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Abstract

We introduce TensorMixedStates, a Julia library build on top of ITensor which allows the
simulation of quantum systems in presence of dissipation using matrix product states
(MPS). It offers three main features: i) it implements the MPS representation for mixed
states and associated operations, in particular the time evolution according to a Lind-
blad equation or using non-unitary gates, ii) it is based on ITensor, which has proven its
effectiveness and which gives access to efficient low-level tensor manipulation as well
state-of-the-art algorithms (like DMRG, TDVE conserved quantum numbers and auto-
mated parallelization), finally iii) it presents a user-friendly interface allowing writing
professional simulations for pure and mixed quantum states in a few lines of code.
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1 Introduction

The field of open quantum many-body problems is a very active area of research in Physics [1].
In the last two decades, there has been huge experimental progress in the manipulation and
in the control of quantum systems such as cold atoms, trapped ions, coupled light-matter sys-
tems or superconducting circuits to name a few. Quantum technologies and the development
of devices that are able to perform some quantum information tasks has clearly been a major
driving force in this domain. These systems are never perfectly isolated from their environ-
ment, and the presence of noise, dissipation and decoherence is often important. In some
situations the presence of the environment can give rise to interesting new phenomena and
new dynamical regime. The environment can even be exploited to engineer useful quantum
many-body states [2]. Simulating a quantum many-body problem on a classical computer is a
notoriously difficult task because the computational cost is in general exponential in the num-
ber of constituents and open quantum systems are generally no simpler [3]. Nevertheless,
numerical algorithms where the many-body states are represented (and compressed) using
tensor networks have established themselves as among the most powerful for this type of prob-
lems [4,5]. Among these methods, those based on matrix-product states (MPS) have proven
to be very successful in many situations, and for low-dimensional systems in particular [6]. In
the field of quantum computing, calculations based on MPS have raised the bar concerning
the performance that quantum processors must exceed in order to offer some quantum advan-
tage [7-11]. In fact, an external environment tends to decrease the amount of entanglement
among the degrees of freedom inside the system, and it often tends to decrease correlations.
This can be a favorable situation for tensor network representations which can exploit the
reduced correlations to achieve a better compression of the state.

While there exist several libraries for manipulating pure states with MPS (like ITensor [12]
or TenPy [13]), to our knowledge there is no general library for simulating mixed states with
MPS. We attempt here to fill this gap and this paper presents the TensorMixedStates library [14]
which allows manipulating mixed many-body quantum states in the form of MPS. It is based
on the ITensor [12] library in Julia and offers a solver for studying the time evolution of open
quantum system described by a Lindblad master equation for the density operator [1,15,16].

2 Context

In this section, we recall well known facts about quantum states and their representations with
MPS.
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2.1 Pure and mixed quantum states

In quantum mechanics, the states of a closed system form a Hilbert space #, so that a state
|y)) € H. Given an operator acting on H there are essentially three basic operations that we
may consider: i) measuring the expectation value of an observable O (with O hermitian)

(0) = (101p), (D
ii) doing some discrete evolution by applying a gate U (with U unitary)
1Y) = Ultpo), (2)
or iii) doing continuous-time evolution with the Hamiltonian H (H hermitian)
Oc|p) = —iHp). 3)

For an open system, this formulation is no longer sufficient, and a state must be represented
as a matrix density p which must be hermitian, positive with unit trace [1]. When the state is
pure, p is a projector

p =)yl )

but for general mixed states we have Tr [ pz] < 1. The three operations mentioned above for
pure states become

(0) =Tr(0p), (5)
p=UpoU", (6)
o,p =—i[H,p]. 7

For a mixed state a general discrete evolution is called a quantum map and takes the form [17]
p = Eipok], )
i

with Kraus operators {E;} satisfying > E;"Ei = 1. In a continuous-time context, the evolution,
if Markovian, can instead be modelled by the Lindblad master equation [15,16]

ap = L(p), 9)

where L is the Lindbladian
E(P)=—1[H,P]+Z(LkPL,L—E{L;{Lk,P}), (10)
k
with no particular constraints on the L.

2.2 Matrix product states and operators

In numerical simulations of quantum many-body problems, the dimension of # rapidly be-
comes a problem. We can either restrict ourselves to small systems or use approximate repre-
sentations of the states. MPS [6] provide such an approximate representation. Suppose H is
a finite tensor product of N finite-dimensional local Hilbert spaces H; of dimension d;. Thus,
we have H = H; ® H, ® --- ® Hy. That is our system is composed of N sites i with d; states
each. In the pure case, any state [1)) can be written (using simplified notations)

[) =T Ty Ty, (11)

3
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where T; is a matrix whose elements are states of site i (i.e. they belong to H; and have
dimension d;). Of course, the required T; may in general have very large dimensions (as
matrices). We will note these dimensions y;_; and y; (clearly yo = x5 = 1), they are called
the bond dimensions. Said otherwise, the T; are tensors with three indices of dimensions y;_;,
x: and d;. MPS are particularly useful when there exist matrices T; of size much smaller than
dim(#) which provide a good approximation of the target state |¢). In practice, one sets a
maximum bond dimension y, and we approximate the states of interest by MPS with y; < y.
The larger y, the larger is the precision of the approximation.

What about mixed states? Viewing the density matrix p as the element of a (larger) Hilbert
space (so-called vectorization) allows to represent it also as an MPS. Such a vectorized form
of a mixed state is denoted by |p)), and we write

lp)) =RiRy-- Ry, (12)

with the elements of R; living in a larger local space at site i which dimension is dl.z.1 For a

pure state, we have R; ~ Ti ® T, .
To operate on a MPS, we can build a matrix-product operator (MPO)

020102---ON, (13)

where the O; are matrices whose elements are operators in H; (in the pure case), that is the
O; are tensors with four indices (two of which having dimension d;) and we then have

Ol¢p) = (0 - T1)(Oy - T5) -+ (Oy - Ty). (14)

2.3 The service provided by TensorMixedStates

The ITensor library provides tools to manipulate MPS and MPO. In particular, it contains pow-
erful tools to create MPO from operators. For mixed states things however get more compli-
cated. The main issue is the following: in the pure case, given one operator O and a state |v)
there is essentially a single operation that needs to be performed, namely |y)) — O|y). To
perform this operation one possibility is to compute the MPO for O and the MPS for v and
ITensor has been designed from the ground up to do this efficiently. But it was not designed
with mixed states in mind. In the mixed case, from one operator and a state p one must be
able to compute four new objects: Tr(Op), 0pO', [0, p] and {070, p}.

In particular, it has been necessary to implement from scratch the functions to create the
different required MPO and on this path we also had to change the way operators are managed.
The TensorMixedStates library is automatically able to manage all the types of sites available
in ITensor (including user-defined ones) and all the operators (including user-defined ones,
multi-site operators and fermionic operators).

3 Features

3.1 Design choices

The TensorMixedStates library (TMS) is the successor of the Lindbladmpo library [19, 20].
The Lindbladmpo library was based on the C++ version of the ITensor library and is limited

INote that, contrary to the matrix-product density operator representation [18], the representation of Eq. 12
does not guaranty that p is positive. In practice this is not an issue as long as the bond dimension is large enough
to ensure a sufficient accuracy for the observables of interest.
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to systems of qubits by design. As the ITensor library has migrated to the Julia language, the
old C++ version lacks in features like the TDVP algorithm for time evolution [21].

In this context, we decided to create a more general and more flexible software to address
the simulation of open quantum systems with non-unitary evolution. The choice of the Julia
language was then natural to ease the interactions with the ITensor library. Moreover, using
Julia helped us develop a more flexible and more user-friendly interface. Finally, the combined
use of Julia and ITensor bring automated parallelization for free.

We thus decided for a double interface: (i) a high-level interface allows designing pro-
fessional simulations in a few lines of code as demonstrated in section 3.8. (ii) a low-level
interface gives access to all the features of the library as we now explain.

3.2 Installation and usage

To use the TMS library, one must first add it to the Julia environment. While the software is
still in rapid development, we keep it to GitHub, so one must write at the julia prompt

ladd https://github.com/jerhoud/TensorMixedStates. jl

later it will be available on the julia registry and one would add it in the usual way by
ladd TensorMixedStates

Then, to use it in a script, one has to add a "using" clause at the top of the file
using TensorMixedStates

Note that the examples shown in this article, together with other examples are available
with the source on GitHub [14].

3.3 Space

The first step in a quantum simulation consists in describing the Hilbert space. In our case,
the space must be a finite product over N local finite-dimensional Hilbert spaces. Those local
spaces can be chosen independently among the "site types" proposed by ITensor. At the moment
there are six possible choices: spin-1/2 (or qubit), boson (or qudit), fermion, electron, spin
one and tJ). Note that this set is extendable by the user (see ITensor documentation [22] for
details).

In TMS, the Hilbert space is described with a System object

# a system with 10 qubits
sysl = System(10,"Qubit")

# an hybrid system with 3 sites
sys2 = System(["Qubit", "Boson", "Fermion"])

3.4 States and representations

In TMS, both pure and mixed states are represented by a State object. All operations on

State objects will work in the same way, with the same syntax independently of the nature,

pure or mixed, of the state (as long as such operations make sense for this representation).
We can build a product state (i. e. |Y) = [¢);) - -+ [3py)) for example by
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# an all up pure state for our 10 qubit system
stl = State(Pure, sysil, "Up")

# a mixed state for our hybrid system
st2 = State(Mixed, sys2, ["+", "1", "FullyMixed"])

The name of the local states (like "Up" or "1") are those defined by ITensor, this is extendable
by the user. Note that "FullyMixed" corresponds to the maximally mixed state (thermal state
at infinite temperature, p = I;/d). A State object contains three fields: state for the MPS,
type is Pure or Mixed and system is the System object.

To build more complicated states, one can form linear combinations of states, for example
we could build the GHZ state on our 10 qubit system with

ghz = (State(Pure,sysl,"Up") + State(Pure,sysl,"Dn")) / sqrt(2)

Many functions are defined for simple tasks on State objects, for example to get some
information on the state: 1length to get the number of sites, maxlinkdim to get the maximum
bond dimension, trace and trace2 to get Tr(p) and Tr(p?) and so on. To turn a pure
representation into a mixed one we can write

mixed_state = mix(pure_state)

3.5 Operators

In TMS, operators are objects of type Operator. For example, Z is the Pauli operator o*
and DZ (also called DPhase) is the associated Lindblad dissipator (dephasing jump operator).
From such operators, we can build, using Julia powerful syntax, any Hamiltonian, for example
the XX spin chain

Hamiltonian = -j * sum(X(i)X(i+1)+Y(i)Y(i+1) for i in 1:n-1)
Quantum gates applying on more than one sites are also available: one can write for example
my_gate = H(1)H(2)CNOT(1,2)H(1)H(2).
One can also create its own operators, for example a dissipative gate (or quantum channel)
Qcreate_mixed_gate(K, [1-(p+q+s), p, q, sl, [I,X,Y,Z], p, q, s)
creates the operator K defined by
Klp))=(Q—=(p+q+s))p+pXpX+qYpY +sZpZ, (15)
which one can use to define gates
my_gate = K(1; p=0.1, g=0.2, s=0.3)

to apply to states as shown below.

3.6 Algorithms

There are three main algorithms that one can use in TMS. First, we can apply an operator O
as a quantum gate. That is [y)) — O|y) for pure states and p — OpO" for mixed states. This
is done by

new_state = apply(my_gate, old_state),

6
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Second, we can perform some time evolution. That is integrate ,|y)) = —iH|) for pure
state and the Lindblad equation for mixed states. There are two functions to do this, one using
TDVP (called tdvp) [21] and one using the W! or W!! (called approx_W) MPO approximation
(see Zaletel et al. [23] and [24]). The syntax is as follows:

lindbladian = -im * hamiltonian + dissipators

new_state = tdvp(-im * hamiltonian, t, old_state; optiomns...)
new_state = tdvp(lindbladian, t, old_state; optiomns...)

new_state approx_W(-im * hamiltonian, t, old_state; optiomns...)
new_state = approx_W(lindbladian, t, old_state; optiomns...)

where t is the integration time and the options allow many customizations, from setting the
integration time step or the details of the algorithm like truncation, to defining observers for
intermediate measurements.

Note that tdvp and approx_W can be used with time-dependent Hamiltonians and/or
dissipators.

The last algorithm is the computation of the ground state using DMRG [6, 25]. At the
moment, it is only useful for pure states and is essentially the algorithm from the ITensor
library

ground_state, energy = dmrg(hamiltonian, start_state; options...)

In the near future, it will be possible to use DMRG for mixed states to minimize the square
L' L of the Lindbladian in order to compute directly the steady-state of the system without the
need to perform a long time evolution.

3.7 Measurements

Finally, we need a way to make measurements on a State. For example, to obtain the expec-
tation value of an observable, we can write

measure(state, X(1))
A more complicated example would be
measure(state, 0.5X(1)Z(3)-im*X(2)Y(4))

One can also ask for the set of expectations values (X(1))---(X(N)) of an operator X on all
sites

measure(state, X)
or even a correlation matrix
measure(state, (X, Y))

We can also use some predefined function on State like Trace for the trace or Linkdim for
the bond dimension (this set of functions is extendable by the user). One can also make several
measures in a single call

measure(state, [X(1), X, (X, Y), Purity, Linkdim])
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3.8 High-level interface

The high-level interface of the TMS library is accessed via the function runTMS. It can be used
alone or together with the low-level interface for finer control. The goal of the high-level
interface is to be able to design fully fledged simulation in very few lines of code. All the
examples of the next section were made in this mode.

The principle is the following: define a sequence of actions to be applied on a state and
pass it to runTMS. For our first example, we have the following full script

using TensorMixedStates

hamiltonian(n) = -sum(Cdag(i)C(i+1)+Cdag(i+1)C(i) for i in 1:n-1)
dissipators(n, gamma) = sqrt(4gamma) * sum(DN(i) for i in 1:n)

sim_data(n, gamma, step) = SimData(

name = "Fermion tight-binding chain with dephasing noise",
phases = [
CreateState(

type = Mixed,

sytem = System(n, "Fermion"),

state = [ iseven(i) 7 "Occ" : "Emp" for i in 1:n ]),
Evolve(

duration = 4,

time_step = step,

algo = Tdvp(Q),

evolver = -im¥hamiltonian(n) + dissipators(n, gamma),
limits = Limits(cutoff = 1e-30, maxdim = 100),
measures = [

"density.dat" => N,
"OSEE.dat" => EE(div(n, 2))

)

runTMS (sim_data(40, 1., 0.05))

The first line brings our library in scope, the next two define the evolution operator (more
details on this model in Sec. 4.1). Then we have a function definition for sim_data to build a
SimData object corresponding to the parameters of the simulation. The name field in SimData
sets the name of the directory where the output will be stored. The phases field describes
the simulation. Here there are two phases: first create a state, second compute some time
evolution. The fields names are self-explanatory. The measures field describes the data files
created by the simulation (here two files density.dat and OSEE.dat) and what quantities
to be written in each of them (here the mean fermion occupancy measured on each site and
the operator-space entanglement entropy (OSEE) at the middle point of the chain). Note that
one can put more than one observable per file. The last line calls runTMS with the chosen
parameters.

In this case, runTMS will create a directory with the given name, run the simulation and
put the results in the corresponding files. In addition to the data files, it will also create a "log"
file to follow the progress of the simulation and register information and warnings, it will also
copy the program script to prog. j1 for information and reproducibility.

8
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In addition to CreateState and Evolve there are other available phases: SaveState to
save the state to disk in HDF5 format, LoadState to load from disk a state previously saved
by SaveState, ToMixed to turn a pure representation into a mixed representation, Dmrg to use
the DMRG algorithm and Gates to apply gates.

4 Examples

In this section, we illustrate the use of the TMS library to study four different dissipative quan-
tum problems evolving according to a Lindblad equation. The examples are chosen because
they have been studied in the recent literature and because some exact solution is available.
These solutions allow checking quantitatively the numerical results. The first example is a
fermionic chain with some dephasing noise (Sec. 4.1), the second example is a spin chain
with boundary dissipation (Sec. 4.2), the third example is a one-dimensional bosonic model
with an incoherent particle source in the center of the chain (Sec. 4.3) and the fourth example
(Sec. 4.4) is the fermionic version of the previous bosonic model.

Finally, Sec. 4.5 presents a study of a deep quantum circuit which involves unitary 2-qubit
gates as well as some dissipative channels which model qubit errors.

4.1 Fermion tight-binding chain with dephasing noise

We consider here the one-dimensional spinless fermion model studied in [26]. The initial state
is a pure state where the even sites are occupied, and the odd ones are empty. The system then
evolves under the action of a nearest-neighbor hopping Hamiltonian

N-1

H=— Z (cjciﬂ + CiT+1Ci) (16)

i=1

as well as under the following "dephasing" jump operators:

L; = v/ 4yn,, 17)

where n; = c;rcl- is the fermion number operator on site i. With the TMS library such dissipative
model is very easy to define. Using the high-level interface the Hamiltonian and the jump
operators are combined into an evolver (see Section 3.8 for the full listing)

hamiltonian(n) = -sum(Cdag(i)C(i+1)+Cdag(i+1)C(i) for i in 1:n-1)
dissipators(n, gamma) = sqrt(4gamma) * sum(DN(i) for i in 1:n)

Dissipative problems where the Hamiltonian and the Lindblad are quadratic in the creation
and annihilation operators can be solved exactly [27-30]. The present model was recently
studied in the limit of an infinite chain [26]. The authors of this study demonstrated that the
system displays some oscillatory decay or some over-damped decay, depending on the strength
v of the dissipation. In Fig. 1 some numerical results for the fermion density, obtained with
the present library, are compared to the exact asymptotic results derived in [26]. The fermion
density converges to 1/2 at long times and to magnify how such convergence occurs the vertical
axis represents deviation from 1/2 multiplied by an exponential factor exp(4yt). We observe
a good agreement between the simulations and the analytical behavior derived in [26].

The bottom panel of Fig. 1 represents the evolution of the OSEE [31,32] associated to a
bipartition of the chain in the center. The OSEE quantifies the total amount of correlations
between the two subsystems. This quantity is very useful in the context of MPS since the bond
dimension y (on the bond associated to the bipartition) required to represent p faithfully is
expected to obey a scaling of the form In(y ) ~ OSEE.

9
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Figure 1: Top: fermion density (n;)(t) on even sites i as a function of time in a
tight binding chain with dephasing noise and three different strength of the noise
(y =0.75,1.0,1.25). The density is evaluated by averaging over 4 sites in the center
of the system. Full lines: exact asymptotic results of Ref. [26]. Bottom: OSEE as
a function of time, computed for the half of the chain. The simulations have been
carried out with the W algorithm at order 4 and with TDVP (see legend).
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4.2 XX spin chain with boundary dissipation

We illustrate here the use of the TMS library to simulate the dynamics of an open spin-% chain

with Lindblad terms acting at its boundaries. The Hamiltonian is the so-called XX model
N-1
H= Z (‘7;{0;11 + ‘7?/‘71?;1)’ (18)
i=1

and the dissipation is due to four Lindblad operators acting and both ends of the chain:

1+‘U/L + 1+MR +
Li=\|¢ o7, Ly=\l¢ oINS 19
1 \ L 2 1 3 \ R 2 N ( )
1— _ 1— _
L,= \ eL ZMLal , Ly= \ R 2‘uRoN,. (20)

of =(o*xioY)/2, g1 r are the strengths of the coupling between the spin chain and the
reservoirs at both ends. uy r are the magnetization of each reservoir. Coding such model with
TMS can be done by defining the following evolver:

hamiltonian(n) = sum(X(i)*X(i+1)+Y(i)*Y(i+1) for i in 1:n-1)
dissipators(n, eL, mulL, eR, muR) =
sqrt (eLx (1+mul) /2)*DUp(1) + sqrt(el*(1-mul)/2)*DDn(1) +
sqrt (eR*(1+muR) /2) *DUp(n) + sqrt(eR*(1-muR)/2)*DDn(n)

Via the Jordan-Wigner transformation the Hamiltonian above maps to a quadratic fermionic
Hamiltonian and the Lindblad terms become linear in the fermionic creation and annihilation
operators. This model is thus said to be quasi-free [30,33] and can be solved exactly. The dy-
namics of this model was solved exactly [34] (see also [27] for the exact steady-state). Fig. 2
displays the time evolution of two observables: the magnetization (o) on the first spin and
the spin current (0"1‘0'%' —ai‘a%’ ) on the first bond. The data are in agreement with the results

of Ref. [34].

4.3 Free bosons with a localized source

We show here how the library can be used to simulate a dissipative system with bosonic de-
grees of freedom. The unitary part of the dynamics is generated by a free (quadratic) boson

Hamiltonian on a chain:
N/2

H= > (blbj+bb) 1)
i=—N/2+1

The model contains a single Lindblad term which acts as a particle source at center (site i = 0)
of the chain, at a rate parameterized by I':2

Coding such model can be done by defining the following evolver:

hamiltonian(n) = sum(A(i)*Adag(i+1)+Adag(i)*A(i+1) for i in 1:n-1)
dissipators(n, Gamma) = sqrt(2Gamma) * DAdag(div(n, 2))

2Compared with Eq. 2 of Ref. [35], the factor 2 in the equation below comes from their different normalization
used in the Lindblad equation.

11



SciPost Physics Codebases

Submission

08 T T T T T T T
0.7 i B
0.6 |
0.5 1
| €L=5.0 8R=1 .0
,:\— 0.4 steady state mag. gy =5.0 eg=1.0
\9 03 €L=].O €R=1.0 -
’ steady state mag. g =1.0eg=1.0 -----
0.2
0.1
0
_0.1 | | | | | | |
0 5 10 15 20 25 30 35 40
09 T T T T T T T
0.8 B
0.7 1
[
N
3N
Y
=
g
-
3
=1
B
0.2 g1 =5.0 eg=1.0 .
steady state current e =5.0 eg=1.0
0.1 €L=].0 8R=1.0 - 7
0 | | steadyI state current e =1 i0 £R=1.OI -----
0 5 10 15 20 25 30 35 40

t

Figure 2: XX spin chain with boundary dissipation (Egs. 18-20) Top: the magnetiza-
tion (oY) on the first spin as a function of time. Bottom: spin current (c¥o3 —oy 07 )
on the first bond. Physical parameters: infinite-temperature initial state, system size
N =30, u;, = —ug = 1.0, eg = 1.0. Green curves: &, = 5.0, red curves: ¢, = 1.0.
Simulation parameters: maximum bond dimension y = 300, time step 7 = 0.1,

algorithm: W' at order 4. These curves should be compared with Fig. 4 of [34].
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This model is quasi-free and has been studied analytically by Krapivsky et al. [35] in the case
where the chain is empty at t = 0. In dimension one, the model displays a phase transition
separating a regime (I' < 2) where the total number of bosons N, (t) = Zi(b;rbi) grows
quadratically and a regime (' > 2) where N(t) grows exponentially. We illustrate here the
use of the TMS library to study the small I' regime. To perform some simulation one has to
specify some maximum boson occupation of the sites. To set the maximum occupation to 5
throughout the system and to start with an empty state in a mixed state representation one
can write:

CreateState(
type = Mixed,
system = System(n, "Boson"; dim = 5),
state = "O"

)

In Fig. 3 the simulation results are compared with a numerically exact solution of the
model. The exact solution is obtained by solving a set of N2 linear differential equations for
the quantities (blT b;). These equations are given in Eq. 10 of [35]. Two quantities are displayed

in Fig. 3: the density profile (b;.i'bi) (top panel) at time t = 1 and t = 5, and the evolution of
N(t), the mean number of boson (bottom panel). Up to time t ~ 5 this simulation carried out
using the W algorithm at order 4 with a time step T = 0.1 and a maximum bond dimension
x = 200 appears to describe the dynamics quite accurately. Due to the large local Hilbert space
dimension of such bosonic system is however not straightforward to obtain accurate results
at longer times. For this reason, checking the asymptotic results derived analytically in [35]
would require some relatively heavy simulations.

4.4 Free fermions with a localized source

The model considered in this section is the fermionic analog of the previous model. The Hamil-
tonian describes spinless fermions hopping on the chain

N/2
H= Z (ci’cj-l-c]fci) (23)

i=—N/2+1

and the particle injection in the center of the chain is due to the following jump operators
Ly=v2Ic,. (24)

As for the model of Sec. 4.3, the model is quasi-free, and it has been studied analyti-
cally [35]. The figures 4 and 5 display several quantities: the density profile at three different
times, the time evolution of the mean total number of fermions N(t), the OSEE associated to
a partition in the center of the system, the second Rényi entropy S, = —In (Tr[ pz]), and the
accumulated trace error. For the density profile (n;(t)), N(t) and for the entropy S,(t) the
results are compared with the exact solution.?

Fig. 5 allows to compare the precision of the various algorithms (TDVP versus W' at differ-
ent orders) and for various values of the time step T and maximum bond dimension y. In this
example where the particle injection rate is ' = 0.2 the all simulations (except for W at order
1) are quantitatively accurate up to t ~ 5. Beyond that time errors begin to be visible. Among
the different simulations, the most accurate one is the one corresponding to y = 200 with

3This solution was obtained by solving numerically with Maple the set of N? differential equations describing
the evolution of the two-point correlations Tr [pcifcj], see Egs. 17 of Ref. [36]. Up to some signs these equations
are very similar to those describing the dynamics of the 2-point correlations in the boson model of Sec. 4.3.
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Figure 3: Free boson model with a localized source (Egs. 21-22). Top: density profile
(b;rbi) Bottom: total number of boson N(t), numerics versus exact result. Physical
parameters: system size N = 50, I' = 0.2. Simulation parameters: maximum bond
dimension y = 200, time step T = 0.1, algorithm: W™ at order 4.
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Figure 4: Free fermion model with a localized source (Egs. 23-24): density profile
(n;(t)) at three different times (t = 1, 5 and 8). The full lines are exact results
and the symbols have been obtained with TDVP with Trotter time step T = 0.1,
maximum bond dimension y = 200. System size: N =50. Att =1 and t =5 the
simulation reproduces almost perfectly the exact profiles. However, at time t = 8
some discrepancy starts to be visible in the center of the profile and at the injection
site i = 0 in particular.

TDVP (blue squares in Fig. 5). Using an even larger bond dimension would allow to describe
the dynamics of the model at longer times.

Note that when an exact solution is not available, the error on the trace of p (deviations
from Tr[p] = 1) can be used to estimate at which time the simulations are no longer accurate
enough. For this particular problem the algorithms W! at order 4, W' at order 4 and TDVP
offer a similar precision. It should be noted however that the execution time is significantly
longer in the case of TDVP

4.5 Noisy quantum circuit

We present here an example which illustrates how the library can be used to perform cal-
culations on quantum circuits. This example is different from the previous ones since it is
not associated to a continuous-time evolution. The circuit we consider for this example has
brick wall structure and is similar to the circuits encountered when discretizing (Trotter) an
Hamiltonian evolution.

Consider here N (even) qubits and a quantum circuit that is built from successive layers of
unitary two-qubit gates as well as layers representing dissipative processes (or qubits errors).
The first circuit layer, Lyy, is unitary and is defined by a product of (commuting) 2-qubit gates:

Lyx = Up(1,2)UL,(3,4)--- UL, (N —1,N) (25)

where U;fX(i, 7) acts on the qubits i and j and is defined by

UL, (i,j) = exp(ipXX,). (26)
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Figure 5: Free fermion model with a localized source (Egs. 23-24). From top to
bottom: (i) the time evolution of the mean total number of fermions N(t), (ii) the
operator-space entanglement entropy (OSEE) associated to a partition in the center
of the system, (iii) the second Rényi entropy S, = —1In (Tr [pz]), and (iv) the accu-
mulated trace error. In the legend w201 stands for W at order 1 and w204 stands
for W at order 4. 7 is the Trotter time step and y the maximum bond dimension.
System size: N = 50.
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Figure 6: Brick wall quantum circuit made from layers of U;fx(i, i+1) gates (Eq. 25),

from layers of Ug)z(i,i + 1) gates (Eq. 27) and from layers of depolarization gates
(Eq. 29).

The next layer, L, is also defined by a product of (commuting) 2-qubit gates:
— 179 ¢ N 5 _ —
Lyzz =Uy,(N,1)US,(2,3)--- U (N —2,N —1) (27)

where U;’Z(i, j) is defined by

Ui, ) = exp(i$ Z,Z;). (28)
The layers Lyx and L;, do not commute with each other and create some entanglement. Next,

we introduce gates which model qubit errors. This can be done via the following quantum
channel (called depolarization channel):

3 1 1 1
Dip:p— (1 — ZP)P + ZpXiPXi + ZpYipYi + ZpZiPZi (29)

where the parameter O < p < 1 represent some error probability. The third layer of the circuit
is the product of the depolarization channels for all qubits:

L, = nDi’p (30)
1

Finally, the full circuit is a repetition (L.L;;Lxx)(LeLz7zLxx) - (L.Lz;Lxx) and the initial
state has all qubits in state |0). The circuit as a brick wall structure, as illustrated in Fig. 6.
With the TMS library the construction of the above gate sequence can be done with

[[Gates(
name = "Applying exp(I*XX*phi) gates on qubits [1,2],[3,4],...",
gates = prod(Rxx(2xi-1,2%i;phi) for i in 1:div(n, 2)),
limits = limits,
),
Gates(
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name = "Applying exp(I*ZZxphi) on qubits [N,1],[2,3],[4,5],...",
gates = Rzz(1,n;phi) *
prod(Rzz(2*i, 2xi+1; phi) for i in 1:(div(n,2))-1),
limits = limits,
),
Gates(
name = "Depolarization channel on all qubits",
final_measures = output(n),
gates = prod(DPL(i;p=noise) for i in 1:n),
limits = limits,
)
] for step in 1:steps]

The top panel of Fig. 7 represents the evolution of the OSEE for a partition in the center
of the system as a function of the number of layers in the circuit. After an initial growth, due
to the spread of correlations, the effect of the noise takes over when the number of layers
become large. The state of the system then approaches an uncorrelated product state (with
maximum S, entropy). Due to the large amount of correlation generated by the initial layers
of the circuit a relatively large bond dimension y ~ 2000 is required to get some converged
results.

5 Conclusion

We have presented TensorMixedStates, a Julia library for manipulating pure and mixed quan-
tum states using matrix product state representations. This library allows in particular to
apply unitary or non-unitary gates, as well as solving continuous evolution equations such as
the usual Hamiltonian evolution or the Lindblad equation. Based on ITensor, this library gives
access to state-of-the-art algorithms such as TDVP or DMRG and MPS compression. Moreover,
the particularly flexible and user-friendly interface allows simulations to be set up in a few
lines of code. We provided five examples to show the versatility and correctness of the soft-
ware: four involving the Lindblad equation: two on fermions, one on bosons and one on spin
1/2. The last example demonstrates the use of non-unitary gates in a noisy quantum circuit
calculation.

In the near future, we intend to work on further developments: (i) use the conserved
quantum number capabilities of ITensor to improve the efficiency and precision of certain
simulations, (ii) use DMRG on the square of the Lindbladian (£'£) to compute the steady-
state of a dissipative system, (iii) use automated MPO compression to enhance performance
in many cases.
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Figure 7: Circuit simulation. Top: OSEE as a function of the number t of layers
(L.L;;Lxx counts as one complete layer). Bottom panel: second Rényi entropy S,
normalized by its maximum value N In2. System size: N = 20. Error rate p = 0.02
and gate angle ¢ = 0.5. Simulations with bond dimension y = 1000, 1400 and
2000.
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