
HAL Id: hal-04945512
https://hal.science/hal-04945512v1

Submitted on 13 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service-Aware Real-Time Slicing for Virtualized beyond
5G Networks

Theodoros Tsourdinis, Ilias Chatzistefanidis, Nikos Makris, Thanasis Korakis,
Navid Nikaein, Serge Fdida

To cite this version:
Theodoros Tsourdinis, Ilias Chatzistefanidis, Nikos Makris, Thanasis Korakis, Navid Nikaein, et al..
Service-Aware Real-Time Slicing for Virtualized beyond 5G Networks. Computer Networks, 2025,
247, pp.110445. �10.1016/j.comnet.2024.110445�. �hal-04945512�

https://hal.science/hal-04945512v1
https://hal.archives-ouvertes.fr

Graphical Abstract

Service-Aware Real-Time Slicing for Virtualized beyond 5G Networks

Theodoros Tsourdinis, Ilias Chatzistefanidis, Nikos Makris, Thanasis Korakis, Navid Nikaein, Serge Fdida

Highlights

Service-Aware Real-Time Slicing for Virtualized beyond 5G Networks

• Developed a custom Network Data Analytics Function (NWDAF) function to parse statistics from
both core and RAN.

• Introduced an MLOps architecture for online and distributed training via the cloud across cluster
nodes.

• Collected dataset metrics including Jitter, Throughput for user experience, and CQI from realistic
mobility scenarios using programmable attenuators.

• Applied a deep learning approach to enhance resource allocation (slicing).

• Tested the framework’s performance using six distinct deep-learning models.

• Demonstrated that our proposed scheme, in contrast to a non-AI baseline unit, significantly excels in
both efficiency and resource allocation, reducing over and under-provisioning.

Service-Aware Real-Time Slicing for Virtualized beyond 5G Networks

Theodoros Tsourdinisa,b, Ilias Chatzistefanidisc, Nikos Makrisa, Thanasis Korakisa, Navid Nikaeinc, Serge Fdidab

aUniversity of Thessaly, Dept. of ECE, Volos, Greece
bSorbonne Université, CNRS, LIP6, Paris, France

cEURECOM, Sophia-Antipolis, France

Abstract

Edge Intelligence is expected to play a vital role in the evolution of 5G networks, empowering them with the capability
to make real-time decisions regarding various allocations related to their management and service provisioning to end-
users. This shift facilitates the transition from a network-aware approach, where applications are developed to manage
network quality fluctuations, to a service-aware network that self-adjusts based on the hosted applications. In this paper,
we design and implement a service-aware network managed from the network edge. We utilize and assess various Machine
Learning models to classify cellular network traffic flows in the backhaul, aiming to predict their future impact on network
load. Leveraging these predictions, the network can proactively and autonomously reallocate slices in the Radio Access
Network via programmable APIs, ensuring the demands of the traffic-generating applications are met. The approach
integrates innovative MLOps methodologies for distributed and online training, enabling continuous model refinement
and adaptation to evolving network dynamics. Our framework was tested in a real-world environment with realistic
traffic scenarios, and the results were evaluated in real-time, down to a granularity of 10ms. Our findings indicate
that the network can swiftly adjust to traffic, providing users with slices tailored to their application needs. Notably,
our experiments show that under the studied settings, the users experienced up to 4 times lower latency (jitter) and
nearly 4 times higher throughput when interacting with various applications, compared to the standard non-AI/ML unit.
Furthermore, our dynamic scheme significantly optimizes resource allocation, ensuring energy efficiency by avoiding over-
and under-provisioning of resources.

Keywords: Beyond 5G, Service-Aware, RAN Slicing, OpenAirInterface, Kubernetes, Machine Learning, MLOps

1. Introduction

Edge Intelligence is widely considered the key element
for empowering innovation and enabling the beyond 5G
and future 6G networks to meet their full potential. It
is expected that within 6G, edge intelligence will enable
networks to achieve massive performance gains through
unique functions and services that take advantage of the
close proximity to the Radio Access Network (RAN), while
re-program the network operation through the available
APIs (e.g. O-RAN for the RAN). Artificial Intelligence
is thus playing a major role in this context, allowing the
transformation from network observations to key decisions
that affect the overall system performance and reliability,
even under high traffic loads.[1] Such decisions are forti-
fied through the Multi-access Edge Computing (MEC) ar-
chitecture, enabling low-latency applications to be hosted
over the network with traffic breaking out from the edge
to any Data Network (DN) [2].

Email addresses: ttsourdinis@uth.gr (Theodoros Tsourdinis),
ilias.chatzistefanidis@eurecom.fr (Ilias Chatzistefanidis),
nimakris@uth.gr (Nikos Makris), korakis@uth.gr
(Thanasis Korakis), navid.nikaein@eurecom.fr (Navid Nikaein),
serge.fdida@sorbonne-universite.fr (Serge Fdida)

The cornerstone for all these innovations is the wide
softwarization that has taken place in 5G and beyond net-
works; services that up to the 4th generation were running
as monolithic components, locked in vendor-specific hard-
ware, are currently able to be hosted over generic hard-
ware, running as software network functions. The compo-
nents have been further disaggregated, by specifying stan-
dardized interfaces for their intercommunication, realizing
a full Service Based Architecture (SBA), capable of instan-
tiating in a cloud-native manner. This approach extends
even for the cases of the RAN, for the higher level functions
of the base stations, that can be realized through soft-
ware functions placed on the edge/cloud, communicating
with the Radio Units through high capacity fronthaul links
(Cloud-RAN) [3]. The combination of all these features,
empowered by Edge Intelligence, creates fertile ground for
introducing novel services that manage the virtualized cel-
lular network even in real-time/near-real-time.

Network slicing is a fundamental concept in 5G net-
works. It refers to the process of creating multiple vir-
tual networks on top of a shared physical infrastructure.
Each ”slice” is tailored to meet the specific requirements of
a particular service or application, ensuring optimal per-
formance and resource utilization. Although such inno-

Preprint submitted to Computer Networks February 13, 2025

vations allow the efficient provisioning of network service
under one/more slices with guarantees, usually it is up to
the hosted applications to self-adapt to the fluctuations of
the network service. For example, in the case of adaptive
video streaming, protocols like DASH [4] might request the
specific content that can be served over the network, based
on the application perception of the network settings (e.g.
capacity, jitter, delay, etc.). The disaggregation of network
functions, as it has been standardized for 5G, enables the
development of further key xApps that can take advan-
tage of the APIs, allowing the network to self-adapt based
on the applications that are hosted over the top, through
the decisions for allocation in the network. Such decisions
are usually based on the spectrum allocation (e.g. for Dy-
namic Spectrum Management [5]), or slicing allocation. In
this work, we deal with the slicing part of the network, for
automating the slice allocation of the network, based on
the services that run on top, thus creating a fully-fledged
service-aware network.
The development of such functionalities relies heavily

on resource disaggregation as defined for 5G networks.
This disaggregation has been standardized for different
parts of the network (Control/Data Plane and RAN/Core
Network) as follows: 1) RAN disaggregation for the base
station stack, based on the eight different 3GPP defined
functional splits [6], and 2) control and user-plane disag-
gregation, either at the Core Network side through the
adoption of SBA, or the RAN, through the adoption of
architectures like O-RAN. In the O-RAN architecture, ap-
plications hosted on top at the edge of the network (xApps
[7]) can retrieve statistics of the base station stack through
standardized interfaces and analyze them for inferring fea-
tures like network load, energy consumption, etc. Based
on this inference, they can enforce policies regarding slice
allocation and scheduling to ensure the smooth operation
of the network. The inference relies on Machine Learn-
ing (ML) models, that can predict the future evolution of
the monitored features/parameters, and thus apply pro-
actively the target allocations. The O-RAN architecture
can be further enhanced with the Network Data Analyt-
ics Function (NWDAF) which is standardized by 3GPP.
NWDAF is a network-aware function that collects data
from the 5G core and provides statistics to support net-
work automation. These statistics can be employed by
AI/ML models that run on RAN Intelligent Controllers
(RIC) and can provide forecasting and optimization of Key
Performance Indicators (KPIs) [8].

Leveraging Edge Intelligence, ML operations can be
launched directly on the edge by taking advantage of sev-
eral devices if needed in an entirely distributed manner,
making use of pipelines. In this work, we design, develop,
deploy and experimentally evaluate a service-aware net-
work model for beyond 5G networks. We use a cloud-
native network, with the entire stack (RAN and Core Net-
work) being instantiated through the Kubernetes frame-
work. We develop all the necessary extensions to support
near-real-time (≤ 10ms) low-level monitoring of the traffic

exchanged over the network. On top, and towards enabling
accurate decisions for the slice allocations in the network,
we use a distributed Machine Learning (ML) model, able
to classify in real-time the traffic exchanged from the differ-
ent users of the network and infer the future connectivity
needs that are needed from the applications. The needs
are in turn transformed into slice-allocation decisions for
the 5G network. Our ML models have been developed in
a distributed lightweight manner, allowing different parts
of the training process to be executed at/near the edge
devices, where processing power is usually limited. By de-
composing the main model into lighter components and
making extended use of pipelines, we are able to instan-
tiate the framework at the edge and affect the wireless
network allocations directly from there, thus augmenting
the network with edge-located Intelligence.

Our contributions are summarized as follows:

• To develop a real-time classification model, hosted on
the operator side of the network, recognizing the differ-
ent applications that run on top of the network.

• To infer the future load and patterns of traffic from the
different traffic flows of the applications that are hosted
on top of the network.

• To decide on the slice allocation that is enforced in the
network, based on the foreseen needs of the applications.

• To determine the optimal approach for predicting the
future demand, from a set of different supervised ML
models.

• To evaluate the developed scheme under real-world set-
tings, using real devices and realistic traffic scenarios in
real-time.

The rest of the paper is organized as follows. Section 2
presents our motivation, based on a recent literature re-
view. Section 3 presents our overall system architecture,
detailing the different components and their intercommu-
nication, as well as an evaluation of the different ML mod-
els that drive our final choices. In Section 4 we evalu-
ate our contributions and present our findings. Finally, in
Section 6 we conclude the paper and present some future
directions.

2. Related Work

The disaggregation of the telecommunications stack has
been identified as one of the key enablers for flexibility,
and further innovations for the beyond 5G and future
6G networks. By taking advantage of the disaggregation
and existing approaches for an end-to-end SBA, the tele-
com stack can be instantiated as cloud-native functions
throughout the resource continuum, thus allowing network
operators to take advantage/extend existing approaches
for VNF management, tailored to network-specific char-
acteristics. Several of the works in the relevant literature

2

focus on managing the deployed components as VNFs, di-
vided mainly into the following categories: 1) Placement
of the VNFs [9],[10], [11], [12], 2) load that they are re-
ceiving [13], [14], [15], and 3) scale of the functions [16],
[17], [18].

The most outstanding effort reflecting these architec-
tural approaches is the definition of the Open-RAN (O-
RAN) specifications [7]. O-RAN standardizes the inter-
faces for interacting in real-time, near real-time, and non-
real-time with different components of the RAN stack, en-
abling the network to re-configure dynamically, based on
operator-defined policies. Opening up the programmabil-
ity of the RAN has created several opportunities for the
integration of Artificial Intelligence methods, which infer
based on historical observations of metrics on the future
resource usage, and appropriately manage the network ser-
vices.

In the realm of RICs for telecommunication networks,
several solutions, both open-source and proprietary, are
available. FlexRAN [19] stands out as a flexible and pro-
grammable platform tailored for Software-Defined Radio
Access Networks (SD-RAN) and is compatible with the
open-source OpenAirInterface (OAI) platform. Its succes-
sor, FlexRIC [20], serves as a software development kit
(SDK) designed for next-generation SD-RANs, allowing
its customization in the functions that the user needs to
perform on the RAN. On the proprietary front, Athena
Orchestrator—O-RAN SMO & RIC [21] is an AI-driven
platform optimized for energy-saving management in 5G-
ORAN compatible private networks. Additionally, FlexS-
lice [22] introduces an innovative approach, presenting flex-
ible control logic topologies—centralized, decentralized,
and distributed—to refine the O-RAN architecture for re-
duced control loop latency.

Different methods of Machine Learning are employed
for the prediction of different network metrics, depending
on the metrics themselves and their fluctuation to incom-
ing load. For example, in [23], authors present a concep-
tual model for 6G networks and show the use and role of
ML techniques in each layer of the model. Different ML
methods are examined for the different parts of the stack,
including supervised and unsupervised learning and Rein-
forcement Learning (RL). Regarding supervised learning,
they employed Deep Learning (DL) in a distributed man-
ner with the use of Federated Learning (FL). The appli-
cation of ML has opted in several works dealing with the
characterization of traffic exchanged over the network. For
instance, in [24], the authors classified the traffic according
to application and bandwidth-related features. Further-
more, the networking systems can identify factors that af-
fect the operation of the network (e.g. external traffic for
DDoS attacks) and appropriately employ the respective
mechanisms for reinforcing the operation of the network
(e.g. firewall operation, slicing of traffic, etc.). For exam-
ple, in [25], authors employ a federated ML approach that
can be ideally realized in networking switches, towards de-
tecting intrusions in the network by processing packets at

the bit level and at line-speed. In [26] authors use a non-
parametric approach for traffic classification, which can
improve the classification performance effectively by in-
corporating correlated information into the classification
process, using the nearest-neighbour approach. Their ap-
proach demonstrates significant performance benefits from
both theoretical and empirical perspectives in the litera-
ture. Authors in [27] employ cluster analysis for the case
of peer-to-peer networks that use dynamic port numbers
for the communication between participating nodes. Their
presented approach demonstrates how cluster analysis can
be used to effectively identify groups of traffic that are sim-
ilar using only transport layer statistics. Finally, surveys
[28, 29, 30, 31] organize the different traffic classification
techniques that have emerged in literature for analyzing
traffic based on either their headers, or the payload, and
whether it is encrypted or not.

Similarly, in [32] authors propose the adoption of ML for
orchestrating different tasks of 5G and beyond networks,
such as massive MIMO, heterogeneous network integration
and spectrum access, energy harvesting, and others. In
[33], authors introduce the concept of xApps, running on
top of the O-RAN architecture. These are network man-
agement applications, that rely on statistics exposed from
the stack at different levels. Based on the decision time,
xApps can be running in near real-time or non-real-time
fashion. In [34] Thantharate et al. propose the ECO6G
model, leveraging a Machine Learning approach to forecast
traffic load for improved energy efficiency and OPEX sav-
ings in B5G networks. This research demonstrates that
ECO6G significantly outperforms traditional forecasting
methods in energy savings, presenting a vital step towards
sustainable and cost-effective network management.

Regarding the type of policies and enforced decisions,
several works deal solely with allocating resources for slic-
ing the 5G network. In [35], authors employ Federated
Learning as a means of predicting the evolution of each
KPI in a per-service manner. Subsequently, they allocate
the slices in the network. In [36], similar functionality is
suggested, using the FlexRAN controller for reactively en-
forcing decisions regarding the network operation. Never-
theless, truly online training and decision-making in such
systems pose a significant challenge, as model training can
consume slice resources. Authors in [37] propose their so-
lution for combating such issues with an online end-to-
end network slicing system, able to achieve minimal re-
source usage while satisfying slices’ Slice Level Agreements
(SLAs). In [38] the Probabilistic Intra-slice Resource Ser-
vice Scheduling (PRSS) algorithm is introduced to opti-
mize 5G network resource allocation. Designed in two
stages—service throughput estimation via a multinomial
probabilistic model and dynamic conditional resource es-
timation for new services. Its efficiency is demonstrated
through analytical and simulation results, showcasing its
capability to efficiently manage 5G network resources.

In this work, we developed a solution for enhancing the
network operation with intelligence, based on the type of

3

Table 1: Comparison of state-of-the-art with our approach.

Works Approach Evaluation

[33] Open RAN for 6G networks focusing on modular traffic
steering implementations.

Highlighted modular approach and AI/ML benefits in
simulations; model lifecycle not discussed.

[34] A supervised ML approach for forecasting traffic load to
evaluate energy efficiency and OPEX savings in B5G net-
works.

Centers on model development and validation using real-
world 5G data, omitting live deployment details and life-
cycle discussions.

[35] Uses Federated Learning to predict service-oriented KPIs
for 5G network slices, addressing privacy and scalability
challenges.

Proven in simulations to enhance KPI accuracy, ensure
privacy, and cut communication costs. Highlights gaps
in model lifecycle and scalability discussions.

[36] A RAN runtime slicing system for flexible reactive slice
customization in 5G networks, utilizing a runtime SDK
for agile control application development.

Prototype development demonstrated on OpenAirInter-
face and Mosaic5G platforms, focusing on system capa-
bilities.

[37] Online DRL for dynamic end-to-end network slicing, fo-
cusing on SLA satisfaction and resource optimization.

Surpassed rule-based and DRL methods in resource effi-
ciency and SLA compliance in simulations. Omits new
traffic adaptation, real-world validation, and lifecycle
management.

[38] Introduces PRSS for optimizing 5G network slicing with
a two-stage probabilistic model for resource estimation.

Demonstrated efficiency through analytical and simula-
tion results. Lacks details on deployment, handling new
traffic patterns, and model lifecycle management.

[39] Slices resource orchestration using ML techniques for dy-
namic slicing of PRBs, admission control, and resource
management.

Showcased better prediction and efficiency in simulations
against static and random slicing. Lacks real-world de-
ployment details and model lifecycle.

This
work

A fully cloud-native, service-aware real-time network slic-
ing model leveraging ML for traffic classification, mobility
forecasting, and utilizes MLOps for model lifecycle man-
agement with online and distributed training.

Validated in a real-world environment; showcased supe-
rior latency and throughput improvements. Emphasizes
practical deployment with a focus on adaptability and
continuous optimization through a robust MLOps frame-
work.

services hosted over the top. By employing a service clas-
sifier, we were able to determine in real-time the type of
application running on the top and decide on the alloca-
tion of slices over the network in almost real-time. More-
over, our research stands out by implementing a thorough
MLOps strategy, contrary to numerous previous studies
that deploy deep learning models on fixed datasets, ne-
glecting the emergence of new data patterns and the on-
going management of the model. To clarify our pivotal
contributions within Table 1, we present a suite of inno-
vative advancements that distinguish our research from
existing state-of-the-art solutions:

• Leveraged the OpenAirInterface platform (OAI) for
the RAN and Core Network, running in a cloud-native
disaggregated manner using micro-services.

• Utilized programmable attenuators connected to the
RAN to simulate realistic mobility scenarios.

• Implemented a custom NWDAF, enriching the
dataset with metrics (throughput, jitter, CQIs) for
enhanced traffic analytics and mobility insights.

• Used supervised learning to forecast various features
and evaluated the solution with 6 different neural net-
works.

• Introduced and evaluated an MLOps architecture that
leverages cloud/edge computing in the resource con-

tinuum for Online and Distributed Training among
cluster nodes.

• Evaluated the framework in a real-world setup with
commercial UEs connecting to the network, generat-
ing realistic traffic patterns.

3. System Architecture

Our experimental setup consists of a cloud-native dis-
aggregated 5G network fully deployed on the Kubernetes
framework. This way, we take advantage of the multiple
benefits provided by an application container orchestrator
like Kubernetes, such as the management and monitoring
of resources and dynamic scaling of the 5G VNFs. The
5G network is enriched by a novel distributed AI/ML unit
for continuous distributed training-prediction and slicing.
Fig. 1 summarizes the framework’s architecture, show-
ing the deployment of the service-based 5G network, the
introduced distributed AI/ML unit, and the internet ap-
plications that the end-users interact with. We deploy
the framework in the NITOS testbed [40], a remotely
accessible facility located at the University of Thessaly,
Greece. NITOS testbed provides Software Defined Ra-
dios (SDRs), User Equipment (UE) terminals, and pro-
grammable attenuators. All these devices are utilized to
develop our solution in a real-world environment. Below,

4

Figure 1: Experimental Setup - The deployment of Cloud Native-AI 5G Network on Kubernetes.

we list the essential elements of our AI network slicing solu-
tion that enables provisioning high QoS and continuously
user-perceived high QoE.

3.1. Management and deployment of the network func-
tions

Our telecom network follows a serviced-based architec-
ture which consists of containerized network functions.
The containerized deployment relies on the open-source
OpenAirInterface platform. We specifically leverage the
LTE implementation of the OAI platform, opting for its
stability and mature RAN slicing support for multiple User
Equipment (UEs), a feature not yet fully developed in
the current OAI 5G NR implementation. Despite this,
our solution seamlessly integrates with 5G architecture,
requiring minimal adjustments to the overall framework.
For instance, substituting the LTE Evolved Packet Core
(EPC) with 5G core network components (HSS/UDM,
MME/AMF, SPGW-U/UPF, SPGW-C/SMF) and transi-
tioning from a disaggregated eNB to a disaggregated gNB
can be achieved effortlessly. It’s worth noting that our ap-
proach to the LTE Evolved Packet Core (EPC) involves
the use of Control and User-Plane Separation (CUPS), al-
lowing each component to operate in isolation. Our work
focuses on RAN-level allocations, utilizing interfaces en-
visaged for 6G network operation, such as the O-RAN E2.
Notably, our solution remains independent of dedicated
slicing components from the 5G architecture, like the Net-
work Slice Selection Function (NSSF). The key distinction
with the 5G RAN lies in the absence of full slicing support,
with the primary difference being the data rate rather than
core functionalities. For the experimental evaluation of our
architecture, we created a cluster of three NITOS nodes
as Kubernetes workers, while the control-plane node was

running on a separate VM. Below, we analyze our cloud-
native approach for the deployment of the network func-
tions down from the core network, up to the end-user.

3.1.1. Service-Based Core Network

The core network architecture follows control and user-
plane separation (CUPS). Consequently, each function
runs as a separate pod/container providing: a Cassan-
dra database that holds the subscriptions, the Home Sub-
scriber Service (HSS), the Mobility Management Entity
(MME), the control plane Service/PDN Gateway (SPGW-
C), and the respective user plane service (SPGW-U).
Since there’s not yet an open-source implementation of
the NWDAF we developed a customized function named
Core RAN Analytics Function (CRAF). CRAF plays the
same role as NWDAF in our architecture. It collects traffic
statistics from application interactions and KPI network
metrics such as Throughput, Jitter, and the CQI. After the
collection of the data, CRAF stores them in a database.
Then, our AI/ML framework performs feature extraction
and preprocesses the data for the model training.

The fact that the individual core network components
run separately as micro-services allows us to easily moni-
tor their status and their consumption in terms of mem-
ory, CPU, and bandwidth. The deployment of the core
network is distributed to all Kubernetes workers ensuring
the load balancing between them. The connectivity be-
tween the containerized core network and the Radio Ac-
cess Network is realized by the Multus Container Network
Interface (CNI). Multus CNI allows us to provide multiple
interfaces to pods and create static network configurations
for easy reproducibility of the experiments.

5

3.1.2. Disaggregated RAN

The containerized Radio Access Network (RAN) fol-
lows a disaggregated architecture including the CU and
DU (Central & Distributed Unit) components. This dis-
tributed scheme implements the functional split of the
base station. Specifically, the split takes place in the layer
2 OSI stack, between Packet Data Convergence Protocol
(PDCP) and Radio Link Control (RLC) layers. The CU
integrates the upper layers, while the DU integrates the
lower layers (from the RLC and below). The communica-
tion between CU and DU is based on the F1 Application
via the F1 interface. The CU container can be deployed
in any of the Kubernetes nodes from our cluster, contrary
to the DU pod that needs to be deployed on a specific
node equipped with the appropriate SDR front device. In
the SDR device, a programmable attenuator is connected,
with which we attenuate the signal of the RF device, in
order to create realistic mobility scenarios.

To obtain RAN statistics such as CQI and to create
network slices on demand, we utilize the FlexRAN net-
work controller. FlexRAN provides flexible and efficient
resource allocation and by this time of writing, is the
most stable open-source solution for RAN slicing. We con-
nect the FlexRAN controller to the RAN via the FlexRAN
agent running on the CU/DU side. FlexRAN is also con-
nected to the CRAF and AI/ML unit ambiguously for the
transmission of the RAN statistics and to the establish-
ment of the slicing policies.

3.1.3. End-Users & Internet Applications

To evaluate the network connectivity and collect traf-
fic data, we connected 3 UEs to the network interacting
with 3 containerized applications on the internet. The mo-
bile equipment includes commercial UEs by utilizing LTE
dongles. The applications include a video streaming ser-
vice, a VoIP application, and an Nginx web server. The
reason for choosing these services is to classify their net-
work needs into data-hungry applications such as video
streaming, medium data-rate applications such as VoIP,
and low data-rate applications such as simple web-server.
The video streaming service streams video capture devices
by utilizing the webRTC protocol as it provides real-time
communication over the web. The VoIP service is an ap-
plication called SiPp that employs Session Initiation Pro-
tocol (SIP) for VoIP packet transferring. The Nginx web
server is employed for the generation of HTTP requests.
All services are containerized and deployed onto the same
Kubernetes cluster. This allows us, to deploy them among
the SPGW pods on the Node with the SDR device to pro-
vide an edge computing approach. Finally, the traffic can
be captured and fed to the CRAF, directly from the SGi
interface of the data-plane network.

3.2. Application-aware AI/ML Unit

Developing an efficient AI/ML unit, aware of the net-
work conditions that coordinates the resources optimally

requires considering a lot of parameters. Our approach
captures a large number of features, essential for the slic-
ing decision, including the applications used by every UE,
the Throughput, and the Channel Quality, among many
others. Noticeably, the model receives an input window
of multiple time slots, with these features, which represent
the network traffic exchanges between the UEs and the ap-
plications in the near past. Thus, the model identifies the
pattern in the traffic and predicts future values. Our goal
is to come up with a robust unit that analyzes the over-
all network conditions thoroughly and employs a superior
slicing allocation algorithm, leading, this way, to a net-
work performance peak. Below, we provide information
on the whole procedure of choosing the proper features,
designing an effective traffic classification scheme, creating
real-world network traffic scenarios in the experimental en-
vironment, collecting data, training multiple models, and
developing a novel near real-time slicing allocation scheme.

3.2.1. Feature Selection

Designing a powerful AI/ML model, aware of the
plethora of components in a network architecture requires
a cautious feature selection. Thus, we pick many features
to capture the largest possible variance that explains the
pattern underlying the traffic exchanges between the UEs
and the applications (apps). Precisely, our features’ list
consists of the Applications, the Throughput, the CQI, the
Jitter and the allocated Slices, for every UE of the net-
work. First, the Application/Service is a principal compo-
nent of a service-aware implementation capturing which
specific service is used by every UE. This feature indicates
the service’s type, demand, and significance. Importantly,
for every UE, we keep one feature for every application
provided by the network; in our case, there are 3 app-
features (WebRTC, SIPp and Nginx). Further, the expe-
rienced service Throughput provides essential information
about the bandwidth of the UE-App link. Another vital
feature is the CQI that represents the LTE channel qual-
ity, which demonstrates the quality of the UE connection;
indicating a great or poor connection. Moreover, the Jitter
monitoring per UE depicts the timing delays between the
UE’s packets, while the Slices show the allocated resource
blocks of every UE.

3.2.2. Traffic Classification

For traffic classification, we divide the timeline of ev-
ery experiment into multiple time slots of a fixed length,
in which we gather the desired network information with
the aforementioned features.Importantly, the information
in every time slot is organized in a specific structure. We
divide every time slot into multiple UE categories as shown
in Fig. 2. This way, the information for every UE is gath-
ered in one category. In our case, there are 6 different
features for every UE category, namely WebRTC, Sipp,
Nginx, CQI, Jitter and Slice. The first three features rep-
resent the network Services that the UE is able to use.
Noticeably, their values represent the Throughput of the

6

Figure 2: Traffic Classification & Sliding Window Approach

specific UE with the specific service. For instance, a value
of 10 in the WebRTC feature in the first category (UE 1)
is translated as 10 Mbps network traffic on the UE 1 us-
ing the WebRTC service. The remaining features of every
category, namely CQI, Jitter and Slice provide additional
information on the quality of the UE connection as well
as its allocated resources. As a result, we end up with a
number of columns that is proportional to the number of
UEs multiplied by the number of features per category; in
our case, 3 UEs multiplied by 6 features equals 18 total
columns (real features for the model) for every time slot.
This is illustrated in Fig. 2, where every column of the
tables is a feature and every row is a time slot.

This way, we organize the monitored network traffic into
a useful structure to be used by a model. Precisely, the
time slot length is configured to the desired number, for in-
stance, 100 ms. Subsequently, during every slot, we gather
all the received packets and extract the essential informa-
tion. Firstly, we read the packets’ IP/Transport protocols
to classify them to the appropriate UE-App combination.
Then, we count the total number of bytes of all packets
received during the time slot for every UE-App link to
calculate the Throughput. This way, we classify the cap-
tured traffic during a time slot to the appropriate columns.
Next, we compute the mean Jitter value between the total
packets of every UE in the time slot. On top of that, a
CQI value per UE is requested from the FlexRAN Agent
existing in the LTE DU, and finally, the currently allocated
UE slices are recorded as well. For a better understand-
ing, let’s focus on Fig. 2 in the first row of the third input
window (i = 2). The first 6 values corresponding to the
category of the UE 1 are:

(A,B,C,D,E, F) = (10, 0, 0, 14, 1, 8)

Interpreting this category, we understand that the UE 1
has 10 Mbps network traffic only with the WebRTC ser-
vice, an LTE CQI of 14, 1 ms average Jitter, and allocates
a slice of only 8% of the overall network resources.

UE1

UE2

UE3

0 25 50 75 100 125 150

time (sec)

Figure 3: Users’ Network Traffic Baseline Scenarios depicting net-
work traffic at a specific time interval during the day.

3.2.3. Real-world Traffic Scenarios

We emulate realistic network behavior in an office by
developing multiple network traffic scenarios. Our goal
is to emulate inside our experimental infrastructure the
network patterns observed in an office on a specific time
interval of a usual day. We aim at specific time inter-
vals and not the whole day since our resources are limited.
Most users in an office are expected to have a basic pat-
tern in their behavior. For example, one user might mainly
utilize video streaming platforms, whereas another one is
constantly on calls with clients. Thus, the AI/ML unit
captures this pattern and enhances users’ overall experi-
ence by sharing the network resources on demand. As a
first step towards emulating this office behavior, we create
some baseline traffic scenarios for every UE in our network
(one bash script per UE specifying a particular behavior)
as shown in Fig. 3. These scenarios are based on real net-
work patterns observed at a specific time interval during
the day (early morning from 10:00 AM to 11:00 AM) on
users in our office facilities in Volos, Greece. However, we
redesign them to be small with a duration of approx. 150-
160 seconds to facilitate the whole experimental procedure
on the testbed. This way, we create the basic pattern that
is observed in our office at that specific time interval. How-
ever, this is not the exact behavior every day since it will
slightly change from one day to the other even if the un-
derlying pattern is the same. For example, the employee
who works mainly on the phone will not make the same
number of calls or calls of the same duration every day, but
he/she will mainly work on the phone with clients. To em-
ulate these slight variations in the UE behaviors from day
to day, we employ data augmentation techniques. Specif-
ically, based on the baseline scenarios, we add Additive
White Gaussian Noise (AWGN) in the number, sequence,
starting time, and duration of the utilized applications by
a UE to represent the differences from one day to the other.
For instance, the UE 3 in Fig 3 uses the WebRTC app one
time starting at 50 secs for a duration of 50 secs. It also
uses the NGINX app three times in total each starting at
about 20, 45, and 100 secs for a duration of 10, 5, and
50 secs respectively. At first, AWGN from the standard
normal distribution with a mean of 0 and a standard de-
viation (sd) of 1 is added to the number of times that an
app is used. Regarding UE 3, this means that the number
of times that the WebRTC and NGINX are utilized will
either not change or increase/decrease up to a maximum

7

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600

A
tt
e
n
u
a
ti
o
n
 (

d
B

)

Time (per 0.25 sec)

Attenuation Scenario

Figure 4: Attenuation Scenario emulating UE mobility in office.

of 3 times (3 standard deviations from the mean). Then
according to the new numbers we add the new apps or
delete the unnecessary ones randomly. Subsequently, we
use the same distribution to choose randomly several apps
(up to three) and change their position in the timeline.
Then, AWGN from a different distribution (mean of 0, sd
of 10) is added to change the starting time of each app up
to a maximum of 30 secs (3 sd from mean). After that,
AWGN from the same distribution is inserted to change
the duration of each app increasing or decreasing it by a
margin (up to 30 secs - 3 sd from mean). At every step,
we adjust accordingly the position of the apps in order to
avoid interference.

Moreover, several scenarios are reversed to augment the
dataset further and a lot of them are slightly cropped for
efficient training. Further but minor noise is inserted when
we collect the data from the testbed due to hardware im-
perfections. Thus, we create a plethora of network traffic
scenarios for every UE that inherit the baseline pattern but
are slightly modified capturing a large spectrum of the of-
fice’s real traffic at that specific time interval. Hence, there
is a large variance to build robust AI methods, capable of
generalizing, not over-fitting, and being resilient to noise
and fluctuations.

3.2.4. UE Mobility Emulation

In a real network, the quality of the UE connection
varies according to the geographical location of the UE.
Specifically, in areas with good LTE coverage the CQI that
depicts the LTE channel quality, is high, in contrast with
areas where there is poor LTE coverage (low CQI). In or-
der to emulate this behavior in our experiment we use
programmable attenuators installed on the outputs of the
USRP, as presented in Fig. 1. Specifically, by modifying
the attenuation of the USRP radios, we can emulate tran-
sitions from low to high CQI values and vice versa. The
attenuation is inversely proportional to the CQI (high at-
tenuation causes low CQI and the opposite). Importantly,
we possess attenuation scenarios from real commercial net-
works in Volos, Greece. Specifically, these attenuation sce-
narios emulate cars traveling a specific city route with ve-
locities that vary from 40 to 60 km/h with the road’s limit
being 50 km/h. These car scenarios were used to collect
182500 CQI data from 73 cars capturing a large spectrum
of the route’s traffic. The CQI data are publicly available
[41]. We decide to utilize the same attenuation scenarios

slot

1
2
3
4
5

col1 col2

1
1
1
2
3

2
2
2
3
4

X1 = 1
1

2
2

y1 - 1_slot = 1.0 2.0

y1 - 2_slot =

y1 - 3_slot =

1.5 2.5

2.0 3.0

Figure 5: Example of sliding-window scheme.

to emulate mobility to the office users since it is a simi-
lar problem (users moving in a specific geographical area)
and moreover, because it is a dataset with a large variance
that could lead to efficient training and generalization of
the models. Fig. 4 depicts an attenuation pattern used,
where at the beginning of the experiment the attenuation
is low (high CQI). Following that, the attenuation rises
substantially (low CQI), while at the end of the experi-
ment, the attenuation returns to low levels (high CQI).

3.2.5. Data Collection

To collect a lot of training examples for our model, we
execute all the scenarios in the testbed. In specific, we
pick at random one of the traffic scenarios (office users’
pattern) and one of the attenuation scenarios (mobility
pattern) and execute them concurrently. This way, we
assign a different combination of office traffic and mobility
patterns to each experiment. Meanwhile, by employing
the traffic classification scheme with a time-slot duration
of 1 second, the network traffic is appropriately classified
and subsequently stored in the database. This is done
for 300 experiments (each lasts approx 150-160 seconds)
creating, as a result, a massive dataset with 48600 rows
and 18 columns. This dataset is also publicly available
[42].

3.2.6. Pre-processing

Before feeding the data into the models, we need to
preprocess them appropriately. First, we normalize the
whole dataset adjusting all the columns in one common
range between 0 and 1. This way, we avoid scale imbal-
ances strengthening the model’s training efficiency. Subse-
quently, Fig. 2 illustrates clearly our pre-processing tech-
nique. In specific, we utilize a sliding-window approach
which creates a 2D input window (Xi) of fixed shape
([N time slots, cin features]) and slides it by one-time
slot over the whole dataset to create multiple samples
(i = 0, i = 1, i = 2). Meanwhile, for every Xi sample,
the algorithm captures a second 1D output window (yi)
with shape [1, cout features], which depicts the data that
we want to predict (labels) The data of every 1D window
(yi) are located immediately after that of the 2D window
(Xi) in the dataset representing the future. Noticeably,
the values of each yi could be that of only one-time slot
(the following of the Xi) or the mean values of an arbi-
trary number of time slots following the Xi. For example,
we provide a dataset with shape [5,2] in Fig. 5 Given
that we want to pick Xi windows with a length of 2-time
slots, the first input sample (X1) would be the first two

8

rows. For the corresponding prediction-output window yi
there are a lot of choices depending on the number of fu-
ture time slots that we want to predict. For instance, to
predict one future time slot, the y1 would be the third
row. On the other side, to predict multiple future time
slots, one efficient solution is to obtain the average val-
ues of their columns. Fig. 5 demonstrates examples for
predictions of 1, 2, and 3 future time slots: For the fol-
lowing Xi, yi samples, we slide by one-time slot and apply
the same procedure until we reach the end of the dataset.
In our case, as shown in Fig. 2, after extensive exper-
imentation we conclude on calculating Xi windows with
shape [30,18] and yi vectors of shape [1,15] predicting the
average values of five future time slots. The general rule
for finding the optimal window shapes is that the Xi win-
dows should be sufficiently large to capture the pattern
in the near past but small enough to boost model training
and avoid the exploding/vanishing gradient problem when
Recurrent Neural Networks (RNNs) are used. Regarding
the number of future time slots for prediction, it is gener-
ally good to employ multiple future time-slots to smooth
possible fluctuations, but not too many of them so as to
present an accurate figure of the near future. Using this
technique, we structure the data in Xi samples of shape
[48566, 30, 18] and yi samples of shape [48566, 15].

3.2.7. Neural Network Models

This work focuses on supervised learning approaches
and specifically, on evaluating various deep learning meth-
ods. We focus on neural networks as they are generally
more robust at handling huge datasets and more resilient
to noise compared to statistical and tree-based methods.
Our goal is to design a robust Neural Network (NN) that
converges on the pattern fast and accurately in order to
be used for real-time forecasting implementation. Hence,
we explore many different NN structures and finally con-
clude on some of the most promising ones and provide
their specifications in Table 2.

Firstly, we choose a Feed-forward NN (FNN) due to its
simplicity by just moving the information forward from
the input to the hidden and to the output layers result-
ing in faster training. Subsequently, we move to more
sophisticated architectures, the Recurrent NNs (RNNs),
which employ memory components and are widely uti-
lized in Time Series Forecasting (TSF). Precisely, Long
short-term Memory (LSTM) NN are very robust at dealing
with the vanishing/exploding gradients issue using three
gates (input, output, and forget gates) and thus, they of-
ten outcompete simpler RNNs. Following that, we extend
the simple LSTM by inserting a Bidirectional layer (Bi-
LSTMs). This way, the model analyzes both the original
sequences and their reversed versions, obtaining informa-
tion from the past and also the future, usually resulting
in enhanced forecasting performance. After that, we ana-
lyze Gated Recurrent Units (GRUs) NNs, another widely
used RNN, that achieves similar predictive performance
with LSTMs. In fact, GRU is equipped with fewer gates

(reset and update gates) and hence, requires fewer train-
ing parameters leading to faster training. Then, we build a
Convolutional NN (CNN) that is powerful at efficiently ex-
tracting features, dealing with noise, reducing the dimen-
sions, and calculating non-linear functions in data by em-
ploying kernel filters, pooling layers, and fully-connected
layers. Consequently, they often result in more accurate
and fast training. Further, we experiment with a hybrid
CNN-LSTM that obtains the best from both worlds by
forming an Encoder-Decoder architecture. In specific, the
CNN part implements feature extraction, noise, and di-
mensionality reduction and subsequently passes the pro-
cessed information to the LSTM, which captures the pat-
tern in data using memory components. This way, the
result is a prominent model with remarkable predictive
and training performance.

Layers Hidden Layers Epochs
GRU 2 GRU + Dense 25 units per layer 61
LSTM 2 LSTM + Dense 25 units per layer 97
Bi-

LSTM
2 Bi-LSTM +

Dense
25 units per layer 56

FNN 2 Dense + output
Dense

25 units per layer 568

CNN Conv1D +
MaxPooling1D +
Flatten + Dense +
Dense (output)

filters=64, kernel
size=2, pool

size=2, 50 Dense
units

264

CNN-
LSTM

Conv1D +
MaxPooling1D +

Flatten +
RepeatVector + 2
LSTM + Dense

(output)

filters=64, kernel
size=3, pool

size=2, repetition
factor=1,

25 units per LSTM
layer

24

Table 2: Neural Networks Configuration

3.2.8. Slicing Allocation Mechanism

The slicing allocation algorithm is designed to provide
the network resources on demand and fairly to maximize
the Quality of Experience (QoE) of the UEs. To achieve
that we share the available network resource blocks based
on a mathematical formula that consists of many criteria
obtained from the model predictions. Precisely, the type
of the application (C1), the total Throughput of the UE
(C2), the CQI (C3), and the Jitter (C4):

Slice(%) =

4∑
i=1

(wiCi) + w0, (1)

where w1, w2, w3, w4 are the weights of every criterion
indicating its importance and w0 is a constant term rep-
resenting the minimum value of the slice.

Each criterion (Ci) is assigned a priority value (0, 1, or
2), signifying low, medium, or high importance, respec-
tively. For example:

• For UE application (C1), WebRTC is given the high-
est priority (2), followed by SIPp and Nginx with pri-
orities 1 and 0 correspondingly.

• Throughput (C2) is classified as high demand (2) for
values above 0.4 Mbps, medium demand (1) for values

9

between 0.2 and 0.4 Mbps, and minor demand (0) for
values below 0.2 Mbps.

• CQI values (C3) falling between 0 to 9 are high pri-
ority (2), 9 to 11 are medium priority (1), and above
11 are low priority (0).

• Jitter values (C4) of more than 10 ms are crucial (2),
5 to 10 ms are medium priority (1), and less than 5
ms are low priority (0).

After experimenting with various slice configurations,
we determined that in our experimental setup, maintain-
ing a minimum slice value of 8% is crucial to keep a User
Equipment (UE) connected to the network. Any value be-
low this threshold results in UE disconnection, prompting
us to establish 8% as the designated minimum slice value
(w0). Additionally, we observed that UEs achieve their op-
timal performance when allocated a slice of 40%. Beyond
this value, there is no discernible increase in connection ef-
ficiency. Consequently, we selected 40% as the maximum
slice value. This maximum value is determined when all
criteria in Eq. 1 have the highest priority:

40 = w1 × 2 + w2 × 2 + w3 × 2 + w4 × 2 + 8

In our study, we assigned equal importance to each crite-
rion, reflected in identical weight values for w1, w2, w3, w4,
all calculated as 4. Consequently, the slicing equation sim-
plifies to:

Slice(%) = 4

4∑
i=1

Ci + 8 (2)

Various strategies can be implemented by assigning dif-
ferent weights to individual criteria based on specific ob-
jectives. For instance, prioritizing Ultra-reliable Low La-
tency Communications (URLLC) would involve assigning
a higher weight to the Jitter criterion (C4). This adjust-
ment enhances the slice allocation sensitivity to Jitter, en-
suring that more resources are allocated to UEs experi-
encing Jitter fluctuations. Alternatively, assigning greater
weight to Throughput (C2) could strengthen support for
Enhanced Mobile Broadband (eMBB), while an emphasis
on the weight of CQI (C3) would focus on maintaining a
stable, high-quality connection. Similarly, allocating more
weight to Application (C1) would result in additional re-
sources based on the application type rather than the qual-
ity of the connection.

In our case, we choose an equal weight to all criteria to
evaluate the algorithm’s general efficiency as a first step.
Future works will focus on specific use cases. Table 3 ad-
duces examples of the slicing allocation algorithm for fur-
ther understanding. For instance, the forecasting regard-
ing the UE 1 indicates that the Nginx app will be utilized
with 0.1 Mbps Throughput, a CQI of 14, and a Jitter of
2 ms. All these values correspond to the lowest priority

Forecasting UE 1 UE 2 UE 3
Application Nginx SIPp WebRTC

Throughput (Mbps) 0.1 0.3 2
CQI 14 10 6

Jitter (ms) 2 8 12

Criterion UE 1 UE 2 UE 3
C1 0 1 2
C2 0 1 2
C3 0 1 2
C4 0 1 2

Slice(%) 8 24 40

Table 3: Examples of UE slices assigning the priorities to each crite-
rion (Ci) based on forecasting.

(0) of each criterion (Ci) and thus, the calculated slice is
the lowest, 8%. At UE 2 and 3, all criteria have medium
and maximum priority leading to a slice of 24% and 40%
respectively.

When the total slices of the UEs are calculated more
than 100%, we subtract an equal proportion of every slice.
Overall, the UE receives the appropriate amount of re-
sources depending on the network conditions without un-
der or over-provisioning. In general, this scheme could
be adapted to individual preferences. First, further cri-
teria could be added or some of them could be excluded.
Secondly, the weights could be adjusted on the individual
preferences to target specific use cases. Additionally, the
minimum and maximum values of the UE slice could be
modified. Finally, this Eq. is a linear relationship between
the criteria and the slice, and thus in the future, it could
be replaced by a non-linear function calculated by an ML
model.

3.3. MLOps AI-ML Unit Architecture

To ensure that our model adjusts to the training data’s
gradual drift, we employ an online/distributed training ar-
chitecture realized by a Kubeflow pipeline. Kubeflow is
an open-source AI/ML toolkit that utilizes the power of
Kubernetes to run ML jobs and supports the entire life-
cycle of ML applications. In Kubeflow, a pipeline is a
description of an ML workflow that includes container-
ized components, each of which represents a single step
in the process. Each element is managed as a microser-
vice, with all the expected declarative definitions (YAML
manifests). This, enables them to be quickly deployed
and scaled out as required. By employing Kubeflow [43]
pipelines we can easily orchestrate, scale, and automate
our AI solution. This MLOps - Distributed Architecture
is presented in Fig. 6. First, CRAF monitors all the traf-
fic from the SGi interface by utilizing PyShark [44]. In
order for CRAF to collect the traffic in real-time, we use
the LiveCapture class of PyShark. CRAF also obtains all
the CQI values in real-time, via HTTP requests from the
FlexRAN controller. Then, after applying network filters
to the traffic (IPs/Ports), it classifies the interactions per
UE and application and calculates traffic analytics such
us Throughput and Jitter. To avoid big data over time,

10

CRAF only keeps the summary of each packet such as the
UE, the Application, the Length, the Jitter, and the CQI
value that each UE experiences. Subsequently, this data is
stored on a database running on a MySQL server that is
backed with NFS persistent storage via PersistentVolume,
providing consistency and availability of data between Ku-
bernetes Nodes. Next, the Kubeflow pipeline takes place,
as the first step: the Data Parser extracts the features from
the database and creates a new dataset. Then, the next
pipeline component, the Data Preprocessing applies the
sliding window approach to the data and stores them in
a multi-dimensional array. Afterward, this newly shaped
array is passed to the last step of the pipeline, the Train-
ing component. The construction, and the training of the
model, are implemented in this final step. After the train
finishes the new model is saved on the NFS as an HDF5 file
via the mounted Persistent Volume that is attached to the
container. This way, the Predictor Service can obtain and
utilize the updated model as it has access to distributed
storage as well. As a result, the Predictor pod can make
live predictions for near future traffic with higher accuracy,
as the model is trained with the data with the most recent
interactions and the latest network conditions.

To calculate the overhead of our solution we rely on the
Eq. 3. It is the total time that is needed per slice alloca-
tion. All the metrics are measured with the help of timeit
python module. The first metric, tCRAF , is the total time
for CRAF to obtain traffic and RAN analytics in one iter-
ation. We measured that tCRAF is almost real-time: 1-6
ms. The time needed for slice allocation tapply is also in the
same real-time range. This seems reasonable since CRAF
employs PyShark for live packet capturing and FlexRAN
for RAN statistics, which operates in real-time. Also, the
overhead of each prediction (tpred) is 1.6 ms. Finally, the
catalytic factor of Eq. plays the time slot per Xi obser-
vation described by tslot. We choose to observe Xi every
1 sec to get a better picture and capture the patterns.
However, the time slot is a hyperparameter that can be
changed. The smaller it becomes, the faster the slice allo-
cations, with the only tradeoff being the efficiency of the
predictions.

Slicetime = tCRAF + tslot + tpred + tapply (3)

The pipeline can be triggered by the Predictor Service
periodically with a timer or each time the predicted data
is less accurate than a predefined threshold. This can in-
dicate that the new data that is fitted into the model has
different traffic patterns than the data that the model has
been trained with. In that case, an algorithm 1 is sug-
gested. As long as the accuracy (R-squared) of the fore-
casts is high, the slice decisions defined by the slicing Eq.
1 can be determined by the predictions. Otherwise, if the
accuracy is lower than the accuracy threshold, then the
slice decisions will be reactively determined by the slicing
Eq. directly. The tradeoff in this approach is the fact
that in the middle of the train of the updated model, we

might lose some important interactions of the users with
the applications as well as the new patterns of the net-
work conditions (e.g. low CQI values). However, based on
our experiments this algorithm can converge on new traffic
patterns over time as the accuracy remains at constant-
high percentages from one point onwards.

Algorithm 1: Online Train/Predict [Predictor
Service]

Function model select(pipeline name, accuracy threshold):
train flag = 0;
while True do

traffic data = get traffic data();
accuracy = get accuracy of predictions();
if train flag == 0 then

if accuracy > accuracy threshold then
model = get model();
yhat = model.predict(traffic data)
store predictions(yhat)
slice perc = slice desicion(yhat)

else
slice perc = sclice desicion(traffic data)
train flag = 1
trigger pipeline(pipeline name)

end

end
else

slice perc = slice decision(traffic data)
if status.pipeline() == True then

train flag = 0
accuracy = MAX ACCURACY

end

end
End Function

Figure 6: MLOps Training Architecture.

Towards aiming to reduce training time as much as pos-
sible and to distribute the training load evenly in the Ku-
bernetes cluster, we enrich our architecture by employing
Distributed training using Kubeflow’s TensorFlow opera-
tor. With the TensorFlow operator, we can run distributed
TensorFlow jobs (TF jobs) in our Kubernetes cluster as il-
lustrated in Fig. 7. A distributed TF job is the collection
of the following processes:

• Chief: Is responsible for orchestrating the training
process

• PS: Parameter Servers provide a distributed data
storage for the model parameters and perform gra-
dient updates.

11

• Worker: The workers do the actual work of training
the model.

Kubeflow handles the above processes by passing the
Kubernetes cluster configuration as an environment vari-
able to the TF jobs. We only define distributed strategies
into our code for synchronous training based on the all-
reduce algorithm or for asynchronous training via param-
eter server. In our experiments, we choose Multi-Worker
with All-Reduce strategy and RING communication as it
supports synchronous training, without suffering from bot-
tleneck communications, contrary to the parameter server
asynchronous training [45]. The distribution scheme can
be further extended by describing the training job with a
custom YAML file that references the TFJob Custom Re-
source Definition (CRD). In this way, we can scale our
training process into multiple pods that will train the
model in a distributed fashion taking advantage of the to-
tal resources of the cluster.

Figure 7: Distributed Training

4. Evaluation

4.1. Model Comparison

The models’ offline training and evaluation are taking
place on Google Colab where non-subscription TPUs are
used. The concluded/optimal model structures are ana-
lyzed in Table 2. To evaluate them, we employ Time-
Series Cross Validation (CV), a technique similar to K-fold
CV but designed to respect the time sequence. We split
the pre-processed data (48566 Xi, yi samples) into several
folds of equal size (500 samples) and create two sets; the
training and the testing one. At first, we initialize the
training set with multiple serial folds following the time-
line (32000 samples - data of about 200 experiments). On
every iteration (i), the model is trained on the training set
and uses the next fold on the timeline as a testing set to
calculate the generalization error on unseen data. In the
following iteration, the training set is increased by one fold
following the timeline, and the next one is used for a new
evaluation. In the end, the mean of all testing errors (data
from about. 100 experiments) is calculated as the overall
generalization error. As a second step, we pick each model
and integrate it into our experimental topology to evaluate
its predictive performance in realistic circumstances on our

Testbed. The time-series CV and Testbed’s experimental
evaluations are shown in Fig. 11

As evaluation metrics, we employ the Mean Absolute
Error (MAE) and the Coefficient of Determination (R2).
MAE finds the mean absolute error between the predic-
tions (ŷi) and the labels. It is scale-dependent helping
us understand the forecasting error when studied together
with the data range and distribution. We calculate sepa-
rate MAE values for the predicted UE-App Throughput,
UE Jitter, and UE CQI both for the Time-Series CV and
the Testbed’s experimental evaluation, as shown in Fig.
11. Regarding Throughput, we observe a range of 0-800
kilobits per second (Kbps) with poor slicing and a range
of 0-4 megabits per second (Mbps) with maximum slicing
when the utilized application is the WebRTC. On the other
hand, when Nginx and SIPp are used, the range is between
0-300 Kbps. Generally, the observed Throughput range in
our experiments is between 0-4 Mbps. Regarding Jitter,
the observed range is between 0-70 milliseconds (ms) de-
pending on the link quality, slice, and application. More-
over, CQI ranges from 0 to 15. Further, we employ the R2

metric, which calculates the proportion of total variation
of outcomes explained by the model. It is more intuitively
informative (percentage value) without the need to con-
sider the data ranges.

In Fig. 11 all the models identify the pattern in data
efficiently. In specific, in Fig. 11a the models have time-
series CV Throughput MAE values that range from 5.04 to
5.82 kbps, while the respective ones on the Testbed range
from 2.07 to 3 kbps. These error values are negligible
when compared with the throughput range, which is 0-4
Mbps. Additionally, the NNs predict accurately the ex-
perimental Jitters (Fig. 11b) reaching MAE values at just
around 0.25 ms; very minor when studied with the Jitter
range of [0-70 ms]. Moreover, regarding the CQI in 11c,
the models achieve exceptionally low testing error with an
average of 0.42 MAE considering that CQI ranges from 0
to 15. Moreover, the evaluation utilizing the R2 metric on
the time-series CV and on the experiments on the Testbed
are shown in Table 4. Overall, the NNs achieve substan-
tial performances, with each model being slightly better in
forecasting different features. Importantly, there is a great
discrepancy in their training time, as shown in Fig. 11d.
The CNN-LSTM identifies quickly the patterns requiring
only 4 minutes, while the remaining models demand from
26 to 76 minutes. The key enabler of CNN-LSTM’s train-
ing efficiency is its convolutional (CNN) part. In specific,
the CNN performs optimally feature extraction, noise, and
dimensionality reduction. As a result, the LSTM part finds
smaller and better-structured sequences being able to con-
verge on the patterns in a faster way. Thus, we pick this
algorithm and integrate it into the AI/ML unit as it com-
bines high predictive accuracy with extremely low training
time, being the most appropriate choice for our implemen-
tation.

12

 0
 1
 2
 3
 4

 0 20 40 60 80 100 120 140 160T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (sec)

AI-unit default

(a) UE 1 interaction with WebRTC service

 0
 0.1
 0.2
 0.3
 0.4

 0 20 40 60 80 100 120 140 160T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (sec)

AI-unit default

(b) UE 1 interaction with Nginx service

 0
 10
 20
 30
 40

 0 20 40 60 80 100 120 140 160

J
it
te

r
(m

s
)

Time (sec)

default AI-unit

(c) UE 1 experienced Jitter

 0

 4

 8

 12

 16

 0 20 40 60 80 100 120 140 160

C
Q

I

Time (sec)

(d) UE 1 experienced CQI

 0

 10

 20

 30

 40

 0 20 40 60 80 100 120 140 160R
e
s
o
u
rc

e
 b

lo
c
k
s
 (

%
)

Time (sec)

(e) UE 1 allocated slices. Red line indicates a
fair sharing scheme with 33% of resources.

Figure 8: UE 1 QoE with and without the AI
unit equipped with CNN-LSTM.

 0
 1
 2
 3
 4

 0 20 40 60 80 100 120 140 160T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (sec)

AI-unit default

(a) UE 2 interaction with WebRTC service

 0
 0.1
 0.2
 0.3
 0.4

 0 20 40 60 80 100 120 140 160T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (sec)

default AI-unit

(b) UE 2 interaction with SIPp service

 0
 10
 20
 30
 40

 0 20 40 60 80 100 120 140 160

J
it
te

r
(m

s
)

Time (sec)

default AI-unit

(c) UE 2 experienced Jitter

 0

 4

 8

 12

 16

 0 20 40 60 80 100 120 140 160

C
Q

I

Time (sec)

(d) UE 2 experienced CQI

 0

 10

 20

 30

 40

 0 20 40 60 80 100 120 140 160R
e
s
o
u
rc

e
 b

lo
c
k
s
 (

%
)

Time (sec)

(e) UE 2 allocated slices. Red line indicates a
fair sharing scheme with 33% of resources.

Figure 9: UE 2 QoE with and without the AI
unit equipped with CNN-LSTM.

 0
 1
 2
 3
 4

 0 20 40 60 80 100 120 140 160T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (sec)

AI-unit default

(a) UE 3 interaction with WebRTC service

 0
 0.1
 0.2
 0.3
 0.4

 0 20 40 60 80 100 120 140 160T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Time (sec)

default AI-unit

(b) UE 3 interaction with Nginx service

 0
 10
 20
 30
 40

 0 20 40 60 80 100 120 140 160

J
it
te

r
(m

s
)

Time (sec)

default AI-unit

(c) UE 3 experienced Jitter

 0

 4

 8

 12

 16

 0 20 40 60 80 100 120 140 160

C
Q

I

Time (sec)

(d) UE 3 experienced CQI

 0

 10

 20

 30

 40

 0 20 40 60 80 100 120 140 160R
e
s
o
u
rc

e
 b

lo
c
k
s
 (

%
)

Time (sec)

(e) UE 3 allocated slices. Red line indicates a
fair sharing scheme with 33% of resources.

Figure 10: UE 3 QoE with and without the
AI unit equipped with CNN-LSTM.

 0
 1
 2
 3
 4
 5
 6
 7

F
N

N

L
S

T
M

B
i-
L
S

T
M

G
R

U

C
N

N

C
N

N
-L

S
T

M

M
A

E
 (

k
b

p
s
)

Time-series CV Experiment

(a) Throughput MAE per Model

 0
 0.5

 1
 1.5

 2

F
N

N

L
S

T
M

B
i-
L
S

T
M

G
R

U

C
N

N

C
N

N
-L

S
T

M

M
A

E
 (

m
s
)

Time-series CV Testing

(b) Jitter MAE per Model

 0
 0.2
 0.4
 0.6
 0.8

 1

F
N

N

L
S

T
M

B
i-
L
S

T
M

G
R

U

C
N

N

C
N

N
-L

S
T

M

M
A

E

Time-series CV Experiment

(c) CQI MAE per Model

 0
 10
 20
 30
 40
 50
 60
 70

F
N

N

L
S

T
M

B
i-
L
S

T
M

G
R

U

C
N

N

C
N

N
-L

S
T

M

T
ra

in
in

g
 T

im
e

 (
m

in
s
)

(d) Training on Google Colab

Figure 11: Model Off-line Training Evaluation on Google Colab and Experimental Evaluation on Testbed.

13

Table 4: R2 Evaluation of the Neural Networks
FNN LSTM Bi-LSTM GRU CNN CNN-LSTM

Time-series CV R2 0.936 0.940 0.940 0.937 0.945 0.940
Experiment R2 0.985 0.986 0.987 0.986 0.987 0.986

4.2. Experiment Evaluation

Our real-world experiment on NITOS Testbed evaluates
the impact of the AI/ML unit using the CNN-LSTMmodel
on the QoE of the UEs. In Fig. 8-10, we include five dif-
ferent sub-figures for every UE. In specific, the first two
subplots (a, b) depict the utilized services, followed by the
experienced Jitter (c), then the CQI (d) and subsequently
the allocated slices (e) that were provided according to
the dynamic slicing allocation algorithm. Noticeably, we
compare the resulted QoE of the UEs between the guid-
ance of the AI-unit and the default network configuration.
As a ”default” configuration, we set all the UE’s slices to
an equal percentage of 8% during the whole experiment.
This is done in an effort to show the results of poor re-
source management by a fair resource allocation algorithm
that provides fixed and equal resources to every UE. No-
ticeably, a slice of 8% is the minimum that keeps a UE
connected to the network in our topology. Moreover, it
suffices for the light applications, namely the NGINX and
SIPp, on maintaining a high-quality connection. However,
the most resource-intensive application, WebRTC, suffers
from a lack of resources with a slice of that value. On the
other side, a fair algorithm that assigns a slice of 33% to
every UE (maximum possible by the default configuration)
provides enough resources to all apps but leads to a mas-
sive over-provisioning. In specific, it wastes huge amounts
of resources for the NGINX and SIPp that could be used
to enhance the QoE of the other UEs. Thus, our target is
to utilize the AI unit to dynamically and efficiently allo-
cate the slices avoiding over-provisioning to NGINX and
SIPp and under-provisioning to the WebRTC.

To begin, the subplots 8a and 8b illustrate the apps used
by UE 1. At first, UE 1 interacts with WebRTC until ap-
prox. 80 secs, when the Nginx is used in two bursts (70-90
and 120-150 secs). Moreover, the Jitter experienced with
the default network slicing is higher initially and gradually
decreases, while the CQI fluctuates around low values (6-
10) almost during the whole experiment. Noticeably, the
algorithm provides the slices on demand by increasing the
resource blocks at the maximum of 40% in the first part
of the experiment (until 80 seconds), where the demand
is clearly higher; the UE interacts with the WebRTC, the
Jitter is high and the CQI is poor. Subsequently, the de-
mand declines as the UE 1 switches to the Nginx, the
Jitter values decrease and the CQI rises until it plateaus
to around 13, at the end of the experiment. Therefore,
the slicing percentage gradually decreases until it plunges
at the minimum of 8%, after around 140 seconds. This
slicing management contributes positively to the QoE of
UE 1. Specifically, by comparing the network performance
of the default slicing algorithm with the AI-unit’s, we can

see that the Throughput increased reaching even 1 Mbps
with the AI-unit when it used to have around 0.2 Mbps
as shown in Fig. 8a. In Fig. 8b, we do not observe any
changes since the Nginx is not demanding and it has al-
ready reached its peak with the default slicing. Finally,
the Jitter falls to lower levels at approx. 10 ms with the
guidance of the AI-unit from the 30 ms that it used to be.

Regarding UE 2 (Fig. 9), we see the opposite behav-
ior. In particular, at first UE 2 interacts with the SIPp
until approx. 100 seconds, when it switches to the We-
bRTC. Moreover, the Jitter remains constant during the
whole experiment at 15 ms, as shown in Fig. 9c, while the
CQI seems to slightly fall at 10-12 values (9d). Notice-
ably, the algorithms provide a low percentage of resource
block at first until around 80 secs, where the demand is
relatively low since the quality of the connection is quite
good (CQI and Jitter) and the utilized service, the SIPp,
is of medium priority. Later, the provided resources are
moderately increased to an average of 28% due to the us-
age of the WebRTC. Importantly, they do not reach higher
levels as the link quality is still quite good. Consequently,
the QoE of the UE 2 is substantially peaked. Particularly,
the WebRTC reaches 4 Mbps Throughput with the AI-
unit when it used to reach only a negligible amount of 0.5
Mbps with the default configuration.

Regarding UE 3, the WebRTC is used in the middle
part of the experiment, from 50 to approx. 100 secs. Ad-
ditionally, the Nginx is used majorly in the second part at
around 100 secs. The Jitter values are relatively low at an
average of 5 ms given that the CQI is extremely high (15)
almost during the whole experiment, except for the last
30 secs when it slightly declines to around 11. For these
reasons, we observe that the slicing allocation mechanism
provides few resources during the first part (no more than
16%) until approx. 70 secs, when the WebRTC Through-
put is substantially increased demanding more resources.
Then, the algorithm raises the resources to 28% and sub-
sequently drops them to 12% at around 100 secs since the
WebRTC is not used anymore. Following that, the slicing
scheme gradually increases the resources of the UE 3 until
they reach a climax of 36% between approx. 130 to 140
secs in an effort to cope with the drop in the link quality
(which is at the lowest level). Generally, the AI-unit as-
sists in the advancement of the QoE since the WebRTC
Throughput is increased from 0.5 to 4 Mbps and the Jit-
ter drops from 10 to 5 ms during the second part of the
experiment.

Overall, the QoE of all UEs is clearly enhanced given
that the Throughput and Jitter performances are amelio-
rated. Moreover, the slices are provided in a sophisticated
way so as to avoid over- and underprovisioning. In fact,
this is illustrated in Fig. 8e, 9e, 10e. The red line depicts a
value of 33%, which would be the highest slice that could
be allocated by a UE with a fixed and fair slicing algo-
rithm. Importantly, our dynamic scheme is able to surpass
this limit when the demand for resources is extremely large
as well as to decrease the resources dramatically lower than

14

 0

 30

 60

 90

 0 20 40 60 80 100

R
-s

q
u
a
re

d
 (

%
)

Time (min)

Pretrained Model Retrained Model

Figure 12: Error before & after online training. The red horizontal
line indicates the error threshold.

this percentage when the connection quality is excellent
giving, this way, the chance for link improvement to other
UEs in the network.

4.3. Online - Distributed Training

To evaluate the MLOps architecture, we run scenarios
with new traffic patterns. In specific, we slightly altered
the noise distributions in the augmentation steps (sect.
3.2.3) for the new scenarios. In the steps where the stan-
dard normal distribution was utilized, we replaced it with
an AWGN with a mean of 0 and sd of 1.5. Moreover, we
replaced the AWGN with a mean of 0 and an sd of 10
with a new distribution of the same mean but an sd of 15.
Thus, we represent a small change in the distribution of
the traffic pattern since the baseline patterns still exist in
the new scenarios. We noticed that as soon as the new
traffic patterns arrived, the predictions deviated quite a
bit and the accuracy dropped immediately below the pre-
defined threshold (70%) as shown in Fig. 12. Then, the
Kubeflow Pipeline was triggered and started the process
of distributed training. In between, the slicing decisions
were defined reactively. After the training was over, the
updated model started to make predictions again with high
accuracy. Noticeably, it converged quite fast with approx-
imately only 20 new samples-scenarios (50 minutes of re-
ceiving new samples and updating the model in real-time).
It is fast since 300 samples were used for the offline train-
ing. Overall, the ability of the scheme to cope with the
new patterns relies on many components. First, the dif-
ferences between the new pattern distribution with the one
that the model has converged previously. The bigger the
difference the larger the number of new samples required.
Further, the processing power of the infrastructure is vi-
tal. For instance, Graphics Processing Units (GPUs) and
TPUs outperform CPUs substantially accelerating the up-
dating.

To evaluate our distributed training architecture we
scale our cluster up to six NITOS nodes that carry octa-
core processors (Intel-Core i7-3770 at 3.40 GHz Processor).
Observing Fig. 13a, the increase in performance is almost
linear as the training time seems to converge at 6 CPUs
succeeding in reducing training time by half. This opti-
mization of training time enables us to train the model as
quickly as possible and to be able to cope more accurately
with the predictions of the most recent data of traffic and
network conditions. It is worth noting that the training

data were taken from a sample of the entire dataset: 20
scenarios with 18 columns-features. The distributed train-
ing is applied to our cluster (NITOS Testbed) where only
CPUs are used and the purpose of this experiment was to
show how beneficial it is to use all resources simultaneously
in the case of online training. The CNN-LSTM model was
employed for the experiment. Performance can be further
enhanced by utilizing a GPU cluster. In addition, load
balancing is ensured in our cluster as illustrated in 13b.
In this experiment, we compared the CPU usage for the
training of the model between a single machine-container
and distributed 3 pods - 3 nodes synchronous all-reduce
training. We notice that the single pod has almost 4 times
CPU usage compared to the distributed pods which con-
sume resources evenly in the cluster. These measurements
were taken from the Prometheus adapter which we inte-
grated into the cluster for resource monitoring.

5. Limitations and Discussions

While our results add valuable insights to the evolving
domain of slicing in cloud-native 5G Networks, it’s im-
portant to recognize the limitations of our infrastructure.
The constraint on the number of UEs, capped at three, was
a practical consideration due to the challenges associated
with establishing connections in our real telecommunica-
tions network setup. The setup operates as a private 5G
network where the application usage is more static, mean-
ing the variety of applications that the users interact with,
is relatively fixed. This may not fully represent the dy-
namic nature of application usage in public 5G networks,
where applications with different network requirements
may be in use simultaneously. To address this, extensive
datasets that capture a wide range of user behaviors, ap-
plication interactions, and network patterns are essential.
These datasets will serve as the foundation for training
machine learning models and refining the slice allocation
algorithm to handle the intricacies of dynamic application
usage in public 5G networks. Also, by increasing the scale
of the experimental setup by connecting a larger number
of end devices is crucial to emulate the complexities of
public networks. This expansion allows for a more com-
prehensive evaluation of the slice allocation mechanism’s
performance in diverse and dynamic scenarios. Neverthe-
less, the service-aware slice allocation mechanism provides
an end-to-end solution that can be directly plugged into
any type of telecommunication network, regardless of the
operator. From a performance perspective, there can be
limitations concerning the real-time packet inspection and
classification, as the overall cell throughput is increased.
Such limitations can be easily overcome, when employing
data-plane traffic accelerators in the network, for bypass-
ing the operating system stack and providing direct ac-
cess to the network. Implementations of libraries such as
DPDK, enhanced Berkeley Packet Filters (eBPF) or em-
ploying a Vector Packet Processing (VPP) methodology

15

 0
 100
 200
 300
 400
 500
 600
 700

1 2 3 4 5 6T
ra

in
in

g
 D

u
ra

ti
o

n
 (

s
e

c
)

Nodes - CPUs

(a) Dist. Training Duration

 0

 8

 16

 24

 32

 0 2 4 6 8 10 12C
P

U
 U

s
a

g
e

 (
%

)

Time (min)

Single-train
Node-1

Node-2
Node-3

(b) Dist. CPU Usage

Figure 13: Experimental results for Distributed Training

in the packet handling can offer significant gains in perfor-
mance, especially in the cases where the overall network
traffic reaching the UPF surpasses 1Gbps. The aforemen-
tioned limitations provide avenues for future work, includ-
ing extending the experimentation to larger-scale setups,
exploring the performance of the slice allocation mecha-
nism in public 5G networks with dynamic application us-
age, and investigating solutions to handle multiple UEs.

6. Conclusion

In this work, we developed and experimentally evalu-
ated an ML-driven approach for defining the optimal slice
application in the cellular 5G network, based on the ap-
plications that are hosted on top. Our framework can
autonomously decide on the allocations, based on the ML-
driven classification of the traffic and the mobility of users,
providing near-real-time performance. The selection of the
ML model was determined after experimenting with sev-
eral neural network-based approaches, with the one per-
forming optimally being a CNN-LSTM stacked model for
our data. The solution is able to analyze and classify traf-
fic from different applications correctly. At the same time,
it considers the user’s connection quality, and appropri-
ately enforces the slices in the network. In the future,
we foresee wrapping parts of our contribution into xApps
and porting our solution to the O-RAN architecture. The
detailed implementation instructions and code repository
can be accessed on GitHub: GitHub.1. Additionally, par-
tial datasets and code configurations for the framework are
provided in [42].

Acknowledgement

The research leading to these results has received fund-
ing from the European Union’s Horizon Europe Research
and Innovation Programme for research, technological de-
velopment, and demonstration under Grant Agreement
Number No 101079774 (Horizon Europe SLICES-PP) and
the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 101008468

1For specifics on the experimental setup, refer to: https://

github.com/teo-tsou/app_aware_5g

(SLICES-SC). The European Union and its agencies are
not liable or otherwise responsible for the contents of this
document; its content reflects the view of its authors only.

References

[1] N. Kato, B. Mao, F. Tang, Y. Kawamoto, and J. Liu, “Ten
Challenges in Advancing Machine Learning Technologies toward
6G,” IEEE Wireless Communications, vol. 27, no. 3, pp. 96–
103, 2020.

[2] I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “To-
ward the 6G Network Era: Opportunities and Challenges,” IT
Professional, vol. 22, no. 1, pp. 34–38, 2020.

[3] C.-Y. Chang, N. Nikaein, O. Arouk, K. Katsalis, A. Ksentini,
T. Turletti, and K. Samdanis, “Slice Orchestration for Multi-
Service Disaggregated Ultra-Dense RANs,” IEEE Communica-
tions Magazine, vol. 56, no. 8, pp. 70–77, 2018.

[4] C. Ge, N. Wang, S. Skillman, G. Foster, and Y. Cao,
“QoE-Driven DASH Video Caching and Adaptation at 5G
Mobile Edge,” in ACM Conference on Information-Centric
Networking, ser. ACM-ICN ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 237–242.
[Online]. Available: https://doi.org/10.1145/2984356.2988522

[5] R. Smith, C. Freeberg, T. Machacek, and V. Ramaswamy, “An
O-RAN Approach to Spectrum Sharing Between Commercial
5G and Government Satellite Systems,” in IEEE Military Com-
munications Conference (MILCOM), 2021, pp. 739–744.

[6] L. M. Larsen, A. Checko, and H. L. Christiansen, “A survey
of the functional splits proposed for 5G mobile crosshaul net-
works,” IEEE Communications Surveys & Tutorials, vol. 21,
no. 1, pp. 146–172, 2018.

[7] A. Garcia-Saavedra and X. Costa-Perez, “O-RAN: Disrupting
the virtualized RAN ecosystem,” IEEE Communications Stan-
dards Magazine, 2021.

[8] A. Ghosh, A. MÃ¤der, M. Baker, and D. Chandramouli, “5G
Evolution: A View on 5G Cellular Technology Beyond 3GPP
Release 15,” IEEE Access, vol. PP, pp. 1–1, 09 2019.

[9] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic,
latency-optimal vNF placement at the network edge,” in IEEE
conference on computer communications (INFOCOM). IEEE,
2018, pp. 693–701.

[10] Z. Xu, X. Zhang, S. Yu, and J. Zhang, “Energy-Efficient Virtual
Network Function Placement in Telecom Networks,” in Inter-
national Conference on Communications (ICC), 2018, pp. 1–7.

[11] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P.-V. Mekikis,
A. Antonopoulos, and C. Verikoukis, “Online VNF Lifecycle
Management in an MEC-Enabled 5G IoT Architecture,” IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 4183–4194, 2020.

[12] X. Fei, F. Liu, H. Xu, and H. Jin, “Towards load-balanced
VNF assignment in geo-distributed NFV Infrastructure,” in
IEEE/ACM International Symposium on Quality of Service
(IWQoS), 2017, pp. 1–10.

[13] ——, “Adaptive VNF scaling and flow routing with proactive
demand prediction,” in IEEE Conference on Computer Com-
munications (INFOCOM). IEEE, 2018, pp. 486–494.

16

https://github.com/teo-tsou/app_aware_5g
https://github.com/teo-tsou/app_aware_5g
https://github.com/teo-tsou/app_aware_5g
https://doi.org/10.1145/2984356.2988522

[14] D. B. Oljira, K.-J. Grinnemo, J. Taheri, and A. Brunstrom,
“A model for QoS-aware VNF placement and provisioning,”
in IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), 2017, pp. 1–7.

[15] L. Qu, C. Assi, and K. Shaban, “Delay-Aware Scheduling and
Resource Optimization With Network Function Virtualization,”
IEEE Transactions on Communications, vol. 64, no. 9, pp.
3746–3758, 2016.

[16] D. Kumar, S. Chakrabarti, A. S. Rajan, and J. Huang, “Scaling
Telecom Core Network Functions in Public Cloud Infrastruc-
ture,” in IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 2020, pp. 9–16.

[17] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, and P. Bertin, “Im-
proving Traffic Forecasting for 5G Core Network Scalability: A
Machine Learning Approach,” IEEE Network, vol. 32, no. 6,
pp. 42–49, 2018.

[18] I. Alawe, Y. Hadjadj-Aoul, A. Ksentini, P. Bertin, and
D. Darche, “On the scalability of 5G core network: The AMF
case,” in IEEE Annual Consumer Communications Networking
Conference (CCNC), 2018, pp. 1–6.

[19] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and
K. Kontovasilis, “FlexRAN: A flexible and programmable plat-
form for software-defined radio access networks,” in Interna-
tional on Conference on emerging Networking EXperiments
and Technologies (CONEXT), 2016, pp. 427–441.

[20] R. Schmidt, M. Irazabal, and N. Nikaein, “Flexric: An sdk
for next-generation sd-rans,” in CONEXT 2021, 17th Interna-
tional Conference on Emerging Networking EXperiments and
Technologies, 7-10 December 2021, Munich, Germany (Virtual
Conference), ACM, Ed., Munich, 2021.

[21] ITRI, “Athena Orchestrator - O-RAN SMO RIC,
note=[Online], https://event.itri.org/CES2023/tech details/
22.”

[22] C.-C. Chen, C.-Y. Chang, and N. Nikaein, “Flexslice: Flex-
ible and real-time programmable ran slicing framework,” in
GLOBECOM 2023, IEEE Global Communications Conference,
4-8 December 2023, Kuala Lumpur, Malaysia, Kuala Lumpur,
2023.

[23] J. Kaur, M. A. Khan, M. Iftikhar, M. Imran, and Q. E. U.
Haq, “Machine Learning techniques for 5G and beyond,” IEEE
Access, vol. 9, pp. 23 472–23 488, 2021.

[24] O. Aouedi, K. Piamrat, S. Hamma, and J. Perera, “Net-
work traffic analysis using machine learning: an unsupervised
approach to understand and slice your network,” annals of
telecommunications, 11 2021.

[25] Q. Qin, K. Poularakis, K. K. Leung, and L. Tassiulas, “Line-
speed and scalable intrusion detection at the network edge via
federated learning,” in IFIP Networking Conference (Network-
ing), 2020, pp. 352–360.

[26] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and
Y. Guan, “Network traffic classification using correlation infor-
mation,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 24, no. 1, pp. 104–117, 2013.

[27] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification
using clustering algorithms,” in Proceedings of the 2006
SIGCOMM Workshop on Mining Network Data, ser. MineNet
’06. New York, NY, USA: Association for Computing
Machinery, 2006, p. 281–286. [Online]. Available: https:
//doi.org/10.1145/1162678.1162679

[28] M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and
K. Hanssgen, “A survey of payload-based traffic classifica-
tion approaches,” IEEE Communications Surveys Tutorials,
vol. 16, no. 2, pp. 1135–1156, 2014.

[29] T. T. Nguyen and G. Armitage, “A survey of techniques for in-
ternet traffic classification using machine learning,” IEEE Com-
munications Surveys Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[30] S. Rezaei and X. Liu, “Deep learning for encrypted traffic clas-
sification: An overview,” IEEE Communications Magazine,
vol. 57, no. 5, pp. 76–81, 2019.

[31] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future
directions in traffic classification,” IEEE Network, vol. 26, no. 1,

pp. 35–40, 2012.
[32] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo,

“Machine Learning paradigms for Next-Generation Wireless
Networks,” IEEE Wireless Communications, vol. 24, no. 2, pp.
98–105, 2016.

[33] M. Dryjański, Ku lacz, and A. Kliks, “Toward Modular and
Flexible Open RAN Implementations in 6G Networks: Traffic
Steering Use Case and O-RAN xApps,” Sensors, vol. 21,
no. 24, 2021. [Online]. Available: https://www.mdpi.com/
1424-8220/21/24/8173

[34] A. Thantharate, A. V. Tondwalkar, C. Beard, and A. Kwasinski,
“Eco6g: Energy and cost analysis for network slicing
deployment in beyond 5g networks,” Sensors, vol. 22, no. 22,
2022. [Online]. Available: https://www.mdpi.com/1424-8220/
22/22/8614

[35] B. Brik and A. Ksentini, “On Predicting Service-oriented Net-
work Slices Performances in 5G: A Federated Learning Ap-
proach,” in IEEE Conference on Local Computer Networks
(LCN). IEEE, 2020, pp. 164–171.

[36] C.-Y. Chang and N. Nikaein, “Closing in on 5G control apps:
enabling multiservice programmability in a disaggregated radio
access network,” IEEE Vehicular Technology Magazine, vol. 13,
no. 4, pp. 80–93, 2018.

[37] Q. Liu, N. Choi, and T. Han, “OnSlicing: Online End-to-End
Network Slicing with Reinforcement Learning,” in Interna-
tional Conference on Emerging Networking EXperiments and
Technologies (CONEXT, ser. CoNEXT ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 141–153.
[Online]. Available: https://doi.org/10.1145/3485983.3494850

[38] S. Ravindran, S. Chaudhuri, J. Bapat, and D. Das, “Novel adap-
tive multi-user multi-services scheduling to enhance throughput
in 5g-advanced and beyond,” IEEE Transactions on Network
and Service Management, pp. 1–1, 2024.

[39] N. Salhab, R. Langar, and R. Rahim, “5G network slices re-
source orchestration using Machine Learning techniques,” Com-
puter Networks, vol. 188, p. 107829, 2021.

[40] N. Makris, C. Zarafetas, S. Kechagias, T. Korakis, I. Seskar,
and L. Tassiulas, “Enabling open access to LTE network com-
ponents; the NITOS testbed paradigm,” in IEEE Conference
on Network Softwarization (NetSoft). IEEE, 2015, pp. 1–6.

[41] I. Chatzistefanidis, N. Makris, V. Passas, and T. Korakis, “UE
Statistics Time-Series (CQI) in LTE Networks,” 2022. [Online].
Available: https://dx.doi.org/10.21227/ec7p-xq38

[42] T. Tsourdinis, I. Chatzistefanidis, N. Makris, and T. Korakis,
“Ue network traffic time-series (applications, throughput,
latency, cqi) in lte/5g networks,” 2022. [Online]. Available:
https://dx.doi.org/10.21227/4ars-fs38

[43] D. Golubovic and R. Rocha, “Training and Serving ML work-
loads with Kubeflow at CERN,” in EPJ Web of Conferences,
vol. 251. EDP Sciences, 2021, p. 02067.

[44] D. Green, “Pyshark: Python wrapper for tshark, allowing
python packet parsing using wireshark dissectors.” [Online],
https://github.com/KimiNewt/pyshark.

[45] C. Chen, W. Wang, and B. Li, “Round-Robin Synchronization:
Mitigating Communication Bottlenecks in Parameter Servers,”
in IEEE Conference on Computer Communications (INFO-
COM), 2019, pp. 532–540.

17

https://event.itri.org/CES2023/tech_details/22
https://event.itri.org/CES2023/tech_details/22
https://doi.org/10.1145/1162678.1162679
https://doi.org/10.1145/1162678.1162679
https://www.mdpi.com/1424-8220/21/24/8173
https://www.mdpi.com/1424-8220/21/24/8173
https://www.mdpi.com/1424-8220/22/22/8614
https://www.mdpi.com/1424-8220/22/22/8614
https://doi.org/10.1145/3485983.3494850
https://dx.doi.org/10.21227/ec7p-xq38
https://dx.doi.org/10.21227/4ars-fs38
https://github.com/KimiNewt/pyshark

	Introduction
	Related Work
	System Architecture
	Management and deployment of the network functions
	Service-Based Core Network
	Disaggregated RAN
	End-Users & Internet Applications

	Application-aware AI/ML Unit
	Feature Selection
	Traffic Classification
	Real-world Traffic Scenarios
	UE Mobility Emulation
	Data Collection
	Pre-processing
	Neural Network Models
	Slicing Allocation Mechanism

	MLOps AI-ML Unit Architecture

	Evaluation
	Model Comparison
	Experiment Evaluation
	Online - Distributed Training

	Limitations and Discussions
	Conclusion

