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Technical note for the paper:

Robust semiparametric efficient estimator for time delay and Doppler
estimation

Lorenzo Ortega, Stefano Fortunati

I. COMPUTATION OF THE R-ESTIMATOR θ̂R

A. Signal model

Let us first remind the signal model used in this article. The received signal after the baseband demodulation
can be expressed as [1]–[3]:

x (t; η̄) = ᾱs (t− τ̄) e−j2πfc(b̄(t−τ̄)) + n (t) , (1)

with η̄ =
(
τ̄ , b̄
)T and ᾱ a complex gain. The discrete vector signal model is built from N = N1−N2+1 samples

at Ts = 1/Fs = 1/B,
x = ᾱµ(η̄) + n, (2)

with x = (. . . , x (kTs) , . . .)
⊤, n = (. . . , n (kTs), . . .)

⊤ , s = (. . . , s (kTs), . . .)
⊤ , N1 ≤ k ≤ N2 signal samples

and the i.i.d. noise samples n(kTs) ∼ CES(0, σ̄2n, ḡ) are assumed to be CES-distributed with unknown noise
power σ̄2n and unspecified density generator ḡ [4] and the location

ᾱµ(η̄) = (. . . , ᾱs(kTs − τ̄)e−j2πfc(b̄(kTs−τ̄) = fk(θ̄), . . .)
⊤. (3)

The unknown deterministic parameters can be collected in vector ϵ̄⊤ = (σ̄2n, ρ̄, Φ̄, η̄
⊤) = (σ̄2n, θ̄

⊤), with ᾱ = ρ̄ejΦ̄

and ρ̄ ∈ R+, 0 ≤ Φ̄ ≤ 2π.
The objective of this supporting material is to derive the matrices and vectors necessary for the computation

of the R estimator:
θ̂R = θ⋆ + (

√
Nα̂)−1[K(θ⋆)]−1∆̃N (θ⋆

n), (4)

B. Misspecified ML estimator (MMLE) as preliminary estimator of θ⋆, (σ⋆n)
2

As stated in Section IV.A of the letter, in order to implement an R-estimator, the preliminary estimator (θ⋆)⊤ =

[ρ⋆,Φ⋆, (η⋆)⊤], that is a
√
N -consistent (but not necessarily efficient) estimator of θ̄, is required. For the signal

model at hand, a good candidate would be the Misspecified ML estimator (MMLE) derived in [5], [6]. The
MMLE is derived under the assumption of a complex circular Gaussian distribution for the noise and it has been
shown to be

√
N -consistent in [7]. The estimates of the MMLE θ⋆ are given by:

η⋆ = argmax
η

∥∥Πµ(η)x
∥∥2 (5)

ρ⋆ =
∣∣∣[µH (η⋆)µ (η⋆)

]−1
µH (η⋆)x

∣∣∣ (6)

Φ⋆ = arg
{[

µH (η⋆)µ (η⋆)
]−1

µH (η⋆)x
}

(7)
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where ΠA = A
(
AHA

)
AH is the orthogonal projector over S, with S = span (A) and A a matrix. Similarly,

as preliminary estimator of the noise variance, we can used the MMLE, which yields to:

(σ⋆n)
2 = ∥x− ρ⋆ejΦ

⋆

µ(η⋆)∥2/N. (8)

C. Explicit calculation of K(θ⋆)

Let us start by recalling the definition of K(θ⋆) as:

K(θ̄) =
2

σ̄2n
ℜ

{(
∂ᾱµ(η̄)

∂θ

)H (∂ᾱµ(η̄)
∂θ

)}
, (9)

where θ̄ indicates the true parameter vector characterizing the signal model in (1). Following the outcomes
presented in [2] a closed-form expression for K(θ⋆) can be obtained as:

K(θ̄) ≜
2Fs

σ̄2n
ℜ
{
QWQH

}
(10)

where the entries of the matrix

W =

w1 w∗
2 w∗

3

w2 w2,2 w∗
4

w3 w4 w3,3

 (11)

are given by w1 = 1
Fs
sHs, w2 = 1

F 2
s
sHDs, w3 = sHΛs, w4 = 1

Fs
sHDΛs, w2,2 = 1

F 3
s
sHD2s, w3,3 = Fss

HVs.
Moreover, the matrix Q in (15) is as follows:

Q =


1 0 0

jρ̄ 0 0

jρ̄2πfcb̄ 0 −ρ̄
0 −jρ̄2πfc 0

 . (12)

The vector s = (. . . , s(kTs), . . .)
⊤
N1≤k≤N2

is the baseband samples vector, D = diag (. . . , k, . . .)N1≤k≤N2
and

the entries of the matrices Λ and V are defined as

(Λ)k,k′ =

∣∣∣∣∣ k′ ̸= k : (−1)|k−k′|
k−k′

k′ = k : 0
(13)

and

(V)k,k′ =

∣∣∣∣∣ k′ ̸= k : (−1)|k−k′| 2
(k−k′)2

k′ = k : π2

3

. (14)

Finally, K(θ⋆) can be expressed as function of the preliminary estimator θ⋆ as:

K(θ⋆) ≜
2Fs

(σ⋆)2n
ℜ
{
Q⋆WQ⋆H

}
(15)

with

Q⋆ =


1 0 0

jρ⋆ 0 0

jρ⋆2πfcb
⋆ 0 −ρ⋆

0 −jρ⋆2πfc 0

 . (16)
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D. Explicit calculation of ∆̃N (θ⋆)

Along with K(θ⋆), the other term in (4) to be calculated is the random vector :

∆̃N (θ⋆) ≜
−2√
Nσ⋆n

N2∑
k=N1

M

(
rk

N + 1

)
ℜ [(u⋆k)

∗∇θfk(θ
⋆)] . (17)

Note that (17) is a ranks-measurable approximation of the central sequence ∆N (θ⋆) with

∆N (θ) ≜ N−1/2
∑N

k=1
sθ(xk), (18)

where the score vector sθ(xk) is given by [8]:

sθ(xk) =d −2σ−1
n

√
Qkψ̄(Qk)ℜ{u∗k∇θfk(θ)} . (19)

Clearly, the score vector in (19) cannot be calculated for the following three reasons:

1) The real and positive random variables {Qk ∼ pQ}N2

k=N1
(distributed as the second order modular variate of

the CES noise) are not observable,
2) The complex random variables {uk ∼ U(CS1)}N2

k=N1
(uniformly distributed on CS1) are not observable,

3) Since the functional form of the true distribution is unknown, the function ψ̄(·) cannot be explicitly defined.

Then, following the outcomes of the seminal work [9], we rely on a ranks-measurable approximation for the
central sequence (18). Ranks owe their importance in robust statistics to the property of being “distribution-free”.
In particular, ranks-measurable functions can be used to derive non-parametric estimators that show a remarkable
efficiency even when the the data distribution is unknown. In particular, for in the considered application,
the unknown term if the score vector (19) can be approximated by means of the so-called “score function”.
Specifically, it can be shown that [10, Ch. 13], [11], for a given “score function” M(·), 1 we have2:

M

(
rk

N + 1

)
=

√
Qψ̄(Q) + oP (1). (20)

with {rk}N2

k=N1
the ranks of the (continuous) real random variables {Q⋆

k}
N2

k=N1
that represent a sort of preliminary

estimates of the unobservable random variables {Qk ∼ pQ}N2

k=N1

Q⋆
k ≜ |xk − fk(θ

⋆)|2/(σ⋆n)2. (21)

Finally, preliminary estimates of the unobservable random variables {uk}N2

k=N1
can be obtained as:

u⋆k ≜ (xk − fk(θ
⋆)) /

(
σ⋆n
√
Q⋆

k

)
. (22)

Regarding the “score function” M(·) many choices are possible (see e.g. [11]). However, the one that provide a
good trade of between semiparametric efficiency and robustness is the complex van der Waerden score function:

MvdW (t) ≜
√

Φ−1
G (t), t ∈ (0, 1), (23)

where Φ−1
G indicates the inverse function of the cdf of a Gamma random variable with parameters (1, 1).

1The family of score functions is defined in [12, Sect. 2.2], [10, Ch. 13]
2We write: xl = oP (1) if liml→∞ Pr {|xl| ≥ ϵ} = 0, ∀ϵ > 0 (convergence in probability to 0)
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The next step to calculate ∆̃N (θ⋆) is to compute ∇θfk(θ
⋆), which can be shown to be

∇θfk(θ
⋆) = Q⋆ϑ(kTs;θ

⋆)ejΦ
⋆

e−jωcb⋆(kTs−τ⋆), (24)

with Q⋆ computed in (16) and

ϑ(kTs;θ
⋆) =

 s(kTs − τ⋆)

(t− τ⋆)s(kTs − τ⋆)

s(1)(kTs − τ⋆)

 , (25)

with s(1)(t) = ∂s(t)
∂t . Then, through explicit calculation

∂fk(θ
⋆)

∂ρ⋆
= ejΦ

⋆

s(kTs − τ⋆)e−jωcb⋆(kTs−τ⋆), (26)

∂fk(θ
⋆)

∂Φ⋆
= jρ⋆ejΦ

⋆

s(kTs − τ⋆)e−jωcb⋆(kTs−τ⋆), (27)

∂fk(θ
⋆)

∂τ⋆
= −ρ⋆ejΦ⋆

s(1)(kTs − τ⋆)e−jωcb⋆(kTs−τ⋆) + jωcb
⋆ρ⋆ejΦ

⋆

s(kTs − τ⋆)e−jωcb⋆(kTs−τ⋆), (28)

∂fk(θ
⋆)

∂b⋆
= −jωc(kTs − τ⋆)ρ⋆ejΦ

⋆

s(kTs − τ⋆)e−jωcb⋆(kTs−τ⋆). (29)

Since M
(

rk
N+1

)
are real values, we can compute (17) by computing the following sum

ℜ

[
N2∑

k=N1

M

(
rk

N + 1

)
(u⋆k)

∗∇θfk(θ
⋆)

]
= ℜ

[
N2∑

k=N1

M

(
rk

N + 1

)
(u⋆k)

∗Q⋆ϑ(kTs;θ
⋆)ejΦ

⋆

e−jωcb⋆(kTs−τ⋆)

]
.

(30)
Unfortunately, due to the term s(1)(kTs − τ⋆), the sum is not trivial to resolve. In order to provide closed-form
expression of the previous sum, we can assume that the signal s(t) is band-limited and apply the Nyquist-Shannon
theorem.

A band-limited signal assumption, s(t) can be expressed as:

s(t) =

N2∑
k=N1

s(kTs) sinc (πB(t− kTs)) ⇋

s(f) =

(
1

Fs

N2∑
k=N1

s(kTs)e
−j2πfkTs

)
1[−Fs

2
;Fs

2 ]
(31)

where Ts = 1
B = 1

Fs
is the sampling period. Moreover, by definition of band-limitied signal, we can show that

lim
(N1,N2)→(−∞,+∞)

Ts
∑N2

k=N1

s (nTs) =

∫ +∞

−∞
s (t) dt.

Then, considering enough samples and defining U⋆ = (· · · ,U⋆
k , · · · )T , U⋆

k =M
(

rk
N+1

)
(u⋆k)

∗, we have that

lim
(N1,N2)→(−∞,∞)

Ts

(
N2∑

k=N1

ejΦ
⋆

Q⋆U∗
kϑ(kTs;θ

⋆)e−jωcb⋆(kTs−τ⋆)

)
=

∫ ∞

−∞
ejΦ

⋆

Q⋆U∗(t)ϑ(t;θ⋆)e−jωcb⋆(t−τ⋆)dt = ejΦ
⋆

Q⋆

∫ ∞

−∞
U∗(t)ϑ(t;θ⋆)e−jωcb⋆(t−τ⋆)dt = ejΦ

⋆

Q⋆we. (32)
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yielding to
∆̃N (θ⋆) = (2Fs)/(

√
Nσ⋆)ℜ

{
ejΦ

⋆

Q⋆we

}
. (33)

Now, we have to compute we = (we1 , we2 , we3)
T . To do that, we have to use the Parseval theorem and the

expression of the Fourier transform of band-limited signals as done in [13]:

we1 =

∫ ∞

−∞
U∗(t)s(t− τ⋆)e−jωcb⋆(t−τ⋆)dt =

∫ ∞

−∞
U∗(t+ τ⋆)s(t)e−jωcb⋆tdt

=

∫ Fs
2

−Fs
2

(
U(f)ej2πfτ⋆

)∗
s(f + fcb

⋆) df

=

∫ Fs
2

−Fs
2

(
1

Fs

N2∑
k=N1

s(kTs)e
−j2π(f+fcb⋆)kTs

)
e−j2πfτ⋆

(
1

Fs

N2∑
k=N1

U(kTs)e−j2πfkTs

)∗

df

=
1

Fs

∫ 1

2

− 1

2

(
N2∑

k=N1

s(kTs)e
−j2πfke−j2π fcb

⋆

Fs
k

)
e−j2πf τ⋆

Ts

(
N2∑

k=N1

U(kTs)e−j2πfk

)∗

df

=
1

Fs

∫ 1

2

− 1

2

(
sTU

(
fcb

⋆

Fs

)
ν(f)∗

)
e−j2πf τ⋆

Ts

(
UHν(f)

)
df =

1

Fs
UHV ∆,0

(
τ⋆

Ts

)
U

(
fcb

⋆

Fs

)
s

with

ν(f) =
(
. . . , ej2πfk, . . .

)T
N1≤k≤N2

V∆,0 (q) =

∫ 1

2

− 1

2

ν(f)νH(f)e−j2πfqdf.

Moreover, V∆,0 (q) yields to

[
V∆,0 (q)

]
k,l

=

∫ 1

2

− 1

2

ej2πf(k−l−q)df =

[
ej2πf(k−l−q)

j2π(k − l − q)

] 1

2

− 1

2

=
sin (π(k − l − q))

π(k − l − q)
= sinc (k − l − q) .

and
U (p) = diag

(
. . . , e−j2πpk, . . .

)
N1≤k≤N2

.

Note that in order to compute we1, we have apply the following Fourier transform property:

s(t)ej2πfcbt ⇌ FT
{
s(t)ej2πfcbt

}
(f) ≜ s(f − fcb)
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we2 =

∫ ∞

−∞
(t− τ⋆)s(t− τ⋆)U∗(t)e−jωcb⋆(t−τ⋆)dt =

∫ ∞

−∞
ts(t)U∗(t+ τ⋆)e−jωcb⋆tdt

=

∫ Fs
2

−Fs
2

(
j

2π

d

df
s(f − fcb

⋆)

)(
U(f)ej2πfτ⋆

)∗
df

=

∫ Fs
2

−Fs
2

(
1

Fs

j

2π
(−j2πTs)

N2∑
k=N1

s(kTs)ke
−j2π(f+fcb⋆)kTs

)
e−j2πfτ⋆ ×

(
1

Fs

N2∑
k=N1

U(kTs)e−j2πfkTs

)∗

df

=
1

F 2
s

∫ 1

2

− 1

2

(
N2∑

k=N1

s(kTs)ke
−j2πfke−j2π fcb

⋆

Fs
k

)
e−j2πf τ⋆

Ts

(
N2∑

k=N1

U(kTs)e−j2πfk

)∗

df

=
1

F 2
s

∫ 1

2

− 1

2

(
sTDU

(
fcb

⋆

Fs

)
ν(f)∗

)
e−j2πf τ⋆

Ts

(
UHν(f)

)
df =

1

Fs
UHV ∆,0

(
τ

Ts

)
U

(
fcb

⋆

Fs

)
Ds,

with
D = diag (. . . , k, . . .)N1≤k≤N2

.

Note that in order to compute we2, we can apply the following property of the Fourier transform:

ts(t)ej2πfcbt ⇋
j

2π

d

df
(s(f − fcb)) .

we3 =

∫ ∞

−∞
s(1)(t− τ)U∗(t)e−jωcb⋆(t−τ)dt =

∫ ∞

−∞
s(1)(t)U∗(t+ τ⋆)e−jωcb⋆tdt

=

∫ Fs
2

−Fs
2

(j2π(f + fcb
⋆)s(f + fcb

⋆))
(
U(f)ej2πfτ⋆

)∗
df

=

∫ Fs
2

−Fs
2

(
j2π(f + fcb

⋆)
1

Fs

N2∑
k=N1

s(kTs)e
−j2π(f+fcb⋆)kTs

)
e−j2πfτ⋆

(
1

Fs

N2∑
k=N1

U(kTs)e−j2πfkTs

)∗

df

=
1

Fs

∫ 1

2

− 1

2

(
j2π(fFs + fcb

⋆)

N2∑
k=N1

s(kTs)e
−j2πfke−j2π fcb

⋆

Fs
k

)
e−j2πf τ⋆

Ts

(
N2∑

k=N1

U(kTs)e−j2πfk

)∗

df

=
1

Fs

∫ 1

2

− 1

2

(
j2π(fFs + fcb

⋆)sTU

(
fcb

⋆

Fs

)
ν(f)∗

)
e−j2πf τ⋆

Ts

(
UHν(f)

)
df

= UH

(
j2π

∫ 1

2

− 1

2

fν(f)νH(f)e−j2πf τ⋆

Ts df

)
U

(
fcb

⋆

Fs

)
s+

j2πfcb
⋆

Fs
UH

(∫ 1

2

− 1

2

ν(f)νH(f)e−j2πf τ⋆

Ts df

)
U

(
fcb

⋆

Fs

)
s

= UHV∆,1

(
τ⋆

Ts

)
U

(
fcb

⋆

Fs

)
s+

j2πfcb
⋆

Fs
UHV∆,0

(
τ⋆

Ts

)
U

(
fcb

⋆

Fs

)
s

= UHV ∆,1

(
τ⋆

Ts

)
U

(
fcb

⋆

Fs

)
s + jwcb

⋆we1 ,

with

V∆,1 (q) = j2π

∫ 1

2

− 1

2

fν(f)νH(f)e−j2πfqdf
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and

[
V∆,1 (q)

]
k,l

= j2π

∫ 1

2

− 1

2

fej2πf(k−l−q)df = j2π

([
fej2πf(k−l−q)

j2π(k − l − q)

] 1

2

− 1

2

−
∫ + 1

2

− 1

2

ej2πf(k−l−q)

j2π(k − l − q)
df

)

=
j2π

j2π(k − l − q)

([
1

2
ejπ(k−l−q) −

(
−1

2

)
e−jπ(k−l−q)

]
−
[
ej2πf(k−l−q)

j2π(k − l − q)

] 1

2

− 1

2

)

=
1

k − l − q
(cos (π(k − l − q))− sinc (k − l − q)) .

Note that in order to compute we3, we have apply the following Fourier transform property:

s(1)(t)ej2πfcbt ⇌ j2π (f − fcb) s(f − fcb).

To conclude, the last term to compute for the implementation of (4) is α̂, which represents a non-parametric
estimator of E{Qψ̄(Q)2}. The derivation of this estimator is a delicate step [14], [15] and is based on technical
results of LeCam theory and its rank-based extension to semiparametric models. For this reason it is impossible
to give here an explanation, however intuitive and tutorial, of its final expression, which will be given below as:

α̂ =
(σ⋆n)

2

N

||∆̃N (θ⋆ +N−1/2v0)− ∆̃N (θ⋆)||
||K(θ⋆)v0||

, (34)

Where we introduced the “small perturbation” vector v0 ∼ N (0, ϱI). It can be shown that such α̂ satisfies the
following

√
N -consistency property:

E{Qψ̄(Q)2} = α̂+ oP (1). (35)

In is worth to underline here that, even if α̂ can be shown to be consistent, nothing can be said about its efficiency.
In particular, the derivation of a consist and efficient estimator of E{Qψ̄(Q)2} is still an open problem.
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