dimensionless	Originally called γ (Das & Kluitenberg, 1995; Kosugi, 1999)
λ_{g}	Dimensionless	Originally called λ (Ghanbarian et al., 2016)
В	Dimensionless	Originally called β (Corradini et al., 1994, 1997; Corradini et al., 2000, 2011; Smith et al., 1993; Smith et al., 1999)
σ_k	Dimensionless	Originally called σ (Das & Kluitenberg, 1995; Kosugi, 1999)

ABLE A2	Detailed s	summary of infiltration models.	
Model	Year	Equation(s)	Applied concepts
Green and Ampt	1161	$t = \frac{I}{K_s} - \frac{(\psi_{wf} + h_0)(\theta_s - \theta_l)}{K_s} \ln\left(1 + \frac{I}{(\theta_s - \theta_l)(\psi_{wf} + h_0)}\right)$	Green and Ampt equation is derived from the following expression of the infiltration rate, I (L T ⁻¹), with respect to time: $i = K_s \left[\frac{\psi_{wf} + z_w + h_0}{z_w} \right] = \frac{d[z_w(\theta_s - \theta_i)]}{dt}$
Kostiakov	1932	I = k' t''	Kostiakov proposed the empirical equation from field-measured data, which predicts physically a zero-infiltration capacity for prolonged rainfall events. (See Eq. 3 in Ghorbani Dashkati et al., 2009). k' > 0 and $0 < n' < 1$
Horton	1940	$i = i_{\infty} + (i_i - i_{\infty})e^{-K_F i}$	Horton derived the empirical equation from field-measured data, assuming that the reduction in the infiltration capacity is directly proportional to the rate of infiltration and is applicable only when the effective rainfall intensity is greater than i_{∞} . (See Eq. I in Horton, 1941). $i_{\infty} = K_s$ and $K_F > 0$
Mezencev	1948	I = k'' t''' + At	Mezencev modified the Kostiakov's model (1932) by including a linear term with a coefficient A (L T ⁻¹) that is equal to the saturated hydraulic conductivity, K_s (L T ⁻¹), at infinite times. (See Eq. 5 in Ghorbani Dashkati et al., 2009). k'' > 0 and $0 < n'' < 1$
Hansen	1955	$x_{w} = \left(\frac{2Kh}{\emptyset\Delta S}\right)^{0.5} t^{0.5}$ Horizoni $t = \frac{\emptyset\Delta S}{K} \left[h\{1 - \ln(h - z_{w})\} - z_{w}\right]$ Upwa $t = \frac{\emptyset\Delta S}{K} \left[h\{1 - \ln(h + z_{w})\} + z_{w}\right]$ Downwa	 Hansen related the soil-water movement and one-dimensional infiltration in the horizontal, upward, and downward directions and noted that the nature of flow from a free water surface d through unsaturated soil exhibited three distinct zones, namely, the transmission zone, the wetting zone, and the wetting front.
Philip	1957a	$I = \sum_{i=1}^{n} A_n(\theta) t^{n/2} + K_i t$	A time series solution for $x(\theta, t)$ is developed in powers of $t^{1/2}$ as: $x(\theta, t) = \varphi(\theta)t^{\frac{1}{2}} + \chi(\theta)t + \psi(\theta)t^{\frac{3}{2}} + \omega(\theta)t^2 + \cdots$. The first term, $X_1(\theta)$, reflects the influence of the capillary forces on the flow process, and the following terms, $X_2(\theta)$ and $X_3(\theta)$, reflect the gravity effect on infiltration. The cumulative infiltration equation, $I(L)$, was obtained by integrating the time series solution for $z(\theta, t)$, resulting in: $I = A_1(\theta)t^{1/2} + (A_2(\theta) + K_1)t + A_3(\theta)t^{\frac{3}{2}} + A_4(\theta)t^2 + \cdots$. (Implicit) One broad equation describes early and transient infiltration behaviors.
			Continues

Model	Year	Equation(s)	Applied concepts
Philip	1957b	$I = S_0 t^{0.5} + At \qquad 0 \le t \le t_c$ $I = K_s t + \frac{S_0^2}{4(K_s - A)} \qquad t > t_c$ Where $t_c = \frac{S_0^2}{4(K_s - A)^2}$	The Philip's time series solution for $x(\theta, t)$ is approximated by the two first terms for small times. The parameter <i>A</i> is an estimate of $(A_2 + K_i + \text{the truncation error } \varepsilon)$ such that $A = mK_s$ where $1/3 \le m \le 2/3$ (Philip, 1969a; Talsma, 1969, Talsma & Parlange, 1972; Youngs, 1968). $m = 0.363$ may be appropriate for soils with a relatively low initial moisture content (Philip, 1987), while a value of $m = 2/3$ is often used (Fodor et al., 2011; Whisler & Bouwer, 1970). In some studies (Davidoff & Selim, 1986; Ghorbani Dashkati et al., 2009; Swartzentruber & Young, 1974), $m = 1$ and hence $A = K_s$. Then, for large times $(t > t_c)$, $I = K_s$ t which is nothing but the linear term in the equation valid for short times $(0 \le t \le t_c)$. (See Eqs. 39, 40, and 45 in the handbook of Groundwater Engineering by Delleur, 1998). (Explicit) Two specific equations were developed for each infiltration behavior, the first describing the early-state $(0 \le t \le t_c)$, while the second describing steady-state behavior $(t > t_c)$.
Holtan	1961	$i = i_{\infty} + A_1(s_0 - I)^P$ Where $s_0 = \emptyset - \theta_i$	Holtan expressed the infiltration capacity as a function of the residual potential storage in the upper soil layers. The advantage of Holtan's approach is that it can compute the infiltration rate for both periods of rain intensity lower than infiltration capacity and periods of no rain. (See Eq.10 in Huggins and Monke, 1966).
Overton	1964	$I = k_1 s_0 - \sqrt{\frac{l_\infty}{A_i}} \operatorname{tan}[\sqrt{A_1 i_\infty}(t_c - t)]$ Where $t_c = \frac{1}{\sqrt{A_1 i_\infty}} \tan^{-1}\left(\sqrt{\frac{A_1}{I_\infty}}k_1 s_0\right)$ and $s_0 = \beta - \theta_i$	Using the Holtan model with $P = 2$, Overton derived an infiltration equation which computes the infiltration rate at any time during a storm, even when rainfall does not exceed the infiltration capacity or when there is a temporary interruption in rainfall. k_1 is based on vegetation, varying between 0.3 for weeds and 1 for bluegrass.
Huggins and Monke	1966	$i = i_{\infty} + A_1 \left(\frac{s_{\eta-1}}{\theta} \right)^p$	Huggins and Monke introduced porosity \emptyset (L ³ L ⁻³) in the Holtan model. As s_0 (L) takes the dimension of length, it cannot be equal to a non-dimensional quantity, i.e., $(\emptyset - \theta_i)$ as originally hypothesized, rather it is equal to $(\emptyset - \theta_i)$ times the depth of soil stratum above the impeding layer.
Fok and Hansen	1966	$\frac{I}{h\theta\Delta S} - ln\left(1 + \frac{I}{h\theta\Delta S}\right) = \frac{kr}{h\theta\Delta S}$	Fok and Hansen derived an equation for one-dimensional downward infiltration from furrow irrigation based on Hansen (1955) who described soil-water movement through homogeneous unsaturated soils exhibiting three distinct zones, the transmission zone, the wetting zone, and the wetting front. Within the transmission zone (T), the hydraulic conductivity, K (L T ⁻¹), is essentially constant. The moisture content, and thus the hydraulic conductivity within the wetting zone, decreases toward the wetting front; however, the energy consumed within this zone is approximately constant. The wetting front is, in effect, a capillary fringe; the moisture content of the foremost part is approximately the same.
Philip	1967	$I = S_0 t^{0.5} + A_2 t + A_3 t^{3/2} + A_4 t^2 + \cdots$	Philip developed the following one-dimensional infiltration equation for an unsaturated heterogeneous medium: $\frac{\partial \theta}{\partial x} = \frac{\partial}{\partial x} \left(K(\theta, x) \right)^{\frac{\partial}{\partial x}} \{ W(\theta, x) \} \right) - \frac{\partial}{\partial x} \{ K(\theta, x) \}$. To solve this equation, Philip (1967) applied a quasi-analytical method previously established in Philip (1957a) for small and moderate times: $x(\psi, t) = \phi_1(\psi)t^{1/2} + \chi_1(\psi)t + \cdots$ The expression for cumulative infiltration $I(L)$ into this subclass of scale-heterogeneous media is formally similar to that for infiltration into homogeneous media (Philip, 1957a, 1957b). (Continues)

TABLE A 2 (Continued)

67 of 96

Model	Уеаг	Frunstion(c)		Ann
Philip	1968	For buried point source, $i = \frac{a^2 Q_0 i^*}{2T}$ Where $i^* = \frac{1}{2T} e^{Z-R} \left[1 + \frac{Z}{T} + \frac{Z}{T^2} \right]$ $i^* = \frac{1}{2T^2} e^{Z-R} \left[1 + \frac{1}{T} \right]$ $R = 0.5ar; Z = 0.5az \text{ and } T = \sqrt{R^2 + Z^2}$ For spherical cavity, $Q_{inf} = 4\pi r \varphi V^*$ $V^* = (1 - R)^{-1}$ $V^* = 1$ $V^* = R$	direction of <i>z</i> direction of <i>r</i> (1) (2)	Philip Philip Contribution Philip Philip Philip Philip Philip Philip Philip Philip Philip Philip Philip Philip Philip Philip Philip Philip Contribution Contribution Philip Phil
Wooding	1968	$Q_{inf} = \pi r^2 \alpha \varphi + 4r\varphi$		Wood assun (Phili
Philip	1969a	1D Absorption and Infiltration (1): For absorption (1.1): $i = \frac{1}{2} S_0 t^{-1/2}$ $i = \sqrt{\frac{D^*}{\pi}} (\theta_s - \theta_i) t^{-1/2}$ $i = \sqrt{\frac{D^*}{\pi}} (\theta_s - \theta_i) t^{-1/2}$ Where $D^* = \frac{4(\theta_s - \theta_i)}{4(\theta_s - \theta_s)}$ and $C = \frac{S_0^3}{2K_s(\theta_s - \theta_i)}$ For Infiltration $(1, 2)$: For Infiltration $(1, 2)$: $i = \frac{1}{2} S_0 t^{-1/2} + (A_2 + K_i) + \frac{3}{2} A_3 t^{1/2} + \cdots$ $i = K_s$ $i = (K_s - K_i) i^* + K_s$ $i^* = \frac{1}{2} (\frac{1}{\sqrt{\pi T}} - 1 + \cdots)$ $i^* = \frac{1}{2} (\frac{1}{\sqrt{\pi T}} - \ln(1 + \frac{1}{\mu}))$ $i^* = \frac{1}{2\pi} (\frac{1}{\mu} - \ln(1 + \frac{1}{\mu}))$ $i^* = \frac{1}{2\pi} (\frac{1}{\mu} - \ln(1 + \frac{1}{\mu}))$ $i^* = \frac{1}{2\pi} (\frac{1}{\mu} - \ln(1 + \frac{1}{\mu}))$ $i^* = \frac{1}{2\pi} (\frac{1}{2} - \ln(1 + \frac{1}{\mu}))$ $i^* = \frac{1}{2\pi} (\frac{1}{2} - \ln(1 + \frac{1}{\mu}))$ $i^* = \frac{1}{2(\pi^2)}$ Where $T = \frac{(K_s - K_i)^2 t}{\pi S_0^2}$ 2D and 3D Absorption and Infiltration (2): For 2D and 3D absorption (2.1):	(1.1.A) (1.1.B) (1.1.C) (1.1.C) (1.1.C) $t < \infty$ $t < \infty$ $t < \infty$ (1.2.B and C) small T (B) large T (B) small T (C) large T (C)	A. Phi in filtration (2.2) V (2.2) V (2.2) V (2.2) i i (L T i (L T i (L T $K(\psi)$) $K(\psi)$ $K(\psi)$ $K(\psi)$ $K(\psi)$ $K(\psi)$ $K(\psi)$ $K(\psi)$

	q
	e
	E
	e
	1
	5
	đ
	1
	-
	•
	-
	7
	Ē

ure (capillary) potential ψ (L) $\rightarrow K$ (ψ) = $K_s e^{\alpha \psi}$; For soils initially at "field capacity" or nuous supply Q_0 (L³ T⁻¹). Hydraulic conductivity K (L T⁻¹) depends exponentially on o treated 3D steady infiltration from buried point sources and spherical cavities of $e^{\alpha \psi_i} \ll 1$, and thus $\varphi = \frac{K_s}{2}$

ical cavities using the dimensionless infiltration V^* for small R(1), capillarity dominant sis of steady infiltration from spherical cavities. Philip analyzed steady infiltration from undamental point source solution is first explored and then is used as the basis of an 0) (2), and for gravity dominant $(R \to \infty)$ (3).

ing approximated a steady-state infiltration of water from a circular ring of radius r (L) ing no surface ponding and the ratio $K(\psi)/\phi(\psi)$ is equal to the constant parameter α p,1968). (See Eq.4 in Scooter et al., 1982).

), unless diffusivity D ($L^2 T^{-1}$) takes particular values, e.g., for constant D or approaching ation rate i (L T⁻¹) (1.2), as well as two- and three- dimensional subsurface infiltration with non-linear exact series solutions. In two-dimensions, there is no steady-state (i.e., lip expressed the dynamics of cumulative 1D surface absorption (1.1) and surface

lip also expressed the dynamics of 1D surface absorption (1.1) and surface infiltration rate unction.

 $^{-1}$) (1.2), as well as two- and three- dimensional subsurface absorption (2.1) and infiltration n terms of dimensionless functions for constant diffusivity D (L² T⁻¹) with hydraulic

 $= K_s e^{aw}$; For soils initially at "field capacity" or drier, $e^{aw} \ll 1$, and thus $\varphi = \frac{K_s}{2}$. ctivity K (L T^{-1}) depending exponentially on moisture (capillary) potential \rightarrow

ation *i* (L T^{-1}) (1.2), as well as two- and three- dimensional subsurface absorption *i* (L T^{-1}) lip also expressed the dynamics of 1D cumulative surface absorption (1.1) and surface

n terms of dimensionless function i^* for diffusivity D (L² T⁻¹) approaching delta function. the modified Bessel function of the second kind of order 0.

(Continued)	
A 2	
BLE	
TAJ	

Year	Equation(s)	Applied concepts
Wher For c	e $D^* = \frac{\pi S_0^2}{4(\theta_3 - \theta_1)^2}$ vlindrical cavity:	(2.1.B)
i*=	$\frac{1}{\sqrt{\pi T}} + \frac{1}{2} - \frac{1}{4} \sqrt{\frac{T}{\pi}} + \frac{T}{8} - \dots$	small T
$i^* = -$	$\frac{2}{2}$	large T
Wher For si	$e T = \frac{\pi t}{t_{gom}}; t_{gom} = \left(\frac{2r(\theta_s - \theta_t)}{S_0}\right)^2 \text{ and } \gamma = 0.57722$	
;**=	$\frac{1}{\sqrt{xT}} + 1$	large T
Whe	re $T = \frac{\pi t}{4t_{som}}$ and $t_{som} = \left(\frac{r(\theta_1 - \theta_1)}{S_0}\right)^2$	(2.1.C)
For $T =$	$ ext{cylindrical cavity:} pprox rac{\pi}{\pi^{is}} = 1 \left[e^{4/\pi i^{s}} + 1 ight]$	small T
i* =		large T
Wh6 For	$ \text{rre } T = \frac{\pi t}{t_{\text{geom}}} \text{ and } t_{\text{geom}} = \left(\frac{2r(\theta_t - \theta_t)}{S_0}\right)^2 $ spherical cavity:	
Τ=	$\frac{\pi}{12}\left[2\left(1-\frac{2}{\pi i^*}\right)^{-3}-3(1-\frac{2}{\pi i^*})^{-2}+1\right]$	small T
i* =	$(\frac{1}{2} + \frac{1}{3} + \frac{1}{3})^{1/3}$	large T
Wh	ere $T = \frac{\pi t}{4t_{\text{scon}}}$ and $t_{\text{gcon}} = \left(\frac{r(\theta_s - \theta_l)}{S_0}\right)^2$	
For -	2D and 3D infiltration (2.2): $1 \le t^{-1/2} + \frac{A_2^2}{42} + \frac{3A_3^2}{42} + \frac{1}{42}$	(2.2.A)
1	$\frac{2}{2} \frac{3_0 t}{\theta_0} = \frac{1}{r} + \frac{1}{r} + \frac{2r^2}{2r^2} t = \frac{1}{r} + \cdots$	8
i_{3D}	$\displaystyle =\int\limits_{ heta_{1}}^{s} rac{D(heta)}{r}d heta$	<i>t</i> ↓ 8
i = iFor	$k \left(\theta_s - \theta_i \right) i^*$ cylindrical cavity:	(2.2.B)
$i^* =$ For	$\frac{1}{4RK_0(2R)}$ spherical cavity:	t ↓ 8
i* =	$= \frac{1}{1/2} \left[\frac{1}{\sqrt{\pi T^*}} e^{-T^*} + \frac{1}{2R} + erf(\sqrt{T}) \right]$	1 < 8
$i^* =$ Whe	$\frac{1}{2} + \frac{1}{4R}$ sec $k = \frac{(k_1 - k_1)}{(\theta - \theta)}$; $R = \frac{kr}{4D^*}$; $T^* = \frac{k^2t}{4D^*}$ and $D^* = \frac{\pi S_0^2}{4(\theta - \theta)^2}$	t ↓ 8
h = I		An accurate. analytic representation of one-dimensional horizontal infiltration was developed by
$z_{w} = \frac{\theta_{i}}{\theta}$	$\frac{\omega}{\sqrt{2t}\int_{0}^{0}D(a)da}$	Parlange et al. where absorption is dominant and gravity effect is omitted.
	7 061	(Continues)

TABLE A2	(Continue	ed)		
Model	Year	Equation(s)		Applied concepts
Parlange	1971b	$I = \int_{\theta_{i}}^{\theta_{s}} z_{w} d\theta$ $z_{w} = K_{s} (t - t_{i}) + \int_{\theta_{s} - \Delta \theta}^{\theta_{s} - \Delta \theta} \frac{D(\alpha) d\alpha}{K_{s} \alpha - K(\alpha)}$	$t < t_{\infty}$	The theory by (Parlange, 1971a) was extended to develop an accurate, analytic representation of one-dimensional infiltration, valid for all times, where gravity plays a role. Diffusivity D (L^2 T^{-1}) and hydraulic conductivity K (L T^{-1}) vary rapidly near saturation.
Parlange	1971c	2D Absorption: $I = \frac{r\sqrt{4D_r} \int_{0^{n_t}}^{0^n} D(\alpha) d\alpha}{\int_{0^n}^{0^n} D(\alpha) d\alpha}$ 3D Absorption: $1 - \frac{r}{I} = g(\tau) \int_{0}^{0} D(\alpha) d\alpha$ Where $\tau = \frac{r}{r^2}$ and $g(\tau)$ is given by Equation (20)		An analytic solution for absorption (i.e., movement without gravity) in two and three dimensions is obtained, valid for all times, for arbitrary diffusivity D (L^2 T ⁻¹). For simplicity, the two- and three-dimensional problems are treated for the case of a cylinder and a sphere, respectively.
Philip	1971	2D Infiltration: $\begin{split} & \theta = \frac{aQ_0\theta^*}{2x}\\ & \text{For surface line source:}\\ & \theta^* = \frac{Z}{T} e^Z K_1(T)\\ & \theta^* = X e^Z \left[\frac{K_1(T)}{T} - e^Z \int_{Z} e^{-Z} \frac{K_1(T)}{T} dZ \right]\\ & \text{For buried line source:}\\ & \theta^* = \frac{Z}{T} e^Z K_1(T)\\ & \theta^* = \frac{X}{2T} e^Z K_1(T) \right]\\ & \theta^* = \frac{X}{2T} e^Z K_1(T)\\ & \text{Where } X = 0.5\alpha x; Z = 0.5\alpha z \text{ and } T = \sqrt{X^2 + Z^2}\\ & \text{3D Infiltration:}\\ & i = \frac{a^2 Q_0 i^*}{T}\\ & \text{For surface point source:}\\ & i^* = \frac{Z(1+T)}{T} e^{Z-T}\\ & \text{for buried point source:}\\ & i^* = \frac{Z}{2T} e^{Z-R} [1 + \frac{T}{T}]\\ & i^* = \frac{Z}{2T^2} e^{Z-R} [1 + \frac{T}{T}]\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha x, Z = 0.5\alpha z, \text{ and } T = \sqrt{R^2 + Z^2}\\ & \text{Where } R = 0.5\alpha z, \text{Were } R = 0.5\alpha $	direction of <i>x</i> direction of <i>z</i> direction of <i>x</i> direction of <i>z</i> direction of <i>z</i> direction of <i>z</i> direction of <i>z</i> direction of <i>z</i>	Philip established the solution of the quasilinear steady infiltration equation for any distribution of surface and buried sources of continuous supply Q_0 (L ³ T ⁻¹). Hydraulic conductivity K (L'T ⁻¹) depends exponentially on moisture (capillary) potential $\rightarrow K(\psi) = K_s e^{\alpha \psi}$; For soils initially at "field capacity" or drier, $e^{\alpha \psi_1} \ll 1$, and thus $\varphi = \frac{K_s}{e^{\alpha \psi}}$. K_0 and K_1 are the modified Bessel function of the second kind of order 0 and 1.
Parlange	1972a	Spherical cavity: $Q_{inf} = 4\pi r \varphi V^*$ Where $V^* = 1 + \alpha r/2$		The solution for the steady state infiltration from a cavity is obtained analytically in two and three dimensions by a singular perturbation technique i.e., a solution valid near the cavity is matched to a solution valid far from it. Details of the method are given for a spherical cavity. The form of the solution depends upon the product $\alpha r \leq 1$ where $\alpha (L^{-1})$ is a soil property that characterizes the relative importance of gravity and r (L) characterizes the size of the cavity. When $\alpha r \rightarrow 0$, gravity effects become negligible in three dimensions. (See Eq. 33 in Parlange et al., 1972b).

TABLE A2	(Continue	d)		
Model	Year	Equation(s)		Applied concepts
Parlange	1972b	Spherical cavity: $Q_{inf} = 4\pi r \varphi V^*$ Where $V^* = \frac{1}{g(t)\varphi} + \frac{r^3}{r_f \varphi} \int_{r/r_1}^1 r^{-4} K dr$ $g(t)$ and $r_1(t)$ are given by Equations (10) and (22) in P- paper, respectively.	rlange's	An analytical technique is presented to study unsteady infiltration from multidimensional cavities for moderate times. The solution reduces to known expressions for very short (Parlange, 1971c) and very long times (Parlnage, 1972b). Only the simplest geometry, that is, a spherical cavity, is considered.
Smith	1972	$i = i_{\infty} + A^* (t - t_0)^{-a^*}$		Richards' equation for unsaturated soil moisture flow is solved by extensive numerical simulation of infiltration for various patterns of rainfall to develop a single dimensionless formula that describes the infiltration decay curves for all soils, initial conditions, and rainfall rates.
Philip	1972	2D Infiltration: $g = \frac{aQ_0 \theta^*}{2\pi}$ For surface line source: $g^* = (1 + \beta_2) \overline{Z} e^{(1+\beta_2)Z} K_1[(1 + \beta_2)T]$ $g^* = (1 + \beta_2) X e^{(1+\beta_2)Z} \{ K_1[(1 + \beta_2)T] \}$ For buried line source: $g^* = \frac{1}{2} (1 + \beta_2) e^{(1+\beta_2)Z} \{ K_0[(1 + \beta_2)T] \} + \frac{Z}{T} K_1 [(1 + \beta_2)T] \}$ Where $X = 0.5 \alpha x$; $Z = 0.5 \alpha z$ and $T = \sqrt{X^2 + Z^2}$ 3D Infiltration: $i = \frac{a^2 Q_0 i^*}{2\pi}$ For buried point source: $i^* = \frac{1}{2} e^{(1+\beta_2)(Z-T)} [\frac{(1+\beta_2)T]}{T} + \frac{Z}{T} K_1 [(1 + \beta_2)T] \}$ For buried point source: $i^* = \frac{1}{2} e^{(1+\beta_2)(Z-T)} [\frac{(1+\beta_2)TT}{T} + \frac{Z}{T}] + \frac{Z}{T^2} [1 + (1 + \beta_2)TT] + \frac{Z}{T} K_1 [1 + \beta_2 + \frac{1}{T}]$ For surface point source: $i^* = \frac{1}{2T^2} [1 + (1 + \beta_2)TT] e^{(1+\beta_2)(Z-T)} + \frac{Z}{T} K_2 + (1 + \beta_2)TT = \frac{Z}{T} K_1 [1 + (1 + \beta_2)TT = \frac{Z}{T} K_1 [1 + (1 + \beta_2)TT = \frac{Z}{T} K_1 K_1 + \frac{Z}{T} = \frac{Z}{T} K_1 K_2 + \frac{Z}{T} = \frac{Z}{T} K_1 K_2 + \frac{Z}{T} = \frac{Z}{T} K_1 K_1 + \frac{Z}{T} = \frac{Z}{T} \frac{Z}{T} = \frac{Z}{T} = \frac{Z}{T} K_1 + \frac{Z}{T} = \frac{Z}{T} = \frac{Z}{T} = \frac{Z}{T} = \frac{Z}{$	direction of <i>x</i> direction of <i>z</i> direction of <i>z</i> direction of <i>z</i> direction of <i>z</i> direction of <i>z</i> direction of <i>z</i>	Philip developed a quasi-linearized steady infiltration equation for heterogeneous soils under buried and surface sources of continuous supply Q_0 (L ³ T ⁻¹). Hydraulic conductivity K (L T ⁻¹) depends exponentially on both moisture (capillary) potential ψ (L) and depth z (L) \rightarrow $K(\psi) = K_s e^{i(\psi + \beta_s z)}$. β_2 is the dimensionless coefficient of dependence of conductivity K (L T ⁻¹) on depth z (L), β_2 is the dimensionless coefficient of dependence of conductivity K (L T ⁻¹) on depth z (L), $\beta_2 \ge 0$ K_0 and K_1 are the modified Bessel function of the second kind of order 0 and 1.
Taisma and Parlange	1972	$i^* = \frac{i - K_s}{K_s}$ $2\pi T = \ln(\frac{i^*}{1 + i^*}) + \frac{1}{i^*}$ $2\pi T = \ln(\frac{1 + i^*}{i^*}) - \frac{1}{1 + i^*}$ $2\pi T = 3\{(1 + 2i^*)/n(\frac{1 + i^*}{i^*}) - 2\}$ Where $T = \frac{K_s^2 i}{K_s^2 i}$	 (1) (2) (3) 	Taslma and Parlange used the linearized infiltration equations (Philip, 1969a) to develop 1D infiltration equation assuming the diffusivity D ($L^2 T^{-1}$) is (1) a delta function, (2) proportional to the variation rate of the hydraulic conductivity in respect to the volumetric moisture content $\partial K/\partial\theta$ or (3) ($\theta_s - \theta_1$) $\frac{D}{k^3}$ is proportional to $\frac{\partial K}{\partial \theta}$
		0-11		(Continues)
Model	Year	Equation(s)		Applied concepts
-----------------------------	-------	--	--	---
Parlange	1972c	$D_0(t)\theta_0(t) \frac{d\theta_0}{dt} = i[i - K_0(t)] \qquad t$ $z_w = \int_0^t \frac{\theta_0(x)dx}{i - K(x)} \qquad t$	$t < t_{\infty}$ (1) $\rightarrow t_{\infty}$ (2)	The one-dimensional infiltration was solved analytically. If $i > K_s (t \to t_{\infty})$, the surface becomes saturated with water and ponding occurs, then equation (1) ceases to apply. Equation (2) (Parlange, 1971b) shows that the limiting profile is identical to the "profile at infinity" and therefore can be applied at infinite times.
Mein and Larson	1973	$ \begin{split} t &= \frac{t}{K_s} - \frac{(\theta_s - \theta_i)w_{w_i}}{K_s} \ln \left(1 + \frac{t}{(\theta_s - \theta_i)w_{w_i}} \right) \\ I_p &= i_p t_p \\ t - t_p &= \frac{t}{K_s} - \frac{i_p t_p}{K_s} - (\psi_{w_i f} + h_0)(\theta_s - \theta_i) \\ \ln \left(\frac{(\psi_{w_i f} + h_0)(\theta_s - \theta_i) + I}{(\psi_{w_i f} + h_0)(\theta_s - \theta_i) + i_p t_p} \right) \\ \text{Where } t_p &= \frac{K_s \psi_{w_i}(\theta_s - \theta_i)}{i_p(i_p - K_s)} \end{split} $	$0 \le t < t_p$ $t = t_p$ $t > t_p$	Mein and Larson published an extension of the Green and Ampt (1911) model of ponded infiltration, which applied the same piston flow concept to the case of constant flux surface conditions. Prior to the ponding time $(0 \le t < t_p)$, the rainfall intensity is less than the potential infiltration rate and the soil surface is unsaturated. Ponding $(t = t_p)$ begins when the rainfall intensity exceeds the potential infiltration rate; the soil surface becomes saturated. As rainfall continues $(t > t_p)$, the saturated zone extends deeper into the soil. (See Eqs. 8, 9, and 10 in Almedeij and Esen, 2014).
Smiles	1974	$I = S_0 t^{0.5} + 0.5 [(1 - \gamma_{w,i}) K_i - (1 - \gamma_{w,n}) K_n] t$		Smiles approximated infiltration into swelling soils into a two-term infiltration equation in which S_0 (L $T^{-0.5}$) is the analogue of sorptivity in the swelling system and hydraulic conductivity K (L T^{-1}) reflects gravity. As for $(1 - \gamma_w)$, this term may be interpreted as if it reduced the effect of gravity to $(1 - \gamma_w)$ times its values in a rigid soil, and thus increases the time before which the effect of gravity is unimportant when compared with that of the moisture potential gradient.
Turner and Parlange	1974	$I = AS_0 t^{1/2} + 1/3 [AK_s + \frac{0.72W.S_0^2}{\theta_s - \theta_1}]t$		An analytical solution for the lateral movement at the periphery of a one-dimensional flow of water is derived, valid for short times when water infiltrates through a region having an area A (L ²) and a perimeter W (L).
Swartzen- druber	1974	$t = \frac{t}{K_s} - \frac{(\theta_s - \theta_t)w_{w_f}}{K_s} \ln\left(1 + \frac{t}{(\theta_s - \theta_t)w_{w_f}}\right) = 0$ $I_p = \frac{(\theta_s - \theta_t)w_{w_f}K_s}{q_0 - K_s}$ $t > t_p$ $I - I_p = \left[\frac{(q_0 - K_s)r_p}{1 - n_1}\right] \left[\left(\frac{t}{r_p}\right)^{1 - n_1} - 1\right] + K_s(t - t_p)$ $I - I_p = 2(q_0 - K_s)(t_p - c_4)\{[(t - c_4)/(t_p - c_4)]^{0.5} - 1\}$ $+ K_s(t - t_p)$	$0 \le t < t_p$ $t = t_p$ (1)	Swartzendruber presented a theoretical study of one-dimensional infiltration under constant-flux rainfall q_0 (L T ⁻¹) into a uniform soil by treating the soil-water profile as step function, as assumed in Green and Ampt (1911). The analysis is similar to that of Mein and Larson (1973) for $t \leq t_p$. For describing the infiltration characteristics after the ponding time t_p (L), two explicit-form equations, (1) and (2), are proposed for <i>i</i> versus <i>t</i> , both equations being integrable into explicit forms of <i>I</i> versus <i>t</i> under constant-flux rainfall. Both equations being integrable into explicit forms of <i>I</i> versus <i>t</i> under constant-flux rainfall. Both equations are somewhat like that of Smith (1972) but containing one less characterizing constant. Equation (1) may be viewed as an altered Kostiakov (1932) form, modified to contain the feature of an asymptotically-approached the saturated hydraulic conductivity, K_s (L T ⁻¹). In Equation (2), the exponent of $(t - c_4)$ is taken as $-1/2$ rather than the more general $-\alpha^*$ (Smith, 1972). (1) $i = ar^{-n_1} + K_s$ where $a = (q_0 - K_s)t_p^{n_1}$.
Morel-Seytoux and Khanji	1974	$t = \frac{\beta_3}{K_s} \left\{ I - (\psi_{wf} + h_0)(\theta_s - \theta_i) ln \left[1 + \frac{I}{(\psi_{wf} + h_0)(\theta_s - \theta_i)} \right] \right\}$		Morel–Seytoux and Khanji modified Green and Ampt equation to account for the effects of air viscous resistance to water flow where β_3 (originally called β , dimensionless) is a correction factor for viscosity. (Continues)

et al. Itsaert Llis-George	1976 1976 1977 1977	$I_{p} = i_{p}t_{p} t = t_{p}$ $I_{p} = i_{p}t_{p} t = t_{p}$ $\frac{I_{p}}{\beta_{3}} (t-t_{p}) = I - I_{p} - \left[\frac{(\theta_{2}-\theta_{1})(\psi_{w_{1}}+h_{0})}{1-f_{1}}\right]$ $\ln \left[\frac{1+(1-f_{1})I_{p}/(\theta_{s}-\theta_{1})(\psi_{w_{1}}+h_{0})}{1+(1-f_{1})I_{p}/(\theta_{s}-\theta_{1})(\psi_{w_{1}}+h_{0})}\right]$ $\lim_{t > t_{p}} \sum_{\substack{w_{p}(\theta_{s}-\theta_{1})\\(t-1/y_{p})}} \left(e^{\beta y_{p}/K_{s}-1} - 1\right)$ $\lim_{t > t_{p}} \sum_{\substack{w_{p}(\theta_{s}-\theta_{1})\\(t-1/y_{p})}} \left(e^{\beta y_{p}/K_{s}-1} - 1\right)$ $\lim_{t > t_{p}} \sum_{\substack{w_{p}(\theta_{s}-\theta_{1})\\(t-1/y_{p})}} \left(e^{\beta y_{p}/K_{s}-1} - 1\right)$ $\lim_{t > t_{p}} \sum_{\substack{w_{p}(\theta_{s}-\theta_{1})\\(t-1/y_{p})}} \sum_{\substack{w_{p}(\theta_{s}-\theta_{1})}} \left(e^{\beta y_{p}/K_{s}-1} - 1\right)$ $\lim_{t > t_{p}} \sum_{\substack{w_{p}(\theta_{s}-\theta_{1})\\(t-1/y_{p})}} \sum_{\substack{w_{p}(\theta_{s}-\theta_{1})}} \left(e^{\beta y_{p}/K_{s}-1} - 1\right)$ $\lim_{t > t_{p}} \sum_{\substack{w_{p}(\theta_{s}-\theta_{1})}} \left(e^{\beta y_{p}/K_{s}-1} - 1\right)$ $\lim_{t > t_{p}(\theta_{s}-\theta_{1})} \left(e^{\beta y_{p}/K_{s}$	Applied concepts Formulas were derived for prediction of ponding time and cumulative infiltration following ponding under the influence of rainfall. The derivations use a piston profile but with corrections for air flow and resistance effects, that is, do not assume immediate saturation at the surface nor a piston displacement of air by water. One of the simplest explicit solutions of the implicit Green and Ampt model was derived by Li et al. based on the approximation of the logarithmic term in GA equation using the first term of the power series expansion. Brutsaert presented a closed form solution for each of the functions $X_1(\theta)$, $X_2(\theta)$, $X_3(\theta)$, and $X_4(\theta)$ in Philip's time series solution for each of the functions $X_1(\theta)$, $X_2(\theta)$, $X_3(\theta)$, and that these functions are near-step functions. $0 \le \beta_0 \le 1$; $\beta_0 = 2/3$ is sufficiently accurate for most soils. However, for soils with a very wide distribution of pore sizes, a larger value such as $\beta_0 = 1$, may yield a better result. For most practical purposes, $\beta_0 = 1$ is recommended (Kutilek et al., 1991). An empirical equation is proposed by Collis-George which satisfies the conditions that cumulative infiltration is proportional to (time) ^{1/2} at short times and reaches a steady state
um and o i and nge	1978	$I = \int_{0}^{t} q_{0}(t)dt - K_{t}t \qquad 0 < t \le t_{p}$ $I = I_{p} + \frac{(y_{w_{t}} + h_{0})K_{s}(q_{s} - q_{t})}{(K_{s} - K_{t})} In \left\{ \frac{K_{s}(y_{w_{t}} + h_{0})(\theta_{s} - q_{t}) + (K_{s} - K_{t})[I_{p} - K_{t}n_{t}]}{(K_{s} - K_{t})} \right\}$ $i = K_{s} \frac{C_{K,I/C}}{k_{s}^{(K,I/C-1)}}$ $i = K_{s} \frac{C_{K,I/C}}{e^{K_{s}I/C-1}}$ $Where C = (y_{v_{t}} + h_{0})(\theta_{s} - \theta_{1})$ (2)	infiltration rate at long times. By extending the analysis of Mein and Larson (1973), Hachum and Alfaro developed a physical model for studying one-dimensional infiltration under variable application rainfall rate patterns q_0 (L T ⁻¹), subjected to the assumptions of an abrupt wetting front, constant saturated hydraulic conductivity in the wetted zone, K_s (L T ⁻¹), and constant wetting front potential ψ_{uf} (L). By adopting two extreme assumptions concerning the behavior of unsaturated soil hydraulic conductivity K (L T ⁻¹) near saturation. Smith and Parlange derived a two-branched model for infiltration rate i (L T ⁻¹) for arbitrary rainfall rates. Assumption (1) was that diffusivity D (L ² T ⁻¹) is a step function (i.e., $D(\theta)$ varies rapidly with water content θ (L ³ L ⁻³)). For initially ponded conditions, $t_p \to 0$, and with rainfall rate $q_0 \to \infty$, the familiar Green and Ampt (1911) expression results. Assumption (2) was that D and $dK/d\theta$ are closely proportional. This model also holds for both rainfall and ponded surface conditions.

(Continued)	
A 2	
BLE	
TA	

Model	Year	Equation(s)	Applied concepts
Batu	1978	$i = \frac{q_0 \alpha L T^*}{2\pi}$ For single strip source: Check Equations (25) and (26) in Batu's paper, for horizontal and vertical infiltration, respectively. For periodic strip sources equally spaced by 2D (<i>L</i>): Check Eq. (48) and (49) in Batu's paper, for horizontal and vertical infiltration, respectively. Where F_{2N}, F_{2n-1} and I_n from Equations (20), (21), (22), and (47), in Batu's paper, respectively. $X_0 = \frac{\alpha L}{2}$; $X_1 = \frac{\alpha D}{2}$; $X = \frac{\alpha x}{2}$; $L = \frac{\alpha}{2}$	Batu presented analytical solutions for steady 2D infiltration from single and periodic strip sources of width w (L) and constant flux q_0 (L T ⁻¹) using Fourier analysis techniques with no flow outside the strip. The theory assumes that the hydraulic conductivity K (L T ⁻¹) is an exponential function of the soil water potential ψ (L).
Kutilek	1980	$i = \frac{1}{2} S_0 t^{-1/2} \qquad 0 \le t < t_p$ $i = i_p$ $i = \frac{1}{2} S_0 \left[t - \frac{S_0^2}{4A^2 h(b-1)} \right]^{-1/2} + A$ Where $b = \frac{q_0}{s_0}$ $t > t_p$	An approximate solution of the infiltration equation for rain of constant intensity q_0 (L T ⁻¹) is developed. The solution of infiltration for $t > t_p$ is obtained for "delta function" soil.
Parlange	1980	$t = \frac{I}{(K_s - K_l)} - \frac{S_{H^2}}{2(K_s - K_l)^2} \ln\left(1 + \frac{2(K_s - K_l)^I}{S_{H^2}}\right) $ (1) $t = \frac{I}{(K_s - K_l)} + \frac{S_{H^2}}{2(K_s - K_l)^2} \left(e^{-\frac{2(K_s - K_l)^I}{S_{H^2}}} - 1\right) $ (2)	Using Darcy's law and the conservation of mass, Parlange solved the following partial differential equation governing water movement: $\frac{\partial\theta}{\partial t} = \frac{\partial}{\partial z} \left[D \frac{\partial\theta}{\partial z} \right] - \frac{\partial K}{\partial z}$ under ponding conditions $(h_0 \ge 0)$, assuming that: (1) D (L ² T ⁻¹) increases rapidly with water content, θ (L ³ L ⁻³), while the conductivity, K (L T ⁻¹), varies much less rapidly near saturation and (2) D and $\frac{\partial K}{\partial z}$ increase rapidly and in similar fashion. (See Eqs. 1 and 2 in Parlange et al., 1982)
Parlange et al.	1982	$t = \frac{S_0^2}{2(K_s - K_i)^2(1 - \delta)} \left[2^{\frac{(K_s - K_i)}{S_0^2}} I - ln^{\frac{2\delta(K_s - K_i)}{S_0^2}}_{\delta} I - \frac{1}{\delta} $	A new infiltration equation is obtained by introducing a new parameter δ to embrace different variations of the diffusivity term $D(L^2 T^{-1})$ and the hydraulic conductivity $K(L T^{-1})$ under zero ponding ($h_0 = 0$). D is considered as a delta function. δ (originally called α in Parlange et al., 1982) takes values from 0 to 1, with an approximate used value of 0.85. Equations (1) and (2) by Parlange (1980) can be obtained by setting δ equal to 0 and equal to 1, respectively.
Scotter et al.	1982	$i = K_s + \frac{4a}{\pi r}$	Wooding's equation is rewritten assuming the exponential relationship between $K(\psi)$ and ψ as defined by Gardner (1958): $K(\psi) = K_s e^{a\psi}$; For soils initially at "field capacity" or drier, $e^{a\psi_i} \ll 1$, and thus $\varphi = \frac{K_s}{a^*}$.
Fok et al.	1982	$\begin{split} V &= \frac{\pi}{2} x_w z_w l \emptyset \Delta S_e \\ \text{Where} \\ x_w &= \left(\frac{2Kh_x}{\beta \Delta S}\right)^{0.5} t^{0.5}; \frac{z_w}{h} - \ln\left(1 + \frac{z_w}{h}\right) = \frac{Kt}{\beta h \Delta S_e} \end{split}$	A physical two-dimensional infiltration equation is developed assuming that the loci of the wetting pattern for two-dimensional furrow infiltration are half-ellipses, and their vertical and horizontal flow components can be described as one-dimensional infiltration derived in an earlier study (Fok & Hansen, 1966; Hansen, 1955). (Continues)

Model	Year	Equation(s)		Applied concepts
Brakensiek and Rawls	1983	$i = \frac{K_{prec}}{2} \left(\frac{z_w + y_w t_{spec}}{z_w} \right)$ $z_{w,p} = \frac{w_w t_{spec}}{W_{wf,suke} - 1} \frac{z_w}{(x_{sum})^{1-q_0} N_e}$ $i = \frac{K_e}{2} \left(\frac{z_w + w_{ssuke} + h_0}{z_w} \right)$ Where $K_e = \frac{z_w - t_e + h_0}{z_w}$, $r = \frac{K_{sec}}{K_{ssuke}}$ and $t_p = z_{w,p} \ \emptyset/q_0$	$1 \le t < t_p$ $t = t_p$ $t > t_p$	Brakensiek and Rawls developed a two-layer Green–Ampt model with transient crust conductivity to describe infiltration on crusted soils during uniform rainfall intensity. Infiltration for soil crust modeling may proceed during two periods, pre-ponding, and post-ponding. Crusting of thickness l_c (L) is assumed to start at the time of surface ponding.
Reynolds et al.	1983	$Q_{inf} = \frac{2\pi h_0^2 K_s}{C} + \pi r^2 K_s$		The flow out of a well into the surrounding soil is a three-dimensional infiltration process that achieves steady state rapidly and is described in terms of pressure- and gravity-induced fluxes. The steady flow is affected by weak capillarity assuming semi-infinite, field-saturated flow (i.e., $\varphi_m = 0$). The water head inside the well remains constant. Analytical solutions are described for the estimation of the parameter <i>C</i> .
Novak and Soltesz	1984	$i_{f} = q_{0}$ $i_{f} = K_{s,f} + (q_{0} - K_{s,f})e^{-\beta_{1}(t-t_{p})} \qquad 0$	$1 \le t \le t_p$ $t > t_p$	An empirical method is presented to determine the rate of infiltration into heavy, swelling soils, assuming water infiltrates into heavy soils primarily through the cracks, infiltration through the soil matrix is relatively small, and the geometry of cracks is a function of the water content.
Fok and Chiang	1984	$V = \left[2x_w d + wz_w + (\frac{\pi}{2})x_w z_w\right] I \emptyset \Delta S_e$ Where $x_w = \left(\frac{2Kh_s}{\emptyset \Delta S_e}\right)^{0.5} t^{0.5};$ $\frac{z_w}{h} - ln\left(1 + \frac{z_w}{h}\right) = \frac{Kt}{\emptyset h \Delta S_e}$		Fok and Chiang estimated the total volume of water infiltrated into the soil from irrigation furrow of depth d (L), width w (L), and thickness l (L), using developed 1-D and 2-D infiltration equations obtained from previous studies (Fok et al., 1982; Hansen, 1955).
Philip	1984a	$i = 0.5\alpha \varphi i^*$ $i^* = -[R(\gamma + \ln(0.5R))]^{-1}$ $i^* = \frac{2}{\pi} (1 + R^{-2/3})$ Where $\gamma = 0.57722$ and $R = 0.5\alpha r$	(1) (2)	Philip analyzed steady 2D infiltration from cylindrical cavities averaged over the whole cavity surface using the dimensionless infiltration rate i^* for very small $R(1)$, and for gravity dominant $(R \to \infty)$ (2).
Philip	1984b	$i = \frac{e^{V^*}}{r}$ $V^* = \frac{1}{r}$ $V^* = (1 - R)^{-1}$ $V^* = 1 + R$ $V^* = 0.5R + R^{1/3}$ Where $R = 0.5ar$		bhilip analyzed steady 3D infiltration from spherical cavities averaged over the whole cavity urface using the dimensionless infiltration V^* for capillarity dominant $(R \to 0)$ (1), very small R (2), small R (3), and for gravity dominant $(R \to \infty)$ (4).
				(Continues)

TABLE A2 (Continued)

-	-
P	3
ntinn	עוווווע
Ś	5
_	
•	
Ē	1
1	
r	2
•	ς
F	

Model	Year	Equation(s)	Applied concepts
Beven	1984	$\begin{split} i &= \frac{f_K(w_{ij} + \frac{1}{0, e_{ij}})}{1 - e^{-f/(y_{ij} - \theta_{ij})}} & 0 \leq \\ t - t_p &= \frac{1}{f^* K_i} \left[\ln(I + C) - \frac{1}{e^{f'C}} \ln(I + C) + \sum_{m=1}^{\infty} \frac{f^{*}(I + C))^m}{m!m} - \frac{1}{1 + 1 + 1} \right] \\ t > t_p &= \frac{1}{f_K(w_{ij} + \frac{1}{0, e_{ij}})}; \\ t_p &= \frac{1}{f_K(w_{ij} + \frac{1}{0, e_{ij}})}; \\ C &= (\psi_{w_f} + h_0)(\theta_s - \theta_i); \\ \lambda &= \ln(I_p + C) - \frac{1}{e^{f'C}} \left[\ln(I_p + C) + \sum_{m=1}^{\infty} \frac{[f^*(I_p + C))^m}{m!m} \right] \text{ and } \\ f^* &= \frac{-f}{\theta_{i-\theta_i}} \end{split}$	$t \le t_p$ Beven developed an infiltration model based on the Green-Ampt assumptions on a class of non-uniform soils in which saturated hydraulic conductivity decreases as an exponential function of depth z ($K_s = K_1 e^{t_s}$.
Germann	1985	i = 0 $c = b_1^{1/a_1} i^{(1-1/a_1)} \qquad 0 \le i$ i = 0	$t < 0$ Kinematic wave theory ¹ was applied to the infiltration of water in the non-capillary macropore $\leq T_s$ system of a porous medium. Water sorbance from the macropores into the matrix was ignored, $> T_s$ limiting the approach to nearly saturated porous media. ¹ Kinematic wave theory: $\frac{\partial a}{\partial t} + c \frac{\partial a}{\partial z} = 0$ where c (L T ⁻¹) is the kinematic wave velocity
Warrick et al.	1985	$I = \frac{(\theta_{s} - \theta_{t})I^{*}}{I^{*}}$ $I^{*} = A'^{\alpha}T^{0.5} + B'T + C'T^{1.5}$ $I^{*} = I^{*}_{s} + T - T^{2}_{s}$ $I^{*}_{s} = A'T^{0.5}_{s} + B'T^{*}_{s} + C'T^{1.5}_{s},$ Where $T = \frac{aK_{t}}{\theta_{s} - \theta_{t}}; T_{s} = \left(\frac{A'}{1 - K_{t}/K_{s}}\right)^{2}$	A generalized solution to the moisture flow Richards' (1931) equation is developed for vertical infiltration using the solution of Philip (1957a) by applying reduced forms of time, depth, water > T_g moisture and infiltration.
Reynolds et al.	1985	$Q_{inf} = \frac{2\pi h_0}{C} \left(K_s h_0 + \varphi \right) + \pi r^2 K_s$	The original theory, as presented in Reynolds et al. (1983), is extended to account for the matric effects of the unsaturated soil (the initial suction head, ψ_i (L), and the capillarity of the outer unsaturated envelope, φ (L ² T ⁻¹)). By assuming an exponential relationship between $K(\psi)$ and ψ as defined by Gardner (1958): $\int_{0}^{0} K(\psi) = K_s e^{a\psi}$, then $\varphi = \int_{0}^{\infty} K(\psi) d\psi = \frac{K_s}{a} [1 - e^{a\psi_1}]$. For soils initially at "field capacity" or drive, $e^{a\psi_1} \ll 1$, and thus $\varphi = \frac{K_s}{a}$ (Scotter et al., 1982). (See Eq. 1 in Reynolds and Elrick, 1985).
Parlange et al.	1985	$t = \frac{S_0^2}{2\delta(1-\delta)(K_s - K_t)^2} ln(1 + \delta \frac{(K_s - K_t)}{1-K_s}) + \frac{K_s h_0(\theta_s - \theta_t)}{(t-K_s)(K_s - K_t)} - \frac{S_0^2 + 2\delta(1-\delta)(K_s - K_t)}{2(1-\delta)(K_s - K_t)^2} ln(\frac{1-K_s}{1-K_s})$	Parlange et al. extended the work developed under zero surface head condition (Parlange et al., 1982) to positive head boundary condition for arbitrary diffusivity D (L ² T ⁻¹). (See Eq. 16 in Haverkamp et al., 1988). δ takes values from 0 to 1, and changes slightly with the type of soil. For heavy clay soils, δ tends to be equal to 1, and for coarse-structured soils, the value of δ decreases below the value of $\delta = 0.8$ or 0.85. For the case of $\delta = 0$, the equation takes the Green and Ampt form. (Continues)

TABLE A2	(Continue	(pa		
Model	Year	Equation(s)		Applied concepts
Chu	1985	Constant rainfall: $I = \theta_c l_c + \theta_{i1l}(z_w - l_c)$ $\frac{d^{z_w}_{dt}}{dt} = \frac{\delta_c}{2\theta_{i1l}} \left(\left(\frac{z_e + \psi_{wer,i1l}}{z_w} \right) \right)$ Where $K_e = \frac{z_w}{k_{inl} + k_c};$ $K_c = K_{x,c} + (K_{i,c} - K_{x,c})e^{-CE};$ $C = ln(\frac{\kappa_{e,c}}{k_{e,c} - K_{x,c}})B(1 - \frac{\epsilon}{2})E_c;$ $E_o = [0.02062 + 0.00379]n(q_0)] q_0 t_{1/2};$ Variable rainfall: $\frac{d^{z_w}_{dt}}{dt} = \frac{z_e + \frac{\pi\omega_{e,t}}{2}}{k_c + \frac{\pi\omega_{e,t}}{4}}$ $i = \min(q_0, \frac{\theta_{i1l}D_L}{2})$ Where $D_L \text{ from Equation (14) in Chu's paper;}$ $K_c = K_{x,c} + (K_{i,c} - K_{x,c})e^{ln(\frac{K_{i,c}}{k_{e,r} - K_{x,c}}})B(1 - \frac{1}{2})\frac{E_0}{k_0};$ $i = \min(q_0, \frac{\theta_{i1l}D_L}{2})$ Where $D_L \text{ from Equation (14) in Chu's paper;}$ $i = \min(q_0, \frac{(c+l_{int}-l_{merpanel})/2}{k_c + \frac{l_{int}-l_{merpanel}}{2}}$		The layered Green-Ampt model proposed by Brakensiek and Rawls (1983) was extended to include the effect of non-uniform rainfall of intensity q_0 (L T ⁻¹) and crusting energy <i>E</i> (ML ⁻¹) T ⁻²), as well as the water ponding on the interface between the tilled layer and the subsoil in the infiltration process. A tilled soil profile is assumed to consist of three layers - the surface crust, the tilled layer, and the subsoil, each characterized by specific thickness <i>l</i> (L), hydraulic conductivity <i>K</i> (L T ⁻¹), wetting front potential ψ_{fp} (L), and water storage capacity θ (dimensionless). A ponded depth or zone of positive water pressure of thickness <i>l</i> _{inter pond} (L) may exist in the tilled layer above the interface with the subsoil. The Runge-Kutta method was used to conduct the calculations.
Waechter and Philip	1985	$i = 0.5\alpha \phi i^*$ $i^* = \frac{1}{s} \sum_{n=-\infty}^{\infty} (-1)^n \frac{1_n}{K_n}$ $i^* = \frac{1}{s} [1 + 0.996R^{-2/3} + 0.02235s^{-4/3} + O(s^{-2})];$ Where $s = 0.5\alpha r$	for large s	Waechter and Philip obtained the asymptotic expansion of the mean infiltration rate i (L T ⁻¹) for large s (dominated by gravity, with capillary effects weak but nonzero) from buried circular cylindrical and spherical cavities using a scattering analog. I_n and K_n are the modified Bessel functions of the first and second kinds of order n.
Philip	1985	2D Infiltration: $\vartheta = s\varphi \vartheta^*$ Check Equation (34) in Philip's paper for ϑ^* $\vartheta = 4\varphi \xi_0$ 3D Infiltration: $Q_{inf} = \varphi sLV^*$ Check Equation (53) in Philip's paper for V^* $Q_{inf} = \frac{8\pi \rho}{\alpha} \xi_0$ Where $\xi_0 = \sum_{n=0}^{\infty} a_n$ and $s = 0.5\alpha L$	for large s for large s	Philip analyzed 2D and 3D steady infiltration from cavities of arbitrary size and shape (characteristic length <i>L</i> (L)) using Van de Hulst theorem which connects 2D and 3D infiltration, ϑ (L ² T ⁻¹) and Q_{inf} (L ³ T ⁻¹) respectively, to dimensionless "downward wetting function" ξ_0 at large <i>R</i> (i.e., $R \to \infty$).
Philip	1986a	$Q_{inf} = 8\pi\varphi\alpha^{-1}\xi_0(w,s)$ Where $\xi_0(w,s) = s\sum_{n=0}^5 a_n(w)s^n + O(s^7)$ Check Equation (31) to (33e) in Philip's paper for a_n $\xi_0(w,s) = \frac{1}{2}s^2 [1 + 1.99230638w^{2/3}s^{-2/3}] + O(s^{-4/3})$ $s = 0.5\alpha ur$ and $w = u * v$	for small <i>s</i> for large <i>s</i>	Solutions are given for quasilinear 3D steady infiltration from spheroidal cavities of arbitrary aspect ratio <i>v</i> and radius <i>r</i> (L) into isotropic and anisotropic homogeneous soils where anisotropy is defined by u^2 . The isotropic case is simply that of $u^2 = 1$. For prolate spheroids $v > 1$, for spheres $v = 1$, and for oblate spheroids $v < 1$.
				(Continues)

Model	Year	Equation(s)	Applied concepts
Philip	1986b	Buried disc, $Q_{inf} = 8\pi\varphi\alpha^{-1}\xi_0(s)$ Where $\sum_{j_0(s)} = \frac{2s}{\pi} [\sum_{n=0}^7 a_n(\frac{\pi}{2})s^n + As^8]$ for small <i>s</i> $\sum_{j_0(s)} \sum_{\pi} \sum_{\pi} [\sum_{n=0}^7 a_n(\frac{\pi}{2})s^n + As^8]$ for small <i>s</i> $Check Equation (30) in Philip's paper for a_n with \phi = \frac{\pi}{2}\xi_0(s) = \frac{1}{2} s^2 [1 + \frac{1}{3} + \frac{1}{4s^2} - \frac{1}{8s^3} + \frac{1}{16s^4} + \frac{B}{s^3}] for large sA and B are estimated by matching the two above expansions of \xi_0(s)s = 0.5\alpha rCircular cylinder,Q_{inf} = \phi V^*(s) Check Equation (60) in Philip's paper for V^*(s)Sphere,Q_{inf} = 4\pi r \phi V^*(s) Check Equation (65) in Philip's paper for V^*(s)$	Philip studied steady quasilinear infiltration from buried discs and other sources of radius <i>r</i> (L) by expressing the volumetric infiltration rate Q_{inf} (L ³ T ⁻¹) as function of the far-field wetting function ξ_0 and the dimensionless discharge function V^* .
Kutilek and Krejca	1987	$I = C_1 t^{0.5} + C_2 t + C_3 t^{1.5}$	C_1 is an estimate of sorptivity S, C_2 is an estimate of $(A_2 + K_i)$, and C_3 is an estimate of $(A_3 + C_1)$ the truncation error ε). The saturated hydraulic conductivity is: $K_s = (3C_1C_3)^{1/2} + C_2$
Swartzendruber	1987a	$I = K_s t + \frac{(\psi_{w_f} + h_0)(\theta_s - \theta_f)K_s}{(K_s - K_i)} \ln \left(1 + \frac{(I - K_f)(K_s - K_f)}{(\psi_{w_f} + h_0)(\theta_s - \theta_f)} \right)$	Using the following expression of the infiltration rate i: $i = K_s \left[\frac{\psi_{u,t} + z + h_0}{z} \right] = \frac{d[z(\theta_s, -\theta_t)]}{dt} + K_t$ By setting K_t equal to 0, the equation becomes nothing but Green and Ampt equation.
Swartzendruber	1987b	$I = K_s t + \frac{S_{II}}{A_0} (1 - e^{-A_0 h^3})$	Based on Swartzendruber, Philip's time series solution for $z(\theta, t)$ is unaffected by the pressure head condition at the soil surface h_0 ; each function $[X_1(\theta), X_2(\theta), X_3(\theta) \cdots]$ is still the solution of its own ordinary differential equation that can be solved by relatively numerical methods. A_0 is a fitting parameter depending on the initial water content θ_i . $A_0 = \frac{4K_i}{3S_i^{\theta}}$ (Strossnijder, 1976). As $A_0 \rightarrow 0$, it reduces to a form of the Philip's model (1957b) with K_s as the coefficient of the linear term.
Broadbridge and White	1988	$\begin{split} I &= q_0 t \\ I &= \chi_c \Theta_c^{-1} \left[\ln \left\{ \frac{Q_i(C-\Theta_i)}{\Theta(C-\Theta_i)} \right\} - C^{-1} \ln \left\{ \frac{Q_i(C-\Theta_i)}{\Theta(C-\Theta_i)} \right\} + R^* t^* \right] & t \to \infty \\ \text{Where} \\ \Theta_i &= 2C\rho \left[(1 + \rho^{-1})^{\frac{1}{2}} - 1 \right]; \\ \rho &= R^* / m; \\ m &= 4C(C-1); \\ C &= (b_0 - \theta_i) / (\theta_s - \theta_i); \\ \Theta &= (\theta - \theta_i) / (\theta_s - \theta_i); \\ t^* &= t/T_c; \\ R^* &= (q_0 - K_i) / (K_s - K_i) \end{split}$	Broadbridge and White described constant rate rainfall infiltration q_0 (L T ⁻¹) in uniform soils and other porous materials. The model is based on Darcy–Buckingham approach to unsaturated water flow and assumes simple functional forms for the soil water diffusivity $D(\theta)$ and hydraulic conductivity $K(\theta)$. (Continues)

TABLE A2	(Continue	(pc	
Model	Year	Equation(s)	Applied concepts
Yeh	1989	$\psi = \frac{1}{a} \ln\{e^{-a(z_w - \psi_0)} + \frac{i}{K_s}e^{-az} - \frac{i}{K_s}\}$	Analytical solution to one-dimensional, steady state infiltration in heterogeneous soils is developed, only valid for $\psi \leq 0$. Yeh integrated Buckingham equation $q = -K(\psi)(\frac{\partial \psi}{\partial x} + 1)$ using the exponential model by Gardner (1958) which describes the unsaturated hydraulic conductivity by $K(\psi) = K_x e^{a\psi}$.
Reynolds and Elrick	1990	$Q_{inf} = \frac{r}{G}(K_s h_0 + \varphi) + \pi r^2 K_s$	Reynolds and Elrick derived the steady-state infiltration by summing the steady flow out of the ring due to hydrostatic pressure of the ponded water in the ring and capillarity of the unsaturated flow, and the steady flow out of the ring due to gravity. The depth of the water ponding inside the ring remains constant. For ponding depths ranging from 5 to 25 cm, <i>G</i> factor in can be approximated by the average shape factor. <i>Ge</i> , of an infiltrometer, for different textured soils equal to: Ge = 0.316(d/r) + 0.184; Wooding's solution (1968) may be considered when $H = 0$ and $G = 0.25$.
Haverkamp et al.	1990	$I^* = (I - K_i t) \frac{2(K_s - K_i)}{S_0^2 + 2K_i h_0(\theta_i - \Theta_i)}$ $I^* = \frac{\gamma}{q^{s-1}} + (1 - \gamma) ln(1 + \frac{1}{q^{s-1}})$ $t^* = \frac{2(K_s - K_i)2}{S_0^2 + 2K_i h_0(\theta_i - \Theta_i)}$ $t\gamma = \frac{2K_i(h_0 + W_{an})(\theta_i - \Theta_i)}{S_0^2 + 2K_i h_0(\theta_i - \Theta_i)}$ $q^* = \frac{q_0 - K_i}{\theta_0 - K_i}$	The infiltration equation of Parlange et al. (1985) is improved in such a way that it applies equally well for infiltration and capillary rise. This new equation considers the possibility of an infinite diffusivity near saturation. One can set $\delta = 1$ for all practical purposes (Barry et al., 1995).
Smith	1990	$i = \frac{k_s \dot{\sigma}}{l}$ $I_p = \int_{\theta_s}^{\theta_s} (\theta - \theta_i) \frac{D(\theta)}{q_0 - K(\theta)} d\theta$ $i = k_s \left(\frac{T}{q} + 1\right)$ $i = K_s \left(\frac{T}{q} + 1\right)$ $i = K_s \frac{e^{1/q}}{e^{1/q}}$ $i > t_p (1)$ $i > t_p (2)$ Where $G = (y_{u,t_f} + h_0)(\theta_s - \theta_i)$ (1)	The resulting analytic expressions relate the infiltration rate i (L T ⁻¹) to infiltrated cumulative water I (L). This type of expression is uniquely general in describing the decay of i with I for either saturation or flux boundary conditions, and in describing the onset of ponding for flux boundary conditions (i.e., $t < t_p$, $t = t_p$ and $t > t_p$). Specific cases are for D (L ² T ⁻¹) following a step function (1) or D (L ² T ⁻¹) and $dK/d\theta$ (L T ⁻¹) are closely proportional (2) (Smith & Parlange, 1978). This study explored the applicability of this theory when the soil profile is composed of two layers. The behavior of the layered system exhibits the same unifying $i(I)$ response to flux boundary conditions as does a homogeneous profile, which lends unexpected generality to the I-based analytical infiltration mode.
Schmid	1990	$I = \int_{0}^{t_{p}} q_{0}(t)dt + q_{0,i}(t-t_{p}) + K_{s}(q_{o,p} - q_{0,i}) \frac{(\psi_{w_{f}} + h_{0})(\theta_{s} - \theta_{0})}{(q_{o,p} - K_{s})^{2}} \left\{ [1 + 2\frac{(q_{o,p} - K_{s})^{2}}{K_{s}(\psi_{w_{f}} + h_{0})(\theta_{s} - \theta_{f})}(t-t_{p})]^{0.5} - 1 \right\}$ Where $\int_{0}^{t_{p}} [q_{0}(t) - q_{0,i}]dt = K_{s} \frac{(\psi_{w_{f}} - h_{0})(\theta_{s} - \theta_{f})}{(q_{0,r} - K_{s})}$	Based on Mein and Larson (1973), an explicit equation for time-dependent cumulative infiltration following ponding was proposed in this paper considering time-varying rainfall intensity $q_0(t)$ (L T ⁻¹).
Ankeny et al.	1991	$Q_{inf} = K_s \ e^{\alpha \psi} \left[\pi r^2 + \frac{4r}{\alpha}\right]$	Wooding's equation is rewritten assuming: No water ponding occurs inside the ring Exponential relationship between $K(w)$ and ψ as defined by Gardner (1958): $K(\psi) = K_s e^{\alpha \psi}$ The ratio $K(\psi)/\varphi(\psi)$ is equal to the constant parameter α (Continues)

Model	Year	Equation(s) $r^{S_2^2}$	Applied concepts
Swartzendruber and Hogarth	1991	$I = \frac{u}{K_s}$ $I^* = n^{-1} \left[1 - e^{-\alpha t^{*0.5}} \right] + t^*$ Where $n = \frac{\alpha}{(1+p)^{0.5}}$; $\alpha = \frac{A_0.5}{K_s}$; $p = \frac{S_1^2}{S_0^2}$ and $t^* = \frac{K_s^2 t}{S_0^2}$	Swartzendruber au Swartzendruber's (L), on the cumula
Philip	1992	$\frac{\left[1-(\theta_s-\theta_i)\right]K}{(\theta_s-\theta_i)}t = \frac{1}{(\theta_s-\theta_i)} - \left(\frac{\psi_{w_f}+h_0}{1-(\theta_s-\theta_i)}\right) ln(1 + \frac{\left[1-(\theta_s-\theta_i)\right]I}{(\psi_{w_f}+h_0)(\theta_s-\theta_i)}) \qquad h_0 = cst$ $\frac{K}{(\theta_s-\theta_i)}t = \frac{1}{(\theta_s-\theta_i)} - (\psi_{w_f}+h_0) ln(1 + \frac{1}{(\psi_{w_f}+h_0)(\theta_s-\theta_i)}) \qquad h_0 = cst$	Philip develops th functional form as
White et al.	1992	$i = K_s + \frac{4bS_0^2}{(\theta_s - \theta_t)xr} \qquad h_0 \le 0$ $i = K_s + \frac{4bS_H^2}{(\theta_s - \theta_t)xr} \qquad h_0 > 0$	White et al. combi three-dimensional The parameter <i>b</i> is & Sully, 1987).
Barry et al.	1993	$t = \frac{t}{k_s} - \alpha^* \ln(1 + \frac{t}{\alpha^* k_s})$ Where $\alpha^* = \frac{S_0^2}{2k_s^2}$ no ponding $(h_0 \le 0)$ Or $\alpha^* = \frac{S_0^2}{2k_s^2}$ under ponding $(h_0 > 0)$	Barry et al. expres $I = -\alpha^* K_s [1 + W$ general form of th saturated soil surfi
Fonteh and Podmore	1993	$V = [2x_w d + wz_w + (\frac{\pi}{2})x_w z_w] I(\theta_s - \theta_i) $ (1) $V = [2(d + z_c)x_{wmax} + wz_w + (\frac{\pi}{2})x_{wmax}(z_w - z_c)] I(\theta_s - \theta_i) $ (2) Where $i_c = \frac{K_i(w_w / + h_0 + z_c)}{z_c}$	Fonteh and Podma furrows for depth and Fok and Chiau before the wetting After the fronts m due to vertical dov
Smith et al.	1993	$0 < t \le t_h $ $i = q_0 $ $K_s(t - t_p) (1 - \delta) = (I - I_p) - \frac{(\theta_s - \theta_b)G(\theta_s, \theta_s)}{(K_s - K_s)} $ $I_h \left(\frac{e^{\delta t/(\theta_s - \theta_b)G(\theta_s, \theta_{s-1} - 1 + Y)}}{e^{\delta t/(\theta_s - \theta_s)G(\theta_s, \theta_{s-1})}} \right) $ $V = I_h \left(\frac{e^{\delta t/(\theta_s - \theta_b)G(\theta_s, \theta_{s-1} - 1 + Y)}}{(K_s - K_s)} \right) $ $V = I_h + (q_0 - K_t)(t - I_h) - \frac{(\theta_s - \theta_b)G(\theta_s, \theta_{s-1})}{2K_s} = \frac{S_h^2}{2K_s} \text{ and } Y = \frac{\delta K_s}{(K_s - K_s)} $ $I_h < t \le t_h (2) \frac{S_h^2}{6(t_h) - 1 + Y} $ $V = I_h + (q_0 - K_t)(t - I_h) - \frac{(\theta_s - \theta_b)G(\theta_s, \theta_{s-1})K_s}{(K_s - K_s)} $ $I_h < t \le t_h (2) \frac{S_h^2}{6(t_h) - 1 + Y} $ $V = \frac{\delta K_s}{K_n - K_t} $ $V = I_h + (I - \delta) = (I - I_p) - \frac{(\theta_s - \theta_b)G(\theta_s, \theta_{s-1})K_s}{(K_s - K_s)} $ $V = I_h + (I - \delta) = (I - I_p) - \frac{(\theta_s - \theta_b)G(\theta_s, \theta_{s-1})K_s}{(K_s - K_s)} $ $V = I_h + (I - \delta) = (I - I_p) - \frac{(\theta_s - \theta_b)G(\theta_s, \theta_{s-1})K_s}{(K_s - K_s)} $ $V = I_h + (I - \delta) = (I - I_p) - \frac{(\theta_s - \theta_b)G(\theta_s, \theta_{s-1})K_s}{(K_s - K_s)} $ $V = I_h + (I - \delta) = (I - I_p) - \frac{(\theta_s - \theta_b)G(\theta_s, \theta_{s-1})K_s}{(K_s - K_s)} $ $V = I_h + (I - 0) = I_h + (I - I_h) + I_h - I_h - I_h + (I - I_h) $ $V = \frac{\delta K_s}{K_h - K_t} $	The main purpose which continuous! which continuous! which continuous! considered three set aaving $q_0 > K_s$, lat model (1) is based treat soils with ver reat soils with ver storm in which q_0 , $\theta_0 < \theta_s$. In this cas defined by the scal defined by the scal defined by the scal field of $(B = \frac{\pi}{4})$. After the $(I - I_n)' = I - I_n$ are solved by $B = 1$. A correction of $B = 1$. A correction of the scale of t

wartzendruber and Hogarth developed a new three-parameter infiltration equation based on wartzendruber's equation (1987b) to describe the effect of soil-surface-ponded water head, h_0 , on the cumulative quantity of water infiltrated into the soil with time.

Philip develops the solution for falling-head infiltration, which takes precisely the same functional form as that for constant ponded depth; only the values of the constants change.

0 White et al. combined the early-time transient and steady flow phases to estimate

three-dimensional infiltration. The parameter b is constrained to $0.5 \le b \le \pi/4$. A typical "average" value for b is 0.55 (White Barry et al. expressed the cumulative infiltration in terms of the Lambert W-function as $I = -\alpha^* K_s [1 + W(-e^{-1-\frac{i}{\alpha^*}})]$. As such, the new infiltration solution was derived, which has the general form of the Green and Ampt (1911) law without requiring a sharp wetting front. The saturated soil surface can be either ponded or not.

Fonteh and Podmore developed a simple two-dimensional infiltration model for rectangular furrows for depth d (L), width w (L), and thickness l (L), based on the Green and Ampt equation and Fok and Chiang (1984) assuming the cumulative infiltrated volume is divided into two parts: before the wetting fronts meets (1) and after they meet (2). After the fronts meet, it is assumed that the region of two-dimensional flow shifts downwards

After the fronts meet, it is assumed that the region of two-dimensional flow shifts downwards due to vertical downward infiltration I_c (L) estimated using Green and Ampt (1911). The main purpose of this paper is to propose a simple conceptual model of rainfall infiltration

 p_{p} which continuously describes the infiltration/redistribution/infiltration cycle. Smith et al. considered three sequential periods of time, with the first (1), assuming an initial rainfall pattern having $q_0 > K_s$, lasting to a time t_h , which at some time $t_p < t_h$ causes ponding. The infiltration is model (1) is based on the three-parameter analytic model of Parlange et al. (1982), extended to treat soils with very high initial water content θ_i . Then, during any significant interval within a storm in which q_0 (L T⁻¹) falls below i (L T⁻¹) at some time $t > t_h$ ($t_h =$ time of hiatus) (2), $\theta_0 < \theta_s$. In this case, the redistribution model is based on profile extension with shape similarity defined by the scale factor B, originally called β , and a shape factor, p. The similarity condition ($B = \frac{\pi}{4}$). After the rainfall hiatus (posthiatus period), q_0 (L T⁻¹) is assumed to increase at a time $t > t_n$ causing a second ponding (3). A secondary wetting profile of accumulated water (Continues)

 $-K_n(t-t_n)$ advances alongside the earlier profile computed at $\theta_0 = \theta_n$ with

n to $G(\theta_n, \theta_s)$ for $\beta < 1$ was also incorporated.

		(n)	
Model	Year	Equation(s)	Applied concepts
Philip	1993	Constant rainfall rate $q_0(t)$: $I = (\theta_s - \theta_i)[z(t) - z_0]$ To calculate $z(t)$, check Eq. (17) , (20), and (26) in Philip's paper $i = 0.5\tilde{K}[1 - (\theta_s - \theta_i)][1 + \{1 + \frac{4q_0(\theta_s - \theta_i)}{\tilde{K}[1 - (\theta_s - \theta_i)]^2}\}^0]$ Variable rainfall rate $q_0(t)$: $I = (\theta_s - \theta_i)[z(t) - z_0]$ To calculate $z(t)$, differentiate with respect to time t : $q_0(t) = \frac{(\theta_s - \theta_i)}{\tilde{K}} \frac{d_i}{d_i} (z \frac{dz}{dt}) - [1 - (\theta_s - \theta_i)]\frac{dz}{dt}$	Philip established the study of the effect of excess rainfall, ponded without runoff, on the dynamics of infiltration into a deep homogeneous soil using Green and Ampt, or delta function, approximation under constant and variable rainfall rates.
Stone et al.	1994	$I = (\psi_{w_f} + h_0) \Delta \theta(t^* + \sqrt{2t^*} - 0.2987t^{0.7913})$ Where $t^* = \frac{K_s}{(\psi_{w_f} + h_0) \Delta \theta} t$	Stone et al. developed an explicit approximation of the Green–Ampt equation (one-stage infiltration) by rewriting it in the form of the Philip's equation.
Mandal and Waechter	1994	$i = 0.5 \alpha \rho i^*$ $i^* = \frac{1}{s} \sum_{n=-\infty}^{\infty} (-1)^n \frac{1_n}{K_n}$ Top half: $i^* = \frac{2}{s} (0.69553s^{-2/3})$ Bottom half: $i^* = \frac{2}{s} (1 + 0.30066s^{-2/3})$ Semicircular trench: $i^* = \frac{2}{s} (1 + 0.69553s^{-2/3})$ Where $s = 0.5 \alpha r$	Mandal and Waechter obtained the separate contributions to the mean infiltration rate <i>i</i> (L T^{-1}) from the top and the bottom halves of the buried circular cylinders of radius <i>r</i> (L). I_n and K_n are the modified Bessel functions of the first and second kinds of order <i>n</i> .
Fallow et al.	1994	$I = [2(\theta_s - \theta_i)K_sh_0 + \frac{(\theta_s - \theta_i)w}{b}]^{0.5} t^{0.5}$	Fallow et al. presented an analytical equation for determining early-time, transient, and one-dimensional infiltration under both, constant head, and falling-head conditions, in low-permeability soils, not significantly perturbed by gravitational effects. The parameter <i>b</i> is constrained to $0.5 \le b \le \pi/4$. A typical "average" value for <i>b</i> is 0.55 (White & Sully, 1987, White et al., 1992).
Basha	1994	$Q_{1nf} = \frac{4K_sV^*}{a^2}$ 2D shallow ditch: $V^* = \frac{2a^*}{1-b^*}$ 3D shallow pond: $V^* = \frac{2a^*}{(1-b^*)a^2-b}$ Where $s = 0.5ar$	The Green's function method was used to derive a general analytical model which can handle multidimensional steady infiltration problems in a semi-infinite medium with arbitrary boundary conditions and root uptake forcing functions and for various simple source geometries. Two special kinds of boundary conditions were considered in this work, 2D shallow ditch, and 3D shallow pond of radius r (L).
Salvucci and Entekhabi	1994	$I = K_s \left\{ (1 - \frac{\sqrt{2}}{3})t + (\frac{\sqrt{2}}{3})(\chi t + t^2)^{0.5} + (\frac{\sqrt{2}-1}{3})\chi [\ln(t + \chi) - \ln(\chi)] + (\frac{\sqrt{2}}{3})\chi [\ln(t + \frac{\chi}{2} + (\chi t + t^2)^{0.5}) - \ln(\frac{\chi}{2})] \right\}$ Where $\chi = \frac{(\psi_{w_f} + h_0)\Delta\theta}{K_s}$	An explicit expression for Green-Ampt cumulative infiltration is presented for any soil type definition and all times using Philip's time series solution (Philip, 1957a). (Continues)

TABLE A2 (Continued)

	(1)
Equation(s)	$I' = I - K_{i} t$ $I' - \frac{I^{2}}{2(q_{0} - K_{i})(\theta_{0} - \theta_{i})} \frac{d\theta_{0}}{dt} = \frac{(\theta_{0} - \theta_{i})G(\theta_{i}, \theta_{0})K_{i}}{\delta K_{0}} \ln(1 + \frac{\delta K_{0}}{q_{0} - K_{0}})$ $(q_{0} - K_{i} - K_{0,*})I' = Bq_{0}K_{s}(\theta_{0,*} - \theta_{i})G(\theta_{i}, \theta_{0,*})$ Where $G(\theta_{i}, \theta_{0}) = \frac{1}{K_{0}} \int_{\theta_{0}}^{\theta_{0}} D(\theta)d\theta$
Year	1994
Model	Corradini et al.

	$\frac{\beta-1}{\beta}$ (1) (2) very short t	steady state		
$-\frac{\sigma_0^2 t}{\rho_i}$	$\frac{(K_s - K_s)(I - K_s)}{S_0^2} - \frac{1}{1 - \beta} \ln \left[\frac{1}{\beta} e^{2\beta \frac{(K_s - K_s)(I - K_s)}{S_0^2}} + \frac{\beta}{1 - \beta} \right]$	$\frac{3}{2} \left(\mathbf{X}_{s} - \mathbf{A}_{i} \right) + \mathbf{X}_{i} + \frac{1}{r(\theta_{s} - \theta_{i})} \int \mathbf{t} \\ \frac{2}{2(1-\beta)} \ln\left(\frac{1}{\beta}\right) \frac{S_{0}^{2}}{(K_{s} - K_{i})} \text{s} $	$\frac{2(K_s - K_l)}{S_0^2 + 2K_s h_0(\theta_s - \theta_l)}$ * $- exp(-\frac{\sqrt{2t^*}}{1 + \frac{\sqrt{2t^*}}{\theta_s}} - \frac{2t^*}{3}) +$	$\frac{1 - (1 - \gamma)^{r} t^{s_2} \rfloor + (2\gamma + t^{s_2}) n(1 + \frac{1}{\gamma}) ;}{h_0(\theta_s - \theta_i)} t;$ $\frac{-K_i)^2}{t_{str}(\theta_s - \theta_i)} t;$ $h_0(\theta_s - \theta_i)$
$I = I_{1D} + \frac{\sqrt{0.3}\pi}{(\theta_{s} - \theta_{s})}$	1D Infiltration: $\frac{2(K_s - K_s)^2}{s_0^2} t = \frac{2}{1 - \beta}$ $I = S_0 t^{0.5} + \frac{2 - \beta}{s_0^2}$ $I = S_0 t^{0.5} + \frac{2 - \beta}{s_0^2}$ $I = I_{1D} + \frac{r S_0^{2} t}{r \Delta \theta}$ $I = S_0 t^{0.5} - \frac{r \Delta \theta}{s_0^2} + \frac{2}{s_0^2}$	$I = \frac{J_0}{K_s} + \frac{\gamma S_0}{r(\theta_s - 1)}$	$I^* = (I - K_i t)$ Where $I^* = t^* + 1 - \gamma^*$	$I_{1+i^{*}}^{*} \{ exp(-\frac{3}{3}) I_{1+i^{*}}^{*} \} = \frac{2(K_{s} - 1)}{S_{0}^{2} + 2K_{s}} I_{s}$ $\gamma = \frac{2K_{s}(h_{0} + w)}{S_{0}^{2} + 2K_{s}}$
1994	1994		1995	
Smettem et al.	Haverkamp et al.		Barry et al.	

Applied concepts

representation of a sequence of infiltration/redistribution cycles with situations of infiltration not Corradini et al. extended the conceptual model earlier developed by Smith et al. (1993) towards rainfall rates (i.e., $q_0 < i$) (2). Corradini et al. used a slightly modified version of Parlange et al. leading to soil surface saturation (i.e., $t < t_p$) (1), and wetting profile reshaping under reduced further generality treating an arbitrary sequence of rainfall rates. They included the

 $\frac{d\theta_0}{dt} = 0$. In Equation (2), the evolution of θ_{0*} will be estimated by Runge-Kutta integration of (1). Equation (1) gives the limited case of soil surface saturation (Smith et al., 1993) for $\theta_0 = \theta_s$ and p is a shape factor (Smith et al., 1993) approaching 1 for q_0 (L T⁻¹) near K_s (L T⁻¹). (1993) redistribution equation for decreases (2). $\pi/4 \le B \le 1$ (Smith et al., 1993).

(1985) model for description of increases in the surface water content (1) and the Smith et al.

Smetten et al. developed an analytical expression for three-dimensional unsteady, unconfined, gravity-free flow out of a disc infiltrometer from one-dimensional confined infiltration.

(1) Parlange's equation is redefined such that δ is replaced by new dimensionless constant β . (2) Haverkamp's equation (1) is simplified into two-term approximate expansion, for short infiltration times and Ki close to zero.

 β ranges between 0.3 and 1.7 for sand to silty soils (Lassabatère et al., 2009, Rahmati et al., 2019). $\beta = 0.6$ is an average value.

 I_{1D} , particularly for water infiltration experiments that make use of disk or ring infiltrometers. A 3D cumulative infiltration, I_{3D} , from a disk source, is related to 1D cumulative infiltration, An average value of 0.75 can be used for γ (Haverkamp et al., 1994; Lassabatère et al., 2006).

into an explicit infiltration equation, which improved the applicability of the approach in both the Barry et al. transformed the implicit infiltration formula presented by Haverkamp et al. (1990) short- and long-term limits.

FABLE A2	(Continue	(J)	
Model	Year	Equation(s)	Applied concepts
Elrick et al.	1995	$I = \frac{A_{\text{point}}}{A} \left[h_0 - h(t) \right]$	Dre-dimensional infiltration experiments conducted in the laboratory using undisturbed soil cores have been analyzed using numerical inversion procedures of a finite solution of Richards' equation. For falling-head conditions, the cumulative infiltration is a function of the ponded head $h(t)$, the cross-sectional area of the infiltrating surface, $A(L^2)$, and that of the falling head tube, $A_{pond}^{pond}(L^2)$.
Sommer and Mortensen	1996	$\begin{split} I &= [1 + s(0)] \ S_0 t^{0.5} \\ \theta'(\chi) &= \frac{\theta_{10} S_0^2}{2D(\theta)} [I(\chi) - s(\chi)] \\ \text{Where} \\ \chi &= \frac{\chi - \gamma_0}{S_0 t^{0.5}} \\ \chi'(\chi) &= \frac{\theta'(\chi)}{(1 - \theta)} [I(\chi) - s(0) - \chi]; \\ l'(\chi) &= \frac{\theta'(\chi)}{(1 - \theta)} [s(\chi) - s(0) - \chi]; \\ \text{or} \\ s'(\chi) &= \frac{\theta'(\chi)}{3(1 - \theta)} [s(\chi) - s(0) - \chi] \\ \text{under pressure liquid} \\ s'(\chi) &= \frac{\theta'(\chi)}{3(1 - \theta)} [s(\chi) - s(0) - \chi] \\ \end{split}$	Using mixture theory, Sommer and Mortensen treated unidirectional infiltration of an initially drformable porous medium under constant liquid pressure, assuming the porous medium goes from completely dry to fully saturated (slug-flow assumption) and neglecting gravity and nertial forces. To solve for S_0 (L T ^{-0.5}) and the dimensionless water content, liquid, and solid velocities, $\theta(\chi)$, (χ) , and $s(\chi)$ respectively, Sommer and Mortensen set the following boundary conditions: $\theta = \theta_i$ at $\chi = 0$ $\theta = \theta_s$ at $\chi = 1$ (1) = 1 + $s(0)$
			$s(1) = [1 + s(0)] \frac{\theta_s - \theta_s}{1 - \theta_s}$ Where θ_c (L ³ L ⁻³) the water content of the porous material immediately ahead of the infiltration front at time t. A simpler limiting case is obtained if there is no capillary pressure drop across the infiltration front, then, $\theta_c = \theta_s$ and therefore $s(1) = 0$.
Srivastava et al	1996	$I = \alpha' (\theta_s - \theta_i)(\psi_{w_f} + h_0) \beta^{[\beta' + \delta' \ln(\theta)]}$ Where $\beta = \frac{K_s(t^{-I_p + I_s})}{(\theta_s - \theta_i)(\psi_{w_f} + h_0)}$	Srivastava et al. developed an explicit equation to the modified Green-Ampt equation presented by Mein and Larson (1973) to represent cumulative infiltration at any time t greater than ponding ime.
Preziosi et al.	1996	1D Infiltration: $\rho_{solid} \phi_{solid} \left(\frac{\partial v_{solid}}{\partial t} + v_{solid} \frac{\partial v}{S} \partial x \right) = -\frac{b}{k} [v_{solid} - C(t)] + \frac{\partial \sigma}{\partial x} - \phi_{solid} (\rho_{solid} - \rho_{liquid})g$ 3D Infiltration: Equations (1), (7) and (9) in Preziosi et al.'s paper	Preziosi et al. presented a mathematical model for unidirectional infiltration of an incompressible iquid into an initially deformable porous material assuming slug-flow in the absence of inertial forces. The quantity $C(t)$ depends on how the liquid constituent is pushed into the porous medium. The simplest case is when we are completely able to govern the inflow, for instance, we are able to steadily push liquid into the porous medium, which means $C(t) = \text{const. A more}$ neteresting situation for determining $C(t)$ arises in Equation (23) in Preziosi et al.'s paper.
			(Continues)

Model	Year	Equation(s)	Applied	l concepts
Corradini et al.	1997	$I = \int_{0}^{t} (q_{0} - K_{i}) dt$ $I_{p} = \int_{0}^{t} (q_{0} - K_{i}) dt = \frac{(\theta_{i} - \theta_{i})G(\theta_{i}, \theta_{i})B_{p}K_{i}}{q_{0} - K_{i}}$ $I_{p} = \int_{0}^{t} (q_{0} - K_{i}) dt = \frac{(\theta_{i} - \theta_{i})G(\theta_{i}, \theta_{i})B_{p}K_{i}}{q_{0} - K_{i}}$ $Where G(\theta_{i}, \theta_{s}) = \frac{1}{K_{s}} \int_{\theta_{i}}^{\theta_{i}} D(\theta)d\theta$ $i_{1} = (-\frac{1}{B}\frac{dB}{d\theta_{0}} - \frac{1}{\theta_{0} - \theta_{i}})(I_{1} - K_{i}I_{1})\frac{d\theta_{0}}{dt} - K_{i}$ $\frac{d\theta_{i}}{dt} = \frac{(I - K_{i}(t - t_{1})][(\theta_{0} - \theta_{i})G(\theta_{i}, \theta_{0})]}{(\theta_{0} - \theta_{i})G(\theta_{i})} + B(\theta_{0})]$ $\frac{d\theta_{i}}{dt} = \frac{(\theta_{0} - \theta_{i})B(\theta_{0})}{I - K_{i}(t - t_{1})][(\theta_{0} - \theta_{i})\frac{dB(\theta_{0})}{d\theta_{0}}]}$ $\frac{d\theta_{i}}{dt} = \frac{(\theta_{0} - \theta_{i})B(\theta_{0})}{I - I_{1} - K_{i}(t - t_{1})} \left\{ q_{0} - K_{0} - \frac{B(\theta_{0})PK_{0}(\theta_{0} - \theta_{i})G(\theta_{i}, \theta_{0})}{I - I_{1} - K_{1}(t - t_{1})} \right\}$	$0 \le t < t_1$ A relativies $t < t_1$ presente $t < t_p$ presente $t < t_p$ (1993) a application $t = t_p$ describe $t > t_p$ detection $t > t_p$ for \mathcal{B} and $t > t_1 > t_p$ for \mathcal{B} and $t = t_1$ of p and $t = t_1$ of p and $t = t_1$ new rain flutting $t_0 \le t_1$ $\theta < (0, t_1)$ if $q_0 > t_1$ if $q_0 > t_1$	vely simple conceptual model for infiltration during complex rainfall sequences is data a reformulation of an analytically derived model developed earlier by Smith et al. and Corradini et al. (1994) in a more homogeneous version suitable for hydrologic ions. During the first rainfall period ($0 \le t \le t_1$), infiltration and redistribution rates are aprior to and during the rainfall hiatus, respectively. As for parameters, <i>p</i> approaches 1 (L T ⁻¹) and $\pi/4 \le B \le 1$ (Corradini et al., 1994; Smith et al., 1993). Explicit relations d <i>p</i> were given as follows: $B \le t_1 \frac{\theta_0 - \theta_1}{\theta_0 - \theta_1} + c_2$, $Bp = f(q_0/K_s)$, and $Bp = c_3$ (during ution), where c_1 , c_2 , and c_3 are constants to be determined, (q_0/K_s) is an implicit t through which the variation of the profile shape with q_0/K_s expressed in terms of values <i>B</i> is invariant with time during redistribution. After a limited period of redistribution, a fall period (post-hiatus, $t > t_1$) produces re-infiltration into the soil. If $q_0 > t_1$, the ating water is approximately distributed through the whole dynamic profile. If $q_0 > t_1$, ration creates a new $\theta(z, t)$ profile in a soil with fictitious initial water content $0 = \theta_1$ and initial hydraulic conductivity K_i ($t = t_1$) = K_1 .
Parlange et al.	1997	For a linear soil, $I = 2\sqrt{t/\pi} + \frac{t}{2} + O(t^{\frac{3}{2}})$ $I = 1 + t - (1 + \frac{t}{2}) erfc(\frac{\sqrt{t}}{2}) + \sqrt{t/\pi}e^{-t/4}$ For a near- linear soil, $t = I - 2/3\ln(1 + \frac{3t}{2})$ $I = 2\sqrt{t/3} + \frac{2t}{2} + O(t^{\frac{3}{2}})$	A gener: short times for arbit long times "linear" short times ${}^{2}2M =$ Where <i>I</i> long times	al approximation for the solution ² to the one-dimensional Richards equation is presented rary soil properties and boundary conditions, exact for short times, in general, and for all D approaches a delta function. The approximation becomes increasingly accurate for and "near-linear" soils. $\frac{q_0}{Q_1} - \frac{dq_0}{d_1} \frac{1}{q_1 - q_2 - dt}$
Wu and Pan	1997	$i = i_c \left[a + b(\frac{t}{T_c})^{-0.5} \right]$ Where $i_c = f K_s$; $T_c = \frac{\Delta \beta \lambda_c}{K_s}$; $f = \frac{A_0 + \lambda_c}{d + r/2} + 1$	Wu and single ri applied b . The e sorptive defined a and b $rrespectiv$	Pan developed a scaling method for axisymmetric, three-dimensional infiltration from a ng infiltrometer, which resulted in a generalized solution to infiltration that can be to different soil conditions and ring geometry using two dimensionless parameters, <i>a</i> and sesential part of this method was to model the macroscopic capillary length, $\lambda_c(L)$, the time, $T_c(T)$ and the parameter i_c (L T^{-1}) used to scale the infiltration rate. $\lambda_c(L)$ is as being equal to the matric flux potential, $\varphi(L^2 T^{-1})$, scaled by K_s (L T^{-1}): $\lambda_c = \varphi/K_s$, were determined through curve-fitting to be approximately equal to 0.91 and 0.17, vely.

|--|

(Continues)

Model	Year	Equation(s)	Applied concepts
Smith et al.	1999	$\begin{aligned} q_{0} &= \frac{dI_{1}}{dt} + K_{1,i} & 0 \leq t < t_{irru} \\ \frac{d\theta_{i,s}}{dt} &= \frac{dI_{1}}{(\theta_{i,s} - \theta_{i,j})S_{1}(\theta_{j})q_{0} - K_{1,s} - (\theta_{i,s} - \theta_{i,j})Y_{1}(\theta_{j}, \theta_{j}, \theta_$	Smith et al. proposed a relatively simple analytica soils treating the crust (1) as a single layer of thick upper layer is always the most restrictive, i.e., $K_{1,2}$ comprises that in the crust layer I_1 (L) plus that in within the crust layer, and cumulative infiltration model for homogeneous soils developed earlier (C For $t \ge t_{crust}$, the dynamic water content in the cru the surface and the remaining $(1 - \alpha_1)$ associated previous model is extended in order to represent th but with the upper boundary at the crust-subsoil in solved by a standard Runge-Kutta method. Explic Corradini et al. (1997): $B_1(\theta_0) = 0.6 \frac{\theta_0 - \theta_{1,1}}{\theta_1 - \theta_1 - \theta_1} + 0.4,$ $B_1 p_1 = 0.98 - 0.87e^{-q_0/K_{1,3}}$, and $B_1 p_1 = 1.7$ (during redistribution). A constant value of 0.86 is assumed for α_1 (origin
Selker et al.	1999a	$i = (\theta_s - \theta_i) \frac{dz_w}{dt}$ $i = \frac{-3K_i(\theta^* w_{wi}^{-1})}{z_w^2 \theta^{*2}}$ $i = \frac{-3K_i(\theta^* w_{wi}^{-1})}{z_w^2 \theta^{*2}}$ $i = K_i \beta^* (\frac{2n^{-1}}{n^*}) [\frac{w_w/(1 - \frac{\beta^*}{n^*} z_w)^{-n^*} - z_w}{1 - (1 - \frac{\beta^*}{n^*} z_w)^{1 - 2n^*}}]$ (i) $i = \frac{2\beta^* K_i(w_w e^{\theta^* z_w} - z_w)}{1 - e^{2\beta^* z_w}}$ (j)	Selker et al. developed three expressions for the ti approach for soils with hydraulic properties (K_s (1 following linear (1), power law (2), and exponenti $(1) K_s(z) = K_i \ \beta^{*-2} z^{-2}; \psi_{wf}(z) = \psi_{wf,0} \ \beta^* z$ (2) $K_s(z) = K_i \ (1 - \frac{\beta^* z}{r})^{2n^*}; \psi_{wf}(z) = K_i \ (1 - \frac{\beta^* z}{r})^{2n^*}$ (3) $K_s(z) = K_i \ e^{-2\beta^* z}; \psi_{wf}(z) = \psi_{wf,0} \ e^{\beta^* z}$
Wu et al.	1999	$I = af K_s t + 2bf K_s (T_c t)^{0.5}$ short $I = af K_s t + c$ Where $T_c = \frac{(q_s - q_s)\lambda_c}{k_s}$; $f = \frac{h_0 + \lambda_c}{d + t/2} + 1$	t Wu et al. integrates the generalized equation in W transient- and steady-state infiltration behavior.
Novak et al.	5000	$\frac{\frac{\partial \theta}{\partial t}}{\partial t} = \frac{\partial}{\partial z} \left[K(\psi) \left(\frac{\partial w}{\partial z} + 1 \right) \right] - s_r + s_f$ where $s_f = (K_{s,h} \frac{\psi_{w/,m} + h_0}{z_w}) A_f \text{ and } z_w = \sqrt{2K_{s,h} \frac{\psi_{w/,m} + h_0}{(\theta_s - \theta_i)} T_s}$	Novek et al. developed an infiltration model for sw changes in the dimensions of the cracks during the equation by Feddes et al. (1988) was solved, subjet considered: (1) unsaturated soil surface, (2) soil su layer ($h \leq h_{0,\max}$) is being formed, and (3) surface flows into cracks. $i_m = -K_m(\psi)(\partial\psi/\partial z + 1)$ $i_m = i_f - K_{s,m}(\partial\psi/\partial z + 1)$ $i_m = i_f - K_{s,m}(\partial\psi/\partial z + 1)$

ness l_c (L) overlaying the subsoil (2) where the orradini et al., 1994, 1997; Smith et al., 1993). the subsoil I_2 (L). For $t < t_{\text{crust}}$, $\theta(z)$ evolves st is expressed as fraction α_1 associated with ne effects of water flow in the subsoil, I_2 (L), /conceptual model for infiltration in crusted n the crust upper layer is described by the $< K_{2.s}$. Cumulative dynamic infiltration with the interface. Also, for $t \ge t_{\text{crust}}$, the nterface. The system of equations may be it relations for \mathcal{B} and p were given by

ally called α).

ne rate of infiltration using Green and Ampt , T^{-1}) and ψ_{wf} (L)) decreasing with depth al (3) relationships.

(1)
$$K_s(z) = K_i \ \beta^{*-2} z^{-2}; \psi_{wf}(z) = \psi_{wf,0} \ \beta^* z$$

(2) $K_s(z) = K_i \ (1 - \frac{\beta^* z}{n^*})^{2n^*}; \psi_{wf}(z) = K_i \ (1 - \frac{\beta^* z}{n^*})^{-n^*}$

u and Pan (1997) for any time, including early-,

elling, cracked fine-textured soils that permits infiltration process. The extended Richards' water layer reaches its maximum and water t to three upper boundary conditions were rface is saturated and a sub-critical surface

$$\begin{aligned} &= -K_m(\psi)(\partial \psi/\partial z + 1) & h < 0 \ (1) \\ &= \partial \psi/\partial t - K_{s,m}(\partial \psi/\partial z + 1) & 0 \le h \le h_{0,\max} \ (2) \\ &= i_{e} - K_{e,m}(\partial \psi/\partial z + 1) & h > h_{0,\max} \ (3) \end{aligned}$$

Model Year	Equation(s)	Applied concepts
Corradini et al. 2000	$q_{0} = \frac{dI_{1}}{dt} + K_{1,t}$ $i = K_{1,s} + \frac{(\theta_{1,s} - \theta_{1,t})G_{1}(\theta_{1,t})B_{1}(\theta_{2})p_{1}K_{1,s}}{t}$ $k \leq t_{p}$ Where $G_{1}(\psi_{t}, 0) = \frac{1}{K_{s}} \int_{\psi_{t}}^{0} K(\psi)d\psi$ $t > t_{s}$ $I = [\alpha_{1}(\theta_{0} - \theta_{1,t}) + (1 - \alpha_{1})(\theta_{1,c} - \theta_{1,t})]I_{c} + I_{2} + K_{2,t}t$ Where I_{2} from Eq. (19) in Corradini et al.'s paper $P_{L}(\psi_{c}, t)$ from Eq. (19) in Corradini et al.'s paper $\theta_{1,c} = \theta_{1}(t_{c}), \theta_{2,c} = \theta_{2}(t_{c}), K_{1,c} = K_{1}(t_{c})$ and $K_{2,c} = K_{2}(t_{c})$	Corradini et al. proposed an analytical/conceptual model, which is formulated by an extension of the Smith et al. (1999) model, for the solution of the infiltration and reinfiltration problem into any horizontal two layered soil where either layer may be less permeable under any real rainfall pattern. The model represents both the infiltration rate i (L T ⁻¹), cumulative infiltration I (L), and soil water potentials w_0 and w_c (L) at the surface and the interface, respectively. For $0 \le t < t_c$, the solution is that of the vertically homogeneous case described by Corradini et al. (1997). As to the parameters incorporated in the system, α_1 (originally called α) is considered to be a constant, while B_2 and p_2 are given, p_3 manology with the relations by Corradini et al. (1997) and Smith et al. (1999): $B_2 (\theta_{2,c}) = 0.6 \frac{\theta_{2,c} - \theta_{2,c}}{\theta_{2,c}} + 0.4$, Where $v_{12} = \frac{G_1(w_c w_0)K_{1,c}}{t} + K_{1,c}}$ and $B_2 p_2 = 0.98 - 0.87e^{-v_{12}/K_{2,c}}$. Where $v_{12} = \frac{G_1(w_c w_0)K_{1,c}}{t} + K_{1,c}}$ and $B_2 p_2 = 1.7$ (during redistribution). In case of re-infiltration from a rainfall hiatus, Corradini et al. (2000) adopted the same concept proposed by Corradini et al. (2007).
Swartzendruber 2000	$I = K_s t + E \ln(1 + \frac{(I-K_t)}{E})$ $E = \frac{s_H^2}{2(K_s - K_t)};$	Using the following expression of the infiltration rate i: $i = K_s \left[\frac{W_{w/d-x_w} + h_0}{z_w} \right] = (\Theta_s - \Theta_l) \frac{dz_w}{dt} + K_l$ where the head $h_0(t)$ at the soil surface increases with time t according to: $h_0(t) = h_0 + p(t)$ such that $p(t) = \frac{S_R(\theta_l - \theta_l)}{2k_1(\theta_l - \theta_l)}$
Govindaraju 2001 et al.	Constant rainfall: Local-scale Infiltration: $i = q_0$ $i = K_s^{(w_w + h_0)(\theta_s - \theta_i) + I}$ Field-scale Infiltration: $I = q_0 t$ $I = I_p + \sqrt{2K_s(w_{wf} + h_0)(\theta_s - \theta_i)}(t_2^1 - t_p^2) + \frac{1}{3}K_s(t - t_p) + t_p^2 t_p^2$ $\frac{1}{18}(\frac{2K_s^3}{(w_w + h_0)(\theta_s - \theta_i)})^2(t^{3/2} - t_p^{3/2})$ Where $t_p = I_p / q_0$ and $I_p = \frac{K_s w_w (\theta_s - \theta_i)}{q_0 - K_s}$ Where $t_p = I_p / q_0$ and $I_p = \frac{K_s w_w (\theta_s - \theta_i)}{q_0 - K_s}$ $t = t_i - (\frac{(w_w + h_0)(\theta_s - \theta_i) + 1}{q_0}) + t_p^2$ $t = t_i - (\frac{(w_w + h_0)(\theta_s - \theta_i) + 1}{q_0}) + t_p^2$ $t = t_i - (\frac{(w_w + h_0)(\theta_s - \theta_i) + 1}{q_0}) + t_p^2$	Govindaraju et al. studied the problem of field-scale infiltration over soils where spatial variability of saturated hydraulic conductivity K_s (L T ⁻¹) is represented by a homogeneous correlated lognormal random field $Y = \ln(K_s)$ with mean μ_Y and standard deviation σ_Y . The cumulative infiltration, I (L) (symbolized as F in the paper), was used as an independent variable to develop expressions for the averaged field-scale infiltration under both constant and time-dependent rainfall rates. However, Govindaraju et al. also developed an explicit expression for the field-scale infiltration rate at any given time t (T) under continuously ponded conditions of constant rainfall q_0 (L T ⁻¹) (Green & Ampt, 1911).
	K_s , μ , ω_f , ω_f , ω_f	(Continues)

87 of 96

Applied concepts	Serrano developed an explicit solution of Green and Ampt infiltration equation by constructing a lecomposition series, valid for deep homogeneous soils under ponding conditions resulting from ntense rainfall events.	Iwo models for estimating expected areal-average infiltration rate, \tilde{I} (L T ⁻¹), at the hillslope scale were presented, under the condition of a negligible infiltration of surface water running flownslope (run-on process) into soils. The soil is considered to be vertically homogeneous but he saturated hydraulic conductivity K_s (L T ⁻¹) is assumed as a lognormally distributed random variable with PDF, $f_{K_s}(K)$, characterized by its mean value $\overline{K_s}$ and coefficient of variation $\Sigma V(K_s)$. The first model (1) assumes that the areal-average infiltration is partly rainfall-controlled, and partly soil-controlled. It was developed based on the formulation of the field-scale infiltration are for a given realization of K_s and following Govindaraju et al. (2001). The second model (2) neorporates the run-on process and is based on an empirical approach that uses an effective eaturated hydraulic conductivity K_{se} (L T ⁻¹), derived for each specific rainfall event of duration Γ_s (T).	Irick et al. used the GA approach to deduce a new implicit equation for constant- and alling-head conditions by using the term <i>R</i> (Elrick et al., 1995) which is the ratio of the ross-sectional area of the falling head tube, A_{pond} (L ²), to the infiltrating surface, A (L ²).
Equation(s) Where $t_p = \frac{K_y w_g(\theta_j - \theta_j)}{q_0(-K_j)} - \frac{I_j}{q_0} + t_i$ and $I_p = I_i + q_0(t_p - t_i)$ Field-scale Infiltration: $\overline{i} = q_0 [1 - \mu_{\Omega}] + \{1 + \frac{(\psi_{u_j} + h_0)(\theta_j - \theta_j)}{I}]G(K_c, 1)$ Where $t = t_i - \frac{I}{q_0}(1 - \mu_{\Omega}) - \frac{I_j}{q_0} + \frac{(\psi_{u_j} + h_0)(\theta_j - \theta_j)}{I}[G(K_c, -1) + (\psi_{u_j} + h_0)(\theta_s - \theta_j) \ln(\frac{(\psi_{u_j} + h_0)(\theta_s - \theta_j)}{I(+H_0)^{(\theta_j} - \theta_j)})]G(K_c, -1) + (\psi_{u_j} + h_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_i)} E_i(1 + H_0)(\theta_s - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) \sum_{i=1}^{\infty} \frac{G(K_c, i)}{(1 + H_0)^{(\theta_i} - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) E_i(1 + H_0)(\theta_s - \theta_j) E_i(1 + H_0)(\theta_s - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) E_i(1 + H_0)(\theta_s - \theta_j) E_i(1 + H_0)(\theta_s - \theta_j)} E_i(1 + H_0)(\theta_s - \theta_j) E_$	$I = I_0(t) + aln[\frac{I_0(t) + a}{I_{p+a}}][\frac{I_0(t) + a}{I_0(t)}] - \frac{a}{2}ln^2[\frac{I_0(t) + a}{I_{p+a}}][\frac{I_0(t) + a}{I_0(t)}] + S$ $\frac{a}{3}ln^3[\frac{I_0(t) + a}{I_{p+a}}]{\frac{I_0(t) + a}{I_0^3(t)}} - \cdots$ Where $a = (\psi + h_0)(\theta_s - \theta_t)$	$\begin{split} \vec{i} &= q_0 \left[1 - prob(K_s \leq K_c) \right] + \\ \sum_{j=1}^3 (1 + \frac{(w_{w_j} + h_0)(\theta_s - \theta_j)}{I^*}) [G(K_j) - G(K_{j-1})] \\ Where \\ Where \\ I^* &= K_j \left(\frac{(w_{w_j} + h_0)(\theta_s - \theta_j)}{q_0} + t \right) + \\ 4\sqrt{K_j} ((w_{w_j} + h_0)(\theta_s - \theta_j))^{0.00022\psi_{w_j}} (t - \frac{(w_{w_j} + h_0)(\theta_s - \theta_j)K_j}{q_0(q_0 - K_j)})^{0.5}; (1) S \\ (1) S \\ G(K_j) &= \int_0^K K_j (K) dK \text{ and } K_c = \frac{q_0 I}{1 + (\psi_{w_j} + h_0)(\theta_s - \theta_j)})^{0.5}; (2) G \\ \vec{i} = I_p (1 - \frac{K_s}{q_0}) + K_s F_s + \psi_{w_j}(\theta_s - \theta_j) \ln(\frac{I - (\psi_{w_j} + h_0)(\theta_s - \theta_j)}{p_j}) ; \\ Where \\ I_p &= \frac{K_s \psi_{w_j}(\theta_s - \theta_j)}{q_0 - K_{s_s}}; t_p = \frac{K_s \psi_{w_j}(\theta_s - \theta_j)}{q_0(q_0 - K_j)}; \\ K_{s_c} &= \overline{K_s} \{0.89 - 0.0831 \ln CV(K_s) - 0.8e^{(0.429CV(K_s) - 1.629)\frac{T_s}{t_p}}; \end{split}$	$\begin{split} I &= S_H \ t^{1/2} + 1/3 K_s t \\ t &= t_c - \frac{(\theta_1 - \theta_1)}{CK_s} \left\{ \frac{I - I_c}{(\theta_s - \theta_1)} - \frac{h_0 + \psi_{w'}}{C} \ln(\frac{(h_0 + \psi_{w'}) + CI/(\theta_s - \theta_1)}{D}) \right\} & t > t_c \ fa \\ Where \\ C &= 1 \\ C &= 1 \\ C &= 1 - \frac{(\theta_s - \theta_1)}{R}; \ R &= \frac{A_{\text{pool}}}{A} \end{split}$
fodel Year	errano 2001	orradini et al. 2002	lrick et al. 2002

(Continues)

(Continued)
A 2
TABLE

Model	Year	Equation(s)	Applied concepts
Parlange et al.	2002	$I = \frac{S_0^2}{2K} \{ t^* + \frac{1}{1-\delta} In [1 + \frac{1-\delta}{\delta} \sqrt{1-f}] \}$ Where $t^* = \frac{S_0^2}{K^2};$ $f = \frac{1}{k^2};$ $f = e^{(-2\delta^2 t_1 \frac{1+4\sqrt{2k+2Bt}}{2} - \frac{3}{k}};$ $A = \frac{1}{2} + \frac{\lambda - 2\delta}{3};$ $B = \frac{1+\sqrt{2\delta}}{2} (\frac{4\lambda - 11\delta}{3} + 1);$ $C = \frac{1}{6} + \frac{\lambda}{3};$ $\lambda = \frac{12}{25} \delta^{-1/4} e^{(\frac{-15}{4}\sqrt{\delta})}$	Parlange et al. developed an explicit approximation to Parlange's equation (1982) assuming an initially dry, homogeneous soil where the surface of the soil is saturated, but not ponded. δ varies between 0 (Green & Ampt, 1911) and 1 (Talsma & Parlange, 1972). Average value $\delta = 0.8$ or 0.85 (Haverkamp et al., 1990; Parlange et al., 1985).
Warrick et al.	2005	$\begin{split} I &= (\theta_s - \theta_i) \ z \\ \frac{K_s(t-i)}{(\theta_s - \theta_i)} &= z - z_i - (\psi_{wf} + h_i) ln(\frac{z + \psi_{wf} + h_i}{z_i + \psi_{wf} + h_i}) t_i \leq t \leq t_{i+1}, i = 0, 1, \dots \end{split}$	Cumulative infiltration was computed as a function of time-varying ponded water depths h_i (L) using a Green and Ampt analysis; the ponded depth h_i (L) changes stepwise with time.
Weiler	2005	$\begin{split} I_m &= \frac{1}{2} \frac{b^{1/3}}{(\theta_s - \theta_l)} + \frac{1}{2} \frac{a}{b^{1/3}} + \frac{1}{2} r_f \\ \text{Where} \\ \text{Where} \\ a &= (\theta_s - \theta_l) r_f^2; \\ b &= r_f (\theta_s - \theta_l)^2 [12c - a + 2\sqrt{6c(6c - a)}]; \\ c &= K_{s,m} (\psi_{wf,m} + h_0) \\ c^{1/m} &= K_{s,m} (\frac{\psi_{wf,m} + h_0}{m} + 1) \end{split}$ Vertical I	Weiler developed an infiltration model which combines macropore flow variability to model dual- permeability soils using analytical solutions of the Green–Ampt equation which serve as the basis for the model.
Govindaraju et al.	2006	\overline{I} from Equations (9) and (13) in Govindaraju et al.'s paper. Where $F_c = \frac{I}{I + (y_{w_f} + h_0)(\theta_s - \theta_f)}$ and $G_{K_s}(K_1, \xi) = \int_0^K K^{\xi} f_K(K) dK$	A semi-analytical model estimating the areal-average infiltration rate at hillslope scale was presented, which neglects the infiltration of surface water running downslope into pervious soils (run-on process). It accounts for spatial heterogeneity of the saturated hydraulic conductivity, K_s (L T ⁻¹), and rainfall rate, q_0 (L T ⁻¹). The K_s field is characterized by a lognormal probability density function with PDF, $f_{K_s}(K)$, characterized by its mean value $\overline{K_s}$ and coefficient of variation CV(K_s), while the rainfall rate q_0 (symbolized as r in the paper) is represented by a uniform distribution between two extreme values, r_{\min} and $r_{\min} + R$. The model formulation relies upon the use of cumulative infiltration (symbolized as F in the paper) as the independent variable which is expressed as function of time for use in practical applications.
Morbidelli et al.	. 2006	$\vec{i} = \frac{1}{A} \int_{1}^{A} \int_{1}^{I} (q_0 - \frac{s^{1/2}}{\epsilon_{\text{Maning}}} \frac{\partial R^{3/3}}{\partial x}) dA_1 + \int_{A_2}^{I} \int_{1}^{I} i dA_2$ $i = K_s + \frac{K_s(\theta_s - \theta_s)(w_{ssr} + h_0)}{I}$	Morbidelli et al. explored the role of spatial heterogeneity, in both the saturated hydraulic conductivity K_s (L T ⁻¹) and rainfall intensity q_0 (L T ⁻¹), on the integrated hydrological response of a natural slope. On this basis, Morbidelli et al. (2006) developed a model which estimates the areal-average infiltration rate \bar{i} (L T ⁻¹) in the plane area A (L ²), partly controlled (over the unsaturated area A ₁ (L ²)) by the rainfall and run-on, and partly controlled by the soil (saturated area A ₂ (L ²)).

Model	Year	Equation(s)	Apr	olied concepts
Lassabatère et al.	2006	$I = S_0 t^{0.5} + [A(1 - B)S_0^2 + Bi_{\infty}]t \text{ small } t$ $I = (AS^2 + K_s) t + C \frac{S^2}{K_s} \text{ large } t$ Where $A = \frac{\gamma}{r(\theta_s - \theta_t)};$ $B = \frac{\gamma}{2^{-\beta}} [1 - (\frac{\theta_s}{\theta_s})^n] + (\frac{\theta_s}{\theta_s})^n;$ $C = \frac{1}{2(1 - (\frac{\theta_s}{\theta_s})^n)(1 - \beta)} In(\frac{1}{\beta});$ $i_{\infty} = AS_0^2 + K_s$	Lass in H equi stea $\beta \approx$ Sme	subatère et al. adopted the BEST approach; this latter uses the following equation developed laverkamp et al. (1994): $I = S_0 t^{0.5} + [AS_0^2 + BK_s]t$ for short times and expresses an ivalent equation by replacing the hydraulic conductivity K_s (L T ⁻¹) by the formula of the dy-state infiltration rate t_{∞} . 0.6 and $\gamma \approx 0.75$, which applies for most soils when $\theta_i < 0.25\theta_s$ (Haverkamp et al., 1994; stiem et al., 1994).
Young	2006	Steady rainfall $p(t)$: $i = q_0 \cos(\gamma_0)$ $K_s[t - (t_p - t_s)]cos(\gamma_0) = I - \frac{(y_{w_s} + h_0)(\theta_s - \theta_i)}{cos(\gamma_0)} In[1 + \frac{Icos(\gamma_0)}{(y_{w_i} + h_0)(\theta_s - \theta_i)}]$ $t > t_p$ Unsteady rainfall $p(t)$: Detailed derivation is presented in the paper's Appendix.	$t \leq t_p$ into $\int_{s-\theta(t)}^{t} 1 \leq t_p$ (L T t > t	n and Young quantified and explained the effects of slope angle γ_0 (degrees) on infiltration homogeneous and isotropic soils by extending the Green-Ampt equation onto sloping aces. For the steady rainfall case, the infiltration rate is determined by the rainfall intensity q_0 $^{-1}$) before ponding (i.e., $t \leq t_p$) and is calculated using the GA model after ponding (i.e., t_p). For unsteady rainfall, detailed derivation is presented in the appendix.
Warrick and Lazarovitch	2007	$I = I_{1D} + \frac{\gamma S_0^{2t}}{w(q_s - \theta_t)}$ $i = K_s + \frac{\gamma S_0^{2}}{w(q_s - \theta_t)}$	$\begin{array}{l} \text{War} \\ \text{War} \\ \text{widt} \\ \text{widt} \\ \text{expi} \\ \text{expi} \\ \text{infill} \end{array}$	rick and Lazarovitch addressed two-dimensional infiltration from water strip sources of th w (L) on the soil surface. The assumption is that when the cumulative infiltration is ressed per unit area of the wetted strip, the difference of that value and one-dimensional tration is linear with time.
Warrick et al.	2007	$\frac{I}{W^*} = I_{1D} + \frac{\gamma S_0^2 I}{W(\theta_0 - \theta_1)}$ $i = W^* K_s + \frac{W^* \gamma S_0^2}{W(\theta_s - \theta_1)}$	$l \rightarrow \infty$ basis corr was was hav War	rick addressed infiltration from furrows or narrow channels of wetted perimeter W (L). The c approach was to develop the two-dimensional infiltration I (L) as a combination of the esponding one-dimensional vertical I_{1D} (L) and an edge effect. Also, a simplified expression found for the limiting steady-state case, which is analogous to Wooding's equation for tration from a shallow pond. erkamp et al. rationalized that a reasonable bound on γ was 0.6–0.8, but the results of rick and Lazarovitch (2007) for the strip showed generally a wider range from 0.6 to 1.1.
Assouline et al	. 2007	$i = q_0 (t)$ $i = i_{cap} (I_{cap})$	$t \leq t_p$ A si $t > t_p$ Before infill mathematical for the second seco	mple accurate method was presented to study infiltration under variable intensity rainfall. ore ponding $(t \le t_p)$, infiltration rate is equal to the rainfall rate. After ponding $(t > t_p)$, the tration rate i_{cap} (L T ⁻¹) is a unique function of cumulative infiltration I_{cap} (L). Many hematical expressions can be readily adapted to represent available i_{cap} (e.g., Green & Ampt, 1; Kostiakov, 1932; Horton, 1940; Philip, 1957a; Smith & Parlange, 1978).
Germann et al.	2007	$ \begin{split} i &= 0 \\ i &= b_R \theta_R^3 \\ i &= b_R \theta_R^3 (\frac{t_d(z) - T_s}{1 - T_s})^{3/2} \\ Where \\ t_w(z) &= \frac{z}{b_R \theta_R^2}; t_d(z) = T_s + \frac{t_w(z)}{3} \end{split} $	$t < t_w(z)$ Gern $t \le t_d(z)$ stead $t > t_d(z)$ while	nan et al. introduced a rivulet of conductance b_R (L T ⁻¹) modeled as Stokes flow assuming ly and gravity-driven flow in which the effects of capillarity on infiltration are negligible, e viscous momentum dissipation impedes it. (Continues)

1.1.1.1			
Model Essig et al.	Year 2009	Equation(s) $\overline{i} z_{iv} = \cos \gamma_0 \overline{K} z_{iv} - \frac{\psi_{wi}}{(1-n)} (K_i S_i^{-1/\lambda} - \overline{KS}^{-1/\lambda})$	Appued concepts Essig et al. developed a : (degrees) using the Broo (1856), applicable for di soil surface), flux (const
Valiantzas	2010	$I = S_0 t^{1/2} + \frac{K_3}{2} t + \frac{K_3^2}{8S_0} t^{3/2}$ no ponding $I = S_H t^{1/2} + \frac{K_3}{2} t + \frac{K_3^2}{8S_0} t^{3/2}$ ponding	A simple mathematical f equation (Philip, 1957b)
Su	2010	$I = S_0 t^{\beta_4/2} + At$	A new equation of 1D cu Fokker–Planck equation two-parameter infiltratio
Corradini et al.	2011	$\begin{split} & I_{1,s} < K_{1,h} \\ & I_{0} = q_{0} + K_{1,i} \\ & I_{1} = I_{1,p} + \sqrt{2K_{1,s}G_{1}(w_{i},w_{0})} [I^{1/2} - I_{p}^{1/2}] + \frac{1}{3}K_{1,s}[I - I_{p}] + \\ & I_{1} = I_{1,p} + \sqrt{2K_{1,s}G_{1}(w_{i},w_{0})} \\ & I_{1,s} = I_{1,p} + \sqrt{2K_{1,s}G_{1}(w_{i},w_{0})}] \\ & I_{1,s} = K_{1,s} [I + \frac{2K_{1,s}^{3}}{\theta_{0,s}-\theta_{1,0}G_{1}(w_{i,0})}] \\ & I_{1,p} = [I + \frac{2K_{1,s}^{3}}{\theta_{0}-K_{1,s}}] \\ & I_{1,p} = [I + \frac{B_{1,p}K_{1,s}(\theta_{1,s}-\theta_{1,0})G_{1}(w_{1,0})}{\theta_{0}-K_{1,s}}] ; t_{p} = I_{1,p} / q_{0}; K_{1,h} = \frac{q_{0}}{1} \\ & K_{1,s} = [I + \frac{B_{1,p}K_{1,s}(\theta_{1,s}-\theta_{1,0})G_{1}(w_{1,0})}{\theta_{0}-K_{1,s}}] ; t_{p} = I_{1,p} / q_{0}; K_{1,h} = \frac{q_{0}}{1} \\ & I_{1,p} = [I + \frac{B_{1,p}K_{1,s}(\theta_{1,s}-\theta_{1,0})G_{1}(w_{1,0})]}{\theta_{0}-K_{1,s}} ; \\ & G_{1} (w_{1,0}) = \frac{1}{K_{1,s}} \int_{V} K_{1}(w)dw; K_{1} (w) = K_{1,s} [I + (\frac{w-d_{1}}{w_{1,s}})^{c_{1}}] \\ & I_{1,s} = I_{1,s} [I + \frac{G_{1}(w_{1,0})}{\theta_{1,s}}] \\ & I_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{0}-K_{1,s}}] ; \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{0}-K_{1,s}}] ; \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{1,s}}] \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{1,s}}] \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{1,s}}] ; \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{1,s}}] ; \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{1,s}}] \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{1,s}}] \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{1,s}}] ; \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{1,s}}] ; \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{1,s}}] \\ & F_{1,s} = [I + \frac{B_{1,s}(W_{1,s})}{\theta_{1,s}}] ; \\ & F_{1,s} =$	A simple conceptual mo the upper layer much mc reformulation of a conce whether ponding occurs $K_{1,s} < K_{1,h}$) or has mow $K_{1,s}$ (L T-1) represents the T-1) represents the satur the time the wetting from entirely within the upper extends into the lower la and $d\psi_c/dt$ is negligible Then, parameterized for determined based on the
Swamee et al.	2012	$I = (\psi_{w_f} + h_0)(\theta_s - \theta_i)[1.94(t^*)^{0.74} + (t^*)^{1.429}]^{0.7} $ (1) $I = (\psi_{w_f} + h_0)(\theta_s - \theta_i)[2.66(t^*)^{1.124} + (t^*)^{2.174}]^{0.46} $ (2) Where $t^* = \frac{(\psi_{w_f} + h_0)(\theta_s - \theta_i)}{(\psi_{w_f} + h_0)(\theta_s - \theta_i)} t$	Based on (1) the Green-A Swamee et al. generated method. The main differ that (1) considers a soil v

Applied concepts
3.5 sig et al. developed a simplified 1-D sharp-front model for sloping surfaces of slope angle γ_0
degrees) using the Brooks and Corey (1964) relationship in combination with Darcy's law
1856), applicable for different boundary conditions: concentration (constant water content at the
oil surface), flux (constant rainfall rate at the soil surface), and constant pressure head.
v simple mathematical form of an infiltration equation is developed using the two-algebraic
quation (Philip, 1957b), which applies for the complete time range.

A new equation of 1D cumulative infiltration into swelling soils is derived from the fractional Fokker–Planck equation (fFPE) of flow in swelling porous media, following the form of Philip's two-parameter infiltration equation (Philip, 1957b).

A simple conceptual model was proposed for local infiltration into a two-layered soil profile with he upper layer much more permeable than the subsoil under any rainfall pattern. It is a eformulation of a conceptual model of Corradini et al. (2000). Two conditions exist, based on whether ponding occurs while the wetting front is entirely within the surface layer (i.e., $K_{1,s} < K_{1,h}$) or has moved below the interface between layers (i.e., $K_{1,s} \ge K_{1,h}$). In this notation $K_{1,s}$ (L T-1) represents the saturated hydraulic conductivity of the upper soil layer and $K_{1,h}$ (L T-1) represents the saturated hydraulic conductivity value that is needed to achieve ponding by he time the wetting front reaches the interface. For $K_{1,s} < K_{1,h}$, the dynamic wetting front is antirely within the upper layer, yielding the ponding time tp (T). For the case when the front extends into the lower layer ($t \ge t_c$) and $\theta_{1,c}$ is rather close to $\theta_{1,s}$, it is assumed that $K_{1,c} \approx K_{1,s}$ and dw_c/dt is negligible because $dw_1/\theta_1 \to 0$ as $\theta_1 \to \theta_{1,s}$. Then, parameterized forms for the time when the wetting front reaches the interface is determined based on the time of ponding t_p (T) associated with ($K_{1,s} \ge K_{1,h}$). Based on (1) the Green-Ampt (1911) and (2) the Talsma– Parlange (1972) implicit equations, Swamee et al. generated two explicit expressions for cumulative infiltration using a curve-fitting method. The main difference between the Green–Ampt and Talsma–Parlange assumptions is that (1) considers a soil which has a rapidly varying diffusivity D (L² T⁻¹) and a near-constant hydraulic conductivity $K = K_s$ (L T⁻¹) while (2) assumes that D and $\partial K/\partial\theta$ are proportional.

Model	Year	Equation(s)	Applied concepts
Govindaraju et al.	2012	Local-scale Infiltration: $I = q_0 t$ $A(I^3 - I_p^3) + B(I^2 - I_p^2) + C(I - I_p) + Dln \frac{I + \Delta \psi \Delta \theta}{I_p + \Delta \psi \Delta \theta} = P(t - t_p)$ $t > t_p$ Where $A = 1/3$; Where $A = 1/3$; $B = \Delta \theta/2(3a_4 - \Delta \psi)$; $C = (\Delta \psi \Delta \theta)^2 - 3a_4 \Delta \psi \Delta \theta^2 + 3(a_4 \Delta \theta)^2$; $D = -(\Delta \psi \Delta \theta)^3 + 3a_4 \Delta \psi^2 \Delta \theta^3 - 3a_4^2 \Delta \psi \Delta \theta^3$; $P = 3(a_4 \Delta \theta)^2 + 3a_4 \Delta \psi^2 \Delta \theta^3 - 3a_4^2 \Delta \psi \Delta \theta^3$; $P = 3(a_4 \Delta \theta)^2 + 3a_4 \Delta \psi^2 \Delta \theta^3 - 3a_4^2 \Delta \psi \Delta \theta^3$; $P = 3(a_4 \Delta \theta)^2 K_{s,0}$ $t_p = I_p / p \text{ and } p = \frac{3(a_4 \Delta \theta)^2 (I_1 + \Delta \psi \Delta \theta)}{I_p + 3(a_4 \Delta \theta)^2 I_p} G(K_c, 1)$ Where $I = q_0 [1 - G(K_c, 0)] + \frac{3(a_4 \Delta \theta)^2 (I_1 + \Delta \psi \Delta \theta)}{I^2 + 3(a_4 \Delta \theta)^2 I_p} G(K_c, 1)$ Where $I \text{ from Equations (12) and (13), G(K_c, \xi) \text{ from Equation (9) and } K_cfrom Equation (10)$	Govindaraju et al. stud of heterogeneous soils non-uniformity in the s for infiltration refers to to a power law) and is field-scale infiltration $_{\rm I}$ conductivity is represen standard deviation σ_Y .
Ali et al.	2013	$I = (\psi_{ivf} + h_0)(\theta_s - \theta_i) [\sqrt{\frac{F_1 K_s}{(\psi_{vf} + h_0)(\theta_s - \theta_i)}} t + F_2 + F_3]$	By replacing the logari polynomials, Ali et al. cumulative infiltration, The universal values of
Almedeij and Esen	2014	$\begin{split} I = \psi_{w_f} \left(\theta_s - \theta_f \right) (0.65t^* + \sqrt{0.25t^{*2} + 2t^*}) & 0 \le t \le t_p \\ \text{Where } t^* = \frac{\kappa_s}{\psi_w(\theta_s - \theta_f)} t \\ I = \psi_{w_f}(\theta_s - \theta_f) \{ \frac{1}{2} (t^* + \sqrt{(t^*)2 + 8t^*}) + 0.15t^* \} \\ \text{Where } t^* = \frac{\kappa_s}{\psi_w(\theta_s - \theta_f)} t; \\ t_p = \frac{\kappa_s \psi_{w_f}(\theta_s - \theta_f)}{t_p(\theta_s - \theta_f)} t; \end{split}$	A proposed explicit metaes when steady rainfit case when steady rainfit time ($0 \le t \le t_p$). After Green-Ampt model; th but the equation here in remaining components natural log in GA equa
Bautista et al.	2014	$I(t_i) = I(t_{i-1}) + \Delta Z_2(t_i) + \Delta E(t_i)$ $\Delta Z_2(t_i) \text{ is defined in Bautista Eq.s (5) to (9).}$ $\Delta E(t_i) \text{ is defined in Bautista Eq.(11).}$	This article discussed a estimating two-dimens method was originally Warrick et al. (2007).
Lassabatere et al.	2014	$I = w_f I_f + (1 - w_f) I_m$ $\frac{2\Delta K_m^2}{S_{0m}^2} t = \frac{1}{1 - \beta_m} \left[\frac{2\Delta K_m}{S_{0m}^2} (I_m - K_{i,m}t) - \ln\left(\frac{\beta_m \frac{2\Delta K_m}{S_{0m}^2} (I_m - K_{i,m}t)}{\beta_m}\right) \right] \text{ and }$ $\frac{2\Delta K_r^2}{S_{0m}^2} t = \frac{1}{1 - \beta_f} \left[\frac{2\Delta K}{S_{0n}^2} (I_f - K_{i,f}t) - \ln\left(\frac{\beta_f \frac{2\Delta K_f}{S_{0n}^2} (I_f - K_{i,f}t)}{\beta_f}\right) \right]$ $I_{3D} = w_f (I_{1D,f} + \frac{\gamma_f S_{0n}^2}{r\Delta \beta_f}t) + (1 - w_f)(I_{1D,m} + \frac{\gamma_n S_{0m}^2}{r\Delta \theta_m}t)$ Where $\Delta K = K_s - K_i$ and $\Delta \theta = \theta_s - \theta_i$	Lassabatere et al. assun from infiltration into int region, while assuming infiltration fluxes into tl into individual regions, surface occupied by eac Lassabatere et al. furthe

ndaraju et al. studied the problem of local- and field-scale infiltration over a particular class terogeneous soils with the dimensionless parameter a_4 (originally called *a*) governing the uniformity in the saturated hydraulic conductivity K_s (L T⁻¹). At the local scale, the theory filtration refers to vertically nonuniform soils (K_s (L T⁻¹) decreasing with depth according power law) and is developed using a sharp front (Green–Ampt) approach. To determine-scale infiltration properties, the spatial variability in the surface saturated hydraulic variability is represented by a log-normal random field $Y = ln(K_{s,0})$ with mean μ_Y and

y replacing the logarithmic term of the GA model by sequential segmential second order olynomials, Ali et al. (2013) developed a generalized explicit model for estimation of mulative infiltration, varying the length of wetting front, $z_w(L)$. a universal values of the model's coefficients change with different ranges of $z_w/(\psi_w_f + h_0)$.

A proposed explicit modification for the infiltration model (Mein & Larson,) is presented for the case when steady rainfall rate is less than the initial infiltration capacity of the soil until ponding time (0 ≤ t ≤ t_p). After ponding (t > t_p), the cumulative infiltration will follow the classical Green-Ampt model; the designated equation and that suggested by Li et al. (1976) are similar, but the equation here imposes an additional term of 0.15t*. This additional term accounts for the remaining components of the first order approximation of the power series expansion of the natural log in GA equation.
This article discussed a methodology, derived from the two-dimensional Richards equation, for

This article discussed a methodology, derived from the two-dimensional Richards equation, for estimating two-dimensional furrow infiltration for time-variable surface flow depth $h_0(t)$. The method was originally derived assuming a constant pressure head at the infiltrating surface by Warrick et al. (2007).

assabatere et al. assumed that infiltration into the dual-permeability medium may be derived rom infiltration into individual single-permeability domains, i.e., the matrix and the fast-flow egion, while assuming that there is no water transfer between the two pore regions. As such, infiltration fluxes into the dual-permeability medium are simply a linear combination of fluxes nto individual regions, with the proportionality coefficients corresponding to the fractions of urface occupied by each region.

assabatere et al. further developed a three-dimensional water infiltration equation from a rcular disk source into dual-permeability media assuming surface pressure head $h_0 \le 0$. (Continues)

TABLE A2	(Continue	d)	
Model	Year	Equation(s)	Applied concepts
Vatankhah	2015	$I = (\psi_{w_f} + h_0)(\theta_s - \theta_i)(t^* + 2.693In[1 + 0.527\sqrt{t^*}])$ Where $t^* = \frac{K_s}{(\psi_{w_f} + h_0)(\theta_s - \theta_i)} t$	Vatankhah developed an explicit expression by further modifying the Almedeij and Esen (2014) model using a nonlinear technique to reduce the maximum absolute relative error; use Eq. (5) in the paper for any any rainfall rate whether greater or less than the initial infiltration capacity and without requiring the determination of the ponding time, $t_p(T)$.
Bautista et al.	2016	$I_{2D}^{i} = Z_{k}^{i} + E_{k}^{i}$ Computational Method 1: Use Equations (10) and (11) for Z_{1}^{i} and E_{1}^{i} . Computational Method 2: Use Equations (14)-(16) for Z_{2}^{i} Use Equations (18)-(20), and (21) for E_{2}^{i} Computational Method 3: Use Equations (23) for Z_{3}^{i} Use Equations (24) and (25) for E_{3}^{i} (constant γ) Use Equations (25) and (26) for E_{3}^{i} (depth dependent γ)	Bautista et al. proposed a methodology for estimating furrow infiltration under time-variable ponding depth. Bautista et al. (2014a) previously proposed a modification to the infiltration equation developed by Warrick et al. (2007) to account for time-variable ponding depth h_0 (1). This study further examined this problem, proposed an alternative formulation, and examined the problem of calibrating the parameter γ under variable depth conditions.
Nie et al.	2017a	$I = 0.5K_s t + \sqrt{2K_s(h_0 + \Psi_{wf})(\theta_s - \theta_i)t[1 + \frac{K_s t}{8(h_0 + \Psi_{wf})(\theta_s - \theta_i)}]}$	Nie et al. present an approximate explicit solution to the Green-Ampt (GA) infiltration model for estimating the wetting front depth of 1D infiltration based on Valiantzas (2010).
Selker and Assouline	2017	$i = K_s + \frac{\beta_0 K_s + \sqrt{\frac{2}{2} \cdot \frac{2K_s + 1}{2}}}{1 + \beta_0 \frac{(K_s - 0) \eta_{w_s f}}{2} + \sqrt{\frac{2}{(0_s - 0) \eta_{w_s f}}}} + 0.1461(\theta_s - \theta_f) 0.212[K_s f) 0.269(h_0 + \psi_{w_f}) 0.269] 0.788$	Selker and Assouline presented a simple explicit solution for ponded infiltration into soils using the Green and Ampt approach by describing early infiltration behavior in terms of the sum of gravitational flow and the exact solution for capillary imbibition. β_0 can be approximated as 2/3 (Brutsaert, 1977; Selker & Assouline, 2017; Stewart, 2019).
Stewart and Abou Najm	2018a	$I = S_0 t^{0.5} + aK_s t + \frac{S_0^2 ab}{(\theta_s - 0)/(d + \frac{2}{2})} t \qquad 0 \le t \le I = f K_s t + f (1 - a) K_s t_c$ Where $t_c = \frac{(\theta_s - 0)/(\theta_s + t_c)}{4bK_s f^2 (1 - a)^2}; f = \frac{h_0 + t_c}{d + r/2} + 1$	^c Based on two-term Philip type solutions for short and long times, the proposed model accounts for different ring sizes and depths of insertion, initial water content and matric pressure head, transient and steady-state infiltration behaviors, and non-zero water supply pressures. For real soils, 0.4 < a < 0.5 (Stewart & Abou Najm, 2018a); a was determined through curve-fitting to be approximately equal to 0.91 (Wu & Pan, 1997). In most cases, <i>a</i> = 0.45 is recommended. <i>b</i> varies between 1/2 and π/4 depending on the shape of the soil water diffusivity function (White & Sully, 1987). <i>b</i> = 0.17 (Wu & Pan, 1997). A value of <i>b</i> = 0.55 is often assumed (Haverkamp et al., 1994; Reynolds & Elrick, 1990; White & Sully, 1987). <i>λ_c</i> (L) is defined as being equal to the matric flux potential, φ(L ² T ⁻¹), scaled by <i>K_s</i> (L T ⁻¹): <i>λ_c</i> = φ/ <i>K_s</i> . According to lovino et al. (2021), <i>a</i> could be fixed in advance.
			(Continues)

Model	Year	Equation(s)		Appl
Stewart	2018	$\begin{split} I &= I_m + I_f \\ I_m &= q_{0,m} t \\ I_f &= \min(q_{0,f}, K_f t, \frac{V_f}{\Lambda_f}) \\ I_m &= q_{0,m} t_{p,m} + K_m (t - t_{p,m}) + \\ (\theta_s - \theta_l) \psi_{w_f,m} \ln \left[\frac{1 + \beta_0 \frac{(g_s - \theta_l) w_{w_f,m}}{(g_s - \theta_l) w_{w_f,m}} + \sqrt{\frac{2K_{w_f,m}}{(g_s - \theta_l) w_{w_f,m}}} \right] \\ I_f &= \min(q_{0,f} t_{p,m} + q_0 (t - t_{p,m}) - (I_m - I_{p,m}), K_{crack} t, \frac{V_f}{\Lambda_f}) \\ Where q_{0,m} &= (1 - \frac{Y_{\theta_f}}{1 - \theta_{0,s}}) q_0 \text{ and } q_{0,f} = (\frac{1 - \beta_{0,s}}{(1 - \theta_{0,s})}) q_0 \end{split}$	$t \leq t_{p,m}$ $t > t_{p,m}$	A mu infilti inters Matri rainfi
Rahmati et al.	2019	$I = S_0 t^{0.5} + \frac{2 - \beta}{3} K_s t + \frac{1}{9} (\beta^2 - \beta + 1) \frac{K^2}{S_0} t^{\frac{3}{2}}$		Rahn quasi three β car for se
Stewart	2019	$I_f = q_0 t - I_m $	$< t_{p,f}$ (1) $< t_{p,m}$ (2)	Stewa

$$I_{f} = q_{0} t - I_{m} \qquad t < t_{p,f} (1)$$

$$I_{m} = (1 - w_{f}) q_{0}t$$

$$I_{f} = w_{f} q_{0}t$$

$$I_{m} = (1 - w_{f}) K_{s,m}t \left[\left(\frac{q_{0}}{K_{s,m}} - 1 \right) \frac{t_{m}}{t} + 1 + \frac{1}{\tau} ln \left(\frac{1 + \beta_{0} \tau + \sqrt{2\tau}}{1} \right) t < t_{p,m} (4)$$

$$+ \beta_{0} \tau_{p,m} + \sqrt{2\tau_{p,m}} \right]$$

$$I_{f} = K_{s,m} t \left[\left(\frac{q_{0}}{K_{s,m}} \right) \frac{t_{s,f}}{t} + w_{f} \frac{K_{s,f}}{K_{s,m}} (1 - \frac{t_{n,f}}{t}) - I_{mp,f} \right] t \geq t_{p,f} (5)$$
Where
$$I_{mp,f} = I_{mp,f} \left[\left(\frac{q_{0}}{K_{s,m}} - 1 \right) \tau_{p,m} + \tau_{p,f} + \frac{1}{\tau} ln \left(\frac{1 + \beta_{0} \tau_{p,f} + \sqrt{2\tau_{p,m}}}{1 + \beta_{0} \tau_{p,m} + \sqrt{2\tau_{p,m}}} \right) \right];$$

$$\tau \geq t_{m,f} \left[\left(\frac{q_{0}}{K_{s,m}} - 1 \right) \tau_{p,m} + \tau_{p,f} + \frac{1}{\tau} ln \left(\frac{1 + \beta_{0} \tau_{p,f} + \sqrt{2\tau_{p,m}}}{1 + \beta_{0} \tau_{p,m} + \sqrt{2\tau_{p,m}}} \right) \right];$$

$$\tau = \frac{K_{s,m}t_{s}}{\Delta \theta_{w}w_{s,f,m}}; \tau_{p,f} = \frac{K_{s,m}t_{p,f}}{\Delta \theta_{w}w_{s,f,m}}; \tau_{p,f} = \frac{K_{s,m}t_{p,f}}{\Delta \theta_{w}w_{s,f,m}}$$

multidomain infiltration model was proposed based on Green and Ampt (1911) to estimate filtration in shrink-swell soils mediated by the matrix, which may include small-scale eraggregate shrinkage cracks, from those associated with inter-block cracks that surround the atrix. The two domains are related to the total crack porosity via a proportionality factor Υ ($0 \leq \leq 1$). To apply the Green–Ampt model in a multidomain formulation, Stewart divided the

ied concepts

ill (precipitation) rate, q_0 (L T⁻¹), between the soil matrix and border crack domains.

ahmati et al. applied the Taylor series (Philip 1957a) up to third order in powers of 0.5 to the tasi-exact implicit analytical expansion presented by Haverkamp et al. (1994) to introduce a ree-term infiltration model.

can take the value of 0.6 over the whole range of θ (Haverkamp et al., 1990). It ranges from 0.3 rs and and 1.7 for silty soils (Lassabatère et al., 2009; Rahmati et al., 2019).

(1) Stewart applied the Green-Ampt infiltration model within a dual-domain framework to
(2) distinguish water movement through the soil matrix vs. through macropores. For all time prior to ponding in the macropore domain (*t* < *t*_{*p*,*f*}), the cumulative infiltration as preferential flow is determined as the cumulative precipitation minus cumulative infiltration into the soil matrix (1). Before the soil matrix experiences ponding (*t* < *t*_{*p*,*m*}), both domains absorb rainfall in proportion to their surface-connected areas (2). After the soil matrix ponds (*t* ≥ *t*_{*p*,*m*}), its cumulative infiltration into the preferential flow under a unit hydraulic gradient, cumulative infiltration into the preferential flow domain after ponding (*t* ≥ *t*_{*p*,*f*}).

 β_0 (Called α in Stewart, 2019) can be approximated as 2/3 (Brutsaert, 1977; Selker & Assouline, 2017; Stewart, 2019).

TABLE A2	(Continue	d)	
Model	Year	Equation(s)	Applied concepts
Baiamonte	2020	$I = I^* K_s t_s$ Where $I^* = 2\rho^2 \ln(\frac{\rho - \sqrt{\Theta}}{\rho^{-\sqrt{\Theta}}}) - 2\rho(\sqrt{\Theta} - \sqrt{\Theta}_i) - (\Theta - \Theta_0); \qquad 0 < \tau \le 1$ $I^* = 2\rho^2 \ln(\frac{\rho - \sqrt{\Theta}}{\rho^{-\sqrt{\Theta}}}) - 2\rho(\sqrt{\Theta}_s - \sqrt{\Theta}_i) - (\Theta - \Theta_0); \qquad \tau > 1$ $I^*, \text{ respectively.} \qquad (2$	An exact analytical solution of Richards' equation under gravity-driven infiltration and constant rainfall intensity is derived. The solution is presented under Torricelli's law, which simulates the soil hydraulic conductivity function and describes the emptying or filling process of a nonlinear water reservoir.
Su et al.	2020	$i = -K_e(\partial \psi/\partial z + 1) \qquad h \le 0 \ (i = -\partial \psi/\partial t - K_e(\partial \psi/\partial z + 1) \qquad 0 < h \le h_{\max} \ (i = -\partial \psi/\partial t - K_e(\partial \psi/\partial z + 1) \qquad 0 < h \le h_{\max} \ (i = -\partial \psi/\partial t - K_e(\partial \psi/\partial z + 1) \qquad 0 < h \le h_{\max} \ (i = K_{sh} \ S_{eh}^{0.5}[1 - (1 - S_{e}^{1/m_1})^{m_1}];$ $K_{sh} = K_s \ 10^{m(\theta_{sh} - \theta_s)};$ $\theta_{sh} = 2 - \theta_i - \frac{1}{\rho_{e(s+r_s)}} - \frac{A'' + B'' \ln(\rho_{mz})}{\rho_s};$ $S_e = [\frac{1}{1 + (\alpha \psi)^{nSSC}}]^{mSSC} \text{ and } m_{SSC} = 1 - 1/n_{SSC}$	A modified Richards model (RMSD) was developed to simulate soil water movement into deformable soils subject to the following upper boundary conditions: (1) when rainfall intensity does not exceed the infiltration capacity of the soil, and (2) when rainfall intensity exceeds the infiltration capacity of the soil. Su et al. introduced the unsaturated hydraulic conductivity of deformable soils, K_e (L T ⁻¹) and related it to physical properties using Lambe and Whitman (1979) and van Genuchten (1980, 1991) models. The model accounts for changes in saturated hydraulic conductivity (Ksh) and saturated water content (θ sh) with depth. RMSD: $\frac{\partial \theta}{\partial t} + \frac{\theta_1}{1+\theta_1} \frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} [K_e(\psi) \frac{\partial \psi}{\partial z}] + \frac{\partial K_e(\psi)}{\partial z} + W_r$ Where $W_r = -S_r^2 \Delta x \Delta y \Delta z \Delta t$ S, (T ⁻¹) is the water absorption strength of plant roots.
Poulovassilis and Argyrokastritis	2020	$I = S_0 t^{0.5} (1 - e^{-c_0 (\frac{\delta_x}{S})^{0.5}}) + K_s t$	A new two-term analytical equation, which takes the form of Philip's two-term equation, was derived for estimating vertical cumulative infiltration occurring in homogeneous porous media under zero ponding, including a factor a_i (L), characteristic of each porous body, valid for all t .
Abou Najm et al.	2021	$i_{W,R} = i(1 - e^{-a_{w}t})$	Abou Najm et al. (2021) proposed a simple correction term $(1 - e^{-a_{m'}})$ that can be applied to any infiltration model to simulate infiltration behaviors of water-repellent soils. The correction term starts with a value of zero at the beginning of the infiltration experiment ($t = 0$) and asymptotically approaches 1 as time increases, thus simulating decreasing soil water repellency through time. To demonstrate the effectiveness of this method, Abou Najm et al. (2021) used a simple two-term infiltration model similar to two-term Philip type solution (Check Equation 9 in the paper).
			(Continues)

TABLE A2 (Continued)

Model Ye Di Prima et al. 20	ar Equation(s) $I = S_0 \sqrt{t} - \frac{S_0 \sqrt{\pi}}{2\sqrt{a_{trr}}} \operatorname{erf}(\sqrt{a_{trr}})$ $I = S_0 \sqrt{t} - \frac{S_0 \sqrt{\pi}}{2\sqrt{a_{trr}}} \operatorname{erf}(\sqrt{a_{trr}})$ $I = (AS^2 + K_s)t + C\frac{S^2}{K_s}$ Where $A = \frac{\gamma}{2\beta}$ $B = \frac{2\beta}{\beta} \left[1 - \left(\frac{\theta}{\theta_s}\right)^n \right] + \left(\frac{\theta}{\theta_s}\right)^n;$ $C = \frac{1}{2\gamma t + 1} \frac{1}{\lambda t + 1} \ln\left(\frac{\theta}{\theta_s}\right) \operatorname{ind}(\frac{\theta}{\theta_s})$ and	$\frac{1}{r^{t}} + [A(1-B)S_{0}^{2} + Bi_{\infty}]t - \frac{1}{r_{\infty}} = AS_{0}^{2} + K_{s}$	small t large t	Applied concepts Di Prima et al. presented an adaptation of the BEST method, namely BEST-WR, to characterize soils at any stage of water-repellency. They modified the Haverkamp explicit transient infiltration model, included in BEST for modeling infiltration data, by embedding the scaling factor $(1 - e^{-a_{ar}t})$ introduced by Abou Najm et al. (2021) that describes the rate of attenuation of infiltration rate due to water repellency. Di Prima et al. suggest B = 0.467 and C = 0.639 for most initially dry soils. The general equations of B and C presented here are defined by Lassabatere et al. (2006).
All parameters are al	gebraically positive values, unless of	herwise specified.		

Note: Subscripts: m, f, and h denote the matrix, the fast-flow, and the interface between these two regions; p, uv, and d denote the ponding, wetting, and draining stage; i, s, r, and ∞ denote the initial, saturated, relative, and final phase, respectively; 0 denotes the soil surface (z = 0).