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Abstract

As Internet of Things (IoT) applications evolve toward greater capability, the
requirements for adaptive behaviors become more salient. Complex adaptive
concepts implemented in IoT-enabled systems are still emerging. The Discrete
Event System Specification (DEVS) formalism enables modular construction and
dynamic structure changes to support adaptive behavior. Here we will show that
DEVS has the necessary model expressiveness and development continuity prop-
erties to serve as an IoT Design language. We will illustrate with several examples
to show the wide applicability to IoT systems. We will demonstrate the added
value of the System Entity Structure (SES) to enhance expressiveness, scalabil-
ity, and flexibility in IoT system design, making it a powerful tool for managing
complexity and enabling efficient simulation and deployment. In addition, we will
formulate conditions that are necessary and sufficient for IoT system develop-
ment and show how DEVS-based model-driven engineering methodology helps
to meet them.

Keywords: IoT, DEVS, SES, IoT System Design, Modular Design, IoT Simulation
Frameworks

1 Introduction

Internet of Things (IoT) applications have been evolving toward greater capability [1].
As the abilities of such systems to exert control in user environments have increased,
the requirements for the ability to adapt to environmental dynamics become more
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prominent [2]. However, although Complex Adaptive System (CAS) concepts have
existed for some time [3, 4], implementations in IoT-enabled systems are still emerg-
ing. The challenge in ubiquitous computing applications is to dynamically adapt the
behaviors of components in a dynamic execution environment. The Discrete Event
System Specification (DEVS) formalism [5] enables component-based, hierarchical
modular construction, and dynamic changes in structure to support adaptive behavior
specifically for IoT systems [6, 7].

We propose that essential requirements for a language to support the development
of IoT systems are model expressiveness and model continuity for all stages of the
process including design, simulation, and implementation (see Figure 1). Basically,
model expressiveness is the ability to express required functionality in a form that
can be easily coded, simulated, and verified. Model continuity refers to the ability
to transition the ”same” description from stage to stage in the development process,
where by ”same”, we mean that little or no modification is needed in such transitions.

In this paper, we will show that DEVS has the necessary model expressiveness and
continuity properties to serve as an IoT Design language. We will illustrate with several
examples to show wide applicability. We will demonstrate the added value of the
System Entity Structure (SES) to enhance expressiveness, scalability, and flexibility
in IoT system design, making it a powerful tool for managing complexity and enabling
efficient simulation and deployment.

Fig. 1 Stages and the requirements for an IoT Design Language. The DEVS formalism provides the
model expressiveness needed for IoT functional design and supports the model continuity needed to
transition from stage to stage.

Figure 1 illustrates the stages and the requirements for an IoT Design Language. On
the left side of Figure 1 we conceptualize an IoT system as interacting with its environ-
ment through sensors and effectors (also called actuators), and on the right side, three
basic stages of the development of such a system are shown as Design, Simulation, and
Implementation. In the design stage, the focus is on system architecture, often using
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high-level design tools [8], with the environment and the sensor/effector interaction
minimally represented. Model continuity allows transferring the designed model to be
evaluated in the simulation stage and implemented in the implementation stage with
minimal changes. Currently, an IoT design language that supports these requirements
is lacking [9]. On the other hand, DEVS model expressiveness is manifested in its
support of hierarchical and modular model construction. These characteristics enable
the implementation and verification of smaller models, which can then be coupled to
form a complete model. In this process, a family of models emerges in which the mod-
els can be reused and integrated with multiple other models. Moreover, DEVS allows
for the simulation of these models alongside a set of well-developed models, targeting
both discrete-event and continuous systems [10]. Furthermore, DEVS supports model
continuity in which only the simulator needs to be changed to run from abstract time
to real-time [11, 12] while the model remains substantially the same.

The remainder of this paper is organized as follows. Section 3 provides a review
of the DEVS formalism and the SES, which serve as foundational frameworks for the
modeling and simulation (M&S) of complex systems. Section 3 presents requirements
for IoT design and development and summarizes how DEVS serves as a language to
help users address these requirements.

Section 4 presents a series of illustrative examples demonstrating the application
of DEVS in designing IoT systems. These examples include: home automation, the
CAIDE architecture, the Actuation Conflict Management (ACM) framework, and
swarm-based systems. Section 5 offers a discussion on how the presented examples
highlight the expressiveness of DEVS for capturing dynamic and complex behav-
iors and its continuity in seamlessly transitioning simulation models to real-world
implementations.

Section 6 discusses how model-driven engineering provides a methodology to
address IoT requirements and can enhance DEVS ability to support them.

Finally, Section 7 concludes the paper by summarizing the key findings and
outlining future directions for further leveraging DEVS in IoT system design.

2 Background in DEVS and SES

DEVS Atomic and Coupled Models specify Mathematical Systems [13], one of the
earliest forms of general system specification that combined both the automaton for-
malism of computer science and the dynamic systems models of control theory [14].
DEVS Atomic model specify the dynamic input/output and state behavior of atomic
components (elements that are not further decomposed in the model).
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Fig. 2 Illustration of a coupled model with one input and one output, comprising an atomic model
and a secondary coupled model that includes three additional atomic models

DEVS Coupled models include components and their couplings - connections from
output ports of components to input ports of other components. As illustrated in
Figure 2, component models can themselves be coupled models (as well as atomic
models) leading to hierarchical structures. Closure under coupling of DEVS models is
an important theorem that justifies the confidence in managing the complexity of hier-
archical models. This states that the resultant of coupling well-defined DEVS models
is itself a well-defined DEVS model, i.e, is equivalent in its input/output behavior as
a DEVS atomic models [5]. As we will show, such Hierarchical Modular Composition
supports the model construction needed for development of CAS such as advanced
IoT systems.

The System Entity Structure (SES) is a declarative knowledge representation
scheme that characterizes the structure of a family of models in terms of decom-
positions, component taxonomies, and coupling specifications. Formalized by a set
of axioms [12], the SES is used to define and construct hierarchical modular DEVS
models. As an ontology for M&S, it concentrates a relatively few basic relations as
follows:

• Aspect expresses a way of decomposing a system into components and is relation
between the parent and the children. For instance, IoTSmartApp in Figure 3 is
an entity composed of Sensors and Actuators. Sensors and Actuators are each
represented as components (called multi-entities) that are decomposed into one or
more Sensor and Actuator, respectively. An aspect holds the coupling relations that
will connect the components (children) to create a coupled model for the parent.
An entity that has no aspects (decompositions) is the smallest indivisible element
and is represented by an atomic DEVS model.

• Specialization expresses the variants that a component can assume within a
decomposition. Smoke detector, WaterLeakageDetection or ThermalSensor can
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replace any of the Sensors and Smartphone, WindowController or AirConditioner
can replace any of the Actuators in Figure 3.

Fig. 3 IoT smart App SES design. Sensors and Actuators are defined as specialization. A sensor
entity can be smoke detector or thermal sensor. A actuator can be smartphone or air conditioner.

The corresponding constrained natural language of the SES description depicted
in Figure 3 appears as follows:

From the IoTDecomp perspective, IoTSmartApp is made of Sensors and Actuators!

From the SensorMult perspective, Sensors is made of more than one Sensor!

From the ActuatorMult perspective, Actuators is made of more than one Actuator!

Sensor can be SmokeDetector,WaterleakageDetection,or ThermalSenor in SensorType!

Actuator can be Smartphone, WindowController, or AirConditioner in ActuatorType!

The SES specifies hierarchical coupled models and makes it easier to create them.
Indeed, tools exist that help users define SES’s in a constrained form of natural lan-
guage as well interfaces to prune such models[12]. A specific model is selected from
the SES family of models by selecting from the available choices in a process called
pruning. This results in several Pruned Entity Structures (PES), which can then be
automatically converted to simulatable DEVS models, thus enabling comparison of
alternative architectures [15].

Two other properties of DEVS are very interesting for IoT system design and will
be expanded on later:

• DEVS Universality : DEVS models can represent a wide variety of system types
including continuous, discrete, finite state, etc. [16]. For instance, when it comes
to addressing service access conflicts in IoT systems, components are introduced
in DevOps flow to manage actuation conflicts, and they are typically specified
using particular formalisms such as ECA (Event-Condition-Action). ECA rules are
a widely used language for the high level specification of controllers in adaptive
systems, such as Cyber-Physical Systems and smart environments, where devices
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equipped with sensors and actuators are controlled according to a set of rules. The
DEVS Universality simplify the specification of this specific description. Due to the
DEVS universality these description formalisms can be reduced to DEVS.

• Dynamic Structure DEVS : a type of DEVS model that can change its own struc-
ture while running [17, 18]. The ability to change a model’s structure during its
simulation is highly interesting in the IoT domain, where a system can update the
list of available devices (sensors or actuators) upon discovering a new context.

3 Requirements for IoT Design and Development

The identified traits of the DEVS formalism—modularity, event-driven behavior, con-
currency, adaptability, scalability, and model continuity—are essential and sufficient
for dealing with the complexities of IoT systems design and development. IoT systems
are inherently heterogeneous, with diverse devices and components that must interact
seamlessly. IoT systems are characterized by several critical requirements:

• Heterogeneity: IoT systems typically comprise a diverse array of devices, sensors,
and actuators, each with distinct communication protocols, data formats, and com-
putational capabilities. An effective modeling formalism must accommodate this
heterogeneity and enable seamless interaction between these diverse components.

• Real-Time and Event-Driven Behavior: Many IoT applications require real-time pro-
cessing of sensor data, with decision-making based on specific events. For example,
a smart thermostat must respond immediately to temperature fluctuations, while
a smart city traffic management system must process sensor inputs in real time to
optimize traffic flow.

• Concurrency and Synchronization: The dynamic and distributed nature of IoT sys-
tems often necessitates the concurrent operation of multiple devices or subsystems.
These devices must interact and synchronize effectively to ensure that the system
operates cohesively, without conflicts or performance degradation.

• Adaptability: IoT systems must be able to adapt to changing environmental condi-
tions, such as the failure of components, the introduction of new devices, or network
disruptions. A modeling approach must therefore support flexible system structures
capable of responding to such dynamic conditions.

• Scalability: As IoT systems grow in size and complexity, the ability to scale the
system without introducing instability or performance issues becomes critical. A
modeling formalism must support scalable architectures that can accommodate the
addition of new components or the expansion of existing ones.

• Model-to-Execution Continuity: An IoT system must transition smoothly from the
design phase to the simulation and execution phases. This requires that the behavior
modeled during the design phase is accurately reflected in the real-world execution
of the system.

DEVS’s modular and hierarchical approach addresses this heterogeneity by
enabling the design of complex systems as compositions of simpler, reusable models.
Furthermore, IoT systems often require real-time responses to sensor data, and DEVS’s
event-driven nature allows it to model the time-based behaviors that are critical for
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such applications. The ability of DEVS to handle concurrent events and synchronize
multiple interacting processes makes it ideal for modeling the distributed, concurrent
nature of IoT systems, where multiple devices must operate in parallel and remain syn-
chronized. Additionally, IoT systems must be adaptive to changing conditions, such as
device failures or network disruptions, and DEVS supports dynamic model structures
that allow for this flexibility. DEVS also facilitates scalability by allowing models to
grow incrementally, an important feature for large-scale IoT systems. Finally, DEVS’s
model continuity ensures that the system’s behavior remains consistent throughout
the development lifecycle, from design to simulation and real-world execution. This
continuity is crucial for ensuring that IoT systems perform as intended when deployed.

Secondary studies on IoT systems highlight these same traits as essential, rein-
forcing that DEVS’s modularity, real-time event handling, concurrency management,
adaptability, scalability, and smooth transition across stages are not only sufficient but
minimal for modeling IoT systems effectively. While other formalisms, such as state
machines, Petri nets, and UML, may address some aspects of IoT design, they lack
the comprehensive support for concurrency, event-driven behavior, and model conti-
nuity that DEVS offers. Thus, DEVS provides a robust and minimal set of traits that
make it an ideal candidate for IoT system design and simulation.

4 DEVS Design Principles for IoT Systems: Practical
Examples

This section is dedicated to presenting several examples highlighting the enhanced
expressiveness and continuity offered by DEVS in the field of IoT systems.

4.1 DEVS Architecture for Home Automation

Faizel and Wainer [10] provide a DEVS specification of a home automation archi-
tecture and validate its effectiveness through a detailed case study that integrates
multiple sensors and actuators. They developed a series of models, each responsible
for a specific functional aspect of the device. These functionalities include polling one
or multiple sensors, transmitting the data to other nodes, employing advanced data-
sharing algorithms to the sensor data. These models were then combined to form the
complete model intended to be executed on each device. A network of nodes run-
ning these models showed that the nodes could successfully combine sensor readings
from their sensors into a single value and exchange messages with other nodes to
“agree” on common values. Various simulation scenarios with different configurations
were conducted, and the results aligned with the desired behavior of the models. To
demonstrate the applicability of the developed models in practice, a home automa-
tion application was created consisting of multiple sensors and actuators. The authors
showed that their approach exploited the capability of DEVS to reuse models in both
simulation and deployment on hardware. This is achieved via DEVS model continu-
ity first using a DEVS simulator to verify the correctness of the models prior to their
deployment and then transforming the models and the associated DEVS simulator to
real-time implementation. More specifically, the home automation architecture uses
Cadmium version 2, a C++ implementation of DEVS [19]. Multiple C++ classes,
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with their state variable types, were defined to correspond to each model. These mod-
els were used for simulation purposes and later flashed into micro-controller firmware
alongside a DEVS simulator for deployment. We note that all of these models had
identical C++ code for both deployment on the device and simulation, except that
the message broker model was replaced with an actual commercial off-the-shelf imple-
mentation and the client models were slightly modified to make them suitable for
deployment on the hardware. Details are described in [10].

In [20], the authors demonstrate the suitability of the DEVS formalism for modeling
synchronous automata and verifying execution strategies in the context of IoT system
design. They validate their approach using a pedagogical case study: the development
of an application to control room lighting. In this work, the behavior of a DEVS model
is represented as specifications of a finite state automaton. However, these DEVS
specifications encapsulate both the state automaton and the execution machine. The
key advantage of using DEVS lies in its flexibility to define multiple strategies through
distinct DEVS model specifications.

The traditional IoT system design process typically involves: (i) defining the behav-
ior of IoT components in a library (ii) designing the coupling between components in
the library and (iii) executing the resulting coupling. If errors are detected, the designer
must redefine component behaviors, particularly those of the execution machine, to
handle time conflicts within the ambient system.

In [20], the authors propose an alternative approach based on DEVS M&S. Instead
of waiting until the implementation phase to identify potential conflicts, we advocate
for an initial phase where the behavior of IoT components and execution machines is
modeled and simulated using DEVS. Once the simulations yield successful results, the
designer can confidently implement the system behavior within an IoT framework. We
will also discuss the advantages of DEVS in managing access conflicts in IoT systems
in Section 4.3.

We review how the features of this application illuminate DEVS mode expressive-
ness and continuity:

• Model expressiveness:

– Employs hierarchical, modular construction to achieve incrementally verifiable
functionality

– Interacts with Sensors and Actuators in a dynamic environment

• Model continuity:

– DEVS Simulation engine was expressed in programming language (Cadmum++,
Python) for development

– DEVS models were converted to firmware for real-time execution

4.2 DEVS IoT System: Real-time Monitoring, Management,
Forecasting

Developed and implemented using DEVS, Cloud-Based Analysis and Integration for
Data Efficiency (CAIDE) was applied to Solar Irradiance Sensor Farms [21]. The
system design is based on DEVS, Model Based Systems Engineering (MBSE) [22]
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and an IoT infrastructure with the objective to deploy and analyze solar plants in
dynamic environments. The system can manage multiple sensor farms and simultane-
ously improve predictive models in real-time by adapting and re-training models to
keep forecasts accurate and updated.

Fig. 4 IoT Solar System Architecture designed and implemented using DEVS syooirt for expres-
siveness and continuity

As illustrated in Figure 4, the built system is an implemented DEVS hierarchi-
cal coupled model whose top-level components are Farms and cloud-based training
and big data services. Farms consist of atomic models that perform data processing
services, solar sensors, and a central Fog server. The underlying DEVS architecture
enables components to be executed in sequential, parallel, or distributed architectures,
assuring scalability. The working system was demonstrated in a complex scenario com-
posed of several solar irradiance sensor farms connected to a centralized management
system CAIDE has important implications for deployment of solar plants and future
of renewable energy sources.

As above, we review how the features of this application illuminate DEVS mode
expressiveness and continuity:

• Model expressiveness:

– DEVS supports expression of the CAIDE architecture which is layered with
sensor, Fog, and cloud layers, consistent with IoT Layered Architecture.

– DEVS atomic models express the required temporal interaction with solar sensors.
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– DEVS modularity provides the flexible basis to support the variable functionality
required for AI/ML analysis and retraining.

• Model continuity:

– The DEVS Simulation engine was employed in Python for development.
– A DEVS real-time execution engine continues to implement essentially the same
model that resulted from the initial design.

4.3 Conflict Management in IoT System DevsOps

In the management of IoT conflict, validation is crucial to identify conflicts by
analyzing events and potential actions on actuators managed by concurrent smart
applications. Challenges intensify as smart applications increasingly control shared
IoT devices, particularly actuators that translate commands into physical effects. A
key challenge is managing actuation conflicts, which arise when multiple applications
compete for access to shared actuators (direct conflicts) or influence shared physical
properties (indirect conflicts).

Designers must address actuation conflicts during the design phase rather than
leaving them to end users. The objective is to implement Actuation Conflict Manage-
ment (ACM) mechanisms that detect and resolve direct and indirect conflicts early
(Figure 5). Validation plays a critical role in verifying ACM properties by simulating
IoT application events and actuator actions. This process ensures that ACM specifica-
tions are robust and effective in real-world scenarios, particularly for managing direct
and indirect conflicts.

The proposed approach work builds upon the M&S approach outlined in recent
research [23], proposing a method that closely integrates M&S with the design of
IoT systems (Figure 5). The methodology leverages the DEVS formalism within the
DEVSimPy multi-platform framework [24, 25], facilitating robust and flexible system
Design. DEVSimPy is an advanced wxPython General User Interface for the M&S of
systems based on the DEVS formalism. With DEVSimPy, a system can be modeled
by interconnecting atomic and coupled DEVS models instantiated from libraries.
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Fig. 5 DEVS M&S inside the custom ACM Design process with its three levels: The Logical ACM
Design, Model validation and Model Deployment

Figure 5 shows the custom ACM Design process that include the following levels:

• Logical ACM Design: At this stage, the logical properties of custom ACMs (e.g.,
completeness, safety, liveness) are formally verified using methods like Model Check-
ing [26, 27]. Custom ACMs are defined as finite-state machines (FSM) provided by
the designer.

• Model Validation: This level validates the effects of conflict resolution on the envi-
ronment through DEVS simulation. The DEVS ACM model incorporates temporal
properties (e.g., event delays, state durations) derived from the ACM FSM.

• Model Deployment: This level allows custom DEVS ACMs temporal properties to
be formally verified through different asynchronous execution machine strategies
associated with the ACM FSM. DEVS formalism is used to simulate the different
implementation strategies. At this level, different hardware platforms with different
asynchronous timing specifications can be experimented thanks to the DEVS valida-
tion and different middleware/EDGE solutions (node-red [28], ThingML [29], etc.)
can be also proposed using an automatic implementation of the DEVS simulation
kernel in the targeted middleware.

The proposed approach incorporates an innovative ACM mechanism to identify
and resolve conflicts arising from spatial and temporal competition among application
flows. Conflicts in IoT systems occur when safety properties (relating to actuators or
the environment) are violated. For instance, conflicts arise when multiple application
flows attempt to control the same actuator, impacting one of its features. These con-
flicts can be classified as direct (Figure 6(a)) when targeting a single device or indirect
(Figure 6(b)) when application flows affect environmental properties inconsistently.
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Fig. 6 IoT systems face two conflict types: (a) Direct conflicts, where N application flows compete for
an actuator’s resources; (b) Indirect conflicts, where N application flows affect MM devices through
environmental characteristics (e.g., noise). An ACM DEVS Coupled Model is introduced to simulate
and validate resolutions for both conflict types.

The proposed simulation-based approach intercepts all interactions between appli-
cation flows (actions) and IoT devices (actuators) to detect potential direct and
indirect conflicts. It validates resolution strategies implemented by a dedicated ACM
component (Figure 6(c)).

DEVS models were utilized at an early stage of the ACM Design process, enabling
simulation-based validation of the ACM mechanism prior to deployment in physical
environments. The results demonstrate the expressiveness of the DEVS formalism in
specifying and validating the ACM component, ensuring its seamless integration and
functionality within simulated physical environments.

The ACM coupled DEVS model consists of two atomic models: a DEVS Synchro-
nizer, which receives events from application flows and drives the evolution of the
Logical Behavior based on the inputs it transmits (Figure 7).

Fig. 7 The ACM component model, featuring its Synchronizer and Logical Behavior models, is
embedded within a Physical Environment that includes Application flows and IoT Devices (Actuators)

Designers use the Logical Behavior model, typically modeled as a Finite State
Machine (FSM), to define conflict resolution rules through state transitions and output
functions. An execution engine triggers these functions based on inputs and gener-
ates outputs. While model checking can validate the FSM’s logic, it may not address
synchronization and temporal aspects.

The Synchronization policy is key to the Logical Behavior’s properties. The
Synchronizer DEVS model processes input events from IoT application flows by syn-
chronizing and serializing them according to a strategy defined during design. This
strategy might involve waiting for all inputs before triggering outputs, sending inputs
immediately, or following specific time intervals.
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Fig. 8 The DEVSimPy model of the Smart Home scenario integrates the ACM model with the
coupled application flows and actuators. The Synchronizer and LogicalBehavior models are part of
the ACM coupled. model.

Figure 8) shows an example of modeling a custom ACM in a smart home sce-
nario using DEVSimPy, focusing on conflict detection in IoT-based smart homes. The
scenario involves 216 application flows controlling 37 actuators, such as windows, air
conditioners, and lights. Conflicts arise when multiple applications control the same
actuator, like applications 14 and 134 both controlling the TV. The total number
of direct (resp. indirect) conflicts is 3124 (resp. 673). The custom ACM component
detects and resolves both direct conflicts (e.g., TV commands) and indirect conflicts
(e.g., ambient noise from the Speaker and TV) validating the ACM rules.

Due to DEVS continuity, the DEVS simulation engine was successfully mapped
to middleware solutions such as Node-RED and ThingML, enabling straightforward
integration with IoT infrastructures. The objective is to support the orchestration
and deployment of IoT systems whose software components can be deployed over
IoT, edge, and cloud infrastructures. The ACM simulation model can be part of the
chosen deployment solution, as the DEVS simulation core is portable across any plat-
form [11, 20]. Thanks to the DEVS formalism, the approach supports deployment
across diverse hardware platforms with varying timing characteristics, underscor-
ing its adaptability and portability. By leveraging the DEVS formalism within the
DEVSimPy framework, this work bridges the gap between simulation and practical
IoT implementation, ensuring that design-phase validation translates effectively to
real-world applications.

Another application involving access conflicts to sensors is smart parking. Smart
parking is a system that optimizes the occupancy of parking spaces by leveraging
specifications that include the behavior of drivers and the dynamic interaction with
sensors. One of the key challenges in this domain lies in developing a reliable model that
can resolve cumulative parking conflicts, which arise when multiple drivers compete
for spaces in a dynamic environment where both user behavior and sensor data are
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critical. Thanks to sensor network systems, it is currently possible to provide parking
spaces with sensors in order to know their availability in real time. In [30], the authors
present a DEVS M&S approach dedicated to propose conflict management strategies
based on the estimated travel time to reach desired places around a specific area.
DEVS is used since (i) it is discrete-event oriented and therefore an effective solution
to the management of time advances in simulation or in real time (ii) its hierarchical
modular aspect allows you to conclude a conflict model working from the isolated user
in specific models.

Fig. 9 The DEVSimPy simulation model integrates all the DEVS atomic models along with their
interconnections. The simulation considers 10 drivers and 10 parking spaces. A Conflict Collector
model is employed to gather simulation outputs, which are subsequently used for result analysis.

Figure 9 illustrates the DEVSimPy simulation model of the smart parking system.
The simulation begins with the Space atomic models (sensor), which can be grouped
into a Zone coupled model. The UserLink atomic model aggregates data from sensors
and transmits it to the various users (drivers). The User model processes the available
parking spaces that match its criteria and forwards user-specific data to the Travel
model. The ”Travel” model evaluates this data and selects a parking space from the
desired options based on different policies. This decision is then passed to the Access-
ConflictManagement model, which resolves conflicts between users by applying various
algorithms to manage competition effectively.
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Fig. 10 Mobile app that embed the Smart parking DEVS simulation model for the Bastia city
(Corsica - France) which is equipped with more than 400 presence sensors on the roads

Due to the model continuity of DEVS, the ”space” models can be connected to an
API providing real-time sensor activity from an actual parking lot. By also connecting
users to the model (via authentication) and switching the simulation kernel to real-
time mode, this simulation model can be utilized by a mobile application. This mobile
application can then be used by drivers in a city to locate available parking spaces and
occupy them with their vehicles. This simulation model was deployed in the mobile
application (due to the DEVS Model Continuity) shown in Figure 10 for the city of
Bastia (in Corsica - France).

To summarize, the features of this application that illuminate DEVS model
expressiveness and continuity are:

• Model expressiveness: DEVS ability to express concurrent multiple streams of
temporal events enabled simulation-based validation of the actuator coordina-
tion mechanism prior to its deployment ensuring its seamless integration and
functionality within simulated physical environments.

• Model continuity:

– The DEVS simulation engine can be mapped to middleware implementations
enabling straightforward integration with IoT infrastructures.

– DEVS supports deployment across diverse hardware platforms with varying
timing characteristics, underscoring its adaptability and portability.
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– DEVS bridges the gap between simulation and practical IoT implementa-
tion, enabling design-phase validation to be translated effectively to real-world
applications.

4.4 DEVS IoT Development: Dynamic Structure for Adaptive
Unmanned Swarm Systems

In [18] Zhang et al. emphasized the model expressiveness capability of DEVS, espe-
cially its dynamic structure feature, in application to M&S of unmanned swarm
systems (USS). Such systems have broad applicability to a variety of domains includ-
ing military, agriculture, aerospace, etc. Arguing that traditional modeling methods
cannot effectively describe the dynamics of USS, they show how to apply DEVS to
design, simulate, and implement such systems. The article shows how DEVS enables
description of the unmanned component platforms from both behavioral and structural
perspectives. In the former, DEVS atomic components model the microscopic behav-
iors; in the latter, DEVS coupling relationships describe the collaborative structure
between unmanned platforms.

Fig. 11 Dynamic Structure DEVS Objective: minimize overlapping areas

Particularly, Figure 11 illustrates how swarm growth and self-optimization for
surveillance by USS is supported by dynamic structure DEVS. The capability to
dynamically add and delete sub-models and input and output ports, and to change
port connection relationships enables such systems to make structural adjustments
in response to environmental changes. They perform such adaptation in accordance
with given goals and structure change rules during simulation operation. A DEVS-
based synchronization mechanism supports implementation of coordinated actions and
changes in structure as required for adaptive behavior.
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Fig. 12 Hierarchical, modular structure of an unmanned swarm system and its environment is
described in the SES (top of figure) and depicted by the hierarchical coupled model (figure bottom)

The hierarchical, modular structure of the USS and its environment is sketched in
Figure 12 using the SES on top and the block diagram form at the bottom. The Swarm
is decomposed into a Controller and Unmanned Autonomous Vehicles (UAVs), each
of which are coupled models containing maneuverability and terrain feature detection
atomic models. The USS implements adaptive reconnaissance in the sense that UAVs
adaptively adjust their positions in the area under surveillance, or exit the mission,
following rules such as:

• When an area is not being surveyed, add a UAV.
• When a UAV is damaged by more than 50%, it must exit the mission.
• When the UAV suffers interference, it leaves the interference area.
• When UAV reconnaissance areas overlap, the more damaged UAV leaves the area.

Such rules are implemented in the model using the dynamic structure capability
of DEVS. Further, the temporal properties of DEVS are well suited to model the
synchronization mechanism. The latter is necessary because UAVs can take different
amounts of time to finish their assigned tasks due to the heterogeneity of rule appli-
cation and environmental effects such as damage and interference. Synchronization
is implemented by having the controller wait for all UAVs to report that they have
completed the preceding task, before issuing the order to proceed to the next task.
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Fig. 13 Sketch of the system Entity Structure for unmanned swqrm system centralized and decen-
tralized synchronization. This SES is described by the text in Figure 14

Figure 13 leverages the SES to express how synchronization can be implemented
in a decentralized manner as opposed to the centralized one just discussed. In the
latter, the central controller is absent and its functionality is implemented by the
individual UAVs. While DEVS expresses the synchronization behavior required in
either case, the SES expresses the alternative implementations employing different
aspects (decomposition sub-trees) for the centralized and decentralized alternatives,
respectively. Figure 14 illustrates such an SES description.

Fig. 14 Example of a SES description using constrained natural language. The text specifies a
hierarchical coupled model that can be constructed from one ot the two aspects corresponding to
centralized and decentralized control (shown in yellow and green, respectively.
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The first line in the fragment of Figure 14 defines an aspect called topLevel that
decomposes the overall model SwarmNEnvironment into UAVSwarm and Environ-
ment components. Subsequent lines for this aspect declare coupling relations that state
how output ports of sender components connect to input ports of receiver components.
The yellow and green highlighted lines define two different aspects for decomposing the
UAVSwarm component corresponding to those shown in color in Figure 13, respec-
tively. Coupling relations express in these lines express connections from a coupled
model input port to one more of its components input ports (called External Input
Coupling) as well as conversely, from component output ports to output ports of the
parent coupled model.

4.5 Cyber-physical Systems Concepts Intergrated into IoT
Systems

While IoT design focuses on communication and control of sensors and effectors,
cyber-physical system design emphasizes the interaction between digital and physical
components. As applications become more demanding, the two thrusts are converging
toward a more complete methodology that combines their capabilities [31].

Fig. 15 Architecture that leverages DEVS capability to express building blocks for both the com-
putational and control-theoretic functions required for intelligent cyber-physical system design

Along these lines, Figure 15 illustrates an architecture that leverages DEVS capa-
bility to express building blocks for both the computational and control-theoretic
functions required for intelligent cyber-physical system design [32]. Implementation
of such an architecture is discussed by [33] and exploits DEVS model continuity for
efficient development of embedded controllers for robotic systems. DEVS model con-
tinuity can support design, simulation, and implementation of such design concepts
for USS systems as well.

In this use case, the features that illuminate DEVS model expressiveness and
continuity are:

• Model expressiveness:
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– DEVS Atomic functions capture microscopic behaviors (messages, timing, deci-
sions)

– DEVS atomic and coupled models support synchronization.
– DEVS Hierarchical modular structure expresses collaborative interaction in
centralized and decentralized control.

– DEVS Dynamic structure enables the structural changes needed for adaptive
behavior.

• Model continuity:

– DEVS supports definition of building blocks and architectural patterns for
intelligent hybrid cyber-physical system design.

– DEVS Execution engines can be implemented in diverse technologies such as
virtualization, hardware, embedded system, and bioware.

5 Discussion

In the following we summarize the properties of the DEVS formalism that were elu-
cidated in the examples given above to support the claims for its validity as an IoT
design language based on its model expressiveness and continuity.

5.1 DEVS Properties for Model Expressiveness and Model
Continuity

DEVS is a strong candidate for the expressiveness of IoT system design due to its
ability to model heterogeneous, dynamic, and event-driven environments while ensur-
ing modularity, hierarchy, and formal validation. IoT systems are inherently complex
and distributed, involving diverse components that operate at different time scales
and require flexible interaction mechanisms. DEVS offers key advantages that align
well with these characteristics:

• Modeling of Asynchronous and Event-Driven Behavior: IoT systems rely
on asynchronous interactions among devices, sensors, and actuators. DEVS, as a
discrete-event formalism, naturally represents systems where state changes occur
at discrete time instants, making it well-suited for capturing real-world IoT
dynamic [34]. It represents state changes at discrete time intervals, making it adept
at modeling real-world dynamics in IoT environments [35];

• Hierarchical and Modular Structure: DEVS enables hierarchical composition
of models, allowing IoT architectures to be designed in layers—such as edge, fog, and
cloud computing—while maintaining encapsulation and interoperability between
components [36]. This modularity enhances the reusability of models across different
applications [34].

• Separation of Concerns (Structure vs. Execution): IoT systems often
require separating functional behavior from execution strategies. DEVS achieves
this through its atomic models (defining component behavior) and coupled models
(specifying interactions and execution flow), providing a clear separation between
computation and communication [37].
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• Support for Concurrency and Synchronization: IoT components often involve
multiple interacting subsystems that require concurrent processing. DEVS inher-
ently supports parallel discrete-event simulation (P-DEVS), making it suitable
for modeling concurrency, synchronization mechanisms, and conflict resolution in
distributed IoT systems [38].

• Adaptability to Dynamic Environments: IoT applications demand adaptabil-
ity due to changing conditions and evolving requirements. Dynamic Structure DEVS
(DS-DEVS) extends DEVS by allowing on-the-fly reconfiguration, which is essen-
tial for modeling adaptive behavior in IoT networks [39]. Adaptive decision-making
frameworks, such as the one proposed by Wang et al., utilize layers that sense,
decide, and execute actions based on dynamic conditions [40].

• Validation through Discrete-Event Simulation: A critical aspect of IoT
system design is verifying whether execution strategies remain conformant with
the intended functional model while incorporating real-world constraints. DEVS
provides a rigorous simulation-based validation framework, allowing designers to
test control strategies, real-time constraints, and system reliability before deploy-
ment [39].

• Interoperability with Other Modeling Approaches: IoT system design often
integrates multiple modeling paradigms, such as synchronous automata, Petri nets,
and state machines [41]. DEVS can coexist with and complement these models,
making it a flexible bridge for heterogeneous system design.

By capturing both system structure and execution dynamics, while enabling mod-
ularity, adaptability, and validation, DEVS emerges as a powerful and expressive
framework for IoT system modeling and simulation.

Table 1 lists properties of the DEVS formalism related to model expressiveness,
defined as its ability to express functional aspects of IoT systems.

Table 1 Model Expressiveness: Ability to Express Required Functionality in IoT systems

DEVS Properties Expressiveness Features
DEVS atomic model functions capture microscopic behaviors (messages, timing, decisions),

express temporal interaction with sensors and actuators
DEVS hierarchical modular
construction

supports incrementally verifiable functionality, expresses col-
laborative interaction in centralized and decentralized control,
expresses the IoT architecture which is layered with sensor,
Fog, and cloud layers

DEVS modularity provides flexible support for the variable functionality
required for AI/ML model analysis and retraining

DEVS temporal properties express concurrent multiple streams of temporal events
enabling simulation-based validation of the coordination and
synchronization mechanisms

DEVS dynamic structure enables structural changes needed for adaptive behavior
DEVS system-theory basis supports definition of building blocks and architectural pat-

terns for intelligent hybrid cyber-physical system design

Model continuity refers to the ability to transition a system description seam-
lessly across different stages of development—design, simulation, and execution—with
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minimal or no modifications. This is particularly important in IoT system develop-
ment, where models need to remain consistent across heterogeneous platforms and
real-world constraints. DEVS provides a formal and modular approach that supports
model continuity in the following ways:

• Transition from Design to Simulation: DEVS provides a formal specification that
allows IoT models to be directly simulated without reinterpreting their structure
or behavior. The same model used in design can be executed in a discrete-event
simulation environment, ensuring that functional behaviors (e.g., message passing,
event synchronization, timing constraints) are validated early. The hierarchical and
modular nature of DEVS allows developers to incrementally refine their models
while preserving core behavioral properties. For example, IoT system architects
can design DEVS models representing sensor interactions, data aggregation, and
processing logic, then test these models in a simulation engine before deployment.

• Transition from Simulation to Execution: DEVS enables migration from simulated
environments to real-world execution by transitioning from abstract simulation
time to real-time execution. DEVS models can be mapped to real-time platforms,
ensuring that the timing, coordination, and decision-making behaviors observed in
simulation are maintained during execution. Through real-time DEVS (RT-DEVS),
the same IoT models can be integrated into embedded systems, middleware, and
cloud environments without major alterations. For example, a DEVS-based traffic
monitoring system tested in a simulation environment can be directly deployed onto
real-world IoT infrastructure while maintaining its event-driven behavior [42].

• Support for Diverse Implementation Platforms: DEVS models can be executed
across a wide range of hardware and software platforms, including: (i) Embedded
systems (IoT devices, microcontrollers) (ii) Edge and fog computing environments
(iii) Cloud-based IoT platforms and (iv) Distributed simulation frameworks [43].
This adaptability ensures that the same IoT model can be scaled and reused across
multiple deployment scenarios. For example, a DEVS-based smart grid model can
be tested in a cloud-based simulation environment and later deployed onto real-time
distributed IoT systems while preserving model fidelity.

• Model Validation and Conflict Resolution: DEVS simulation helps verify and val-
idate execution strategies, ensuring that an IoT system’s operational behavior
remains consistent with its design [44]. At the Operational Model level, DEVS
supports conflict actuation management, helping resolve issues such as resource con-
tention, sensor conflicts, and dynamic adaptation. For example, a smart building
IoT system modeled in DEVS can simulate conflicting temperature control settings
before deployment, ensuring smooth operation.

• Dynamic Adaptation and Evolution: IoT systems can reconfigure themselves
autonomously, reducing the need for human intervention. This self-management is
vital in complex environments, as highlighted in studies on self-adaptive software
systems [45]. Through Dynamic Structure DEVS (DS-DEVS), models can adapt to
environmental changes in real-time, allowing IoT systems to be self-reconfigurable.
This ensures that model continuity extends beyond initial deployment, supporting
evolution and updates without requiring full redesigns. For example, an IoT-based
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disaster response system modeled with DS-DEVS can dynamically adjust com-
munication patterns and resource allocation in response to changing emergency
conditions.

Table 2 lists transitions from the Design stage to the Simulation stage and from the
latter to the Execution stage for which DEVS model continuity supports development
of IoT systems. The table also considers the diversity of implementation that DEVS
can work within.

Table 2 Model Continuity: Ability to Transition the “Same” Description from Stage to Stage

Inter-stage Transitions DEVS Model Continuity Features
Migration from Design to Sim-
ulation

The DEVS Simulation engine is coded in a variety of program-
ming and higher level languages for design and simulation

Migration from Simulation to
Execution

DEVS Simulation engine can be transformed from its abstract
time base to real-time bases and DEVS models can be
converted to hardware or middleware forms for real-time exe-
cution

Diversity of implementation
media

The DEVS simulation engine can be mapped to middle-
ware implementations enabling straightforward integration
with IoT infrastructures, DEVS supports deployment across
diverse hardware platforms with varying timing character-
istics, underscoring its adaptability and portability, DEVS
Execution engines can be implemented in diverse technolo-
gies such as virtualization, hardware, embedded systems, and
bioware

They are other modeling formalisms besides DEVS that aim to achieve expressive-
ness and continuity in IoT systems, including Class Diagrams, State Machines, and
Petri Nets [46]. While each formalism has its strengths, they may not fully address
the unique challenges of IoT systems in the same way that DEVS does. Let’s explore
how some of these popular formalisms compare to DEVS in terms of expressiveness,
continuity, and support for IoT system features:

• Class Diagrams (UML): Class Diagrams are commonly used in Unified Modeling
Language (UML) to represent the structure of systems through classes, attributes,
operations, and relationships between classes. They are valuable for defining the
static structure of IoT systems, particularly for object-oriented design and database
schema representation [47].

– Strengths: Static structure definition: Ideal for capturing the hierarchical relation-
ships and data organization within an IoT system (e.g., sensor data models, device
classes). Widely adopted: A well-understood formalism, especially in enterprise
and software system design.

– Limitations compared to DEVS: Lack of Temporal Dynamics: Class diagrams do
not inherently model time-dependent behavior or event-driven interactions that
are crucial in IoT systems. This makes them less suitable for modeling asyn-
chronous events and temporal dependencies. Limited Reactivity: Class diagrams
are static and do not easily model reactive behavior—the ability of a system to
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respond to external stimuli or events in real time. No explicit support for Exe-
cution Models: Class diagrams do not specify how an IoT system behaves over
time, which limits their support for execution strategies or model validation in
dynamic, event-driven environments.

• State Machines: State Machines (or Finite State Machines, FSM) are widely used to
model discrete states and state transitions based on input events. They are effective
for describing control flow and sequential behavior, which makes them applicable to
certain types of IoT systems (e.g., simple control systems, state-based devices) [48].

– Strengths: Clear Representation of Control Flow: Good for modeling sequential
logic and finite state transitions, which are common in IoT devices (e.g., a smart
thermostat with states like ”heating,” ”cooling,” and ”idle”). Simple and Intu-
itive: Easy to understand and implement, making them suitable for small systems
or components with straightforward behaviors.

– Limitations compared to DEVS: Limited Modularity: While state machines can
model transitions, they lack the modular design inherent to DEVS. Complex
IoT systems that involve multiple interacting components may become difficult
to manage using only state machines. No Support for Concurrency: Traditional
state machines are inherently sequential and do not handle concurrent events
well, which is a core feature in IoT systems where multiple components interact
simultaneously. Lack of Hierarchical Abstraction: DEVS allows for hierarchical
modeling, which enables nested behavior and system decomposition—this is par-
ticularly useful in IoT systems that have multiple layers (e.g., sensor networks,
cloud services, edge devices). State machines generally do not support this level
of abstraction.

• Petri Nets: Petri Nets are a graphical and mathematical formalism used to
model concurrent, asynchronous, and distributed systems. They have been used in
modeling communication protocols, process control, and IoT systems [49].

– Strengths: Concurrency and Synchronization: Petri nets are strong in modeling
parallelism, concurrency, and synchronization of events, which is crucial in IoT
systems where multiple devices and sensors may operate simultaneously. Well-
Suited for Event-Driven Systems: They handle event-driven behaviors well and
can model complex resource-sharing and token-passing mechanisms, which are
common in IoT systems.

– Limitations compared to DEVS: Lack of Modularity: While Petri nets can model
concurrency, they do not support the modular composition of IoT systems in the
same way DEVS does. They can be complex to manage when dealing with large
systems with many interacting components. Limited Focus on Execution Models:
Petri nets model state transitions and events, but they do not inherently support
execution strategies, such as mapping a model to real-time platforms or handling
issues like timing constraints or adaptive reconfiguration. Partial Support for
Dynamic Structure: While Petri nets can model system dynamics, they do not
inherently support dynamic structure changes or self-adaptation in the same way
DEVS with DS-DEVS does.
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• SysML (Systems Modeling Language): SysML, an extension of UML, is used for
modeling complex systems of systems, and it includes state diagrams, activity dia-
grams, and block definition diagrams. SysML is frequently used in engineering and
embedded systems [50].

– Strengths: Supports Complex Systems: SysML is suited for representing multi-
domain systems (e.g., electrical, mechanical, and software components), which is
useful in large IoT systems. State Transitions and Behavior Modeling: Like UML
state machines, SysML can represent state-based behaviors.

– Limitations compared to DEVS: Limited Simulation Support: SysML does not
natively include simulation capabilities as part of the formalism. For IoT sys-
tems, DEVS provides simulation and validation tools that allow for dynamic,
event-driven analysis. Lack of Real-Time Behavior Modeling: SysML does not
inherently support the real-time execution of systems as DEVS does. IoT systems
often require not just simulation but also direct mapping to real-time execution
environments, which DEVS provides seamlessly.

Table 3 compares different formalisms for expressiveness and model continuity in
IoT system design.

Formalism Strengths Limitations Compared to
DEVS

Class Diagrams Good for static structure
modeling

Lacks temporal dynamics, reactiv-
ity, and execution models

State Machines Effective for sequential con-
trol and finite states

No support for concurrency, hierar-
chical design, or modularity

Petri Nets Excellent for concurrency
and synchronization

Limited modularity, no inherent
support for dynamic structures or
execution strategies

SysML Useful for complex system-
of-systems modeling

Lacks native simulation support
and real-time execution capabilities

Table 3 Comparison of Different Formalisms with DEVS

6 How Model-driven Engineering Methodology and
DEVS Help Meet IoT Requirements

In the context of IoT systems, model-driven engineering (MDE) [51] plays a signif-
icant role in supporting the principles of expressiveness and continuity. Regarding
expressiveness, MDE allows for the use of Domain-Specific Languages (DSLs), which
provide tailored abstractions for different IoT components such as sensors, actuators,
and communication protocols. These DSLs enable designers to express complex IoT
behaviors at a higher level, thus making system design more intuitive and aligned
with the functional requirements of the system. Additionally, MDE supports modular
design through the use of formal methods, such as UML, SysML, and DEVS, which
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enable the decomposition of complex IoT systems into smaller, more manageable com-
ponents. This modularity enhances system expressiveness by providing a flexible and
scalable approach to modeling large, distributed systems. Moreover, MDE facilitates
the use of formal validation methods, ensuring that the models accurately capture the
system’s dynamic and event-driven behaviors, which are crucial for the temporal and
reactive nature of IoT systems.

In terms of continuity, MDE enables the seamless transition of models through
different stages of the development process. Model refinement allows for progres-
sive detailing of an abstract model, transforming it from high-level design to a more
concrete, executable form. MDE also supports model transformations, which automat-
ically convert models from one stage to the next (e.g., from design to simulation, or
from simulation to execution), ensuring that the same system description can be car-
ried through the entire development lifecycle without introducing inconsistencies. This
ability to maintain consistency across stages is further reinforced by traceability mech-
anisms, which link different levels of abstraction and ensure that changes made at one
stage are reflected in the subsequent stages. Additionally, MDE facilitates simulation
and execution integration, allowing for models to be simulated early in the develop-
ment process and then directly executed on hardware or middleware with minimal
modification. Finally, MDE supports automatic code generation, which converts high-
level models into executable code, enabling the direct deployment of IoT systems onto
real-time platforms without the need for significant rework. Thus, MDE ensures that
models maintain their integrity as they transition from design to deployment, reduc-
ing the effort required for system implementation and enhancing the overall continuity
of the development process.

In summary, MDE provides a powerful framework to help implement the appli-
cation of DEVS as a language for IoT development. MDE provides a methodology
to apply the above-described DEVS-based modeling and simulation capabilities to
address the challenges of expressiveness and continuity in IoT system design. By
allowing for high-level abstractions, modular design, and seamless transitions between
stages of development, DEVS and MDE significantly enhance the efficiency and
accuracy of IoT system development, from initial design through to real-world
deployment.

7 Conclusion

In this paper, we have demonstrated that the DEVS formalism, coupled with the
system Entity Structure, SES, possesses the necessary expressiveness and continuity to
serve as a robust design language for IoT systems. Through illustrative examples, such
as home automation, solar sensor farm management, conflict resolution mechanisms,
and dynamic unmanned swarm systems, we highlighted how DEVS supports adaptive
and complex behaviors with hierarchical modularity, synchronization, and dynamic
structure capabilities. Furthermore, the continuity inherent in DEVS enables seamless
transitions from design and simulation to real-world implementation, making it a
powerful tool for bridging the gap between conceptual models and operational systems.
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Looking ahead, we envision expanding DEVS applications to encompass even more
diverse IoT domains, emphasizing its scalability, flexibility, and integration potential
with emerging technologies. By leveraging these strengths with the support of MDE
methodology, DEVS is poised to play a pivotal role in the evolution of intelligent,
adaptive systems within the rapidly advancing IoT ecosystem.
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