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Abstract

Epidemic compartment models have become a popular fashion for describing the propagation of an
epidemic. To combine compartment models with random walk simulations gives valuable insights into
the microscopic mechanisms of the spreading. Here we focus on the propagation of vector-transmitted
diseases in complex networks such as Barabási-Albert (BA) and Watts-Strogatz (WS) types. The class
of such diseases includes Malaria, Dengue (vectors are mosquitos), Pestilence (vectors are fleas), and
many others. There is no direct transmission of the disease among individuals. Individuals are mimicked
by independent random walkers and the vectors by the nodes of the network. The walkers and nodes
can be either susceptible (S) or infected and infectious (I) representing their states of health. Walkers
in compartment I may die from the infection (entering the dead compartment D) whereas infected
nodes never die. This assumption is based on the observation that vectors do not fall ill from their
infection. A susceptible walker can be infected with a certain probability by visiting an infected node,
and a susceptible node by visits of infected walkers. The time spans of infection of walkers and nodes
as well as the survival time span of infected walkers are assumed to be independent random variables
following specific probability density functions (PDFs). We implement this approach into a multiple
random walkers model. We establish macroscopic stochastic evolution equations for the mean-field
compartmental population fractions and compare this dynamics with the outcome of the random walk
simulations. We obtain explicit expressions for the basic reproduction numbers RM , R0 with and without
mortality, respectively, and prove that RM < R0. For RM , R0 > 1 the healthy state is unstable, and the
disease is starting to spread in presence of at least one infected walker or node. For zero mortality, we
obtain in explicit form the stable endemic equilibrium which exists for R0 > 1 and which is independent
of the initial conditions. The random walk simulations agree well with the mean-field solutions for
strongly connected (small world) graph topologies, whereas for weakly connected graph architectures
(large world) and for diseases with high mortality the agreement is less well or occurs only after a long
observation time. We also investigate the effect of confinement measures on the spreading of the disease.
Our model has a wide range of interdisciplinary applications beyond epidemic dynamics, for instance in
the kinetics of certain chemical reactions, the propagation of contaminants, wood fires, and population
dynamics.

Keywords. Compartment model, Vector transmitted diseases, mortality, delay, memory effects, random
walks, random graphs, population dynamics
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1 Introduction

Since the breakout of the COVID-19 pandemics, epidemic models have attracted considerable attention. A
popular way to tackle epidemic spreading are so-called compartmental models, where the individuals of a
population are divided according to their states of health. The first compartmental model traces back to the
seminal work of Kermack and McKendrick [1] where an individual is in one of the states (compartments)
susceptible (to infection) - S, infected and infectious - I, recovered (immune) - R. Standard models of
the SIR class are able to describe several features of certain infectious diseases, which include mumps,
measles, rubella and others. However, standard SIR models do not exhibit persistent oscillatory behaviors
or spontaneous outbursts, features which are often observed in the evolution of epidemics. One of the first
works able to capture periodic behavior goes back to the model of Soper [2].

The classical SIR model has been generalized in many directions [3, 4, 5, 6] and consult [7] and
references therein for models related to the context of COVID-19 pandemics. In order to relate macroscopic
compartment models to microscopic dynamics, epidemic spreading has been studied in random graphs
with emphasis on the complex interplay of the network topology and spreading features [8, 9, 10].

A further class are stochastic compartmental models combined with random walk approaches [13, 14,
18, 20, 22, 23, 24, 27, 29, 30] and non-exponentially distributed compartmental sojourn times leading to
non-Markovian models were considered recently [11, 25, 26, 27].

In the present paper, our aim is to study the spreading of the class of vector transmitted diseases in
a large population of individuals (random walkers) moving on complex graphs similar to human mobility
patterns in complex environments such as cities, street-, and transportation networks. The walkers are
mimicking the individuals of the population, and the nodes represent the vectors. We also account for the
mortality of infected individuals (random walkers) and assume absence of mortality for the infected nodes
(vectors). The latter assumption is based on the observation that the vectors (for instance mosquitos) do
not fall ill during their infection, and therefore may not die from it.

The paper has the following structure. In Sect. 2 we establish a mean field model and obtain macroscopic
evolution equations in stochastic and explicit forms. We derive the basic reproduction number RM in
presence of mortality and show that RM ≤ R0, i.e. the basic reproduction number R0 without mortality
is un upper bound. We show by linear stability analysis that the healthy state is unstable for RR, RM > 1
and stable for RR, RM < 1. For zero mortality (RM = R0) a globally stable endemic equilibrium exists
for R0 > 1 independent of the initial conditions. In Sect. 3 we compare the outcomes of the mean field
model with random walk simulations, where we focus on WS and BA graphs. At the end of the paper, we
investigate for zero mortality the effect of confinement measures on the spreading of the disease and the
basic reproduction number in the small world BA graph and compare it with the case of the large world WS
graph. For more detailed demonstrations and discussions, we refer to our recent article [28].
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2 Stochastic compartmental model with mortality

2.1 Mean field approach

Here, we recall briefly the essentials of our macroscopic mean field model for infectious diseases which are
transmitted via vectors. Vector transmitted diseases include Dengue, Malaria (transmission vectors are
mosquitos) and Pestilence (vectors are fleas), and others [31].

The vectors of the disease are represented by infected nodes of the network. This assumption is based
on the observation that in the cases of Malaria and Dengue, the transmitting mosquitoes live in specific
areas such as swamps and forests. Each walker performs independent steps along edges connecting
nodes of the network. Both walkers and nodes are in one of the states (compartments): S – susceptible or
I–infected. In addition, walkers can die during their infection by performing a transition from the I to the
dead (D) compartment. Infected nodes representing the vectors never die. This feature accounts for the
observation that infected mosquitos are not ill and therefore do not die from their infection.

Now we introduce ZS(t), ZI(t) (NS(t), NI(t)) indicating the number of walkers (nodes) in compartments
S and I, and ZD(t) the non-decreasing number of walkers (in compartment D) died during their infection
up to time t. We consider the total number of walkers Z = Z(0) = ZI(t) + ZS(t) + ZD(t) and of nodes
N = NI(t) + NS(t) to be constant, independent of time. We account only for mortality of walkers during
their infections. No natural birth- and dead processes are considered.

We assume that at time instant t = 0 the first spontaneous infections occur: ZI(0) ≪ Z walkers and
NI(0) ≪ N nodes and no dead walkers ZD(0) = 0. It is convenient to introduce the compartmental fractions
Sw(t) = ZS(t)

Z , Jw(t) = ZI(t)
Z , dw(t) = ZD(t)

Z for the walkers (normalized with respect to the time-independent
total number Z of walkers which includes the number ZD(t) of dead walkers) with Sw(t) + Jw(t) + dw(t) = 1,
and Sn(t) = NS(t)

N , Jn(t) = NI(t)
N with Sn(t) + Jn(t) = 1.

We denote with Aw(t), An(t) the infection rates (rates of transitions S → I) of walkers and nodes,
respectively. We assume the simple bi-linear forms inspired from mass-action laws

Aw(t) = Aw[Sw(t), Jn(t)] = βwSw(t)Jn(t)

An(t) = An[Sn(t), Jw(t)] = βnSn(t)Jw(t)
(1)

with time-independent constant rate parameters βw, βn > 0. Eqs. (1) correspond to a predator-prey
mechanism where susceptible walkers (nodes) are the prey of the predator, the infected nodes (walkers).
Aw(t) indicates the infection rate of walkers, the susceptible walkers Sw may be infected with a certain
probability by (visiting) infected nodes Jn(t). An(t) stands for the infection rate of nodes, indicating that
susceptible nodes Sn(t) may be infected with a certain probability by visits of infected walkers Jw(t). As
mentioned, no direct transmissions among walkers and among nodes can happen. Infections occur with
specific transmission probabilities pw,n which determine the transmission rate constants βw,n. The latter
contain additional topological information when considering the spreading on networks.

We assume that the infection time spans tw
I , tn

I > 0 without mortality (waiting times in compartment
I) of walkers and nodes, respectively, are independent random variables drawn from specific probability
density functions (PDFs). Further, as the only type of mortality, we allow only infected walkers to die. In
other words, we admit walkers to die only during the phases of their infection. To this end, we introduce
the independent random variable tM > 0 measuring the survival time span of an infected walker. Both the
infection and life time spans tw

I , tM are counted from the moment of the infection event. An infected walker
survives the disease only if tM > tw

I and dies for tM < tw
I . With these considerations, we are able to give a
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stochastic formulation of the evolution equations for the compartmental fractions

d

dt
Sw(t) = −Aw(t) + ⟨Aw(t − tw

I )Θ(tM − tw
I )⟩ + Jw(0)⟨δ(t − tw

I )Θ(tM − tw
I )⟩

d

dt
Jw(t) = Aw(t) − ⟨ Aw(t − tw

I )Θ(tM − tw
I ) ⟩ − Jw(0) ⟨ δ(t − tw

I )Θ(tM − tw
I ) ⟩ − d

dt
dw(t)

d

dt
dw(t) = ⟨ Aw(t − tM )Θ(tw

I − tM ) ⟩ + Jw(0)⟨δ(t − tM )Θ(tw
I − tM )⟩

d

dt
Sn(t) = −An(t) + ⟨An(t − tn

I )⟩ + Jn(0)⟨δ(t − tn
I )⟩

d

dt
Jn(t) = − d

dt
Sn(t).

(2)

d
dtdw(t) stands for the (non-negative) mortality rate of infected walkers (coinciding with the total mortality
rate of walkers). The symbol ⟨..⟩ indicates averaging over the contained set of independent random variables
tw,n
I , tM . With Θ(..) we denote the Heaviside unit-step function and with δ(..) the Dirac’s δ-distribution. The

system is coupled by the infection rates (1). In Eqs. (2) is taken into account that infected walkers may
die during the time span of their infection, i.e. when tw

I > tM (thus Θ(tw
I − tM ) = 1) and otherwise (for

tw
I < tM ) an infected walker recovers with a transition I to S when the time span tw

I of its infection has
elapsed. Letting tM → ∞ recovers the model without mortality. The last two equations of (2) take into
account that there is no mortality for infected nodes. The contributions involving δ-distributions account
for the transitions and mortality of the initially infected walkers and of initially infected nodes without
mortality. We start the observation at t = 0 and assume the initial conditions Sw,n(0) = 1 − Jw,n(0) with
Jw,n(0) > 0 with presence of a few infected walkers and/or nodes in a large susceptible population without
dead walkers dw(0) = 0.

We can average (2) over the independent random variables Ti = {tw
I , tn

I , tM } using

⟨f(T1, T2, T3)⟩ =
∫ ∞

0

∫ ∞

0

∫ ∞

0
K1(τ1)K2(τ2)K3(τ3)f(τ1, τ2, τ3)dτ1dτ2dτ3 (3)

with their respective PDFs Ki(τ) = {Kw
I (τ), Kn

I (τ), KM (τ)} and accounting for causality of the infection
rates and PDFs with Aw,n(t), Ki(t) = 0 for t < 0 taking into account that no infections occur prior to the
outbreak of the disease at t = 0 and for the positivity of Ti = {tw

I , tn
I , tM }. An important special case arises

for f(T1, T2, T3) = g1(T1)g2(T2)g3(T3) where from the independence of the Ti follows the convenient property

⟨f(T1, T2, T3)⟩ = ⟨g1(T1)⟩ ⟨g2(T2)⟩ ⟨g3(T3)⟩ (4)

which we will use throughout this paper. These ingredients take us to

⟨Aw,n(t − Ti)⟩ =
∫ t

0
Aw,n(t − τ)Ki(τ)dτ. (5)

Useful are the persistence probabilities

Φi(t) = Prob(Ti > t) = ⟨Θ(Ti − t)⟩ =
∫ ∞

t
Ki(τ)dτ (6)

with Φi(0) = 1 reflecting normalization of the PDFs Ki(τ). Further worthy of mention is the relation
⟨δ(t − Ti)⟩ = Ki(t) from which follows that d

dtΦi(t) = −Ki(t), and consult [28] for further details. With these
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considerations, the explicit form of the averaged system (2) reads

d

dt
Sw(t) = −Aw(t) +

∫ t

0
Aw(t − τ)Kw

I (τ)ΦM (τ)dτ + Jw(0)Kw
I (t)ΦM (t)

d

dt
Jw(t) = Aw(t) −

∫ t

0
Aw(t − τ)Kw

I,M (τ)dτ − Jw(0)Kw
I,M (t)

d
dtdw(t) =

∫ t

0
Aw(t − τ)KM (τ)Φw

I (τ)dτ + Jw(0)KM (t)Φw
I (t)

d

dt
Sn(t) = −An(t) +

∫ t

0
An(t − τ)Kn

I (τ)dτ + Jn(0)Kn
I (t)

d

dt
Jn(t) = − d

dt
Sn(t).

(7)

In the second equation of this system comes into play the PDF Kw
I,M (t) = Kw

I (t)ΦM (t) + KM (t)Φw
I (t)

capturing all exists of walkers from compartment I, in which the term

br(t) = ⟨δ(t − tw
I )Θ(tM − tw

I )⟩ = Kw
I (t)ΦM (t)

describes the recovery rate of walkers that survived the disease, and

bd(t) = ⟨δ(t − tM )Θ(tw
I − tM )⟩ = KM (t)Φw

I (t)

the mortality rate, both referring to Jw(0) = 1. The quantities br(t), bd(t) represent ‘defective’ PDFs and are
not properly normalized [12]. Observe that

Kw
I,M (t) = br(t) + bd(t) = − d

dt
[⟨Θ(tM − t)Θ(tw

I − t)⟩] = − d

dt
[Φw

I (t)ΦM (t)] (8)

where proper normalization of Kw
I,M (t) can be readily retrieved from∫ ∞

0
Kw

I,M (t)dt = −
∫ ∞

0

d

dt
[Φw

I (t)ΦM (t)]dt = Φw
I (0)ΦM (0) = 1

where Φw
I (∞), ΦM (∞) = 0. Moreover, one has

⟨Θ(tM − t)Θ(tw
I − t)⟩ = ⟨Θ(tM − t)⟩ ⟨Θ(tw

I − t)⟩ = Φw
I (t)ΦM (t) (9)

since the indicator function Θ(tM −t)Θ(tw
I −t) = 1 as long the infection persists, i.e. for t < tw

IM = min(tM , tw
I )

and where we used independence of tw
I , tM . (9) has the interpretation of the persistence probability of the

infection given the infection starts at t = 0. Further, we will need the following quantities

R(t) = ⟨Θ(t − tw
I )Θ(tM − tw

I )⟩ =
∫ t

0
br(τ)dτ =

∫ t

0
Kw

I (τ)ΦM (τ)dτ

D(t) = ⟨Θ(t − tM )Θ(tw
I − tM )⟩ =

∫ t

0
bd(τ)dτ =

∫ t

0
KM (τ)Φw

I (τ)dτ

R(t) + D(t) =
∫ t

0
Kw

I,M (τ)dτ =
∫ t

0
[bd(τ) + br(τ)]dτ = 1 − Φw

I (t)ΦM (t)

D(∞) + R(∞) = 1

(10)

where is used ΦM (0) = Φw
I (0) = 1. The quantity D(∞) ∈ (0, 1) can be interpreted as the overall probability

that a walker dies from its infection, and R(∞) = 1 − D(∞) ∈ (0, 1) as the probability that it survives
the disease. For tM = ∞ one has D(∞) = 0 and R(∞) = 1 corresponding to zero mortality. With these
considerations, we can write the second equation of (7) as

d

dt
Jw(t) = d

dt

{∫ t

0
Aw(τ)ΦM (t − τ)Φw

I (t − τ)dτ + Jw(0)Φw
I (t)ΦM (t)

}
. (11)
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For the numerical determination of the mean-field solutions, we used a fourth order Runge-Kutta (RK4)
scheme in the stochastic formulation of Eqs. (2) together with the generalized Monte-Carlo convergence
theorem

lim
n→∞

1
n

n∑
k=1

A(t − T (k)) =
∫ t

0
A(t − τ)Ki(τ)dτ (12)

holding for random numbers T (k) drawn from PDF Ki(τ) for suitable causal functions A, avoiding in this
way numerical evaluation of the involved convolutions.

2.2 Zero mortality: endemic equilibrium

An important special case occurs for zero mortality d
dtdw(t) = 0 and is retrieved by tM = ∞. Eqs. (2) boil

then down to
d

dt
Jw(t) = Aw(t) − ⟨ Aw(t − tw

I ) ⟩ − Jw(0) ⟨ δ(t − tw
I ) ⟩

d

dt
Jn(t) = An(t) − ⟨ Aw(t − tn

I ) ⟩ − Jn(0) ⟨ δ(t − tn
I ) ⟩

(13)

where we skipped redundant equations. In order to explore the existence of an endemic equilibrium which
consists in constant asymptotic values Jw(∞), Jn(∞), it is convenient to consider the Laplace transformed
system (13) which reads

λĴw(λ) =
(
Âw(λ) + Jw(0)

) [
1 − K̂w

I (λ)
]

λĴn(λ) =
(
Ân(λ) + Jn(0)

) [
1 − K̂n

I (λ)
]

.

(14)

Here we have introduced the Laplace transform (LT) of a suitable function f(t) as

f̂(λ) =
∫ ∞

0
e−λtf(t)dt. (15)

The endemic equilibrium solves (13) for vanishing left-hand sides and representing the asymptotic solution
for t → ∞. Letting λ → 0 in (14), by using the limiting value theorem

f(∞) = lim
λ→0

λf̂(λ)

we can conveniently extract the endemic values

Je
w = Aw(∞)⟨tw

I ⟩ = βw⟨tw
I ⟩(1 − Je

w)Je
n

Je
n = An(∞)⟨tn

I ⟩ = βn⟨tn
I ⟩(1 − Je

n)Je
w

Aw,n(∞) = βw,nSe
w,nJe

n,w , (16)

independent of initial conditions Jw,n(0) where we denote the endemic values from now on Je
w,n = Jw,n(∞),

Se
w,n = Sw,n(∞) = 1 − Je

w,n. In these relations, we assume that the PDFs Kw,n
I (t) are such that ⟨tw,n

I ⟩ < ∞.
One gets straightforwardly

Je
w = R0 − 1

R0

βw⟨tw
I ⟩

1 + βw⟨tw
I ⟩

Je
n = R0 − 1

R0

βn⟨tn
I ⟩

1 + βn⟨tn
I ⟩

R0 = βw⟨tw
I ⟩βn⟨tn

I ⟩ = 1
Se

wSe
n

. (17)

These relations have exchange symmetry with respect to walkers and nodes, reflecting this symmetry in
the system (13). Since Je

w,n ∈ (0, 1) the endemic equilibrium exists only for R0 > 1. Worthy of mention are
the limits

(i) βw⟨tw
I ⟩ → ∞ (while βn⟨tn

I ⟩ finite): Je
w → 1 whereas Je

n → βn⟨tn
I ⟩

1+βn⟨tn
I ⟩ < 1

(ii) βn⟨tn
I ⟩ → ∞ (while βw⟨tw

I ⟩ finite): Je
n → 1 whereas Je

w → βw⟨tw
I ⟩

1+βw⟨tw
I ⟩ < 1

6



where in both cases R0 → ∞. We depict the R0-dependence of the endemic equilibrium in Fig. 1. Only
positive values of Je

w, Je
n occurring for R0 > 1 correspond to endemic equilibria.

0 1 2 3 4 5 6 7 8 9 10
R0

-1

-0.5

0

0.5

1
J
e w
,n

r0=0.01

r0=0.1

r0=0.2

r0=0.3

r0=0.4

r0=0.5

r0=0.6

r0=0.8

r0=1

r0=1.5

r0=3

r0=5

r0=10

Figure 1: Endemic states Je
w, Je

n = R0−1
R0+r0

versus R0 of (17) for some values of r0. Read r0 = βn⟨tn
I ⟩ for Je

w

and r0 = βw⟨tw
I ⟩ for Je

n.

We infer that the healthy state Sw,n = 1 is unstable for R0 > 1 and the endemic state (17) stable.
On the other hand, for R0 < 1 the healthy state is globally stable, and the endemic state does not exist.
R0 = βw⟨tw

I ⟩βn⟨tn
I ⟩ > 1 is hence the condition that the disease without mortality is starting to spread. This

can be proven by a stability analysis of endemic and healthy states, see [28] for details, and also follows
from the results of the next section when considering the limit of zero mortality.

2.3 Spreading condition with mortality

Here we are interested in how mortality modifies the basic reproduction number. From now on we denote
with R0 the basic reproduction number without mortality (see (17) and with RM the basic reproduction
number in presence of mortality. To answer this question, we perform a linear stability analysis of the
healthy state Sw,n = 1. To that end we set

Sw(t) = 1 + a eµt, Jw(t) = b eµt, dw(t) = −(a + b) eµt, Sn(t) = 1 − ceµt, Jn(t) = ceµt (18)

with Aw(t) = βwc eµt and An(t) = βnb eµt where a, b, c, are ’small’ constants. Note that (18) is such that
Sw(t) + Jw(t) + dw(t) = 1 and Sn(t) + Jn(t) = 1. Plugging this expression for µ ≥ 0 into three independent

7



Eqs. of (2), one gets 
µ ; 0; βw[1 − b̂r(µ)]]

µ; µ ; βw b̂d(µ)

0 −βn[1 − K̄n
I (µ)] ; µ

 ·


a

b

c

 =


0

0

0

 . (19)

Putting the determinant of this matrix to zero leads to

GM (µ) = 1 − βnβw
[1 − K̄n

I (µ)]
µ

[1 − K̂w
I,M (µ)]
µ

= 0 (20)

where Kw
I,M (t) = bd(t) + br(t) = − d

dt [Φ
w
I (t)ΦM (t)] is the PDF that governs the end of the infection (either by

recovery or by death). In particular

[1 − K̂w
I,M (µ)]
µ

=
∫ ∞

0
ΦM (t)Φw

I (t)e−µtdt

is the LT of the persistence probability ΦM (t)Φw
I (t) = ⟨Θ(tM − t)Θ(tw

I − t)⟩ of the walker’s infection, i.e. the
probability that t < min(tw

I , tM ). The healthy state is unstable if there is a solution µ > 0 solving (20). In
the following the mean sojourn time of a walker in compartment I with mortality

⟨tw
IM ⟩ = ⟨min(tw

I , tM )⟩ =
[1 − K̂w

I,M (µ)]
µ

∣∣∣∣
µ=0

=
∫ ∞

0
tKw

I,M (t)dt =
∫ ∞

0
ΦM (t)Φw

I (t)dt ≤
∫ ∞

0
Φw

I (t)dt = ⟨tw
I ⟩

(21)
comes into play, leading to

GM (µ)
∣∣∣∣
µ=0

= 1 − βnβw⟨tn
I ⟩⟨tw

IM ⟩. (22)

From (21) follows that ⟨tw
IM ⟩ ≤ ⟨tw

I ⟩ (equality only for zero mortality) reflecting simply the feature that
tw
IM = min(tw

I , tM ) ≤ tw
I with again equality for zero mortality tM = ∞. On the other hand, we have

GM (µ) → 1 for µ → ∞, so there is a positive solution µ = µ∗ of GM (µ) = 0 only if

RM = βnβw⟨tn
I ⟩⟨tw

IM ⟩ > 1, (23)

see Fig. 2. We identify the quantity RM as the basic reproduction number modified by mortality, which
fulfills

RM = βnβw⟨tn
I ⟩⟨tw

IM ⟩ ≤ R0 = βnβw⟨tn
I ⟩⟨tw

I ⟩ (24)

(equality for zero mortality only).
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Figure 2: We depict GM (µ) from Eq. (20) for some RM for exponentially distributed tw,n
I , tM (Φw,n

I (t) =
e−ξw,n

I t, ΦM (t) = e−ξM t) The parameters are βw = 0.5, βn = 2, ξw
I = 1, ξn

I = 0.5. The basic reproduction
number without mortality (ξM = 0) is R0 = 2 with RM = R0/(1 + ξM ). One can see that (20) has a positive
solution for RM > 1 indicating instability of the healthy state.

To visualize the effect of mortality on the instability of the healthy state, we plot GM (µ) for a few values
of RM in Fig. 2. One can see that increasing the mortality rate parameter ξM sufficiently turns an unstable
healthy state into a stable one. RM is monotonously decreasing with increasing ξM assuming here an
exponentially distributed tM following the PDF KM (t) = ξM e−ξM t.

3 Random Walk Simulations

3.1 Multiple walkers approach

In order to obtain a microscopic picture of the dynamics, we implement the mean field model into random
walk simulations. We consider a population of Z individuals, represented by random walkers moving
independently on connected undirected (ergodic) networks1 where we focus on random graphs of the
Barabási–Albert (BA) and Watts– Strogatz (WS) type by using the PYTHON NetworkX library.

We explore the effect of the graph topology on the propagation of the disease and compare the results
of the random walk simulations with those of the mean field model by integrating evolution Eqs. (2)
numerically in a fourth-order Runge–Kutta scheme (RK4). Doing so, we employ feature (12) to avoid
performing the convolutions explicitly. At the end of the section, we also investigate how confinement
measures may affect the spreading of the disease.

The considered WS network has connectivity parameter m = 2 with emergence of a large-world graph,
see Figs. 3, 4. The WS graph is generated by starting in a first step by a ring of N nodes, where each
node is connected to its m left and m right closest neighbors, thus each node has 2m connections. In
a second step, each of the connections is rewired with a probability p to a randomly chosen node by
avoiding multiple connections [17, 21]. The considered WS graph G is generated by NetworkX employing
G = nx.connected_watts_strogatz_graph(N, m, p, seed = seed) (allowing to fix the "seed", i.e. the generated
random numbers to obtain the same random graph in different simulation runs).

To explore the effect of the connectivity of a network, we consider the spreading in a BA network
(generated by G = nx.barabasi_albert_graph(N, m, seed = seed)) which is small world (Fig. 5) contrarily to

1Each pair of distinct nodes is connected by a path along edges of finite length.
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the considered WS graph. The BA graph is generated by a preferential attachment mechanism for newly
added nodes: One starts with m0 connected nodes and adds new nodes in the following way. Any newly
added node is connected with m ≤ m0 existing nodes (m is called attachment parameter). The newly added
node is preferentially connected to a node with high degree. In this way, an asymptotically scale-free
small-world graph emerges with a power law degree distribution [13, 14, 15, 16]. It has been pointed out
in the literature that small-world architectures are favorable for the propagation of epidemics [8, 9]. This is
also confirmed by the case study of this section.

We employ Gamma distributed tw,n
I , tM waiting-times due to the high flexibility of the Gamma distribution

to adapt relevant shapes observed in real world situations. The Gamma PDF reads

Kα,ξ(t) = ξαtα−1

Γ(α) e−ξt, ξ, α > 0 (25)

where α is the so-called “shape parameter” and ξ the rate parameter (often, the term “scale parameter”
is used, θ = ξ−1) and Γ(α) stands for the Gamma function. The Gamma PDF has finite mean ⟨t⟩α,ξ =∫ ∞

0 tKα,ξ(t)dt = α
ξ , and for α ∈ (0, 1), the Gamma PDF is weakly singular at t = 0 and α = 1 recovers

exponential PDFs. For α > 1, the Gamma PDF has a maximum at tmax = α−1
ξ and becomes narrower the

larger ξ approaching a Dirac δ-distribution Kα,ξ(t) → δ(t − t0) for ξ → ∞ while keeping its mean ⟨t⟩α,ξ = t0
constant.
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Figure 3: Spreading with mortality for a single random walk realization (for PYTHON seed = 0) in the
WS graph G = nx.connected_watts_strogatz_graph(2500, m = 2, p = 0.8, seed = seed) (Z = 2500 walkers,
N = 2500 nodes; average degree ⟨k⟩ = 1

N

∑N
i=1 ki = 2 = m). The parameters of the Gamma distributed

compartment sojourn times are: ⟨tn
I ⟩ = 12, ξn

I = 105 (tn
I sharp δ-distributed); ⟨tw

I ⟩ = 6, ξw
I = 10, ⟨tM ⟩ = 10,

ξM = 0.4. Initial condition: 10 infected nodes at t = 0. An animated simulation video of this dynamics can
be viewed by clicking online here. S walkers are represented in cyan color, I walkers in red. Nodes are
drawn in black without representation of their infection state.
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Figure 4: Spreading in the WS graph [nx.connected_watts_strogatz_graph(1500, m = 2, p = 0.9, seed = seed)]
with a higher rewiring probability p = 0.9 than in Fig. 3 and with 1500 nodes and Z = 1500 walkers (10 I
nodes at t = 0.), average degree ⟨k⟩ = m = 2. Left frame: without mortality. Right frame: same setting
with mortality. Average over 100 equivalent random walk realizations (by choosing for each realization a
different PYTHON seed = {0, . . . , 99}). All other parameters are identical as in Fig. 3 except here we have
ξM = 2. The simulations confirm that RM = 65.19 < R0 = 65.44.
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In order to describe the random walk of each walker, we denote with i = 1, . . . N the nodes of the
network and introduce the N × N the symmetric adjacency matrix (Aij) where Aij = 1 if the pair of nodes
i, j is connected by an edge, and Aij = 0 if the pair is disconnected. Further, we assume Aii = 0 to avoid
self-connections of nodes. We restrict our analysis to undirected networks, where edges have no predefined
direction and the adjacency matrix is symmetric. The degree ki of a node i counts the number of its
neighbor nodes (connected with i by edges). Each walker performs independent Markovian steps between
connected nodes. The steps from a node i to one of its ki =

∑N
j=1 Aij neighbor nodes are chosen with

probability 1/ki, leading for all walkers to the same transition matrix which reads [19, 20, 32]

Π(i → j) = Aij

ki
, z = 1, . . . , Z, i, j = 1, . . . , N (26)

and is by construction row-normalized
∑N

j=1 Π(i → j) = 1. To ensure ergodicity, we exclude that the graph
is bipartite by the presence of at least one return path of odd length [32]. In the simulations, the departure
nodes at t = 0 of each walker is randomly chosen. The path of each walker is independent and not affected
by contacts or infection events by other walkers. We assume uniform transmission probabilities pw,n = 1 of
walkers and nodes unless stated otherwise.
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Figure 5: Spreading in the BA graph [nx.barabasi_albert_graph(1500, m = 6, seed = seed)] (10 I nodes at
t = 0) with 1500 walkers, average degree ⟨k⟩ = 11.95. Left frame: without mortality. Right frame: same
setting with mortality. Average over 100 equivalent random walk realizations. The Gamma-distributed
waiting time parameters are identical as in Fig. 4. Basic reproduction numbers with and without mortality:
RM ≈ 80.17 < R0 ≈ 80.48.
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Figure 6: Spreading without mortality in the same BA graph as in Fig. 5 (1500 walkers and averaging over
100 equivalent RW realizations) and the same setting with identical parameters of Gamma distributed tw,n

I

for some values of transmission probabilities pn of I-walkers to S-nodes (lower left and upper frames). This
mimics the effect of confinement measures where 1 − pn is identified with the fraction of confined walkers’
population.
Lower right frame: R0 versus fraction of confined walkers for the BA graph of this figure and for the WS
graph of Fig. 4.
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3.2 Discussion

Fig. 3 shows the epidemic evolution on a large world WS graph with high mortality. The overall probability
of D(∞) ≈ 0.22 that an infected walker dies in one infection leads to an extremely high mortality in the
walkers’ population due to successive multiple infections of surviving walkers. One can see in the animated
video – to view it click online here – that almost the entire walkers’ population is dying during the epidemic.
A vector transmitted disease with such a high mortality is for instance Pestilence.

We observe that the mean field model agrees well with the random walk result in the case of the small
world BA graph (Figs. 5, 6). For the WS graph of Fig. 4 which is large world, the agreement between
random walk and mean field is characterized by a delayed increase of the compartment fractions in the
random walk simulations which can be explained that the infection needs more time to spread in a weakly
connected architecture with long average distances between nodes. For large observation times, the
agreement is well for zero mortality, but less well in presence of mortality. We explain this discrepancy
that in the case of a large world graph the infection rates in the network are deviating from the simple
mass-action-law forms (1).

In the simulation runs of Fig. 6 we investigate the impact of confinement measures in absence of
mortality. We mimic the effect of walkers subjected to confinement by varying the transmission probability
pn that an I-walker infects an S-node. We interpret the quantity 1 − pn as the fraction of confined walkers
which are disabled to transmit the disease. pn = 1 corresponds to no confinement and pn = 0 to full
confinement of the walkers’ population. The lower right frame of Fig. 6 shows that for both types of graphs
(BA and WS) R0 falls off linearly with respect to the fraction 1 − pn of confined walkers. This reflects a
linear relationship between pn and R0. For the same fractions of confined walkers, the R0 values of the
small-world BA graph are larger than those of the large-world WS graph. This confirms the feature of
high susceptibility of small world networks to epidemic spreading. The decrease of R0 with the fraction of
confined walkers also gives strong evidence for the efficiency and need of confinement measures, especially
for populations living in small world networks such as agglomerations and cities.

4 Conclusions

We established a stochastic mean field compartment model for vector transmitted diseases, where we take
into account mortality of the individuals during the phase of the disease. Based on the assumption that
vectors do not fall ill, we neglected mortality of the vectors. Moreover, we neglect demographic effects
coming from natural natality and mortality. Our model allows for interpretations beyond epidemiological
dynamics, for instance has an analogy to certain chemical reactions [33], propagation of wood fires,
pollutants, and others.

Comparison of the results of the mean field model with random walk simulations shows that the mean
field model assuming simple forms of the infection rates (Eqs. (1)) are well capturing the spreading
dynamics in small world networks and vanishing mortality (see Figs. 5, 6). The agreement is less well in
large world networks (Fig. 4) in the beginning of the epidemic, but again agrees well for large observation
times in absence of mortality. Larger deviations between mean field and random walk occur for higher
mortality. For future research, a more sophisticated mean field model would be desirable, which is able to
better capture topological effects of large world (weakly connected) networks.

Another direction of interest is the spreading with modified steps in the random walks, such as for
instance under resetting, mimicking the influence of long-range journeys of individuals [34, 35, 36, 37,
38]. Further promising extensions of the present model are opened by non-monotonous infection rates
(different from simple mass-action-laws) for which under certain conditions the endemic equilibrium
exhibits bifurcations, allowing for emergence of chaotic attractors [39]. Also the inclusion of demographic
effects originating from natural natality and mortality may open an interesting generalization of the present
approach.
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