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Our aim in this paper is to develop a method to analyse the similarities and differences 
between mathematics in mathematics courses and mathematics in physics courses in 
the first year of university. Referring to the anthropological theory of the didactic, we 
propose an initial method using the concept of praxeology, and we test it by analysing 
solved exercises from a mathematics and a physics textbook. We identify types of tasks 
that are present in both; sometimes, these types of tasks intervene in physics as 
ingredients of techniques. We then compare the associated praxeologies in the two 
disciplines. We also uncover physics types of tasks containing elements where 
mathematics and physics are intertwined. Lastly, we discuss what we believe are 
necessary evolutions of the initial method. 
Keywords: Teaching and learning of mathematics in other disciplines, Teaching and 
learning of analysis and calculus, Anthropological theory of the didactic, Mathematics 
in physics courses. 
INTRODUCTION 
The difficulties encountered by first-year ‘non-specialists’ students due to mathematics 
is an international issue that is increasingly being studied by research in mathematics 
education (González-Martín et al., 2021). Some of these difficulties come from 
differences between the mathematics in mathematics courses and the mathematics in 
other disciplines courses (Taylor & Loverude, 2023). Identifying these differences is 
thus a crucial first step towards a better understanding of the causes of students’ 
difficulties and the design of interventions. The study we present here aims to design a 
method for a systematic investigation of such differences. 
Adopting an institutional perspective, we refer to the anthropological theory of the 
didactic (Chevallard, 1999). In the next section, we present this framework as well as 
background literature related to our work. We propose an initial method for the analysis 
of the differences between mathematics in the mathematics courses and mathematics 
in the physics courses. We then test this method and discuss its affordances and 
potential areas of improvement. Concerning mathematics, we focus on three 
fundamental concepts of calculus: derivation, integration, and differential equations. 
Concerning physics, we focus on mechanics as a domain where these concepts 
frequently intervene. This work is part of a broader study on the difficulties 
encountered by first-year physics students in mathematics and how to overcome them. 
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RELATED WORKS AND THEORETICAL FRAMEWORK 
A first approach to related works 
Mathematics and physics education research has evidenced that the mathematics in 
mathematics courses differ from the mathematics in physics courses. Karam et al. 
(2019) drew on the history of the two disciplines to demonstrate deep epistemological 
differences. They also showed that different conventions are used in the communities 
of physicists versus mathematicians. Redish and Kuo (2015) argue that there are 
‘dramatic differences in how the disciplinary cultures of mathematics and physics use 
and interpret mathematical expressions’ (p. 562). Taylor and Loverude (2023) showed 
that students at the university level perceive differences between mathematics in 
mathematics and physics courses and that they cannot transfer to physics what they 
learned in mathematics. The authors gave the students a graph displaying a given 
object’s position relative to time, and the students were asked to determine its velocity. 
They were not able to reinvest their calculus knowledge in this physics task. White 
Brahmia (2023), focusing on modelling in physics, observes that the ‘physical world’ 
and the ‘mathematical world’ are not separate. The activity of modelling involves 
hybrid knowledge, situated at the intersection and not usually taught in either course. 
The anthropological theory of the didactic (Chevallard, 1999) is a socio-cultural theory 
with a strong focus on epistemological aspects. It is thus relevant to identify differences 
between mathematics in mathematics and physics courses. Other authors have already 
made this choice; we present their works after introducing our theoretical framework. 
Theoretical framework 
The Anthropological Theory of the Didactic (ATD, Chevallard, 1999) posits that 
knowledge is shaped by the institutions where it lives. According to the ATD, an 
institution is any legitimate social group; hence, the physics courses and the 
mathematics courses for first-year students can be considered as two different 
institutions. How knowledge is shaped in the institutions is analysed by the ATD with 
the concept of praxeology. A praxeology comprises four elements: a type of tasks T; a 
technique τ to perform this type of tasks; a technology θ, which is a discourse 
explaining and justifying the technique; and a theory Θ, which is a more general 
discourse supporting the technology. The pair [T, τ] constitutes the praxis block, while 
the pair [θ, Θ] is called the logos block. 
A type of tasks gathers all the tasks with a similar aim, e.g., ‘Solve a differential 
equation’. Following Chaachoua (2020), we consider a technique to be a ‘set of types 
of tasks called technique ingredients’ (p. 110). A technique for solving differential 
equations can be composed of the types of tasks ‘Find a particular solution of the 
differential equation’ and ‘Solve a homogeneous linear equation’, amongst others. 
While the concept of praxeology has been mostly used in mathematics education 
research so far, it can be applied to other disciplines (or even to any human activity). 
In physics courses, the knowledge is shaped as physical praxeologies, and we are 
interested in the mathematics present in these physical praxeologies. 



 

 

 
Praxeological approaches to the gaps between mathematics and physics courses 
Referring to the ATD, González-Martín (2021) studied how integrals were used in 
physics courses regarding bending moments and electric potentials. In both cases, 
integrals appeared in the logos block of the praxeologies in a very different way from 
mathematics courses. Indeed, elements of mathematics and engineering were mixed, 
and several properties of the integral were implicit. Hitier and González-Martín (2022) 
investigated the use of derivatives to study motion in five mechanics and five calculus 
textbooks. They compared the associated praxeologies and identified significant 
differences. For example, the definition of the derivative using a limit barely appeared 
in the techniques used in mechanics, whereas it was present in about 50 % of the tasks 
within a kinematics context in calculus. They also found that these tasks only dealt with 
velocity, whereas in mechanics, acceleration was also often present. The authors 
concluded from their textbook analysis that these inconsistencies were likely to ‘impact 
students’ ability to connect derivatives with the notions of velocity and acceleration’ 
(Hitier & González-Martín, 2022, p. 307). 
In physics education, Caussarieu (2022) studied the differences between practices of 
mathematics in mathematics and physics exercises. Using the ATD in a non-systematic 
way, she found that these differences could be grouped into four categories: 1) different 
notations, for example, for the derivative: ☐′ in mathematics and !☐

!"
 or ☐̇ in 

mechanics; 2) differences in the objects manipulated, for example, physicists 
manipulate physical quantities, whereas mathematicians manipulate functions; 
3) different techniques for a similar task, for example in physics, when asked to find 
the minimum of a function, one is expected to find where a derivative is null whereas 
in mathematics one also has to study the sign of the derivative; 4) different types of 
tasks performed using the same notion, for example, the logarithm is often used in 
integration tasks in mathematics whereas, in physics, students often use it as the 
reciprocal of the power-of-ten function. 
Hitier and González-Martín (2022) demonstrated the feasibility of a systematic 
analysis of physics and mathematics textbooks to identify differences and similarities 
between praxeologies, but they limited their study to tasks involving derivatives and 
one-dimensional motion. The work done by Caussarieu (2022) suggests that these 
differences might be grouped into categories. In this paper, we would like to extend 
these works to get a more comprehensive and systematic view of the differences 
between mathematics in physics and mathematics courses. Nevertheless, comparing 
praxeologies in mathematics and physics is complex. In particular, we need to find 
relevant criteria to decide what is similar or different. Thus, the first step in our broader 
study, which we present in this paper, is to establish a comparison method. 
Our research question is: How can praxeologies in a physics course be compared to 
praxeologies in a mathematics course, with the aim of identifying similarities and 
differences between the mathematics present in both courses? 



 

 

 
PRESENTATION OF A PRELIMINARY METHOD 
In this section, we present a method that uses praxeologies to analyse the mathematics 
present in a mathematics course and a physics course proposed to the same students. 
In the next section, we carry out a test of this method to identify its affordances and 
limitations. Given textual resources we generically call ‘the mathematics course’ and 
‘the physics course’, the principles of this method can be described as follows. 
Establishing the list of praxeologies present in the physics course. 
We first build a list of praxeologies present in the physics course. To do so, we identify 
tasks from the physics course, which we then gather into types of tasks. We define a 
type of tasks by a verb (e.g., ‘Determine’) followed by a direct object (e.g., ‘the 
velocity’). Then, we study the techniques associated with these types of tasks and, 
when needed, determine the ingredients composing these techniques. Finally, we 
describe the technological discourse justifying these techniques. We recall that the 
ingredients of the techniques are themselves types of tasks, and we determine their 
associated praxeologies. We obtain a list of praxeologies, which we call physical 
praxeologies to refer to the fact that they were found in the physics course. For each 
type of tasks, we specify whether it appears directly (in which case, we call it primary) 
and/or as an ingredient of techniques (in which case, we call it secondary). 
Identifying which physics praxeologies incorporate mathematics. 
We then identify, among these physical praxeologies, the ones that incorporate 
mathematical elements, whether in the type of tasks, technique, or technology. To 
discern whether an element is, in fact, mathematical, we refer to a corresponding 
mathematics course’s syllabus. This step provides us with a list of physical 
praxeologies incorporating mathematics and, for each praxeology, whether the type of 
tasks is primary or secondary. 
Identifying common types of tasks and investigating the associated praxeologies. 
In the third step, we determine the praxeologies present in the mathematics course 
using the same method as for the physical praxeologies. We compare the mathematical 
praxeologies with the physical praxeologies to identify which types of tasks are present 
in both. For these types of tasks, we determine the praxeologies appearing in the 
mathematics course (called mathematical praxeologies). We label each element of each 
praxeology with an M, P or MP corresponding to the course where we found the 
element (mathematics, physics, or both), and we call types of tasks that appear in both 
courses common types of tasks. This provides us with a second list of common types 
of tasks and their associated praxeologies. For a given common type of tasks, we 
analyse these praxeologies at the scale of the techniques and the technologies. 
Analysing the types of tasks only present in the physics course. 
In the final step, we go back to our first list and consider the remaining types of tasks. 
We investigate their features, trying to understand why they do not appear in the 
mathematics course. 



 

 

 
TEST OF THE METHOD 
We test our method on texts corresponding respectively to a mechanics course and a 
calculus course, and we limit our study to the following mathematical concepts: 
derivation, integration, and differential equations, as these are central concepts of 
calculus in the first year of university. We chose a first-year mathematics textbook 
(Boualem et al., 2013) and a first-year physics textbook (Brunel et al., 2015) from the 
same series. We analysed all exercises from the mechanics section of the physics 
textbook and the derivation, integration, and differential equations chapters of the 
mathematics textbook. There is no prescribed textbook at the national or university 
scale in France. Therefore, our choice of textbooks was motivated by our want to 
ensure both a coherent editorial line between the textbooks and a relatively high 
number of solved exercises and examples. Moreover, these books can be found in many 
French university libraries and, in the case of université Paris-Saclay, are relatively 
frequently borrowed. We analysed 101 calculus exercises and 52 physics exercises and 
worked examples, and our reference for mathematical content was the first-year 
calculus course summary provided at université Paris-Saclay for physics-chemistry-
geoscience students. 
Identifying types of tasks common to mathematics and physics 
Our method identified multiple common types of tasks that students have to perform 
in both disciplines. Comparing the types of tasks identified at the level of the exercise 
questions and sub-questions leads to the identification of three primary types of tasks 
that are common to mathematics and physics. These are TMPCompDerivative: ‘compute the 
derivative’, TMPStudyVariations: ‘study the variations’, and TMPShowConstant: ‘show that a 
quantity or function is constant’. We present task examples for these primary types of 
tasks in Table 1 below. 

Type of tasks Task example in physics Task example in maths 
TMPCompDerivative Compute the derivative of 

the angular momentum at 
O with respect to time. 

Compute the derivative of 𝑓 defined 
on ℝ by 𝑓(𝑥) = 3𝑥# + 7𝑥 − sin 𝑥. 

TMPStudyVariations Study the variations of the 
mechanical energy of a 
system. 

Study the variations of 𝑓 defined on ℝ 
by 𝑓(𝑥) = 𝑥$ + 2𝑥% − 2𝑥 + 1. 

TMPShowConstant Show that the angular 
momentum is constant. 

Show that any function verifying, for 
all 𝑥 and 𝑦, |𝑓(𝑥)– 𝑓(𝑦)| ≤ 𝑘|𝑥 − 𝑦|& 
for a given 𝑘 and 𝛼 > 1	is constant. 

Table 1: Common types of tasks appearing as primary types of tasks in physics 

Only a minority of the primary types of tasks we identify in physics incorporate 
mathematics. Most often, the formulation of the types of tasks derived from the physics 
textbook does not explicitly contain mathematical elements. We contend this does not 
mean the corresponding praxeologies do not incorporate mathematics. Indeed, further 



 

 

 
analysis of the techniques associated with physical types of tasks leads to the 
identification of additional mathematical types of tasks appearing as ingredients of 
techniques. These are TMPCompAntiderivative: ‘Compute the antiderivative’, TMPSolveDiffEq: 
‘Solve a differential equation’, and TMPCompIntegral: ‘Compute an integral’. Moreover, 
two of the primary types of tasks we already identified also appear as ingredients of 
techniques. Table 2 presents them with the primary type of tasks for which they are 
found as ingredients of techniques. 

Mathematical T Types of tasks they appear in as an ingredient of technique 
TMPCompAntiderivative TPdetPosition: ‘Determine the position’ 

TPdetEnergy: ‘Determine the energy of a system’ 
TMPSolveDiffEq TPdetPosition 

TPdetVelocity: ‘Determine the velocity’ 
TMPCompDerivative TPdetVelocity 

TPdetAcceleration: ‘Determine the acceleration’ 
TMPShowConstant TPshowMoveUniform: ‘Show that the movement is uniform’ 

TPstudyMoveForm: ‘Study the form of movement’ 
TMPCompIntegral TPdetWork: ‘Determine the work of a force’ 

Table 2: Mathematical types of tasks appearing as ingredients of techniques in physics 

This shows that we would have missed several types of tasks common to physics and 
mathematics if we had not expanded the analysis to the ingredients of techniques. 
Investigating the techniques and technologies associated with common types of 
tasks 
Our method allows us to question whether tasks are performed in mathematics and 
physics using the same technique or not. We illustrate this through the example of 
TMPCompDerivative: ‘Compute the derivative’. 
Three techniques are observed in mathematics. They are τMrateOfChange: ‘Compute the 
limit of the rate of change at that given point’, τMPoperations: ‘Use the operations on 
derivatives to break the problem down to usual functions for which the derivative is 
known’, and τMthmCalculus: ‘Use the fundamental theorem of calculus’. In physics, we 
observe the technique τMPoperations as well as several more techniques. They are 
τPcoordinates: ‘Derivate each coordinate (using τMPoperations) and use the formula 
'()⃗
'+
= 𝑥̇(𝑡)𝑒,<<<⃗ + 𝑦̇(𝑡)𝑒-<<<<⃗  for 𝑣 = 𝑥(𝑡)𝑒,<<<⃗ + 𝑦(𝑡)𝑒-<<<<⃗ ’, τPslope: ‘Determine the slope of the 

function’s graph at each point’, and τPphyEq: ‘use a physical equation giving the 
derivative as a function of other quantities’. We note that τPphyEq is the only technique 
appearing with TMPCompDerivative as a primary type of tasks. 
Varied technologies appear in physics, for example, with τPphyEq. One example is 
Newton’s second law of motion, θPNewton: ‘The acceleration multiplied by the mass of 
an object is equal to the sum of the forces applied to it’. Another, in the case of the 
angular momentum, is the technology θPam: ‘The derivative of the angular momentum 



 

 

 
at a point O with respect to time is equal to the vectorial product of the position vector 
and the sum of the forces’. This allows us to point out that usage contexts are varied in 
physics in comparison to mathematics: praxeologies involving derivatives, integrals 
and differential equations are exclusively found over a real interval or an open subset 
of ℝ in mathematics. In physics, an analysis of the technologies shows the question of 
the interval and whether the subset is open is never discussed. However, derivation 
praxeologies appear with both real-valued and vector-valued functions. 
Praxeologies incorporating mathematics but appearing only in physics 
Our analysis unearthed the existence of praxeologies incorporating mathematics that 
were present only in physics. These praxeologies have a physical primary type of tasks, 
and neither the associated technique nor the associated technology could be found in 
the mathematics textbook. However, the ingredients of techniques comprising the 
technique of these praxeologies used both mathematics and physics. We illustrate this 
through the example of exercise 18.7 (Brunel et al., 2015, pp. 373–374), which we 
propose a translated version of below: 

An object is moving along a straight line. Its acceleration is given by 𝑎 = −𝜔!𝑥, where 𝑥 
represents the distance of the object to an origin point O. 

Determine the expressions of 𝑥(𝑡) and 𝑣(𝑡) knowing that the object is at O when 𝑡 = 0 
and has initial velocity 𝑣" = 4 m ⋅ s#$. 

The types of tasks identified through the wording of the exercise are TdetPosition: 
‘Determine the position’ and TdetVelocity: ‘Determine the velocity’. These are physical 
types of tasks. The solution reads as follows: 

The acceleration 𝑎 = −𝜔!𝑥 is actually a second-order constant-coefficients differential 
equation, whose resolution is described by theorem 30.13: 𝑥̈ + 𝜔!𝑥 = 0, where  
𝑥̈ = d!&(()

d(!
. The solution of such an equation is 𝑥(𝑡) = 𝑥" cos(𝜔𝑡 + 𝜑), where 𝑥" and φ are 

constants to be determined with the initial conditions. (Brunel et al., 2015, pp. 773–774) 

In this solution, we identify the following technique: τPidSolve: ‘Recognise that a given 
equation is a differential equation and solve the equation’. This technique is made up 
of two ingredients of techniques: TMPsolveDiffEq: ‘Solve a differential equation’, which is 
found both in physics and mathematics and TPrecoDiffEq: ‘Recognise that a given equation 
is a differential equation’. TPrecoDiffEq and its associated technique only appear in the 
physics textbook, and the technique blends mathematical and physical concepts. 
Indeed, to recognise a differential equation one must both know what forms a 
differential equation may take, which is a mathematical concept, and know that 
𝑎 = 𝑥̈ = '!,(+)

'+!
, which is a physical concept. 

The fact that recognising a given equation as differential is not practised in the 
mathematics textbook may have an impact on students’ ability to perform this type of 
tasks in physics. 



 

 

 
DISCUSSION 
A systematic comparison of the mathematics in the mathematics course and the physics 
course using praxeologies is a challenging project. So far, such comparisons have been 
limited to exercises in a kinematics context (Hitier & González-Martín, 2022) or made 
in a non-systematic way (Caussarieu, 2022). The test of our tentative method evidences 
that some of our choices are relevant, while others need to be questioned or revised. 
We note the relevance of decomposing the techniques (in particular in the physics 
course) into ingredients of techniques. Indeed, if we had not decomposed the technique 
down to multiple ingredients of techniques, we would have missed several types of 
tasks incorporating mathematics that are present in physics. 
Another significant choice in our method was to characterise a type of tasks by a verb 
followed by a complement, e.g., ‘Compute the derivative’. This led us to describe types 
of tasks with a high level of generality and allowed us to find similar types of tasks in 
the mathematics course and the physics course. If we had opted for a more precise 
definition of the type of tasks, ‘Compute the derivative of a polynomial function’ and 
‘Compute the derivative of a position’ would have been two different types of tasks. In 
this case, we would have had to conclude that there are no types of tasks common to 
the physics and mathematics courses. As evoked above, one of the difficulties we face 
is to find relevant criteria to decide what is the same and what is different when we 
compare the two courses. Saying that everything is different would not be productive 
for our final aim of supporting students transitioning between courses. 
This test also enabled the identification of some limitations in the tentative method and 
perspectives of improvement. First, we found it sometimes difficult to build complete 
praxeologies in the physics course, particularly regarding technologies. We think that 
this is a limitation coming from our use of exercises and worked examples, and this 
can be overcome by adding other material, e.g., lecture notes. Second, the test of our 
tentative method suggests that techniques in physics tend to apply to a more specific 
subset of the tasks of a type of tasks, whereas the techniques observed in mathematics 
tend to be more general. We could include what Castela (2008) describes as the 
efficiency domain of a technique in our framework to investigate this issue. Third, we 
observed, in physics, the presence of types of tasks intertwining mathematics and 
physics: this is a key output of the test of our tentative method. Nevertheless, we have 
probably missed other explanations for the presence of these types of tasks and how 
mathematics intervenes in the associated praxeologies. We could complement the 
initial method with an analysis whose starting point would be technologies in physics 
that incorporate mathematics (and using, e.g., lecture notes). Last, some important 
differences are not captured by our method, like differences in notations. This suggests 
the need for evolutions linked with concepts likely to complement the praxeologies, 
e.g., the comparison method could investigate ostensives (Bosch & Chevallard, 1999) 
appearing in mathematics courses versus physics courses. 



 

 

 
CONCLUSION 
Our research question was ‘How can praxeologies in a physics course be compared to 
praxeologies in a mathematics course, with the aim of identifying similarities and 
differences between the mathematics present in both courses?’ To answer this question, 
we proposed a tentative method and tested it on exercises and worked examples from 
a mathematics and a physics textbook. 
This test evidenced that some aspects of the tentative method are relevant. 
Incorporating elements of techniques in the description of physics praxeologies allows 
us to identify mathematical types of tasks present in the physics course and then analyse 
the associated techniques and technologies in each course. 
It also evidenced that other aspects need to be refined or modified. We chose to 
consider broad types of tasks; the consequences of choosing more precise types of tasks 
must be further investigated. Moreover, we plan to complement the initial method with 
an analysis taking technologies as a starting point to avoid overfocusing on the praxis 
block. This evolution should also be linked with the use of other material, e.g., more 
theoretical parts of textbooks or lecture notes. Indeed, the test presented here produced 
results concerning mainly the praxis block since the technological aspects were not 
often described in the solution of the physics exercises. Moreover, we also intend to 
complement the method by referring to other concepts: ostensives in particular. 
We will continue to work on the design of the method and, at the same time, use it for 
the identification of differences between the mathematics in a mathematics course and 
a physics course. This should enable us in the next stages of our work to analyse student 
difficulties to design interventions taking these differences into account. 
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