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Abstract

In this paper, we introduce the problem of finding an orientation of a given undirected graph
that maximizes the burning number of the resulting directed graph. We show that the problem
is polynomial-time solvable on Kőnig–Egerváry graphs (and thus on bipartite graphs) and that
an almost optimal solution can be computed in polynomial time for perfect graphs. On the
other hand, we show that the problem is NP-hard in general and W[1]-hard parameterized by
the target burning number. The hardness results are complemented by several fixed-parameter
tractable results parameterized by structural parameters. Our main result in this direction
shows that the problem is fixed-parameter tractable parameterized by cluster vertex deletion
number plus clique number (and thus also by vertex cover number).

Keywords: burning number, graph orientation, fixed-parameter algorithm.

1. Introduction1

The burning number of a directed or undirected graph G, denoted b(G), is the minimum2

number of steps for burning all vertices of G in the following way: in each step, we pick one3

vertex and burn it; and then between any two consecutive steps, the fire spreads to the neighbors4

(to the out-neighbors, in the directed setting) of the already burnt vertices. In other words,5

b(G) is the minimum integer b such that there exists a sequence ⟨w0, . . . , wb−1⟩ of vertices such6

that for each vertex v of G, there exists i (0 ≤ i ≤ b− 1) such that the distance from wi to v is7

at most i. Note that each wi corresponds to the vertex that we picked in the (b− i)th step.8

The concept of burning number is introduced by Bonato, Janssen, and Roshanbin [6, 7]9

as a model of information spreading, while the same concept was studied already in 1992 by10

Alon [1]. The central question studied so far on this topic is the so-called burning number11

conjecture, which is about the worst case for a burning process and states that b(G) ≤ ⌈
√
n⌉ for12

every connected undirected graph with n vertices. The conjecture has been studied intensively13

but it is still open (see [5] and the references therein). Recently, it has been announced that14

the conjecture holds asymptotically, that is, b(G) ≤ (1 + o(1))
√
n [46]. For the directed case,15

the worst cases are completely understood in both weakly and strongly connected settings [33].16

⋆Partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP20H05793, JP21K11752,
JP22H00513, JP23KJ1066. A preliminary version appeared in the proceedings of the 18th International Con-
ference and Workshops on Algorithms and Computation (WALCOM 2024), Lecture Notes in Computer Science
14549 (2024) 377–391.

∗Corresponding author
Email addresses: julien.courtiel@unicaen.fr (Julien Courtiel), paul.dorbec@unicaen.fr (Paul

Dorbec), gima@ist.hokudai.ac.jp (Tatsuya Gima), lecoq.unicaen@proton.me (Romain Lecoq),
otachi@nagoya-u.jp (Yota Otachi)

Preprint submitted to Discrete Applied Mathematics February 13, 2025



Since the problem of computing the burning number is hard [4, 40, 44], several approximation17

algorithms [38, 39, 42] and parameterized algorithms [3, 34, 36] are studied.18

In this paper, we investigate the worst case for a directed graph in the setting where we only19

know the underlying undirected graph. That is, given an undirected graph, which is assumed20

to be the underlying graph of a directed graph, we want to know how bad the original directed21

graph can be in terms of burning number. This concept is represented by the following new22

graph parameter: the orientable burning number of an undirected graph G, denoted B(G), is23

the maximum burning number over all orientations of G; that is,24

B(G) = max
orientation

#»
G of G

b(
#»

G).25

Recall that an orientation
#»

G of an undirected graph G is a directed graph that gives exactly26

one direction to each edge of G. Now the main problem studied in this paper is formalized as27

follows.28

Problem: Orientable Burning Number (OBN)

Input: An undirected graph G = (V,E) and an integer b.

Question: Is B(G) ≥ b?
29

In the setting of information spreading applications, this new problem can be seen as the30

one determining directions of links in a given underlying network structure to make the spread31

of something bad as slow as possible. Note that the dual problem of minimizing the burning32

number by an orientation is equivalent to the original graph burning problem on undirected33

graphs since b(G) = minorientation
#»
G of G b(

#»

G). To see this equality, observe that each edge is34

used at most once and only in one direction to spread the fire.35

See Fig. 1 for an example on the star graph K1,n.36

· · ·
b(K1,n) = 2

· · ·
B(K1,n) = n

· · ·
min #»

K1,n
b(

#»

K1,n) = 2

w1

w0w0 w1 w2 wn−1

w1

w0

Figure 1: The star graph K1,n with n ≥ 2.

1.1. Our results37

We first present, in Section 3, several lower and upper bounds connecting the orientable38

burning number of a graph with other parameters such as the independence number. In par-39

ticular, for perfect graphs, we present almost tight lower and upper bounds that differ only40

by 2 and can be computed in polynomial time. We also consider Kőnig–Egerváry graphs, which41

generalize bipartite graphs. Although our bounds for them are not exact, we show that the42

orientable burning number of a Kőnig–Egerváry graph can be computed in polynomial time43

(see Section 3.1).44

Next we consider the computational intractability of OBN in Section 4. We first show45

that OBN is W[1]-hard parameterized by the target burning number b. Although the proof of46

this result implies the NP-hardness of OBN for general graphs as well, we present another NP-47

hardness proof that can be applied to restricted graph classes that satisfy a couple of conditions.48

For example, this shows that OBN is NP-hard on planar graphs of maximum degree 3.49
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To cope with the hardness of OBN, we study structural parameterizations in Section 5.50

We first observe that some sparseness parameters (e.g., treewidth) combined with b make the51

problem fixed-parameter tractable. The main question there is the tractability of structural52

parameterizations not combined with b. We show that OBN parameterized by cluster vertex53

deletion number plus clique number is fixed-parameter tractable. As a corollary to this result,54

we can see that OBN parameterized by vertex cover number is fixed-parameter tractable. We55

believe that the techniques used there would be useful for studying other structural parameter-56

izations of OBN as well.57

1.2. Related problems58

Although the problem studied in this paper is new, the concept of orientable number has59

long history in the settings of some classical graph problems.60

The most relevant is the orientable domination number. The orientable domination number61

of an undirected graph G, denoted DOM(G), is the maximum domination number over all62

orientations
#»

G of G. That is,63

DOM(G) = max
orientation

#»
G of G

γ(
#»

G),64

where γ(
#»

G) is the size of a minimum dominating set of the directed graph
#»

G.1 Erdős [21]65

initiated (under a different formulation) the study of orientable domination number by showing66

that DOM(Kn) ≃ log2 n, where Kn is the complete graph on n vertices. Later, the concept of67

orientable domination number is explicitly introduced by Chartrand et al. [13]. We can show68

that orientable domination number (plus 1) is an upper bound of orientable burning number69

(see Observation 3.1).70

There are two other well-studied problems. One is to find an orientation that minimizes the71

length of a longest path, which is equivalent to the graph coloring problem by the the Gallai–72

Hasse–Roy–Vitaver theorem [23, 29, 47, 48]. The other one is to find a strong orientation that73

minimizes or maximizes the diameter. It is NP-complete to decide if a graph admits a strong74

orientation with diameter 2 [14] and the maximum diameter of a strong orientation is equal to75

the length of a longest path in the underlying 2-edge connected graph [27].76

2. Preliminaries77

Terms in graph burning. Let D = (V,A) be a directed graph. By N+
ℓ,D[v], we denote the set of78

vertices with distance at most ℓ from v in D. We often omit D in the subscript and write N+
ℓ [v]79

instead when D is clear from the context. A burning sequence of D with length b is a sequence80

⟨w0, w1, . . . , wb−1⟩ ∈ V b such that
⋃

0≤i≤b−1N
+
i [wi] = V . Note that the burning number of D is81

the minimum integer b such that D has a burning sequence of length b. We call the ith vertex82

wi in a burning sequence the fire of radius i and say that wi burns the vertices in N+
i [wi].83

Some basic graph terms. Let G = (V,E) be a graph. The complement of G, denoted G = (V,E),84

is the graph in which two vertices are adjacent if and only if they are not adjacent in G. For85

S ⊆ V , let G[S] denote the subgraph of G induced by S. For S ⊆ V , let G− S = G[V \ S]. A86

vertex set S ⊆ V is an independent set in G if G[S] contains no edge. The independence number87

of G, denoted α(G), is the maximum size of an independent set in G. The chromatic number88

of G, denoted χ(G), is the minimum integer c such that the vertices of G can be colored with89

c colors in such a way that no two adjacent vertices have the same color. In other words, χ(G)90

1In a directed graph, a vertex dominates itself and its out-neighbors.
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is the minimum integer c such that V can be partitioned into c independent sets. A vertex set91

S ⊆ V is a clique in G if G[S] is a complete graph. The clique number of G, denoted ω(G),92

is the maximum size of a clique in G. The clique cover number of G, denoted θ(G), is the93

minimum integer t such that V can be partitioned into t cliques. An edge set M ⊆ E is a94

matching in G if no two edges in M share an endpoint. The matching number of G, denoted95

µ(G), is the maximum size of a matching in G. Note that α(G) = ω(G) and χ(G) = θ(G) hold96

for every graph G.97

A graph G = (V,E) is a perfect graph if ω(G[S]) = χ(G[S]) holds for all S ⊆ V . Equivalently,98

G is a perfect graph if α(G[S]) = θ(G[S]) holds for all S ⊆ V since the class of perfect graphs is99

closed under taking complements [41]. The class of perfect graphs contains several well-studied100

classes of graphs such as bipartite graphs and chordal graphs (see, e.g., [8]). A graph G = (V,E)101

is a Kőnig–Egerváry graph if α(G) = |V | − µ(G). It is known that every bipartite graph is a102

Kőnig–Egerváry graph [19, 35].103

Structural parameters of graphs. Let G = (V,E) be a graph. A vertex cover of G is a set S ⊆ V104

such that G − S has no edge. The vertex cover number of G, denoted vc(G), is the minimum105

size of a vertex cover of G. A cluster vertex deletion set of G is a set S ⊆ V such that each106

connected component of G − S is a complete graph. The cluster vertex deletion number of G,107

denoted cvd(G), is the minimum size of a cluster vertex deletion set of G. In Section 5, we use108

cvd(G) + ω(G) as a parameter. This combined parameter can be related to other parameters109

as follows.110

Observation 2.1. For every graph G, the following inequalities hold:111

χ(G) ≤ cvd(G) + ω(G) ≤ 2 vc(G) + 1.112

Proof. Let k = cvd(G) + ω(G). To see that χ(G) ≤ k, one can construct a k-coloring by first113

coloring a cluster vertex deletion set S of size cvd(G) with cvd(G) colors, and then coloring each114

connected component of G − S independently using at most ω(G) colors not used in S. For115

k ≤ 2 vc(G) + 1, observe that a vertex cover is a cluster vertex deletion set and that the clique116

number cannot be larger than the vertex cover number plus 1.117

We can see that cvd(G) +ω(G) is an upper bound of vertex integrity, and thus of treedepth,118

pathwidth, treewidth, and clique-width. We are not going to define these parameters as we do119

not explicitly use them in this paper. For their definitions, see [25, 30].120

We assume that the readers are familiar with the theory of parameterized algorithms. (For121

standard concepts, see [17, 18, 22, 45].) Recall that a parameterized problem with input size n122

and parameter k is fixed-parameter tractable if there is a computable function f and a constant123

c such that the problem can be solved in time O(f(k) · nc), while being W[1]-hard means that124

the problem is unlikely to be fixed-parameter tractable.125

3. General lower and upper bounds126

In this section, we present lower and upper bounds of orientable burning number, which are127

useful in presenting algorithmic and computational results in the rest of the paper. We believe128

that the bounds would be of independent interest as well.129

We start with a simple observation that orientable burning number is bounded from above130

by orientable domination number plus 1.131

Observation 3.1. B(G) ≤ DOM(G) + 1 for every graph G.132
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Proof. Let
#»

G be an orientation of G. Let {w1, . . . , wγ} be a minimum dominating set of
#»

G.133

By arbitrarily setting w0, we construct a sequence σ = ⟨w0, w1, . . . , wγ⟩ of length γ + 1. Since134

{w1, . . . , wγ} is a dominating set, σ is a burning sequence of
#»

G. Therefore, B(G) = max #»
G b(

#»

G) ≤135

max #»
G γ(

#»

G) + 1 = DOM(G) + 1.136

Since DOM(G) ∈ O(α · log |V (G)|) [11, 28], Observation 3.1 implies that B(G) ∈ O(α ·137

log |V (G)|).138

For orientable domination number, it is known that139

α(G) ≤ DOM(G) ≤ n− µ(G) (1)140

for every n-vertex graph G [12, 13]. The following counterpart for orientable burning number141

can be shown in almost the same way.142

Lemma 3.2. For every n-vertex graph G, α(G) ≤ B(G) ≤ n− µ(G) + 1.143

Proof. The second inequality follows from the corresponding one in Eq. (1) and Observation 3.1.144

To show the first inequality, let I be a maximum independent set of G. Since I is indepen-145

dent, there is an orientation
#»

G of G such that all vertices in I are of in-degree 0. Since every burn-146

ing sequence has to contain all vertices of in-degree 0, we have B(G) ≥ b(
#»

G) ≥ |I| = α(G).147

Eq. (1) and the equality α(G) = n−µ(G) for Kőnig–Egerváry graphs imply that DOM(G) =148

α(G) for them [12]. On the other hand, because of the additive factor +1 in Lemma 3.2, we149

only know that B(G) ∈ {α(G), α(G)+1} for Kőnig–Egerváry graphs. In Section 3.1, we present150

a polynomial-time algorithm that determines which is the case.151

A tournament is an orientation of a complete graph. A king of a tournament T = (V,A) is152

a vertex v ∈ V such that N+
2 [v] = V [43]. The following fact due to Landau [37] is well known.153

Proposition 3.3 ([37]). In a tournament, every vertex with the maximum out-degree is a king.154

By using Proposition 3.3, we can show the following upper bound of orientable burning155

number in terms of clique cover number.156

Lemma 3.4. For every graph G, B(G) ≤ θ(G) + 2.157

Proof. Let C = {C2, . . . , Cθ+1} be a minimum clique cover of G = (V,E). (Notice the shift in158

the numbering.) Given an orientation
#»

G of G, we construct a sequence ⟨w0, w1, . . . , wθ+1⟩ by159

setting w0 and w1 to arbitrary vertices and setting wi with i ≥ 2 to a king of
#»

G[Ci]. Since160

Ci ⊆ N+
2 [wi] for 2 ≤ i ≤ θ +1, it holds that

⋃
0≤i≤θ+1N

+
i [wi] = V . Thus, ⟨w0, w1, . . . , wθ(G)+1⟩161

is a burning sequence of
#»

G with length θ(G) + 2.162

Recall that θ(G) = α(G) holds for every perfect graph G. Hence, Lemmas 3.2 and 3.4 imply163

the following almost tight bounds for perfect graphs.164

Corollary 3.5. For every perfect graph G, α(G) ≤ B(G) ≤ α(G) + 2.165

Since the independence number of a perfect graph G can be computed in polynomial166

time [26], one can compute in polynomial time a value b such that b ≤ B(G) ≤ b + 2. We167

left the complexity of Orientable Burning Number on perfect graphs unsettled.168

Corollary 3.5 implies that B(Kn) ≤ 3. As DOM(Kn) ≃ log2 n, this example shows that the169

gap between B(G) and DOM(G) can be arbitrarily large. It is easy to see that the lower bound170

α(G) is not always tight. For example, B(P2) = 2 = α(P2) + 1, where Pn is the path on n171

vertices. To give examples of graphs G with B(G) = α(G) + 2, we show that B(Kn) = 3 for172

n ≥ 5. To this end, we need the following simple observation.173
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Observation 3.6. If H is an induced subgraph of G, then B(H) ≤ B(G).174

Proof. It suffices to show the statement for the case where V (G) = V (H)∪{v} with v /∈ V (H).175

Let
#»

H be an orientation of H that satisfies B(H) = b(
#»

H). Let
#»

G be an orientation of G such176

that A(
#»

H) ⊆ A(
#»

G) and that the arcs in A(
#»

G) \ A(
#»

H) are oriented toward the new vertex v.177

Since b(
#»

G) ≤ B(G), it suffices to show that b(
#»

H) ≤ b(
#»

G). Let σ = ⟨w0, . . . , wb−1⟩ be a burning178

sequence of
#»

G. Since v has out-degree 0 in
#»

G, we have N+

i,
#»
H

[wi] = N+

i,
#»
G

[wi] \ {v} for all i with179

wi ̸= v. Thus, if v /∈ {w0, . . . , wb−1}, then σ is a burning sequence of
#»

H. Assume that wj = v180

for some j. We obtain a sequence σ′ from σ by replacing the jth vertex with an arbitrary vertex181

in
#»

H. Since N+

j,
#»
G

[wj ] = {v}, σ′ is a burning sequence of
#»

H.182

Lemma 3.7. B(K1) = 1, B(Kn) = 2 for 2 ≤ n ≤ 4, and B(Kn) = 3 for n ≥ 5.183

Proof. Clearly, B(K1) = 1. Assume first that 2 ≤ n ≤ 4. We can see that B(Kn) > 1 as a fire184

of radius 0 can burn only one vertex. Let
#»

Kn be an orientation of Kn. Observe that
#»

Kn has185

a vertex of out-degree at least ⌈(n− 1)/2⌉ as there are n(n− 1)/2 arcs. Hence we can burn at186

least 1 + ⌈(n− 1)/2⌉ vertices by placing a fire of radius 1 at a vertex of maximum out-degree.187

This is already enough for n = 2. If n ∈ {3, 4}, there can be one unburnt vertex, which can be188

burned by a fire of radius 0.189

Next assume that n ≥ 5. By Corollary 3.5 and Observation 3.6, it suffices to show that190

B(K5) > 2. Let V (K5) = {0, 1, 2, 3, 4}. Let
#»

K5 be the orientation of K5 that has A(
#»

K5) =191

{(i, i + 1), (i, i + 2) | 0 ≤ i ≤ 4}, where the addition is modulo 5. See Fig. 2. This orientation192

shows that B(K5) > 2 since a fire of radius 1 burns only three vertices.193

0

1

23

4

Figure 2: An optimal orientation of K5.

3.1. Polynomial-time algorithm for Kőnig–Egerváry graphs194

We now present a polynomial-time algorithm for Kőnig–Egerváry graphs. Recall that195

B(G) ∈ {α(G), α(G) + 1} for every Kőnig–Egerváry graph G. Intuitively, we show that the196

fire of radius 0 (often called w0 in our exposition) is useful in most of the cases and the case197

B(G) = α(G) + 1 rarely happens.198

Theorem 3.8. Let G be a Kőnig–Egerváry graph with more than four vertices, then199

B(G) =

{
α(G) + 1 if G = mP2,

α(G) otherwise,
200

where m = |E| and mP2 is the disjoint union of m edges.201

This immediately gives the complexity of Orientable Burning Number for Kőnig–202

Egerváry graphs.203

Corollary 3.9. Orientable Burning Number on Kőnig–Egerváry graphs is solvable in204

polynomial time.205
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Proof of Theorem 3.8. Let G = (V,E) be an n-vertex Kőnig–Egerváry graph. Recall that206

α(G) = n− µ(G) and B(G) ∈ {α(G), α(G) + 1}.207

First assume that G = mP2. In this case, α(G) = m holds. Suppose to the contrary that208

B(G) = α(G). To burn the whole graph G, each connected component has to contain a fire.209

Since we have α(G) connected components and α(G) fires, each connected component contains210

exactly one fire. However, since each connected component contains two vertices, the one with211

the fire of radius 0 is not completely burned. Thus, B(G) ≥ α(G) + 1.212

Next assume that G ̸= mP2 and G has no perfect matching. Let M = {e1, . . . , eµ(G)} be213

a maximum matching of G. By the non-existence of a perfect matching, 2µ(G) < n holds,214

and thus there exist n − 2µ(G) = α(G) − µ(G) > 0 vertices not covered by M . Let
#»

G be215

an orientation of G. We set w0, . . . , wα(G)−µ(G)−1 to the α(G) − µ(G) vertices not covered by216

M , and set wα(G)−µ, . . . , wα(G)−1 to the tails2 of the arcs corresponding to e1, . . . , eµ(G). The217

constructed sequence ⟨w0, . . . , wα(G)−1⟩ is a burning sequence of
#»

G with length α(G).218

Finally, we consider the case where G ̸= mP2 and G has a perfect matching M . Observe that219

in this case µ(G) = |V |/2, and thus α(G) = n− µ(G) = |V |/2. We set M = {e0, . . . , eα(G)−1}.220

Note that |M | ≥ 3 as |V | > 4. Since G ̸= mP2, G has another edge f /∈ M . Without loss of221

generality, we assume that f has one endpoint in e0 and the other in e2. That is, e0, f , and e2222

together form P4. Observe that every orientation of P4 can be burned by fires of radii 0 and223

2 (see Fig. 3). For an orientation
#»

G of G, we construct a sequence σ = ⟨w0, w1, . . . , wα(G)−1⟩224

by setting w0 and w2 appropriately in the P4 formed by e0, f , e2, and setting wi to the tail of225

the arc corresponding to ei for each i ∈ {0, . . . , α(G) − 1} \ {0, 2}. The sequence σ is a burning226

sequence of
#»

G with length α(G).227

w0

w2

w2

w0

w0

w0w2

w2

Figure 3: All orientations of P4 can be burned by fires of radii 0 and 2. (By symmetry, the direction of the
central edge is fixed.)

4. Hardness of the problem228

Now we demonstrate that Orientable Burning Number is intractable in general. We229

present two reductions implying that230

• OBN is NP-hard, and231

• OBN is W[1]-hard parameterized by the target burning number b.232

The reductions are similar and they follow the same idea: reduce the problem to Independent233

Set by adding a sufficiently large number of isolated vertices.234

We can see that our reduction showing the W[1]-hardness also shows NP-hardness in gen-235

eral. However, we present the separate reduction for NP-hardness as it has a wider range of236

applications. Basically, our reduction for W[1]-hardness works only for dense graphs, while the237

one for NP-hardness works also for sparse graphs like planar graphs.238

Technically, the reduction for W[1]-hardness is a little more involved as it has to control the239

number of additional isolated vertices to keep the target burning number small. Thus, we first240

prove W[1]-hardness and then show a similar proof for NP-hardness.241

2The tail of an arc a = (u, v) is the vertex u, which has a as an out-going arc.
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4.1. W[1]-hardness parameterized by b242

We reduce the following problem, which is known to be W[1]-complete parameterized by243

the solution size k [17], to OBN parameterized by the target burning number b.244

Problem: Multicolored Independent Set (MCIS)245

Input: An undirected graph G = (V,E) and a partition (V1, . . . , Vk) of V into cliques.246

Question: Does G contain an independent set of size k?247

Theorem 4.1. Orientable Burning Number on connected graphs is W[1]-hard parameter-248

ized by the target burning number b.249

Proof. Let (G,V1, . . . , Vk) be an instance of MCIS. Let H be the connected graph obtained250

from G by first adding a set I of three isolated vertices and then adding a universal vertex u.3251

We prove that (H, k+ 3) is a yes-instance of OBN if and only if (G,V1, . . . , Vk) is a yes-instance252

of MCIS. The if direction follows from Lemma 3.2, which says B(H) ≥ α(H) ≥ α(G) + 3.253

In the following, we show the only-if direction. Assume that (H, k + 3) is a yes-instance of254

OBN and an orientation
#»

H of H satisfies b(
#»

H) ≥ k + 3.255

We construct a sequence σ = ⟨w0, . . . , wk+2⟩ as follows. If all vertices in I are of in-degree 0,256

then we set w0, w1, w2 to the vertices in I. Otherwise, we set w2 to u and set w0, w1 to two257

vertices of I including the ones of in-degree 0 (if any exist). For 1 ≤ i ≤ k, we set wi+2 to a258

king of the tournament
#»

H[Vi]. Recall that every tournament has a king (see Proposition 3.3)259

and a king of a tournament can reach the other vertices in the tournament in at most two steps.260

We can see that σ is a burning sequence of
#»

H (with length k + 3) as follows. Each vertex of261

in-degree 0 in {u} ∪ I, if any exists, is burned by itself, and the other vertices in {u} ∪ I are262

burned by w2. For 1 ≤ i ≤ k, wi+2 burns Vi because wi+2 is a king of
#»

H[Vi]. Since b(
#»

H) ≥ k+3,263

σ is a shortest burning sequence of
#»

H.264

Now we show that {w3, . . . , wk+2} is an independent set of G, which implies that (G,V1, . . . , Vk)265

is a yes-instance of MCIS. Suppose to the contrary that G has an edge between vertices266

wp, wq ∈ {w3, . . . , wk+2}. By symmetry, we may assume that (wp, wq) ∈ A(
#»

H). Let σ′ =267

⟨w′
0, . . . , w

′
k+1⟩ be any sequence satisfying that ⟨w′

0, w
′
1, w

′
2⟩ = ⟨w0, w1, w2⟩ and {w′

3, . . . , w
′
k+1} =268

{w3, . . . , wk+2} \ {wq}. We show that σ′ is a burning sequence of
#»

H, which contradicts that σ269

is shortest.270

Clearly, {u} ∪ I ⊆
⋃

0≤i≤2N
+
i [w′

i] (=
⋃

0≤i≤2N
+
i [wi]). For each i ∈ {3, . . . , k + 2} \ {q},271

there exists j ∈ {3, . . . , k + 1} such that wi = w′
j . Since w′

j (= wi) is a king of
#»

H[Vi−2], we have272

Vi−2 ⊆ N+
j [w′

j ]. The discussion so far implies that σ′ burns V (H) \ Vq−2.273

Since wq is a king of
#»

H[Vq−2], we have Vq−2 ⊆ N+
2 [wq]. As (wp, wq) ∈ A(

#»

H), it holds that274

N+
2 [wq] ⊆ N+

3 [wp]. Let r ∈ {3, . . . , k + 1} be the index such that w′
r = wp. Since r ≥ 3,275

N+
3 [wp] ⊆ N+

r [wr] holds. Hence, Vq−2 ⊆ N+
r [wr], and thus σ′ burns Vq−2 as well.276

4.2. NP-hardness277

We reduce the following NP-complete problem to OBN.278

Problem: Independent Set279

Input: An undirected graph G = (V,E) and an integer k.280

Question: Does G contain an independent set of size k?281

3If we do not need the connectivity, we can omit the universal vertex and the proof becomes slightly simpler.
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Independent Set is quite well studied and known to be NP-complete on many restricted282

graph classes such as planar graphs of maximum degree 3 [24]. Theorem 4.2 below shows that283

the hardness of Independent Set on a graph class can be translated to the hardness of OBN284

on the same graph class, under an assumption that the class does not change by additions of285

isolated vertices.286

The proof of Theorem 4.2 is quite similar to that of Theorem 4.1. The main difference is that287

here we can increase the target burning number as much as we like. This makes the discussion288

very simple; e.g., we do not need the concept of kings any more, and thus the hardness can be289

proved for almost all graph classes for which Independent Set is hard.290

Theorem 4.2. Let G be a graph class such that Independent Set is NP-complete on G. If291

G is closed under additions of isolated vertices, then Orientable Burning Number on G is292

NP-hard.293

Proof. Let (G, k) be an instance of Independent Set, where G ∈ G and |V (G)| = n. Let294

H be the graph obtained from G by adding a set I of n isolated vertices. Since G is closed295

under additions of isolated vertices, H ∈ G holds. To prove the theorem, it suffices to show that296

(H, k+n) is a yes-instance of OBN if and only if (G, k) is a yes-instance of Independent Set.297

If G has an independent set S of size k, then Lemma 3.2 implies that B(H) ≥ |S∪I| = k+n.298

Conversely, assume that (H, k+n) is a yes-instance of OBN and there is an orientation
#»

H of299

H such that b(
#»

H) ≥ k + n. Let σ = ⟨w0, . . . , wb−1⟩ be a shortest burning sequence of
#»

H, where300

b ≥ k + n. Necessarily, I ⊂ {w0, . . . , wb−1}, let S = {wi0 , . . . , wib−1−n
} = {w0, . . . , wb−1} \ I. It301

suffices to show that S is an independent set of G. Suppose to the contrary that G has an edge302

between vertices wp, wq ∈ S. By symmetry, we may assume that (wp, wq) ∈ A(
#»

H). Let σ′ =303

⟨w′
0, . . . , w

′
b−2⟩ be any sequence such that:

{
w′
0, . . . , w

′
n−1

}
= I and

{
w′
n, . . . , w

′
b−2

}
= S \ {wq}.304

We show that σ′ is a burning sequence of
#»

H, which contradicts that σ is a shortest one.305

Observe that since a longest directed path in
#»

H has length less than n, for any wi ∈ S and306

n ≤ j ≤ b−2, we have N+
i [wi] ⊆ N+

j [wi]. Furthermore, added to the fact that (wp, wq) ∈ A(
#»

H),307

it holds that N+
q [wq] ⊆ N+

q+1[wp] ⊆ N+
j [wp] for any n ≤ j ≤ b− 2. As a consequence,308 ⋃

0≤i≤b−1

N+
i [wi] = I ∪N+

q [wq] ∪
⋃

wi∈S\{wq}

N+
i [wi]309

⊆ I ∪
⋃

n≤j≤b−2

N+
j [w′

j ]310

⊆
⋃

0≤j≤b−2

N+
j [w′

j ].311

This implies that σ′ is a burning sequence of
#»

H.312

As an application of Theorem 4.2, we can show the following corollary. (Recall that Inde-313

pendent Set is NP-complete on planar graphs of maximum degree 3 [24].)314

Corollary 4.3. Orientable Burning Number is NP-hard on planar graphs of maximum315

degree 3.316

5. Structural parameterizations317

In this section, we consider some structural parameterizations of Orientable Burning318

Number. Given Theorem 4.1, which shows that OBN is intractable when parameterized by319

the target burning number b, it is natural to consider the problem parameterized by some320

structural parameters of the input graph.321
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5.1. Parameterizations combined with b322

The first observation is that some sparseness parameters combined with b make the problem323

tractable.324

Observation 5.1. Let G be a class of graphs with a constant cG > 1 such that every graph325

G ∈ G satisfies α(G) ≥ |V (G)|/cG. When parameterized by cG plus the target burning number326

b, Orientable Burning Number on G is fixed-parameter tractable.327

Proof. Let G be an n-vertex graph in G. If b ≤ n/cG , then α(G) ≥ b and thus (G, b) is a328

yes-instance of OBN. If b > n/cG , then n < b · cG , and thus (G, b) itself is a kernel with less329

than b · cG vertices.330

It is known that α(G) ≥ n/(d+1) for every n-vertex graph G with average degree d [10, 49].331

Thus Observation 5.1 implies the following corollary.332

Corollary 5.2. Orientable Burning Number is fixed-parameter tractable parameterized by333

b plus average degree.334

Corollary 5.2 implies that OBN is fixed-parameter tractable parameterized by b+treewidth,335

and OBN on planar graphs is fixed-parameter tractable parameterized by b. Recall that OBN is336

NP-hard on planar graphs even if the maximum degree is 3 (Corollary 4.3). On the other hand,337

the parameterized complexity of OBN parameterized solely by treewidth remains unsettled.338

5.2. Parameterizations without b339

Now we consider structural parameterizations not combined with b. As the first step in this340

direction, we consider parameters less general than treewidth such as vertex cover number. In341

some sense, vertex cover number is one of the most restricted parameters that is always larger342

than or equal to treewidth (see, e.g., [25]).343

We show that OBN parameterized solely by vertex cover number is fixed-parameter tracta-344

ble. Our proof is actually for a slightly more general case, where the parameter is cluster vertex345

deletion number plus clique number. In the rest of this section, we prove the following theorem.346

Theorem 5.3. Orientable Burning Number is fixed-parameter tractable parameterized by347

cluster vertex deletion number plus clique number.348

Theorem 5.3 and Observation 2.1 imply the fixed-parameter tractability parameterized by349

vertex cover number.350

Corollary 5.4. Orientable Burning Number is fixed-parameter tractable parameterized by351

vertex cover number.352

5.2.1. Proof of Theorem 5.3.353

In the proof, we use the theory of monadic second-order logic on graphs (MSO2), which will354

be introduced right before we use it. If we allow an MSO2 formula to have length depending on355

b, it is not difficult to express OBN. However, this only implies the fixed-parameter tractability356

of OBN parameterized by a parameter combined with b. To avoid the dependency on b, we357

have to bound the length of an MSO2 formula with a function not depending on b. To this358

end, we make a series of observations to bound the number of parts not used in a good burning359

sequence, then represent the problem by expressing the unused parts instead of the used parts.360
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Useful assumptions. In the following, let (G, b) be an instance of OBN. Let ω be the clique361

number of G; that is, ω = ω(G). Let S be a cluster vertex deletion set of G with size s = cvd(G).362

Our parameter is k := ω + s. Note that finding S is fixed-parameter tractable parameterized363

by s [31], and thus by k as well. Let C1, . . . , Cp be the connected components of G− S, which364

are complete graphs. When we are dealing with an orientation
#»

G of G, we sometimes mean by365

Ci the tournament
#»

G[V (Ci)]. For example, we may say “a king of Ci.”366

Claim 5.5. If b ≤ p, then (G, b) is a yes-instance.367

Proof. By picking arbitrarily one vertex from each Ci, we can construct an independent set of368

size p. By Lemma 3.2, B(G) ≥ α(G) ≥ p ≥ b.369

Claim 5.6. If b > p + s + 2, then (G, b) is a no-instance.370

Proof. Let
#»

G be an orientation of G. It suffices to show that b(
#»

G) ≤ p + s + 2. For each Ci,371

we place a fire of radius at least 2 at a king of Ci. For each vertex in S, we place a fire of372

arbitrary radius. If we have not used the fires of radii 0 and 1, then we place them at arbitrary373

vertices.374

By Claims 5.5 and 5.6, we may assume that375

p < b ≤ p + s + 2.376

Let ℓ be the length of a longest path in G. We assume that ℓ ≥ 1 since otherwise G cannot377

have any edge and the problem becomes trivial. Note that in every orientation
#»

G or G, the378

length of a longest directed path is at most ℓ.379

Claim 5.7. ℓ ≤ sω + s + ω − 1.380

Proof. Let P be a longest path in G. Since P can visit at most |S| + 1 connected components381

of G− S, we have |V (P )| ≤ |S| + (|S| + 1)ω as each Ci is a complete graph. The claim follows382

as |S| = s and |E(P )| = |V (P )| − 1.383

In a burning sequence of an orientation of G, we call a fire of radius at least ℓ a large fire.384

Note that a large fire w burns all vertices that can be reached from w in the orientation as no385

directed path in the orientation is longer than ℓ.386

In the following, we focus on burning sequences of length b− 1 since we are going to express387

the non-existence of such sequences. Let L = max{0, b−1− ℓ}; that is L is the number of large388

fires in a sequence of length b− 1. Observe that L ≤ p + s as b− 1 − ℓ ≤ b− 2 ≤ p + s.389

A burning sequence of an orientation of G is good if the following conditions are satisfied:390

1. two large fires do not have the same position;391

2. each Cj contains at most one large fire;392

3. if a large fire is placed in some Ch, then it is placed at a king of Ch.393

Claim 5.8. Let
#»

G be an orientation of G. If
#»

G admits a burning sequence with length b − 1,394

then there is a good burning sequence of
#»

G with the same length.395

Proof. From a burning sequence σ of
#»

G with length b− 1, we first construct a sequence σ1 that396

satisfies the first condition of the goodness. We repeatedly find two large fires placed at the397

same vertex and then replace arbitrary one of them with another vertex not occupied by any398

large fire. The replacement is possible as L is not larger than the number of vertices. Since two399

large fires placed at the same vertex burn the same set of vertices, the obtained sequence is still400
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a burning sequence of
#»

G. When there is no pair of large fires occupying the same vertex, we401

stop this phase and call the resultant sequence σ1.402

Next we modify σ1 to obtain a sequence σ2 that satisfies the first and second conditions.403

Assume that two large fires wi and wj are placed in the same connected component Ch of G−S404

and that (wi, wj) ∈ A(
#»

G). (Recall that Ch is a complete graph.) Since wi is a large fire, it405

burns every vertex that can be reached from wi. In particular, wi burns all vertices reachable406

from wj . Hence, wj is useless for burning the graph. We replace wj with another vertex v such407

that v is not occupied by any large fire and if v belongs to some Ch′ , then there is no large fire408

belonging to Ch′ prior to the replacement. This is always possible as L ≤ p+s. We exhaustively409

apply this replacement procedure and get σ2, which satisfies the first and second conditions of410

the goodness.411

Finally, we obtain a sequence σ3 from σ2 by replacing each large fire that is placed in some412

Ch with a king of Ch. We can see that σ3 is a burning sequence of
#»

G since the new large fire413

placed at a king of Ch burns all vertices reachable form the king and the king can reach all414

vertices in Ch. Since σ3 satisfies all conditions of goodness and has the same length as σ, the415

claim holds.416

If σ is a good burning sequence of an orientation
#»

G of G with length b− 1, then the sum of417

the following two numbers is p + s− L:418

• the number of vertices in S not occupied by the large fires of σ, and419

• the number of connected components of G− S not including large fires of σ.420

Since L = max{0, b − 1 − ℓ} and p < b, it holds that p + s − L < s + ℓ + 1. Since ℓ can be421

bounded from above by a function of k = s + ω, so is p + s− L. Thus our MSO2 formula can422

have length depending on p + s− L, the number of unused parts.423

MSO2 expressions. We now express the problem in the monadic second-order logic on graphs.424

A formula in the monadic second-order logic on graphs, denoted MSO2, can have variables425

representing vertices, vertex sets, edges, and edge sets. As atomic formulas, we can use the426

equality x = y, the inclusion x ∈ X, the adjacency relation adj(x, y) meaning that vertices x427

and y are adjacent, and the incidence relation inc(e, x) meaning that a vertex x is an endpoint428

of an edge e. Atomic formulas can be recursively combined by the usual Boolean connectives ¬,429

∧, ∨, ⇒, and ⇐ to form an MSO2 formula. Furthermore, variables in an MSO2 formula can be430

quantified by ∃ and ∀. If an MSO2 formula ϕ(X) with one free (vertex-set or edge-set) variable431

X is evaluated to true on a graph G and a subset S of V (G) or E(G), we write G |= ϕ(S).432

It is known that, given an MSO2 formula ϕ(X), a graph G, and a subset S of V (G) or E(G),433

the problem of deciding whether G |= ϕ(S) is fixed-parameter tractable parameterized by the434

length of ϕ plus the treewidth of G [2, 9, 15].435

In the following, we focus on an instance (G, b) of OBN given with a minimum cluster436

vertex deletion set S of G such that s = cvd(G) = |S|, ω = ω(G), p is the number of connected437

components in G − S, and L is the number of large fires in a sequence of length b − 1. As we438

justified above, we assume that439

• p < b ≤ p + s + 2, and440

• the sum of the numbers of unused vertices in S and unused connected components of441

G− S is p + s− L.442

Under these conditions, we construct an MSO2 formula ϕ(X) such that G |= ϕ(S) if and only if443

(G, b) is a yes-instance of OBN. We also show that the length of ϕ(X) is bounded from above444
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by a function of k = s + ω. Since the treewidth of G is at most s + ω (see [25]), this implies445

Theorem 5.3.446

The formula ϕ(X) asks whether there exists an orientation
#»

G of G such that no sequence447

⟨w0, . . . , wb−2⟩ of length b − 1 is a good burning sequence of
#»

G. In MSO2, we can handle448

orientations of k-colorable graphs by first assuming a default orientation using a k-coloring and449

then represent the reversed edges by a set of edges [16, 32].4 More precisely, such a formula first450

expresses a k-coloring and a set of reversed edge, and then it considers each edge as oriented451

from the vertex with a smaller label to the one with a larger label if and only if the edge is not452

a reversed one. Note that Observation 2.1 implies that G is k-colorable. We use this technique453

and thus ϕ(X) has the following form:454

ϕ(X) = ∃V1, . . . , Vk ⊆ V, ∃F ⊆ E : proper-coloring(V1, . . . , Vk) ∧ ϕ1,455

where proper-coloring(V1, . . . , Vk) expresses that V1, . . . , Vk is a proper k-coloring of G. The456

formula proper-coloring(V1, . . . , Vk) can be defined as457

proper-coloring(V1, . . . , Vk) = part(V1, . . . , Vk) ∧
∨

1≤i≤k

ind(Vi),458

where part(V1, . . . , Vk) and ind(Vi) are defined as follows459

part(V1, . . . , Vk) = ∀v ∈ V :
∨

1≤i≤k

(v ∈ Vi) ∧
∧

1≤i<j≤k

¬(v ∈ Vi ∧ v ∈ Vj),460

ind(Vi) = ∀u, v ∈ Vi : ¬adj(u, v).461

The subformula ϕ1 can use the formula arc(u, v) expressing that there is an arc from u to462

v in the orientation defined by V1, . . . , Vk and F , which can be defined as follows:463

arc(u, v) = adj(u, v) ∧
(
((u < v) ∧ ¬rev(u, v)) ∨ (¬(u < v) ∧ rev(u, v))

)
,464

where (u < v) and rev(u, v) are defined as465

(u < v) =
∨

1≤i<j≤k

(u ∈ Vi ∧ v ∈ Vj),466

rev(u, v) = ∃e ∈ F : inc(e, u) ∧ inc(e, v).467

Given an orientation defined above, the subformula ϕ1 expresses that there is no good468

burning sequence of length b − 1 for this orientation. Indeed, we set ϕ1 = ¬ϕ2 and give a469

definition of ϕ2 that expresses there is a good burning sequence of length b − 1. We assume470

that b− 1 > ℓ since the other case can be easily obtained from the expression of this case. The471

subformula ϕ2 has the following form472

ϕ2 = ∃w0, . . . , wℓ−1 ∈ V, ∃u1, . . . , up+s−L ∈ V :473

ϕ3 ∧
∧

1≤i<j≤p+s−L

(ui ̸= uj) ∧
∧

1≤i<j≤p+s−L

((ui /∈ X) ∧ (uj /∈ X) ⇒ ¬adj(ui, uj))474

where w0, . . . , wℓ−1 simply correspond to the first ℓ fires in a (good) burning sequence and475

u1, . . . , up+s−L correspond to the representatives of unused parts. More precisely, if ui ∈ X,476

4There is another way for handling orientation by using a variant of MSO2 defined for directed graphs, where
we can fix an arbitrary orientation first (without using a k-coloring) and then represent reversed edges by an
edge set. See e.g., [20].
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then it means that ui is not used by any large fire; if ui /∈ X and thus ui belongs to some477

connected component C of G − X, then it means that no vertex in C is used by large fires.478

Note that the second line of the formula forces that u1, . . . , up+s−L are distinct and not chosen479

multiple times from one connected component of G − X. (Recall that X is promised to be a480

cluster vertex deletion set.) Now ϕ3 expresses that every vertex is burned. Hence, it can be481

expressed as follows482

ϕ3 = ∀v ∈ V : burned(v),483

where the definition of burned(v) is given below.484

To define burned(v), observe that v is burned if and only if one of the following conditions485

is satisfied:486

1. some wi (0 ≤ i ≤ ℓ− 1) has a directed path of length at most i to v;487

2. some large fire has a directed path to v.488

We express the first case as burned-small(v) and the second as burned-large(v), and thus489

burned(v) = burned-small(v) ∨ burned-large(v). The first case is easy to state as490

burned-small(v) =
∨

0≤i≤ℓ−1

reachablei(wi, v),491

where reachabled(x, y) means that there is a directed path of length at most d from x to y,492

which can be defined as493

reachabled(x, y) = ∃z0, . . . , zd ∈ V :494

(z0 = x) ∧ (zd = y) ∧
∧

0≤j≤d−1

((zj = zj+1) ∨ arc(zj , zj+1)).495

On the other hand, the second case is a bit tricky as the large fires are not explicitly handled.496

Recall that the vertices u1, . . . , up+s−L tell us which vertices in X are not large fires and which497

connected components of G−X include no large fires. From this information, we can determine498

whether a vertex x is used as a large fire by setting large-fire(x) = ¬unused(x), where499

unused(x) is defined as500

unused(x) =

 ∨
1≤i≤p+s−L

x = ui

 ∨

(x /∈ X) ∧
∨

1≤i≤p+s−L

((ui /∈ X) ∧ adj(x, ui))

 .501

Note that the correctness of the right side depends on the assumption that each connected502

component of G−X is a complete graph. Now burned-large(v) can be expressed as follows.503

burned-large(v) = ∃x ∈ V : large-fire(x) ∧ reachableℓ(x, v).504

The length of the entire formula ϕ(X) depends only on k, ℓ, and p + s − L, where ℓ and505

p + s− L can be bounded from above by function depending only on k. Therefore, the length506

of ϕ(X) depends only on k. This completes the proof of Theorem 5.3.507

6. Concluding remarks508

In this paper, we initiated the study of Orientable Burning Number (OBN), which is509

the problem of finding an orientation of a graph that maximizes the burning number. We first510

observed some graph-theoretic bounds and then showed algorithmic and complexity results.511
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We showed that OBN is NP-hard even on some classes of sparse graphs (Theorem 4.2). On512

the other hand, we do not know whether it belongs to NP. We can see that OBN belongs513

to ΣP
2 since it is an ∃∀-problem that asks for the existence of an orientation of a given graph514

such that all short sequences of fires are not burning sequences of the oriented graph (see [50]515

for a friendly introduction to ΣP
2 ). It would be natural to suspect that the problem is indeed516

ΣP
2 -hard.517

Question 6.1. Does OBN belong to NP, or is it ΣP
2 -complete?518

In contrast to the NP-hardness of the general case, we showed that the problem is solvable519

in polynomial time on bipartite graphs or more generally on Kőnig–Egerváry graphs (Corol-520

lary 3.9). We also showed that for perfect graphs, which form a large superclass of bipartite521

graphs, we can compute the orientable burning number with an additive error of 2 (Corol-522

lary 3.5). Given these facts, we would like to ask whether the problem can be solved in poly-523

nomial time on perfect graphs or on some of its subclasses such as chordal graphs.524

Question 6.2. Is OBN polynomial-time solvable on perfect graphs, or on some of its (non-525

bipartite) subclasses such as chordal graphs?526

In the parameterized setting, we showed that OBN parameterized by the target burning527

number b is W[1]-hard in general (Theorem 4.1), while it is fixed-parameter tractable on some528

sparse graphs such as planar graphs (Corollary 5.2). We then studied the setting where b is529

not part of the parameter. In this case, we showed that OBN parameterized solely by vertex530

cover number (or more generally by cluster vertex deletion number plus clique number) is531

fixed-parameter tractable (Theorem 5.3). It would be interesting to study the complexity of532

parameterizations by more general parameters, e.g., vertex integrity [25].533

Question 6.3. Is OBN fixed-parameter tractable when parameterized solely by treewidth,534

pathwidth, treedepth, vertex integrity, or other related parameters?535

Finally, we ask a graph-theoretic question. Most of the algorithmic and complexity results536

in this paper directly or indirectly used the relations between the orientable burning number537

and the independence number shown in Section 3. As shown there, we have α(G) ≤ B(G) and538

B(G) ∈ O(α(G) · log n). Now the question would be the maximum difference between α(G) and539

B(G). At this point, we only know that the maximum gap is at least 2 as B(Kn) = 3 = α(Kn)+2540

for n ≥ 5.541

Question 6.4. Is there a graph G with B(G) > α(G) + 2? Is there a function f such that542

B(G) ≤ f(α(G)) for every graph G?543
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