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Abstract—Accurately and robustly segmenting myocardial in-
farction (MI) is crucial for clinical diagnosis of cardiac diseases,
treatment and planning. In this study, we propose a novel deep
learning model specifically designed for automatic segmentation
of MI in Late Gadolinium Enhancement cardiac MRI (LGE-
MRI). LGE-MRI is widely used in clinical practice to quantify
MI and plays a vital role in treatment decisions. However, due
to the presence of high anisotropy and inhomogeneities in LGE-
MRI, accurately segmenting the infarcted tissue poses significant
challenges.

Our approach introduces the use of U-Net transformers for
MI segmentation. By leveraging the power of transformer-
based architectures, our model achieves competitive results. We
evaluated our method on the 2020 MICCAI EMIDEC challenge
dataset and obtained a dice score of 91.33% for myocardium
segmentation and 74.41% for infarction segmentation. These
results demonstrate the effectiveness of our approach, showcasing
its superiority over existing state-of-the-art methods in the
EMIDEC challenge.

Index Terms—Late gadolinium magnetic resonance imaging,
Left ventricle scar, Segmentation, Transformers network

I. INTRODUCTION

Late Gadolinium Enhancement Magnetic Resonance Imag-
ing (LGE-MRI) is commonly employed to detect and assess
infarcted areas following a myocardial infarction (MI). Its
goal is to provides a contrast between the infarct tissues and
healthy myocardium, enabling precise characterization of the
scar’s location and size. The ratio of infarcted tissue to healthy
tissue is a crucial factor in determining appropriate treatment
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during routine clinical practice [1]. Accurately delineating the
infarcted area is thus essential for optimal clinical diagnosis
and treatment planning. While cardiologists have expertise
in manually segmenting the infarction area in MRI-LGE,
this process is laborious, time-consuming, and prone to high
inter-observer variability [2]. Therefore, developing a fully
automatic infarction segmentation approach is necessary to
improve clinical routine.

However, segmentation of LGE-MRI presents significant
difficulties due to the high intensity and heart shape variations
between images. Additionally, the poor inter-slice spatial res-
olution makes it difficult to leverage volumetric information,
limiting the effectiveness of conventional methods [3]. These
methods often rely on semi-automatic thresholding techniques
such as n-Standard Deviations (n-SD) or Full Width at
Half Maximum (FWHM), requiring manual region-of-interest
(ROI) selection [4] [5].

Methods based on machine learning, such as conditional
random fields (CRF) [3] [6], have demonstrated promising re-
sults in fully-automatic segmentation of LGE-MRI. However,
these methods often require significant engineering efforts or
prior knowledge to achieve high accuracy. On the other hand,
deep learning (DL) approaches can automatically discover
complex features from the data, making them more flexible
and establishing themselves as the new efficient solution [7].

In 2020, the MICCAI EMIDEC challenge aimed to promote
research on cardiac structure segmentation in patients with
myocardial infarction, providing 100 LGE-MRI images along
with ground truth segmentations. The winning method by
Zhang [8] utilized a cascaded 2D-3D U-Net architecture [9]. In



a 5-fold cross-validation, their approach achieved an average
Dice score of 94.40% for the myocardium and 72.08% for the
infarction, showing the difficulty of this task.

Zhang’s method consisted of a two-step process, with the
initial step concentrating on generating a hard segmentation
using convolutional networks exclusively. The resulting Dice
scores for the infarction class were lower when compared to
the myocardium class. This discrepancy significantly impacted
the infarct to healthy tissue ratio. To overcome this limitation
and improve infarction segmentation, we propose the use of
transformer-based networks [10] [11] in this study. Our ap-
proach harnesses the power of transformers, which have been
trained and evaluated on the EMIDEC dataset, to accomplish
fully-automatic segmentation of both the myocardium and the
infarction.

II. METHODS

About the EMIDEC challenge [12], the top-performing
method [8]) is based on Fully Convolutional Neural Networks
(FCNN).Transformers networks [10] [11] has emerged for
image segmentation tasks as new networks. When combined
with CNNs, these networks have demonstrated superior perfor-
mance compared to the standard U-Net architecture in various
problem domains [13].

Infarction, being a highly imbalanced class, presents chal-
lenges due to the variability in shape, location, and contrast
within the myocardium across different image slices. Previous
methods have proposed segmenting the myocardium as a first
step, but this approach may lead to poor detection of the infarct
tissue since error in the first step are propagated to the final
result. To address these issues, we propose the use of trans-
formers, which have a larger receptive field and incorporate
positional encoding. As illustrated in the Fig.1), the image
is partitioned into patches, and the relative positions of each
patch to others are encoded and subsequently concatenated
with the original information. In the considered case, the
infarction is always contained within the myocardium.

A. 3D Unet with transfomers

Our goal is, from 3D images of LGE-MRI, to segment the
myocardium and the infarct tissus.

In summary, UNETR [13] combines the U-Net structure
with transformers in its encoder as illustrated Fig. 2. It divides
the input image into patches, applies positional embeddings,
and uses a stack of transformer blocks for encoding. The
decoder branch, similar to U-Net [9], combines features from
the encoder and uses deconvolutional layers for the final output
generation. In this network, the input image is a 3D volume
represented by a tensor of shape v ∈ Rh×w×d×c, where h,
w, d are the height, width, and depth dimensions respectively,
and c represents the number of input channels.

To process the input image, it is divided into non-
overlapping 3D patches with dimensions (PH , PW , PD).
These patches are then flattened into 1D sequences, resulting
in a sequence length of N = H×W×D×C

PH×PW×PD
, where H , W , D

denote the respective dimensions of the input image.

To maintain the spatial information of the patches, a 1D
learnable vector of positional embeddings is added to the
sequence. These positional embeddings encode the relative
positions of the patches within the image. For instance, the
infarct tissue is consistently connected to the myocardium.

The encoder consists of a stack of twelve transformer
blocks. Each transformer block comprises multi-head self-
attention (MSA) and a multilayer perceptron (MLP) [14]. The
MSA mechanism allows the network to capture dependencies
between different elements of the sequence, while the MLP
introduces non-linear transformations to further process the
encoded features.

Similar to the U-Net architecture, the features extracted
by the encoder are concatenated with the decoder branch.
The decoder consists of deconvolutional layers, which help
reconstruct the spatial information and generate the final
output.

B. Implementation of the network

The models were implemented using PyTorch and trained
on an NVIDIA A100 Tensor Core GPU with 40GB of memory.

As for the UNETR model, training was conducted with
a batch size of 8. The AdamW optimizer, introduced by
Loshchilov and Hutter [16], was employed with an initial
learning rate of 0.0003. The input patches for UNETR had
a size of (8× 8× 1).

To assess the models’ performance, we employed five-
fold cross-validation. Each testing fold consisted of 67%
pathological cases and 33% healthy cases.

A simple 2D preprocessing pipeline was applied to all
images. This included cropping and padding each image to
a size of 128 × 128 × 16, followed by a median filter and
histogram equalization.

To augment the training data, we used the TorchIO frame-
work [17]. It provided random geometric transformations such
as rotation, scaling, translation, flipping, elastic deformation,
as well as random intensity transformations such as blur and
gamma adjustments.

Finally, to obtain the final segmentation, a morphology filter
specifically designed for connected components filtering was
applied to the model’s predictions. This model was trained
exclusively on EMIDEC dataset including 100 LGE-MRI with
ground truth segmentations (myocardium and fibrosis). The
results were evaluated with a set of metrics, with the first
one being the Dice score. This score serves as a measure of
similarity between two sets of data, typically represented as
binary arrays. The Dice score is defined as

DC =
2|A ∩B|
|A|+ |B|

(1)

The second metric employed is the Hausdorff distance
(HSD), which quantifies the spatial separation between two
subsets within a metric space. The Hausdorff distance is
calculated as:

HSD(A,B) = max{Dist(A,B), Dist(B,A)} (2)



Fig. 1: Patches embedding and positional encoding for the transformers networks. Inspired from [11]

Fig. 2: UNETR architecture. Inspired from [13]

where :
Dist(A,B) = sup

x∈A
inf
y∈B

d(x, y). (3)

And the volume difference ratio according to volume of
myocardium (only for the infarcted tissue).

III. RESULTS AND DISCUSSION

The results of our method, including various metrics, are
summarized in Table I. To evaluate the robustness of our
approach, we conducted a k-fold validation. On average, our
proposed method achieved a dice score of 91.33% for the
myocardium class and 74.41% for the infarction class (see
Table I). For the infarction our method outperforms Zhang’s
method in terms of all the metrics. This is specially the case

for the HSD distance. For the myocardium the Dice was better
for Zhang’s method (94.4 vs 91.3). The HSD is better with
the proposed method, showing the ability of transformer to
produce realistic results, globally consistent with the reference.
The Fig. 3 illustrates three cases where the dice scores for the
myocardium and infarcted tissue are above, close to, and below
the average dice score. In the first two cases, the resulting
segmentations (Fig. 3, case 1 and case 2) are close to the
ground truth (Figure 3f). The segmented edges are smooth,
and there is a clear connection between the infarction and
myocardium, aligning with the biological reality.

However, the third case (Fig. 3, case 3) presents a challeng-
ing scenario. Despite the irregularity in the myocardium, the
infarction is accurately located.



Case Ground truth Prediction

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

White Infarction
Gray Myocardium
from (a) to (c) Case 1, with a Dice above the average ≈ 80%
from (d) to (f) Case 2, with a Dice close to the average ≈ 70%
from (g) to (i) Case 3, with a Dice below the average ≈ 60%

Fig. 3: Examples of three cases with dice scores above, close to, and below the average dice score (approximately 74%) when
compared to the ground truth

TABLE I: Comparison study. (Best values in bold font)

Class Metrics Methods

Zhang [8] Ours

Dice(%) 94.40 91.33
Myocardium

HSD(mm) 17.21 5.22

Dice(%) 72.08 74.41
Infarction

Ratio(%) 3.41 1.26

IV. CONCLUSION

In this paper, we propose the use of transformer networks
for automatic segmentation of myocardial infarction from
LGE-MRI images. The network is a 3D hybrid CNN with
transformers, which enables spatial linking of feature maps,
enhancing the network’s performance.

Our approach demonstrates promising results in the detec-
tion and segmentation of myocardial infarction. Particularly,
when compared to the method employed by the winner of the
EMIDEC challenge, our method outperforms theirs across all
metrics for the infarction. These findings affirm the efficacy
and relevance of transformer networks in the domain of
medical image segmentation. The futur works will focused on
the evaluation of the method on the data acquired in differents
clinical centers.

ACKNOWLEDGMENT

The authors acknowledge grant support from the French
Agence Nationale de la Recherche (Investissements d’Avenir
program, Labex CAMI, ANR-11-LABX-0004).



REFERENCES

[1] Kim, R., Wu, E., Rafael, A., Chen, E., Parker, M., Simonetti, O.,
Klocke, F., Bonow, R. & Judd, R. The use of contrast-enhanced magnetic
resonance imaging to identify reversible myocardial dysfunction. New
England Journal Of Medicine. 343, 1445-1453 (2000)

[2] Tao, Q., Piers, S., Lamb, H. & Geest, R. Automated left ventricle
segmentation in late gadolinium-enhanced MRI for objective myocardial
scar assessment. Journal Of Magnetic Resonance Imaging. 42, 390-399
(2015)

[3] Karim, R., Bhagirath, P., Claus, P., Housden, R., Chen, Z.,
Karimaghaloo, Z., Sohn, H., Rodriguez, L., Vera, S., Albà, X. & Others
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