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Abstract. Data measured on the same observations and organized in blocks of variables
— from different measurement sources or deduced from topics specified by the user —
are common in practice. Multiblock exploratory methods are useful tools to extract
information from data in a reduced and interpretable common space. However, many
methods have been proposed independently and the users are often lost in selecting the
appropriate one, especially as they do not always lead to the same results or because
outputs do not have the same form. For this purpose, the data decomposition by canonical
factorization was introduced thus applied to some widely-used methods, CPCA, MCOA,
MFA, STATIS and CCSWA. The methods were compared on simulated (resp. real) data
whose structure is controlled (resp. known). Theoretical and practical results pinpoint
that the block-structure must be carefully explored beforehand. The number of block-
variables and the block-variance distribution along dimensions impacts the choice of the
block-scaling. The observation-structure within and between blocks impacts the choice of
the method. CPCA or MCOA mix common and specific information, STATIS highlights
common structure only whereas CCSWA focuses on specific information. To enable these
diagnoses, methods and proposed comparison tools are available on R, Matlab or Galaxy.

Keywords. data integration, factorization, multiblock data decomposition, exploratory
multiblock analysis, principal component analysis

Highlights.

� Canonical factorization gives a unified framework to compare multiblock methods.

� Multiblock methods retrieve the block-structure with specificities in terms of block-
scaling and importance given to common and specific information.

� Exploring data before choosing the multiblock method is highly recommended.

� Methods and comparison tools are available in R, Matlab and Galaxy.
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1 Introduction13

Data sets organized in blocks of variables measured on the same observations are common in14

practice. Blocks may correspond to (quantitative) variables from different measurement sources15

or to topics specified by the user. For example in omics data, blocks consist of variables obtained16

from different techniques (e.g., proteomics, metabolomics). In food science, relationships be-17

tween physico-chemical measurements, microbiological characterization and sensory attributes18

can be explored. The aims of exploratory analysis of multiblock data are manifold: (i) jointly19

reduce the dimensions of multiple blocks, (ii) investigate relationships between blocks, (iii) and20

between variables within and between blocks, and (iv) recover within-block variation to high-21

light common and specific block-structure in a common space. For this purpose, multiblock22

exploratory methods are appropriate tools. Many methods have been proposed independently23

in the literature within different application frameworks: Generalized Canonical Correlation24

Analysis (GCCA) [5] and its popular case SUMCOR [17], Generalized Procruste Analysis (GPA)25

[12] MAXBET [37] Consensus Principal Component Analysis (CPCA) [42], Multiblock Principal26

Component Analysis (MBPCA) [42], Multiple Factorial Analysis (MFA) [9], Structuration de27

Tableaux A Trois Indices de la Statistique (STATIS) [20], Multiple CO-inertia Analysis (MCOA)28

[7], Hierarchical Principal Component Analysis (HPCA) [41, 44], COMDIM also known as29

Common Components and Specific Weights Analysis (CCSWA) [27], or SUM-PCA [32]. Users30

are often lost in choosing the appropriate method because outputs do not have the same form31

or do not lead to the same results.32

Compared to the number of methods, their interconnection has been little investigated.33

Some of them (e.g., MBPCA, HPCA) were not described with a criterion but with an itera-34

tive algorithm, while some others (e.g., MCOA, MFA) derived from eigendecomposition. An35

integrative analysis of some methods (SUM-PCA, PCovR, MFA, STATIS, SCA-P) based on Si-36

multaneous Component Analysis (SCA) has been proposed [38]. A monotonicity property of37

HPCA was revealed and an optimization criterion was presented to show equivalence between38

HPCA and CCSWA [15]. A new formulation of CCSWA was introduced with a criterion similar39

to that of MCOA or CPCA [14]. New properties of CPCA revealed its connection with MCOA40

and PCA [16]. Some methods (e.g., GCCA, SUMCOR) can be considered as special cases of Reg-41

ularized Generalized Canonical Correlation Analysis (RGCCA) when the concatenated block is42

considered as the dependent one [35]. GCCA, CCSWA and HPCA were considered in a unified43

framework [33]. Despite these clarifications, users still need to compare methods theoretically44

and, most importantly, get a practical guide to choose the appropriate method.45

Our first aim is to reformulate the outputs of widely-used methods, CPCA, MCOA, MFA,46

STATIS and CCSWA (equivalent to COMDIM, ACCPS, HPCA). For this purpose, we proposed47

to introduce data decomposition by canonical factorization to each method. Benefits are two-48

fold: (i) standardization of method outputs — comparable to those of standard PCA — and (ii),49

for a given method, relation between overall- and block outputs. Our second aim is to simulate50

different data and compare multiblock methods on these outputs. Without any relevant model,51

it is not possible to simulate multiblock data properly. Thanks to canonical factorization, it is.52

Our final aim is to apply multiblock methods to real data in order to move towards a clear user53

guideline. The rest of this article is organized as follows. In Section 2, the notion of canonical54

factorization is given (Section 2.2) and then applied to multiblock methods (Section 2.3). The55
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way to simulate and compare methods is given (Section 2.4). In Section 3, multiblock methods56

were compared on a simulation study (Section 3.1) and on data pertaining to multiple data57

integration for food (Section 3.2). In Section 4, results are summarized and perspectives for58

future work are drawn.59

2 Method60

2.1 Notations61

Matrices are denoted by bold upper-case letters (X) and vectors by bold lower-case letters (x).62

XT denotes the transpose operation of a matrix X. For a square matrix X, trace(X) is the sum of63

diagonal elements of X and diag(x) is a diagonal matrix whose diagonal elements are elements64

of x. ‖X‖ is the Frobenius norm of X. Multiblock data are described with N observations and65

K blocks (X1, . . . ,XK) of (J1, . . . , JK) variables, with J =
∑K

k=1 Jk. The concatenated data is X =66

[X1| . . . |XK], and matrix rank is rank(X) = H. Without loss of generality, variables are assumed to67

be column-centered. The concatenated data can be decomposed with components and loading68

by X = T̃P̃T (PCA) or with standardized ones by X = TDPT (SVD). Let T = [t(1), . . . , t(H)] be69

standardized common components of size (N × H) (‖t(h)
‖ = 1 for h = 1, . . . ,H with t(h)t(h′)T = 070

for h = 1, . . . ,H, h′ = 1, . . . ,H, h , h′), D the diagonal matrix of scaling of size (H × H) and71

P = [p(1), . . . ,p(H)] standardized common loadings of size (J ×H) (‖p(h)
‖ = 1 for h = 1, . . . ,H).72

2.2 Canonical factorization of multiblock data73

Rationale The canonical factorization of data by a multiblock method consists of assigning a74

standardized decomposition to each block, concatenated data included. Canonical factoriza-75

tion is the decomposition of (K + 1) blocks by a product of matrices with various constraints,76

depending on multiblock methods. This seek a common mathematical concept, of which each77

multiblock method — associated with a criterion to be optimized — is a particular implemen-78

tation associated with unique data decompositions. The originality of canonical factorization79

is manifold: (i) it decomposes multiblock data into common and thus comparable parameters,80

(ii) it highlights relationships between overall analysis (decomposition of X) and block-analyses81

(decompositions of X1, . . . ,XK), (iii) common and block-parameters have a statistical and geo-82

metrical interpretation which clarifies the strategy adopted by methods for analysing multiblock83

data.84

Proposal The canonical factorization of multiblock data is the decomposition of the (K + 1)85

blocks — (X1, . . . ,XK) and X — following:86


X = TDPT

Xk = TDkPT
k for k = (1, . . . ,K)

with the constraints TTT = I and ‖p(h)
‖ = ‖p(h)

k ‖ = 1 for h = (1, . . . ,H) ,
(1)
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with T the standardized and orthogonal common components, P the standardized (not neces-87

sarily orthogonal) common loadings, Pk the standardized block-loadings, D and Dk the diagonal88

scaling matrices with property D2 =
∑K

k=1 D2
k that relate common and block-analyses.89

Proof The overall data are decomposed into X = T̃P̃T, e.g., with a PCA. The two matrices are90

standardized following T̃ = TDT and P̃T
= DPPT, the scaling matrices DT and DP being both91

diagonal of size (H ×H). The canonical factorization of X is given by:92

X = T (DTDP) PT = TDPT

with the constraints TTT = I and ‖p(h)
‖ = 1 for h = (1, . . . ,H) ,

(2)

with D = DTDP. If X = [X1| . . . |XK], it follows X = T̃[P̃T
1 | . . . |P̃

T
K] with P̃T

= [P̃T
1 | . . . |P̃

T
K], the93

non-standardized loading matrix inheriting data structure of X. It derives Xk = T̃P̃T
k , blocks94

being decomposed into the same orthogonal basis T̃. Standardizations are also applied to95

Xk = T
(
DTDPk

)
PT

k , the (K + 1) scaling matrices DT and (DP1 , . . . ,DPK ) being all diagonal of size96

(H ×H). The canonical factorization of each block Xk is given by:97

Xk = T
(
DTDPk

)
PT

k = TDkPT
k

with the constraints TTT = I and ‖p(h)
k ‖ = 1 for h = (1, . . . ,H), k = (1, . . . ,K) ,

(3)

with Dk = DTDPk . To demonstrate relationships between D and Dk:98

X = TDT[P̃T
1 | . . . |P̃

T
K]

X = TD
[(

DTD−1D1

)
PT

1 | . . . |
(
DTD−1DK

)
PT

K

]
Because ‖p(h)

‖ = 1, it follows for a given dimension h, ‖p‖2 = pTp =
∑K

k=1

(
dTdk

d

)2
pT

k pk. Because99

‖p(h)
k ‖ = 1, it follows

∑K
k=1

(
DTD−1Dk

)2
= I, then D2 =

∑K
k=1 (DTDk)2. For normalized common100

components (‖t(h)
‖ = 1 for h = 1, . . . ,H), D2 =

∑K
k=1 D2

k .101

Interpretation For a given method, canonical factorization allows us to project the Xk columns102

into a common space spanned by the (orthogonal and normalized) common components T,103

considered as a common model for blocks. Common and block parameters are related with104

each others. Because canonical factorization of data by multiblock methods have the same105

normalized format (Eq. 1), methods can be compared on the same parameters (i.e., T, Dk). The106

property D2 =
∑

k D2
k means that the variance of concatenated data is the sum of block-variances.107

2.3 Canonical factorization of data by multiblock methods108

The canonical factorization of concatenated multiblock data by PCA is introduced as a reference.109

Then, multiblock methods are presented by: (i) their original algorithm or criterion, (ii) a110

criterion related to PCA of concatenated data, and (iii) their canonical factorization.111
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2.3.1 PCA of concatenated data112

The PCA of X = [X1| . . . |XK] — with standardized components — is based, for the first dimen-113

sion, on criterion [19]:114

arg max
t,w1,...,wK

K∑
k=1

cov2(t,Xkwk) with the constraints ‖t‖ = ‖wk‖ = 1 . (4)

The solution is given by wk =
XT

k t

‖XT
k t‖

. While replacing wk in Eq. (4), T are either (normalized)115

eigenvectors of
(
XXT

)
or can be sought by the deflation of Xk into successive components t.116

Equivalently, t is the first left singular vectors of X and w = [w1| . . . |wK] — with t = Xw — is117

deduced from the right singular vectors of X up to a block-scaling. Therefore, the decomposition118

of Xk onto the orthogonal basis is given by Xk = X(1)
k and X(h+1)

k =
[
I − t(h)t(h)T

]
X(h)

k for each119

dimension h = (1, . . . ,H). It derives:120

Xk =
∑H

h=1 t(h)t(h)TXk for k = (1, . . . ,K)
⇔ Xk = TTTXk
⇔ Xk = TDkWT

k

(5)

with Dk the scaling matrix of Wk. From Eqs. (2) and (3), it follows:121



T = [t(1), . . . , t(H)]
Dk = diag

(
‖XT

k t(1)
‖, . . . , ‖XT

k t(H)
‖

)
for k = (1, . . . ,K)

PT
k = [w(1)T

k , . . . ,w(H)T
k ] for k = (1, . . . ,K)

D = diag
(√∑

k ‖X
T
k t(1)‖2, . . . ,

√∑
k ‖X

T
k t(H)‖2

)
PT =

[
D1D−1PT

1 | . . . |DKD−1PT
K

]
.

(6)

All multiblock methods look for common components T, orthogonal to each other, on which122

blocks (X1, . . . ,XK) are decomposed. Diagonal elements of Dk, ‖XT
k t‖ — scaling parameters of123

block-loadings Wk — are interpreted as block-variance explained by common components. It124

helps us to understand how multiblock methods partition block-variability along dimensions125

of common space. The diagonal elements of D are interpreted as the total variance explained126

by common component.127

2.3.2 Consensus Principal Component Analysis (CPCA)128

CPCA has been proposed by [42] in chemometrics by extending NIPALS algorithm to several129

blocks. The algorithm proceeds in two steps. First, the parameters — common components,130

common loadings, block-components and block-loadings — are computed according to a pro-131

cedure repeated until convergence. A standardized (random) vector t is considered as a starting132

point. The columns in Xk are regressed on t, leading to block-loadings wT
k = (tTt)−1tTXk in turn133
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standardized. The block-components are computed by tk = Xkwk. The common axis is com-134

puted by ωT = (tTt)−1tT[t1| . . . |tK], thus composed of K vectors ωT
k = (tTt)−1tTtk. The common135

component is updated by setting t = [t1| . . . |tK]ωT. After convergence and in a second step,136

higher-order parameters are computed by deflating Xk blocks with respect to common com-137

ponents. The procedure has monotonicity properties [16] and optimizes the PCA problem (4).138

This leads to canonical factorization of X and (X1, . . . ,XK) by CPCA according to Eq. (6).139

2.3.3 Multiple CO-inertia Analysis (MCOA)140

In ecological field, MCOA has been proposed [7, 16] as an alternative to MAXVAR [5]. It is
based on the same problem as CPCA (Eq. 4). For the first-order solution, the parameters wk and
t are the same as the ones of CPCA. The difference between MCOA and CPCA is the deflation
step, with respect to block-loadings wk (MCOA) and to common component t (CPCA). The
common components are orthogonal to each other (MCOA and CPCA). Due to block-deflation,
the maximum MCOA dimension is H′ = min [rank(X1, . . . ,XK)]. Without any loss of generality
but keeping in mind that X and Xk reconstructions are not complete and contain residual terms,
canonical factorization of (K + 1) data sets is performed on a H′-dimensional space:

Xk =
∑H′

h=1 t(h)t(h)TXk + Rk for k = (1, . . . ,K)
X =

∑H′
h=1 t(h)t(h)TX + R

Therefore, canonical factorization of X and (X1, . . . ,XK) by MCOA is given by the same param-141

eters as CPCA (Eq. 6) but in a H′-dimension space.142

2.3.4 Multiple Factorial Analysis (MFA)143

MFA has been proposed by [9] and is wildly used in sensometrics [25]. It is known as a PCA of144

concatenated blocks, each of which being scaled with the inverse of
√
λ(1)

k , the square root of the145

first eigenvalue of block-PCA, namely Xλ = [(1/
√
λ(1)

k )X1| . . . |(1/
√
λ(1)

K )XK]. This block-scaling146

gives more weight to blocks with the lowest within-block correlation. MFA (with standardized147

components) can be presented with following criterion:148

arg max
t,w1,...,wK

K∑
k=1

cov2

t,
1√
λ(1)

k

Xkwk

 with the constraints ‖t‖ = ‖wk‖ = 1 . (7)

The solution is given by wk =
1/

√
λ(1)

k XT
k t

‖1/
√
λ(1)

k XT
k t‖

=
XT

k t

‖XT
k t‖

. Because MFA is a PCA of weighted concate-149

nated matrix Xλ, T are eigenvectors of
(∑K

k=1
1
λ(1)

k

XkXT
k

)
. From Eq. (7) — H being the rank of150 (∑K

k=1
1
λ(1)

k

XkXT
k

)
— canonical factorization of X and (X1, . . . ,XK) by MFA is given by Eq. (6).151
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2.3.5 Structuration de Tableaux A Trois Indices de la Statistique (STATIS)152

STATIS has been proposed by [20] and is also widely used in sensometrics where a compromise153

(between judges) is mainly sought. The method assumes that information behind K blocks is154

contained in K matrices of scalar products (X1XT
1 , . . . ,XKXT

K). The method is based on a two-step155

procedure. The first (inter-structure) one searches for a compromise matrix denoted S, solution156

of:157

arg min
S,α1,...,αK

K∑
k=1

‖XkXT
k − αkS‖2 with the constraint

K∑
k=1

α2
k = 1 . (8)

The solution is given by S =
∑K

k=1 αkXkXT
k with α = (α1, . . . , αK) the first eigenvector of158

C = [trace(XkXT
k Xk′XT

k′)/
√

trace(XkXT
k ) trace(Xk′XT

k′)] of dimension (K × K) [2, 3, 30]. The second159

(compromise) step consists in looking for common components T from the eigen decomposition160

of S. Because S =
∑K

k=1 αkXkXT
k — with αk ≥ 0 [26] — it follows S = XαXT

α with concatenated161

block-weighted matrix Xα = [
√
α1X1| . . . |

√
αKXK]. Then, common (normalized) components T162

can be found by PCA of Xα:163

arg max
t,w1,...,wK

K∑
k=1

cov2
(
t,
√
αkXkwk

)
with the constraints ‖t‖ = ‖wk‖ = 1 . (9)

The solution is given by wk =
√
αkXT

k t

‖
√
αkXT

k t‖
=

XT
k t

‖XT
k t‖

and T the eigenvectors of
(∑K

k=1 αkXkXT
k

)
. From Eq.164

(9) — H being the rank of
(∑K

k=1 αkXkXT
k

)
assuming non-trivial cases where αk , 0 — canonical165

factorization of X and (X1, . . . ,XK) by STATIS is given by Eq. (6).166

Block-weight proportionality property From Eq. (8) and eigen decomposition of S, following167

equality holds:168

(H − 1)
K∑

k=1

‖XkXT
k ‖

2 +

K∑
k=1

‖XkXT
k − αkS‖2 =

K∑
k=1

H∑
h=1

‖XkXT
k − αkλ

(h)t(h)t(h)T
‖

2 .

For a given dimension h and a given block Xk, its block-weight is equal to αkλ
(h), with λ(h) the169

hth eigenvalue associated with eigen decomposition of
(∑K

k=1 αkXkXT
k

)
. This means that for a170

given block Xk, its H block-weights (αkλ
(1), . . . , αkλ

(H)) are proportional along dimensions. This171

property is important to be known by the user because it has strong practical consequences172

further illustrated in the simulation study.173

2.3.6 Common Components and Specific Weights Analysis (CCSWA)174

CCSWA has been proposed as an alternative to STATIS while relaxing block-weight propor-175

tionality property along dimensions, and used in sensometrics for analysis of standard or free176
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profile data [4, 13, 23, 27]. For a given dimension, CCSWA determines a common component t177

and K block-saliences αk, solutions of problem:178

arg min
t,α1,...,αK

K∑
k=1

‖XkXT
k − αkttT

‖
2 with the constraint ‖t‖ = 1 . (10)

The solution is solved by an Alternating Least Square algorithm reiterated until convergence179

of criterion (10). In the first stage, a standardized (random) salience vector α = (α1, . . . , αK)180

is considered. The common component t is computed as the first normalized eigenvector181

of
∑K

k=1 αkXkXT
k . The block-saliences are updated by αk = ‖XT

k t‖2 for k = (1, . . . ,K). After182

convergence and in a second stage, higher-order parameters are computed by deflating Xk183

blocks with respect to common components.184

Property CCSWA’s saliences are different from the weights αk computed in STATIS — and185

not necessarily proportional — from one dimension to another because CCSWA is based, for a186

given dimension h, on problem:187

arg min
t,α1,...,αK

K∑
k=1

‖X(h)
k X(h)T

k − α(h)
k t(h)t(h)T

‖
2 with the constraint ‖t(h)

‖ = 1 , (11)

the saliences being derived from common components by α(h)
k = ‖X(h)T

k t(h)
‖

2.188

Hanafi and Qannari [14] demonstrated that CCSWA optimizes problem:189

arg max
t,w1,...,wK

K∑
k=1

cov4 (t,Xkwk) with the constraints ‖t‖ = ‖wk‖ = 1 . (12)

The solution is given by wk =
XT

k t

‖XT
k t‖

and T the eigenvectors of
∑K

k=1 αkXkXT
k . The saliences are a190

posteriori derived from αk = ‖XT
k t‖2. From Eq. (12), canonical factorization of X and (X1, . . . ,XK)191

by CCSWA is presented by Eq. (6). Details and proofs are given in [14], especially Appendix 4.192

2.3.7 Summary193

All of the methods examined can be decomposed in the same way using Eq. (1). However, they194

summarize information provided by blocks in different ways. Their parameters T, Pk, Dk, P and195

D, differ from one method to another, due to space deformation and specific rotations of T in196

RN space. From Eqs. (4), (7), (9), (12), these differences result from: (i) specific block-weightings197

(for MFA and STATIS), (ii) covariance power in criterion (power 4 for CCSWA and 2 otherwise)198

and (iii) deflation procedure (on wk for MCOA and on t otherwise). All these exploratory199

multiblock methods can be viewed as special cases of rGCCA with specific options and while200

considering concatenated dataset X to be explained (i.e., ’super-block’) [11, 35]. Some details are201

given in Appendix A. The theoretical specificities have practical consequences that lead users to202

clarify two issues before choosing multiblock method. These issues derive from block structure203

which must be explored beforehand, e.g., with K block-PCA. (i) The first issue is related to204
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variable-structure and concerns block-variance distribution along dimensions. If block(s) with205

a scattered variance along dimensions are more important than others, then MFA — or another206

method with a MFA-like block-scaling — should be chosen. Otherwise, a standard block-scaling207

(e.g., with inertia) should be applied. (ii) The second issue is related to observation-structure.208

If the aim is to emphasize only common structure, STATIS — and its block-scaling identical209

along dimensions (Eq. 9) — should be chosen. If the aim is to consider what is specific to each210

block along dimensions, CCSWA — and its specific block-scaling (Eq. 11) — should be chosen.211

Otherwise, if the aim is to mix common and specific information along dimensions, CPCA212

or MCOA (Eq. 4) should be chosen, the latter method giving a more condensed information213

(section 2.3.3).214

2.4 Comparison of multiblock exploratory methods215

How to compare multiblock methods? In case of multiblock data, the common structure216

to all blocks is observation-structure, variables being different from one block to another. The217

components T represent this common structure. In a linear approach, there is a duality between218

observation- and variable-structure. This can be shown with the following equivalent canonical219

factorizations of Xk, while taking into account that components and loadings are normalized220

and respectively orthogonal to each other (TTT = PT
k Pk = I):221

Xk = T
(
PT

k Pk

)
DkPT

k = TPT
k R2

k for k = (1, . . . ,K) (13)

Xk = TDk

(
TTT

)
PT

k = SkTPT
k for k = (1, . . . ,K) ,

with R2
k = PkDkPT

k the square correlation matrix between (standardized) block-variables and222

Sk = TDkTT the block scalar product matrix of observations into common space. The correla-223

tions between block-variables (Rk) — mainly interpreted by users — are carried by observation-224

structure (Sk).225

Simulation model Few studies have been devoted to multiblock data simulation and canoni-226

cal factorization highlights a model — common to several widely-used methods — that makes227

it possible. A simulation procedure of controlled observation-structure — associated with given228

components sought by canonical factorization — is proposed to compare multiblock methods.229

Each block is simulated separately, with a given observation-structure chosen identical or dif-230

ferent from other blocks (e.g., separation into more or less separated clusters, noise). For each231

block, components Tk are simulated with a given observation-structure and a given eigenvalues232

Dk. From Dk, a correlation-matrix Rk is derived [39]. From Eq. (13), Pk loadings are derived233

from eigenvectors of R2
k = PkDkPT

k . Finally, data are computed with Xk = TkDkPT
k . The K blocks234

are simulated in the same way — each with a given controlled structure — then X = [X1| . . . |XK]235

is obtained.236

Comparison criteria Multiblock methods were compared with three criteria. (i) Since com-237

mon components T were comparable but might differ from one method (M1) to another238
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(M2), they were compared pairwise by the absolute value of the correlation coefficient ρ(h) =239

| cor(t(h)
M1
, t(h)

M2
)| for a given dimension h. The closer the ρ(h) value was to 1 (or 0), the more sim-240

ilar (or different) the components were. (ii) Although common components may differ across241

methods, block-variance explained by them was a appropriate criterion to measure how compo-242

nents partition variance of blocks along dimensions. The second criterion came from diagonal243

elements of D(h)2
k = ‖XT

k t(h)
‖

2. This highlights the direction of block observation-structure on244

common structure T. (iii) The third criterion measures whether simulated observation-structure245

was recalled by components T. For this purpose, K adjusted-Rand index (Rand 1971) was com-246

puted, for each block k and dimension h (ARI(h)
k ), between expected (=simulated) and observed247

observation-structures. The observed structure comes from a K-means clustering applied to248

each component t(h). Among the K computed (ARI(h)
1 , . . . , ARI(h)

K ), the maximum value was249

kept (ARI(h)). The closer the ARI value was to 1 (or 0), the more the method recovered (or did250

not recover) expected observation-structure.251

3 Application252

The analyses were performed using R [28]. CPCA, MFA and STATIS come from the SVD of253

appropriately scaled (eventually block-scaled) matrix. MCOA came from the ade4package with254

’mcoa’ function [8] and CCSWA from the RGCCA package with rgcca function and ’hpca’ options255

[11]. Simulated data were obtained from monte function (fungible package; [40]. The ARI256

criterion was computed with adjustedRandIndex function of mclust package [31] associated257

with kmeans function (stats package). The choice of optimal block-clustering was obtained258

from the most frequent results among 30 indices that evaluate clustering performance between259

2 and 10 clusters with NbClust package [6]. The PCA plots were obtained with the FactoMineR260

[21] and factoextra packages [18].261

3.1 Simulation study262

The goal was to explain similarities and differences between multiblock methods according to263

three key questions for users. How do methods behave in case of noise-blocks (scenario S1)? In264

case of blocks with common and specific observation-structures (scenario S2)? In case of blocks265

with each specific observation-structures (scenario S3)? CPCA, MCOA and CCSWA were used266

without any block-scaling, whereas MFA and STATIS were specifically scaled. To measure267

ability of multiblock methods to explore data structure, components were simulated from268

random data and labelled ’RANDOM’. The simulated data consisted of N = 90 observations269

measured on J = 35 (standardized) variables organized in K = 4 blocks with Jk = (10, 10, 10, 5).270

The S1 data were composed of a block with a specific observation-structure (X1 with three271

well-separated clusters of 30 observations each, 80% of this structure being spanned on the first272

dimension and 20% on the second one) and three blocks of noise. The S2 data consisted of two273

blocks with the same observation-structure (X1 and X2) and two blocks with each a different274

structure. The S3 data consisted of four blocks each with a different observation-structure.275

For the latter two scenarios, the four structures consisted of three well-separated clusters each276

of 30 observations, with 80% (or 75%, 70%, 65%) of this structure being spanned on the first277
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dimension and 20% (or 25%, 30%, 35%) on the second one. These values were chosen to fix278

the order of blocks on components. The result of an additional scenario (how do methods279

behave when all blocks share the same observation-structure) is shown in Sup. Mat. B. For280

each scenario, 50 data were simulated and mean values of criteria were given.281

3.1.1 S1: How do multiblock methods behave in case of noise-blocks?282

The block-PCAs in Fig. 1(A) illustrate the structure of X1 in three clusters and noise structures of283

other blocks. Fig. 1(B) shows that multiblock methods, especially CPCA, MCOA, STATIS and284

CCSWA, perform better than the RANDOM method. The difference between CPCA and MCOA285

— due to deflation procedure — is shown in Fig. 1(C) (meanρ=1 for the first dim., 0.24 for the286

fourth dim.). The X1 variance is recovered on the first dimension, the other block-variances287

are shifted to higher-order dimensions (Fig. 1(B)). CPCA, MCOA, STATIS and CCSWA find288

the same first component (meanρ=0.99-1; Fig. 1(C)) and recover informative structure of X1 on289

this dimension (meanARI=0.83-0.88; Fig. 1(D)). MFA does not recover the X1 structure on this290

dimension (meanARI=0.12). This method is disadvantaged for this noise-scenario by its block-291

scaling which gives less importance to block(s) containing information on the first dimension292

(here, X1 with λ(1)
1 = 79.4%; Fig. 1(A)).293

3.1.2 S2: How do multiblock methods behave in case of blocks with common and specific294

observation-structures?295

The block-PCAs in Fig. 2(A) illustrate the common structure of X1 and X2 in three clusters296

(ARI(X1,X2) = 1) and the specific structures of the two other blocks (e.g., (ARI(X1,X3) ≈ 0.01).297

Fig. 2(B) shows that all methods recover common structure of X1 and X2 (MeanARI=0.93-298

0.95; Fig. 2(D)) with the same first component (Meanρ=0.99-1; Fig. 2(C)). However, there are299

differences for higher-order dimensions, especially for STATIS and CCSWA. According to its300

block-scaling stable along dimensions, STATIS gives importance to X1 and X2 on all dimensions301

(Fig. 2(B)), the method being only interested in what is common to blocks. Conversely and302

according to its block-scaling which can vary across dimensions, CCSWA highlights what is303

common (X1 and X2 on the first dimension, then focuses on other specific block-structures X3304

then X4) on higher-order dimensions. Consequently, CCSWA recovers informative structure305

of blocks along dimensions (meanARI=0.98-0.85-0.71 for the first three dimensions; Fig. 2(D)).306

The same conclusions were obtained when clusters are slightly separated or when block-cluster307

sizes differ.308

3.1.3 S3: How do multiblock methods behave in case of blocks with each specific observation-309

structures?310

The block-PCAs in Fig. 3(A) illustrate the specific structures of all blocks. The multiblock311

methods follow different strategies here. Due to its specific block-scaling, MFA includes the X4312

block from the first dimension. Because of its rank specificity, MCOA concentrates information313

on the first dimension. The other methods partition the four block-variance along all dimensions314

with different components, hence different strategies.315
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Figure 1: How do multiblock methods behave in case of noise-blocks (S1)? A: Simulated blocks
(block-PCA), B: Block-variances provided by components (D2

k), C: Common-components’ sim-
ilarity (ρ(h)), D: Ability to recover the structure (ARI).

3.2 Exploratory data integration for food data316

3.2.1 Data, pre-processing and aim317

The data came from the ’AlimaSSenS’ project [1], which aimed to provide a range of foods318

adapted to chewing difficulties of elderly, combining pleasure and comfort of eating with nutri-319

tional efficiency. Data were collected on 73 subjects, aged between 67 and 87 years old, with poor320

or good dental health. The subjects evaluated three meat products (minced chicken, shredded321

beef and shredded chicken) twice. During these evaluations, 46 variables were collected and322

organized in three blocks. The X1 block concerned mouth comfort when eating products (28323

variables). The X2 block came from in vivo aroma release and perception of foods from nasal324

space with PTR-ToF-MS (= Proton Transfer Reaction with Mass Spectrometry; 5 variables). The325

X3 block concerned oral food processing which includes mastication, salivation, bowl forma-326

tion, enzyme digestion and swallowing of food bowls (13 variables). The concatenated data set327
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Figure 2: How do multiblock methods behave in case of blocks with both common and specific
observation-structures (S2)? A: Simulated blocks (block-PCA), B: Block-variances provided by
components (D2

k), C: Common-components’ similarity (ρ(h)), D: Ability to recover the structure
(ARI).

X had 438 rows and 46 columns. Since variables were expressed in different units, they were328

standardized. For CPCA, MCOA and CCSWA, to avoid situations where blocks had a strong329

influence due to their size (=inertia), block-data were divided by square root of their number330

of variables. The aim was to explore relationships between mouth comfort (X1), aroma release331

(X2) and oral food processing (X3). For this purpose, exploratory multiblock methods were332

used, the challenge being to select the most suitable one.333

3.2.2 Block description334

The preliminary step of any exploratory multiblock method was to capture block-structure335

across variables (variance distribution along dimensions) and observations (clustering struc-336

ture). PCA and K-means were applied to each block. The choice of optimal block-clustering was337

obtained from the most frequent results among 30 indices that evaluated clustering performance338
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Figure 3: How do multiblock methods behave in case of blocks with all specific observation-
structures (S3)? A: Simulated blocks (block-PCA), B: Block-variances provided by components
(D2

k), C: Common-components’ similarity (ρ(h)), D: Ability to recover the structure (ARI).

between 2 and 10 clusters. Results were presented in Sup. Mat. C. The 28 X1-variables (mouth339

comfort) were mainly clustered in the first dimension (23.6% of variance). The X1-observations340

were structured in 2 clusters of size (169, 269), separated from metadata-variables Dentition and341

Age and block-variables times, swallow and incisive. The 5 X2-variables (aroma release) were342

summarized on the first two dimensions (47.1% and 35.1% of variance). The X2-observations343

were structured in 3 clusters of size (124, 157, 157), separated from metadata-variable Product344

and block-variable imax.Hex. The 13 X3-variables (oral food processing) were summarized on345

the first component (33.5% of variance). The X3-observations were structured in 2 clusters of346

size (117, 321), separated from metadata-variables Age and Dentition and block-variables area2,347

F2, area1, F1.hardness, area.neg.sticky. These block-clusters were not related with each others:348

ARI(Clust.X1, Clust.X2)=0.0145 and RV(X1, X2)=0.06; ARI(Clust.X1, Clust.X3)=0.000 and RV(X1,349

X3)=0.05; ARI(Clust.X2, Clust.X3)=0.006 and RV(X2, X3)=0.04. Thus, each block had a specific350

structure (S3 scenario).351
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3.2.3 Multiblock method comparison and strategies352

From Fig. 4(B) and according to its block-scaling, MFA gave more importance to mouth353

comfort block (X1) than CPCA or MCOA. STATIS tried to highlight a common structure that354

do not clearly exist. For CPCA, MCOA and CCSWA, the main information came from aroma355

release (X2) (Dim. 1 and 2) then food oral processing (X3) (Dim. 3). Indeed, X2 observation-356

structure hold on two dimensions (82.2% of its block-variance; block-PCA) and X3 on the third357

one (33.5% of its block-variance; block-PCA). CCSWA made different choices and highlighted358

aroma release (X2) on the first dimension, mouth comfort (X1) on the second dimension and359

oral food processing (X3) on the third one. Since our goal was to study observation structure of360

blocks — with equal importance in analysis — but also relationships between variables, CPCA361

was chosen.362

Figure 4: Meat data - Comparison of multiblock methods. A: Block-PCA, B: Block-variances
provided by components (D2

k), C: Common-components’ similarity (ρ(h)), D: Ability to recover
the structure (ARI).

15



3.2.4 CPCA interpretation363

The CPCA results were shown in Sup. Mat. D and E. The observation-structure of aroma release364

(X2) was supported by dimensions 1 and 2 (30.3% of variance), then that of oral food processing365

(X3) by dimension 3 (10.9.% of variance) and the one of mouth comfort (X1) by dimension 4366

(7.8% of variance). (i) The 1-2 CPCA components highlighted aroma release (X2) structure367

related to products (X2-Cluster 1 with minced chicken; X2-Cluster 2 with shredded beef ; X2-Cluster368

3 with shredded chicken). These X2-clusters were explained by five aroma release (X2) variables369

imax.Hex, imax.2But, imax.AcAld, imax.MeThiol, imax.MeBut, and to a lesser extent by five oral370

food processing (X3) variables chewing.time, nb.chew.cycle, chewing.efficiency, Area.2 and F2, and371

15 mouth comfort (X1) ones, easy and comfort among others. (ii) The third CPCA component372

highlighted oral food processing (X3) structure related to age and dentition (X3-Cluster 1 with373

>80 years old and poor dental health; X3-Cluster 2 with <70 years old and good dental health).374

This X3-structure was mainly explained by aroma release (X2) variables (imax.Hex, imax.MeThiol375

and imax.2But) and oral food processing (X3) variables such as F1.hardness, F2, Area1 and376

Area2.(iii) The fourth CPCA component highlighted mouth comfort (X1) structure related to377

age and dentition (X1-Cluster 1 with 70-80 years old and poor dental health; X1-Cluster 2 with378

<70 years old and good dental health). This X1-structure was explained by variables related379

to all blocks: all the mouth comfort variables (X1) in particular times and swallow, three aroma380

release (X2) variables in particular imax.Hex and imax.MeBut, and four oral food processing (X3)381

variables, in particular nb.chew.cycle and chewing.time.382

4 Conclusion and perspectives383

Our aim was to provide a comprehensive and unified framework — based on homogeneous384

outputs similar to those of PCA — to compare and explain strategies of multiblock exploratory385

methods. Many methods have been proposed independently and users have been lost in choos-386

ing the appropriate one. The data decomposition by canonical factorization was introduced387

and applied to widely-used methods CPCA, MCOA, MFA, STATIS and CCSWA (also known388

as COMDIM, ACCPS, HPCA). This factorization extracts parameters that highlight strategy389

adopted by methods. The methods have been compared on simulated (resp. real) data whose390

structure is controlled (resp. known). Theoretical and practical results show that block-structure391

must be explored beforehand, e.g., with K block-PCA, in order to answer two questions before392

choosing method. The first question concerns the number of block-variables and block-variance393

distribution along dimensions, which affects block-scaling (no block-scaling / block-scaling with394

inertia / MFA-like block-scaling). The second issue affects observation-structure within and395

between blocks, which impacts the choice of the method. In short, CPCA or MCOA mix com-396

mon and specific information, STATIS emphasizes only common structure only while CCSWA397

focuses on specific information. Methods and comparison tools were available on R (avail-398

able code in Supplementary Material), Matlab/Octave (’MultiBlock toolbox for Chemometrics’399

MB4Chem package; https://forgemia.inra.fr/chemhouse/octave/mb4chem) or with a Galaxy400

web application based on the MB4Chem package (https://vm-chemflow-francegrille.eu).401

Although solution proposed by canonical factorization was original and appropriate, further402

theoretical and empirical work need to be done. For instance, the proposed matrix decompo-403
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sition could be improved by constraints related to B-factorization of Simultaneous Component404

Analysis [34, 36, 38]. The effect of block-scaling was considered here as a block-weighted PCA,405

but could be theoretically investigated with a generalized eigenvalue problem [10]. Canonical406

factorization could also be applied to multiblock supervised methods, insofar as their criterion407

can be written as a PCA-like one (e.g., multiblock PLS, multiblock PCAIV as special cases408

of rGCCA). From a practical point of view, more complex block-clusters could be simulated409

(e.g., different direction and/or shapes across clusters, clusters visible only on higher order410

dimensions). The common observation-structure between blocks could be investigated with411

consensus clustering [24]. The proposed approach allows us to integrate other multiblock412

methods, such as JIVE [22] devoted to exploration of common and specific block-structures.413

This researches together with the increase in data volume and complexity will help to make use414

of exploratory multiblock methods more popular.415
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Appendices530

A Multiblock methods as special cases of rGCCA531

Multiblock method Criterion & constraints Block-scaling Package & option

CPCA [42]
∑

k cov2(Xkwk,Xk+1wk+1) 1/
√

Jk RGCCA, ’cpca-2’
with ‖t‖ = ‖wk‖ = 1

MCOA [7]
∑

k cov2(Xkwk,Xk+1wk+1) 1/
√

Jk RGCCA, ’mcoa’
with ‖t‖ = ‖wk‖ = 1

MFA [9]
∑

k cov2(Xkwk,Xk+1wk+1) 1/
√
λ(1)

k RGCCA, ’mfa’
with ‖t‖ = ‖wk‖ = 1

STATIS [20]
∑

k cov2(Xkwk,Xk+1wk+1)
√
αk ade4, ’statis’

with ‖t‖ = ‖wk‖ = 1

CCSWA [27]
∑

k cov4(Xkwk,Xk+1wk+1) 1/
√

Jk RGCCA, ’hpca’
with ‖t‖ = ‖wk‖ = 1

Table 1: Exploratory multiblock methods as special cases of rGCCA with a super-block [11].

B How do methods behave when all blocks share the same structure?532

All multiblock methods recover observation-structure on the first two dimensions and in the533

same way, which is not the case for the RANDOM method.534

C Meat data - Block-PCA biplots coloured according to their observation-structure535

536

D Meat data - CPCA biplots coloured according to block observation-structure537

E Meat data - CPCA weights of Meat data538

20



Figure 5: How do methods behave when all blocks have a common structure (S1)? A: Sim-
ulated blocks (block-PCA), B: Block-variances provided by components (D2

k), C: Common-
components’ similarity (ρ(h)), D: Ability to recover the structure (ARI).
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Figure 6: Meat data - Block-PCA biplots coloured according to their observation-structure.

Figure 7: Meat data - CPCA biplots for dimensions (1,2) and (3,4) coloured according to block
observation-structure.
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Figure 8: Meat data - CPCA weights with 95% confidence intervals and significance (500
bootstrap simulations) for dimensions 1 to 4.
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