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Abstract. Most methods to find spatial co-location patterns (subsets
of object features that are geographically close to one another) employ
standard proximity measures (e.g. Euclidean distance). But for some
applications, these measures do not work well since the spatial structure
is not considered. This article proposes CSS-Miner, a co-location pattern
mining approach under the spatial structure constraint. In this case, the
street network of a city is used as a constraint. CSS-Miner has been
applied to two real datasets with different points of interest.
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1 Introduction

Discovering co-location patterns is a data mining task that aims at extracting
knowledge and insights that integrate the spatial dimension to help decision-
makers. A co-location (or co-location pattern) is a subset of spatial features that
are frequently located in the same region. Despite numerous studies [8,9, 14],
most co-location pattern mining methods use standard distance functions (e.g.
the Euclidean distance) to assess the proximity of spatial objects. For applica-
tions such as demographic analysis via points of interest (POIs), the Euclidean
distance is not suitable since a path between two spatial objects can be signif-
icantly different from their Euclidean distance. Hence, other distance measures
should be used.

In this paper, we propose CSS-Miner (CSS stands for Co-location under
the Spatial Structure constraint), a co-location pattern mining approach for
identifying interesting co-locations under the constraint of the spatial structure
of a city’s street network. CSS-Miner first constructs a graph under the spatial
structure constraint using a shortest path algorithm, and then extracts maximal
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cliques to obtain spatial patterns. For evaluation, the proposed approach was
applied on two datasets from the cities of Paris and Chicago, which allowed
discovering relevant patterns.

The article is organized as follows. Section 2 reviews relevant work on spatial
pattern mining, focusing on the event-based approach. Section 3 describes the
proposed CSS-Miner approach to consider the spatial structure constraint. Then,
section 4 presents the data used for evaluation and the discovered patterns.
Finally, a conclusion is drawn and perspectives are discussed.

2 Related work

Huang et al. [6] described two main approaches for spatial pattern mining: the
sequence-based approach and the event-based approach used in this paper.

The event-based approach (or join-less approach) focuses on the location of
spatial objects and their proximity. Initially proposed by Shekhar et al. [9], this
approach extracts subsets of objects that are spatially close together, and are
called co-locations.

In this paper, we propose a method adopting the event-based approach to
leverage the spatial dimension of objects and their proximity. To apply the event-
based approach under the spatial structure constraint, maximal clique mining
is used to extract co-location patterns. Therefore, the next sub-sections 2.1 and
2.2 respectively give an overview of approaches for maximal clique mining and
key studies on co-location pattern mining and their interestingness measures.

2.1 Maximal clique mining

(Complete graph) Let G = (V, E) be a graph with V' = {vy,vs,...,v,} the
set of vertices and E C {(v;,v;) € V? | Vi,j € {1,...,n} and i < j} the set
of edges (in this setting, all graphs considered are undirected.) If (v;,v;) € E,
then v; and v; are adjacent. A graph is complete if each pair of graph vertices
is connected by an edge (adjacent).

(Clique) Let G = (V, E) be a graph and g = (V,, E,) be a subgraph such that
Vo CVoand E; C {(vg,v4) € E|vg: € VgAvg; € Vyand i # j}. A clique of
G is a subgraph g C G such that g is complete.

(Maximal clique) Given G = (V, E) a graph and g C G a clique, the clique g is
said to be maximal if and only if there exists no clique ¢’ such that g C ¢’ C G.

Valiant [13] has shown that mining all maximal cliques is #P-complete. We
can particularly mention the algorithm proposed by Tomita et al. [10] for its
O(3™/3) worst-case complexity in an n-vertex graph which is optimal as a func-
tion of n but also Cazals et al. [3] who consider a recursive approach to improve
the mining performance.

Maximal clique mining methods are commonly used to mine co-location pat-
terns [1,11]. By defining a graph network where vertices represent spatial objects
and edges represent their neighborhood then by applying a maximal clique min-
ing method, we can obtain subsets of objects that are all neighbors to each other.
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Therefore, in this paper, we will use the approach proposed by Tomita et al. [10]
for its speed given the size of our datasets detailed in the section 4.1.

2.2 Co-location pattern mining and interestingness measures

The event-based approach projects spatialized data with their coordinates and
defines the proximity between each spatial object to extract patterns. In this
section, we recall the co-location mining framework proposed in Shekhar and
Huang [9], Huang et al. [6] and Yoo and Shekhar [14]. Let F be a set of features
and O = {01,02,...,0,} be a database of spatial objects. Each object in O
consists of a tuple <object_id, location, feature>, where feature € F.
For example, in Fig. 1b, F = {A,B,C}, O = {A1,Bs,...,C3} with 4; =<
1, (z1,11), A >, Bs =< 2, (22,y2), B >, etc. A co-location C is a subset of features
F associated to spatial objects O. These co-location patterns represent pattern
frequently located in neighbor objects. The neighborhood relationship is defined
as a binary relation R(o0,0’) between two spatial objects o and o’. R can be
based on a distance threshold between two objects, or based on their intersection.
Several studies have been done in this vein [7,14]. Recently some researchers used
a proximity measure that is not the Euclidean distance. For example, Yu [15]
proposed the shortest path length as proximity measure. However, the author
utilized a sequence-based approach with a limited number of neighbors, which
can miss out some relevant information.

In the join-less approach, to determine if two objects are spatially close,
the user sets a maximum distance threshold d. A graph is then constructed
with vertices representing the spatial objects. Two vertices are adjacent if the
associated spatial objects’ distance falls within a threshold d (i.e., the spatial
distance measure between these two vertices is less than d).

Interestingness measures have been developed to quantify interesting pat-
terns. To measure whether a co-location pattern is interesting or not, the par-
ticipation index (or prevalence), based on the participation ratio is used.
(Participation ratio) Let C be a co-location pattern. For an instance f; € C,
the participation ratio is given by:

_|{ instances of f; participating in C)}|

Pr(f;,C) = |{ instances of f; }| W

Given the example of Fig. 1, let C = {A, B} be a co-location candidate and
Ic = {(A1, B1), (A1, Ba), (A3, B4)} be the set of row-instances of C. With A and
B, two features having respectively, 3 and 4 instances, we have Pr(A,{A, B}) =

[{A1,A3}] _ B1,B2,B _
\{21,22,323}\ = 5 and Pr(B,{4,B}) = |{|£{;1,}92,233,g4|}| =3

(Participation index) Let C be a co-location candidate, Ic = {I¢,...,I{} be
the set of row-instances of C and F = {f1,..., fn} be the set of spatial features
from the database O. The participation index is defined by:

Pi(C) = min Pr(f;,C) (2)

Using the previous example, we have as participation index:
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Fig. 1: Example of co-location patterns based on a set of cliques from a spatial
dataset.

Pi({A,B}) = ming, ca, B} Pr(fi,{A,B}) = min(%, %) = %

In this paper, the prevalence measure will be used to determine whether
co-location patterns in section 4 are relevant or not.

As mentioned before, methods based on the join-less approach mostly used
standard distance functions as proximity measure for spatial objects. By using
standard distance measures, we may lose the spatial structure. For this reason,
we will use the shortest path length as proximity measure.

2.3 Shortest path search

Over the last decades, the shortest path search has been a major problem in
graph theory. The speed of search depends entirely on the number of vertices
and edges in a graph. One of the first solutions was introduced by Dijkstra [4].

More recently, Varia and Kurasova [12| proposed an accelerated version of
Dijkstra’s algorithm, by adding two components: a bidirectional search and a
parallelized process. To find the shortest path between two vertices v; and v;,
authors applied Dijkstra’s algorithm to find the shortest path from v; to v; and
from v; to v;. Since Dijkstra’s algorithm is based on a priority queue, parallel and
bidirectional components use two priority queues. With these components, the
two paths move forward simultaneously. According to their results, the improved
approach is at least twice as fast as the standard algorithm.

To leverage the spatial structure constraint and accelerate the process, the
parallel bidirectional Dijkstra’s algorithm will be used.

3 Methods

Let consider a set of spatial objects O with a set of features F. Let Gg be a
graph representing the spatial structure as Gg = (Vg, Es) where Vg a set of
vertices representing objects and Eg a set of edges.
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3.1 Taking into account the spatial structure constraint
To analyze POlIs, the spatial structure constraint is carried out in several steps:

1. For each spatial object o; € O, we associate it in the spatial structure Gg
with the closest object noted og € Vg (through the Euclidean distance);

2. We apply Dijkstra’s algorithm for each object from Vg to the other objects
located within a radius d according to the Euclidean distance;

3. If the shortest path length between two objects from Vg is lower than the
threshold d, then they are considered as neighbors.

To avoid unnecessary shortest path searches, we only apply the shortest path
algorithm between two objects of Vg if these two objects are respectively asso-
ciated to two objects of O. Here, the Euclidean distance is only used in order to
limit the number of shortest path search. Applying a distance radius threshold
with the Euclidean distance will prevent computing irrelevant shortest paths. By
triangular inequality, a spatial object located outside a distance radius d from
another spatial object has a shortest path length greater than or equal to d.

3.2 Graph construction

To extract our spatial patterns (co-locations) which are the maximal cliques, we
chose to go on a graph construction G = (O, Fp) (under the spatial structure
constraint) where Eo = {(0;,0;) | 3(0s,1,0s,;) € Es, Dsp(0s,4,0s5,;) < d,V(3,j) €
[1,n]? i # j} with og; representing the object from the spatial structure asso-
ciated to the spatial object 0; € O and D, representing the distance obtained
by Dijkstra’s shortest path algorithm if it exists.

Legend
—— Road network
O A spatial objects

;" Distance radius from objects A;

= = = Shortest path

Distance
possibiliies:
Ay - By
A; - By
Ay - By

X

Fig. 2: Three possibilities of distance CSS-Miner can encounter

In the Fig. 2, A; and B; are objects from Vg explained in the section 3.1.
With d as the distance radius and the shortest path length threshold, we have:

— da(Asg, B3) > d so CSS-Miner will not compute D, (A2, Bs);

— dy(A1, B2) < d so CSS-Miner will compute Dy, and get Ds,(A1, Bs) > d so
we will not consider A; and By as neighbors;

— do(Ag, B1) < d so CSS-Miner will compute Dy, and get D, (A2, B1) < d so
we will consider A, and B; as neighbors.
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In our approach, CSS-Miner processes two graphs: The first one representing
the spatial structure and the second one representing the relationship of our
spatial dataset created with the first graph.

4 Experimental Results

We apply CSS-Miner on two real datasets. Both have been created by collect-
ing data from OpenData 4. The first dataset is located in Paris city with High
Schools, Movie theaters, Bicycle stations, Parks and Subway station variables
having respectively 239, 85, 996, 722 and 326 spatial objects (2368 objects in
total). The second dataset is located in Chicago city with High Schools, Bus sta-
tion, Rail Lines station, Fast food chains, Bicycle stations and Parks variables
having respectively 142, 5606, 124, 877, 1402 and 613 spatial objects (8764 ob-
jects in total). For each dataset, the entire process was carried out with a AMD
Ryzen 7 3700X 8-core processor with 64GB of RAM. It took respectively, about
2 and 5 hours to run the entire process on Paris and Chicago datasets.

Although we aim to analyze and understand the young population behavior,
CSS-Miner is applicable to other demographic analysis, for instance: What are
the daily habits of a manager compared to a student? Another POIs analysis can
also be useful to develop a decision support tool to help developing the tourism
of a city. Finally, the POIs analysis remain a very large subject to study.

4.1 Data Preprocessing

To integrate the spatial structure constraint, it is necessary to get access to that
information. In this case, we used the road network as spatial structure. Here, we
assume that the path is taken on foot because we wanted to integrate only data
from OpenData platforms where the traffic noise is not always available. To get
access to the road network of Paris and Chicago, we used OSMnx methods [2].
Once the street network is retrieved, it can be converted into a graph network
with roads as edges and road intersections as vertices. At the end, the graph
associated to Paris street network has 42,870 vertices and 241,016 edges and the
graph associated to Chicago has 184,476 vertices and 1,217,928 edges.

4.2 Results

The Table 1 shows us the possible activities near High Schools in Paris, in
particular Parks and Movie theaters. Due to limited page number, the Table 1
only displays few extracted patterns. We note through extracted co-location
patterns, the ubiquity of High Schools and Bicycle variables, which also show us
that the city of Paris helps young population to get around the city autonomously
and practice a physical activity. It would be interesting to apply CSS-Miner to
other french cities offering this service in order to confirm this trend.

Yopendata.paris.fr/, data.iledefrance.fr/, data.cityofchicago.org/
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Since CSS-Miner integrates the road network as spatial structure constraint,
we compared our co-location patterns with the ones without this constraint
i.e., using only the Euclidean distance. The results show us that by taking into
account the road network, co-location patterns not always have a prevalence
greater than prevalence with the Euclidean distance as proximity measure.

Indeed, the extracted co-location patterns without constraint used a distance
threshold equal to 500 (meters), just as CSS-Miner. By triangular inequality, a
walking distance between two spatial objects is greater than or equal to their
Euclidean distance. Therefore, without constraint, the co-location candidates
contain more spatial objects, increasing the probability to have a high num-
ber of feature instances per variable, which can reduce their prevalence. This
also explains why the {Parks, High Schools, Bicycle} co-location pattern has a
decreasing prevalence from 0.89 to 0.56 by adding the Movie theaters variable.

Table 1: Extracted co-location pattern prevalence (Pi from equation 2)

. . Pi under | Pi without
City Co-location pattern constraint| constraint
{Parks, High Schools, Bicycle} 0.89 0.89
Paris |{Parks, High Schools, Movie theaters, Bicycle}| 0.56 0.44
Chicago|{Bus, Fast food chains, High Schools, Bicycle} | 0.58 0.5
{Bus, Fast food chains, High Schools} 0.33 0.17

Moreover, without constraint, the algorithm extracted patterns CSS-Miner
did not extract: {High Schools, Subway} and {Parks, High Schools, Movie the-
aters, Subway} with a prevalence equal to 0.31 and 0.14 respectively without
the constraint. It shows that even if the spatial objects are close to one another
using the Euclidean distance, their shortest path length do not verify our prox-
imity criterion, so they cannot be considered as close. At the end, CSS-Miner
can extract more relevant patterns and filter not so relevant patterns.

The results show that most of High Schools in Chicago have a Fast food
chains around it, so young population in Chicago will be more tempted to go eat
in a Fast food at lunch or after school. The ubiquity of High Schools and Fast
food chains variables can also be a sign of malnutrition in the US, at least in
Chicago. To confirm this affirmation, it would be interesting to apply CSS-Miner
in other US cities and verify the relevancy on a national scale. It would also be
interesting to get a Fast food dataset in Paris (unavailable on the OpenData) to
reveal if Fast food chains in Paris target young population as in Chicago.

5 Conclusion and perspectives

In this paper, we introduced CSS-Miner, a co-location pattern mining approach
integrating the spatial structure. We described how this constraint has been
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defined and taken into account, particularly with a road network and a shortest
path search algorithm. To extract co-location patterns, we used the maximal
clique mining approach with a restricted search radius and editable depending
on the use case. Then, we applied the approach on two real datasets.

The next step of our work will be to integrate knowledge from experts [5],

such as urban planners and geographers to verify the relevancy of the extracted
patterns. Moreover, CSS-Miner will be applied on larger datasets to estimate the
performance. Finally, future work will consider the altitude as spatial structure.
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