
HAL Id: hal-04944154
https://hal.science/hal-04944154v1

Submitted on 13 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Deep Learning on 3D Semantic Segmentation: A
Detailed Review

Thodoris Betsas, Andreas Georgopoulos, Anastasios Doulamis, Pierre
Grussenmeyer

To cite this version:
Thodoris Betsas, Andreas Georgopoulos, Anastasios Doulamis, Pierre Grussenmeyer. Deep Learn-
ing on 3D Semantic Segmentation: A Detailed Review. Remote Sensing, 2025, 17 (2), pp.298.
�10.3390/rs17020298�. �hal-04944154�

https://hal.science/hal-04944154v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Academic Editors: Jiaojiao Li and

Shuying Li

Received: 18 November 2024

Revised: 18 December 2024

Accepted: 31 December 2024

Published: 16 January 2025

Citation: Betsas, T.; Georgopoulos,

A.; Doulamis, A.; Grussenmeyer, P.

Deep Learning on 3D Semantic

Segmentation: A Detailed Review.

Remote Sens. 2025, 17, 298. https://

doi.org/10.3390/rs17020298

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

Deep Learning on 3D Semantic Segmentation: A Detailed Review
Thodoris Betsas 1,* , Andreas Georgopoulos 1 , Anastasios Doulamis 1 and Pierre Grussenmeyer 2

1 Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National
Technical University of Athens, 15772 Athens, Greece; drag@central.ntua.gr (A.G.);
adoulam@cs.ntua.gr (A.D.)

2 ICube Laboratory UMR 7357, CNRS, INSA Strasbourg, Université de Strasbourg, 67084 Strasbourg, France;
pierre.grussenmeyer@insa-strasbourg.fr

* Correspondence: betsasth@mail.ntua.gr

Abstract: In this paper, an exhaustive review and comprehensive analysis of recent and
former deep learning methods in 3D semantic segmentation (3DSS) is presented. In the
related literature, the taxonomy scheme used for the classification of 3DSS deep learning
methods is ambiguous. Based on the taxonomy schemes of nine existing review papers, a
new taxonomy scheme for 3DSS deep learning methods is proposed, aiming to standardize
it and improve the comparability and clarity across related studies. Furthermore, an
extensive overview of the available 3DSS indoor and outdoor datasets is provided along
with their links. The core part of this review is the detailed presentation of recent and former
3DSS deep learning methods and their classification using the proposed taxonomy scheme
along with their GitHub repositories. Additionally, a brief but informative analysis of the
evaluation metrics and loss functions used in 3DSS is included. Finally, a fruitful discussion
of the examined 3DSS methods and datasets is presented to foster new research directions
and applications in the field of 3DSS. In addition to this review, a GitHub repository is
provided, including an initial classification of over 400 3DSS methods, using the proposed
taxonomy scheme.

Keywords: 3D semantic segmentation; point clouds; deep learning; review

1. Introduction
Acquiring 3D information in the form of 3D point clouds, from various environments

of the world, is becoming easier day to day due to the wealth of available sensors like
Airborne (A) or Terrestrial (T) Laser Scanners (ALSs, TLSs), Light Detection And Ranging
(LiDAR), Radio Detection and Ranging (RADAR), Digital Single-Lens Reflex cameras
(DSLR), Sound Navigation and Ranging (SONAR), etc. Most of the available sensors
produce 3D point clouds, which, before the post-processing steps, e.g., filtering, constitute
their raw 3D information. In general, deep learning (DL) algorithms dominate several 2D
tasks like classification, object detection, and semantic -instance and -panoptic segmentation.
Meanwhile, the 3D point clouds have unique benefits in comparison to the 2D images, such
as they capture the detailed geometry of the objects [1,2] and, intuitively, they are similar to
the 3D world. However, the application of 2D DL methods directly into 3D space using 3D
point clouds is not a straightforward process due to their properties.

In detail, the 3D point clouds are commonly unordered, unstructured, and irregular.
More concretely, unordered means that the 3D points are not on a regular grid, like the
pixels of the images, unstructured means that the 3D points do not carry the neighboring
points’ information, and finally, irregular means that some 3D point clouds contain regions

Remote Sens. 2025, 17, 298 https://doi.org/10.3390/rs17020298

https://doi.org/10.3390/rs17020298
https://doi.org/10.3390/rs17020298
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7354-5544
https://orcid.org/0000-0001-6520-9954
https://orcid.org/0000-0002-7292-2755
https://doi.org/10.3390/rs17020298
https://www.mdpi.com/article/10.3390/rs17020298?type=check_update&version=3

Remote Sens. 2025, 17, 298 2 of 58

with different point densities, i.e., the 3D points are not evenly sampled across the different
regions of the scene. Moreover, each point’s neighborhood forms meaningful information
about the characteristics of its region, i.e., the 3D points are not isolated. Also, the 3D point
clouds are invariant under rigid transformation, i.e., rotating and translating the 3D points
altogether do not alter the characteristics of the acquired scene. To conclude, we consider
that there is terminology confusion in the meaning of the 3D point cloud properties among
the 3D semantic segmentation (3DSS) papers, i.e., the meaning of the unordered, irregular,
and unstructured properties; however, the actual properties remain the same.

In general, semantic segmentation (SS) is defined as the association of each element of
the data under process with a meaningful label. In this regard, 2D semantic segmentation
(2DSS) using images aims to assign a meaningful label to each pixel of the image, while 3DSS
using point clouds aims to assign a meaningful label to each 3D point of the point cloud, etc.
In fact, there is terminology confusion regarding 3DSS. To be more specific, 3DSS is commonly
referred to as 3D point cloud classification, 3D point cloud per point classification, or 3D
labeling. However, throughout this effort, the 3DSS terminology is preferred.

To sum up, the contributions of this effort are varied. First and foremost, Section 2
describes in detail and compares the taxonomy schemes of the 3DSS DL methods proposed
by previous 3DSS review papers, resulting safely in a unified taxonomy scheme. Addi-
tionally, the general idea behind the selection of such categories, based on the examined
3DSS methods, is thoroughly described. Apart from the general categories of the 3DSS DL
methods, the same analysis is conducted for their subcategories. Moreover, in Section 3,
over 40 3DSS indoor and outdoor datasets are presented, including their links. In addition
to the available datasets, the commonly used evaluation metrics of the 3DSS algorithms are
presented in Section 4. Afterward, a detailed analysis of the collected 3DSS algorithms of
each category and subcategory defined in Section 2 is presented in Section 5. Notably, there
are also subcategories included for hybrid-based methods apart from the main categories,
i.e., point-, dimensionality reduction-, discretization-, and graph-based methods. Then, a
brief but informative analysis of 3DSS loss functions is presented in Section 6. Finally, in
Section 7, a thorough analysis of the examined 3DSS algorithms and datasets is presented
to foster new research directions and applications in the field of 3DSS. To the best of our
knowledge, this effort is the first 3DSS review paper including a taxonomy scheme section,
i.e., Section 2. Finally, a GitHub repository (Supp. Mat.: https://github.com/thobet/Deep-
Learning-on-3D-Semantic-Segmentation-a-Detailed-Review, accessed on 30 December
2024), which includes an initial classification of over 400 3DSS algorithms, is included. In
addition to this effort, the GitHub repository offers a valuable source for the investigation
of both traditional [3–6] and deep learning 3DSS algorithms.

2. Taxonomy Scheme of Deep Learning 3D Semantic Segmentation Methods

In the last decade, many researchers published review and benchmark papers present-
ing the ongoing research on 3D semantic segmentation (3DSS), i.e., the open challenges and
research questions, the difficulties presented in 3DSS applications, ideas for future work,
and many 3DSS algorithms. In this section, we present a literature review of carefully se-
lected [7–22] 3DSS review papers, and we aim to draw a safe conclusion about a taxonomy
scheme of 3DSS deep learning methods. To be more specific, each review paper proposes a
different categorization scheme of the existing 3DSS algorithms using different names for
each category. But are those categories really different?

2.1. Previous 3DSS Review Papers

First and foremost, 3DSS algorithms could be divided into two broad categories: Reg-
ular Supervised Machine Learning Methods and Deep Learning Methods [18,19,22]. The

https://github.com/thobet/Deep-Learning-on-3D-Semantic-Segmentation-a-Detailed-Review
https://github.com/thobet/Deep-Learning-on-3D-Semantic-Segmentation-a-Detailed-Review

Remote Sens. 2025, 17, 298 3 of 58

methods belonging to the first category are often called traditional methods, while the
methods belonging to the second one are deep learning methods. The main difference
between the two categories is the feature extraction approach. Traditional methods rely
on handcrafted features, while deep learning approaches learn to extract features from the
data without user involvement. Traditional methods contain a broad range of segmenta-
tion methods. An analysis of well-known traditional methods on the segmentation and
classification of 3D point clouds can be found in Grilli E., Menna F., and Remondino F.’s
(2017) [11] review paper. However, in this section, we focus on the deep learning methods
for 3DSS because we aim to define their taxonomy scheme.

In general, deep learning methods for 3DSS using point clouds can be separated into
four classes [8,12–14]:

- Point-based methods, which use the raw point cloud directly as input for the
3DSS algorithms.

- Projection-based methods, which project the point cloud onto a 2D grid, exploit mature
2D convolution techniques for 2DSS, and, finally, project the labels back into 3D space.

- Discretization-based methods, which transform the point cloud to a discrete represen-
tation on which the 3D convolution operator is applicable.

- Hybrid methods, which combine two or more techniques that belong to the previously
described categories.

Hereafter, we refer to the previously described taxonomy as the main taxonomy
scheme just for comparison purposes. In the following paragraph, we present a connec-
tion between the different category names included in each review paper with the main
taxonomy scheme.

Regarding the main taxonomy scheme, the (i) Multi-View Convolution Neural Net-
works (CNNs) and Unordered Point Cloud Processing [10], (ii) multi-view-based [22],
(iii) multi-view-based [18], (iv) multi-view [7], (v), image-based [9], (vi) RGB-D
Image-based [23], (vii) dimensionality reduction [20], and (viii) multi-view [21] categories
are subcategories of projection-based methods or include some projection-based meth-
ods along with others. Additionally, based on the main taxonomy scheme the (i) Vol-
umetric, Unordered Point Cloud Processing and Ordered Point Cloud Processing [10],
(ii) Volumetric Method [22], (iii) voxel-based [9,18,21,23], (iv) voxel and higher dimensional
lattice [7], and (v) methods based on voxelization [20] categories are subcategories of
discretization-based methods or include discretization-based methods along with others.
Moreover, with respect to the main taxonomy scheme, the (i) Ordered Point Cloud Process-
ing [10], (ii) Direct [22], (iii) Directly Process on Point Cloud Data [18], (iv) Deep Learning
Directly on Raw Point Clouds [7], (v) point-based methods [9,23], (vi) primitive points. [20],
and (vii) point cloud-based [21] categories are the same as point-based methods or include
point-based methods along with others.

Bello et al. 2020 [7], Zhang et al. 2019 [22], and R. Zhang et al. 2023 [23] propose
a more general taxonomy scheme for 3DSS deep learning methods, using only
two broad categories:

- Indirect [22], Structured Grid-Based Learning [7], or Rule-Based methods [23];
- Direct [22], Deep Learning Directly on Raw Point Clouds [7], or point-based methods [23].

The authors used different names to describe the same category of methods. To be
more specific, the first group of methods transform the given point cloud into a regular
grid representation to apply the convolution operation on it, while the second group of
methods use the point cloud directly as an input to the deep learning algorithms. Thus, the
above scheme could be considered a superset of the main taxonomy scheme. Furthermore,
R. Zhang et al. 2023 [23] include RGB-D Image-based methods in their taxonomy scheme.

Remote Sens. 2025, 17, 298 4 of 58

This new subcategory is the core subcategory of projection-based methods in the main
taxonomy scheme. We think that the name RGB-D Image-based methods is easily confused
with the RGB-D methods presented in Griffiths and Boehm’s 2019 review paper, which
refer to the methods applied to data collected with RGB-D sensors, e.g., in indoor envi-
ronments. Hence, projection-based methods seems to be a more relevant name for the
category. Finally, A. Zhang et al. 2023 [20] include the Multiple Data Formats category,
among others, and divide it into multi-representational methods and multimodal methods.
In the main taxonomy scheme, multi-representational methods is the same category as
hybrid methods, while the multimodal methods for 3DSS could be classified following the
same taxonomy scheme as unimodal 3D semantic segmentation methods, i.e., point-based
methods, discretization-based methods, etc. More concretely, multimodal 3DSS methods
are classified with the same taxonomy scheme as unimodal 3DSS methods, i.e., multimodal
methods are not treated as a subcategory of unimodal 3DSS methods but as an independent
category of methods.

2.2. Proposed 3DSS Taxonomy Scheme

After the examination of the previously described 3DSS review papers, we found that
the point-based methods of the main taxonomy scheme are usually included in categories
like Direct Methods, Directly Process Point Cloud Data, Deep Learning Directly on raw
Point Clouds, methods based on primitive points, etc., but without any confusion about the
methods included in these categories, i.e., although the categories have a different name,
they include almost the same methods. We chose the term point-based methods for our
taxonomy scheme to classify these methods because we think that it describes better and
compactly the general idea of the methods, i.e., to extract meaningful 3DSS features using
as input the raw point cloud. Moreover, the graph-based methods are commonly included
in point-based methods in the literature. In our taxonomy, graph-based methods are a
separate category because the feature extraction process is based on the nodes and the edges
of graphs, not only based on the 3D points as in point-based methods. Additionally, the
graph-based methods transform the given point cloud into an alternative representation,
i.e., a graph, and then perform the 3DSS.

Furthermore, we believe that the dimensionality reduction-based methods term intro-
duced by A. Zhang et al., 2023 [20] describes better the methods included in the projection-
based methods category in the main taxonomy scheme because projection methods can
also be used to describe a subclass of methods that use different projections, e.g., bird’s-eye
view (BEV), cylindrical, polar, etc., to perform 3DSS. Thus, we adopt the dimensionality
reduction-based methods term in our taxonomy scheme. Additionally, the discretization-
based methods term describes better the methods that are commonly referred to as voxel,
voxelization, etc., as well as those commonly referred to as permutohedral lattices, lattices,
etc., because the main idea of these methods is the creation of a new discrete representa-
tion based on the 3D point cloud and then the use of 3D convolution in order to extract
meaningful features for 3DSS. Finally, the hybrid methods category includes those methods
which use a combination of techniques of the previously described categories.

To sum up, we use the following taxonomy scheme to classify 3DSS deep learning
methods (Figure 1):

- Point-based methods (Section 5.1. Point-Based Methods).

- Point-based methods use raw 3D points to extract meaningful features for 3DSS.

- Dimensionality reduction-based methods (Section 5.2. Dimensionality Reduction-Based
Methods).

Remote Sens. 2025, 17, 298 5 of 58

- Dimensionality reduction-based methods transform the 3D point cloud into
a lower dimensional space, e.g., images, perform semantic segmentation into that
space, and, finally, project the labels back into 3D space.

- Discretization-based methods (Section 5.3. Discretization-Based Methods).

- Discretization-based methods transform the point cloud into a discrete representa-
tion without dimensionality reduction and then apply the convolution operation
for 3DSS.

- Graph-based methods (Section 5.4. Graph-Based Methods).

- Graph-based methods transform the point cloud into a graph and use the nodes
and the edges of the graph to extract meaningful features for 3DSS.

- Hybrid methods (Section 5.5. Hybrid Methods).

- Hybrid methods combine two or more methods from the previously described categories.

Remote Sens. 2025, 17, x FOR PEER REVIEW 5 of 62

- Point-based methods (Section 5.1. Point-Based Methods).
- Point-based methods use raw 3D points to extract meaningful features for 3DSS.

- Dimensionality reduction-based methods (Section 5.2. Dimensionality Reduction-
Based Methods).
- Dimensionality reduction-based methods transform the 3D point cloud into a

lower dimensional space, e.g., images, perform semantic segmentation into that
space, and, finally, project the labels back into 3D space.

- Discretization-based methods (Section 5.3. Discretization-Based Methods).
- Discretization-based methods transform the point cloud into a discrete repre-

sentation without dimensionality reduction and then apply the convolution op-
eration for 3DSS.

- Graph-based methods (Section 5.4. Graph-Based Methods).
- Graph-based methods transform the point cloud into a graph and use the nodes

and the edges of the graph to extract meaningful features for 3DSS.
- Hybrid methods (Section 5.5. Hybrid Methods).

- Hybrid methods combine two or more methods from the previously described
categories.

Figure 1. The proposed taxonomy scheme of the deep learning 3D semantic segmentation methods.
Abbreviations: attention mechanism and transformers (Attention M. and Transformers), discretiza-
tion-based methods (D), dimensionality reduction-based methods (DR), graph-based methods (G),
point-based methods (P).

2.3. Point-Based Methods Taxonomy Scheme

Point-based methods use raw 3D points directly to extract meaningful features for
3DSS. In this subsection, the taxonomy scheme for the point-based methods is defined.
Firstly, the point-wise MLP category contains the point-based 3DSS methods that apply a
per-point process using several shared Multi-Layer Perceptrons (MLPs) to extract local
features and then extract the global information using a symmetrical aggregation function
[7–9,12,14,23]. In general, convolution is the fundamental operation of a broad category of
2D deep learning networks, i.e., CNNs, with remarkable results. However, the implemen-
tation of convolution operation using 3D point clouds is not a straightforward process due
to their characteristics. The methods that investigate the implementation of convolution
operation directly onto 3D point clouds are included in the Point Convolution category.
Guo et al. (2021) [12] and Camuffo, Mari, and Milani (2022) [8] subdivide the convolution-
based methods used directly onto 3D point clouds into continuous and discrete ones
based on the space that is applied. Gao et al. (2022) [9], Zhang et al. (2023) [20], Zhang et
al. (2023) [23], Jhaldiyal and Chaudhary (2023) [13], and Rauch and Braml (2023) [14]

Figure 1. The proposed taxonomy scheme of the deep learning 3D semantic segmentation meth-
ods. Abbreviations: attention mechanism and transformers (Attention M. and Transformers),
discretization-based methods (D), dimensionality reduction-based methods (DR), graph-based meth-
ods (G), point-based methods (P).

2.3. Point-Based Methods Taxonomy Scheme

Point-based methods use raw 3D points directly to extract meaningful features for
3DSS. In this subsection, the taxonomy scheme for the point-based methods is defined.
Firstly, the point-wise MLP category contains the point-based 3DSS methods that ap-
ply a per-point process using several shared Multi-Layer Perceptrons (MLPs) to extract
local features and then extract the global information using a symmetrical aggregation
function [7–9,12,14,23]. In general, convolution is the fundamental operation of a broad
category of 2D deep learning networks, i.e., CNNs, with remarkable results. However, the
implementation of convolution operation using 3D point clouds is not a straightforward
process due to their characteristics. The methods that investigate the implementation of
convolution operation directly onto 3D point clouds are included in the Point Convolution
category. Guo et al. (2021) [12] and Camuffo, Mari, and Milani (2022) [8] subdivide the
convolution-based methods used directly onto 3D point clouds into continuous and dis-
crete ones based on the space that is applied. Gao et al. (2022) [9], Zhang et al. (2023) [20],
Zhang et al. (2023) [23], Jhaldiyal and Chaudhary (2023) [13], and Rauch and Braml
(2023) [14] include the 3D convolution-based methods as a subcategory of point-based
methods but without a further categorization. Thirdly, recurrent neural networks (RNNs)
treat the given data, e.g., image, 3D point cloud, etc., as sequences of features. Furthermore,
RNN-based methods aim to extract the contextual information between the data elements,
i.e., pixel, 3D points, etc., by recalling the features gathered earlier in the sequence or by
forgetting some of them [8,9,12,14,21,23]. The 3DSS methods that use RNNs are classified
into the recurrent neural networks category. Finally, the 3DSS methods that use the trans-

Remote Sens. 2025, 17, 298 6 of 58

former architecture and attention mechanism are included in the attention mechanism and
transformers category [8,14,20,21,23].

2.4. Dimensionality Reduction-Based Methods Taxonomy Scheme

Dimensionality reduction methods transform the 3D point cloud into lower dimen-
sional space data, e.g., images, apply semantic segmentation techniques using those data,
and, finally, project and fuse the labels back into 3D space. In this subsection, the subcate-
gories of dimensionality reduction methods are defined based on the projection used for
the dimensionality reduction of the 3D point clouds. To be more specific, dimensionality
reduction methods are further classified into the multi-view, spherical, and bird’s-eye view
(BEV) and Multiple Projections categories. Multi-view methods replicate the photography
of objects, scenes, etc. To be more specific, they use the 3D data as the scene and then
capture many images artificially around the data using a set of predefined viewpoints.
Finally, the created images are used for 2DSS. Furthermore, spherical and BEV methods
use spherical and BEV projections, respectively, to create the images that are finally fed
into the 2DSS process [7–10,12–14,18,20–22]. Moreover, the Multiple Projection category
includes the methods that combine different projections to perform 3DSS. In general, the
created images are called range images when they are produced using LiDAR data without
the assigned colors from a camera. Finally, point cloud serialization methods, which are
commonly used in combination with discretization techniques, transform the given point
cloud into a lower dimension regular structure that is furthered processed for 3DSS and so
could be considered as a dimensionality reduction technique.

2.5. Discretization-Based Methods Taxonomy Scheme

Discretization-based methods transform the 3D point cloud into a discrete represen-
tation without dimensionality reduction and then apply the convolution operation for
3DSS. The main idea of these methods is to handle the unorder property of 3D point clouds
by transforming the 3D point cloud into an appropriate representation for convolution
operation in 3D space. In this subsection, the subcategories of discretization-based methods
are defined. Most 3DSS review papers [9,10,18,19,21,22] focus on voxel-based methods.
However, other review papers classify the discretization-based methods into the dense
and sparse subcategories, while some of them also use a subcategory for the methods
that transform the 3D point cloud into a higher dimensional lattice to finally perform
3DSS [7,8,12,14,20]. However, the proposed taxonomy scheme includes the methods that
transform the 3D point cloud into a higher dimensional lattice before 3DSS into the sparse
subcategory. Dense discretization methods ignore the distribution of points and discretize
the entire space of the 3D point cloud using a 3D grid of a specific size. Sparse discretization
methods take into account the distribution of 3D points and discretize only the occupied
space, resulting in more efficient algorithms with respect to execution time. In this effort,
only the sparse methods are presented because they dominate the category nowadays.

2.6. Graph-Based Methods Taxonomy Scheme

Graph-based methods, transform the point cloud into a graph and use the nodes and
the edges of the graph to extract meaningful features for 3DSS. In this category, there is
no further categorization of the methods proposed. Graph-based methods are commonly
included as a subcategory of point-based methods. However, the proposed taxonomy
scheme defines them as a separate class because they transform the point cloud into a new
representation, i.e., a graph, and are not applied directly to the initial 3D point cloud.

Remote Sens. 2025, 17, 298 7 of 58

2.7. Hybrid Methods Taxonomy Scheme

When a developed algorithm uses two or more techniques of the previously de-
scribed categories, it is classified into the hybrid methods category. In this subsection,
a further categorization of the hybrid methods is proposed. In fact, the proposed tax-
onomy scheme for the hybrid methods takes into account the techniques that are com-
bined to create the developed algorithm, resulting in eight subcategories: all methods,
discretization–point–reduction, graph–discretization, graph–reduction, point–discretization,
point–graph, reduction–discretization, and reduction–point. In fact, there are more than
eight possible categories, but we define those eight based on the examined papers.

3. Three-Dimensional Semantic Segmentation Datasets
In general, the benchmark datasets play a significant role in the proper investigation

of the deep learning algorithms. The scope of this section is to provide a useful guide of
the available 3DSS datasets along with their characteristics and their links. In 3DSS, the
available datasets can be divided into indoor and outdoor ones. In Tables 1 and 2, general
information about each indoor and outdoor 3DSS datasets is provided, respectively, along
with their links.

Table 1. The indoor 3D semantic segmentation datasets.

Dataset Name Year Images Mesh Link

2D-3D-S S3DIS [24,25] 2017
√ √

https://redivis.com/datasets/9q3m-9w5pa1a2h
Freiburg Campus [26] - - - http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/
Matterport3D [27] 2017

√ √
https://niessner.github.io/Matterport/#paper

ScanNet [28] 2018 - - http://www.scan-net.org/
RGB-D Scenes Dataset v2 [29] 2013 - - https://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/
SceneNet [30] 2017 -

√
https://robotvault.bitbucket.io/scenenet-rgbd.html

SceneNN [31] 2016 -
√

https://hkust-vgd.github.io/scenenn/
SUN RGB-D [32] 2015

√
× https://rgbd.cs.princeton.edu/

SUN3D [33] 2013 - × https://sun3d.cs.princeton.edu/
The Replica Dataset [34] 2019 -

√
https://github.com/facebookresearch/Replica-Dataset

VIDRILO [35] 2015
√

- https://www.rovit.ua.es/dataset/vidrilo/index.html
√

: Available; ×: Not Available; -: No Data All links last accessed: 30 December 2024.

Table 2. The outdoor 3D semantic segmentation datasets.

Dataset Name Date Synthetic Spatial Size Resolution Mesh Links

Freiburg, Pittsburgh, Wachtberg [36] 2012 × - - - http://ais.informatik.uni-freiburg.de/
projects/datasets/fr360/

Swiss3DCities [37] 2020 × ≈2.7 × 106 m2 0.013 m × https://zenodo.org/records/4390295
https://zenodo.org/records/4390295

Paris-CARLA-3D [38] 2021
√ ≈550 m (R)

≈5.8 km (S) - × https://npm3d.fr/paris-carla-3d

LiDAR-CS [39] 2023
√

- - × https://github.com/LiDAR-Perception/
LiDAR-CS

SMARS [40] 2023
√

2 Cities 0.30–0.50 m
√ https://www2.isprs.org/commissions/

comm1/wg8/benchmark_smars/

SEMANTIC3D [41] 2017 × - - × http://www.semantic3d.net/
https://github.com/nsavinov/semantic3dnet

SensatUrban [42] 2021 × ≈7.6 km2 - × https://github.com/QingyongHu/SensatUrban

SWAN [43] 2023 × ≈150 km - × https://ieee-dataport.org/documents/swan-
3d-point-cloud-dataset

RELLIS–3D [44] 2022 × - - × https://github.com/unmannedlab/RELLIS-3D
DAPS3D [45] 2023

√
- -

√
https://github.com/subake/DAPS3D

Hessigheim 3D (H3D) [46] 2021 × - 800 pts/m2 √ https://ifpwww.ifp.uni-stuttgart.de/
benchmark/hessigheim/default.aspx

Campus3D [47] 2020 × ≈1.58 km2 - × https://github.com/shinke-li/Campus3D
Learnable Earth Parser [48] 2023 × ≈7.7 km2 - × https://romainloiseau.fr/learnable-earth-parser/
OpenGF [49] 2021 × ≈47 km2 - × https://github.com/Nathan-UW/OpenGF
Paris-Lille-3D [50] 2018 × ≈2 km - × https://npm3d.fr/paris-lille-3d
DLA-Net [51] 2021 × ≈3 km - × https://github.com/suyanfei/DLA-Net
Toronto 3D [52] 2020 × ≈1 km - × https://github.com/WeikaiTan/Toronto-3D
Min3D [53] 2023 × ≈0.63 km2 - × https://3dom.fbk.eu/benchmarks

MSNet [54] 2018 × - 5–10 pts/m2 × https://github.com/wleigithub/WHU_
pointcloud_dataset

https://redivis.com/datasets/9q3m-9w5pa1a2h
http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/
https://niessner.github.io/Matterport/#paper
http://www.scan-net.org/
https://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/
https://robotvault.bitbucket.io/scenenet-rgbd.html
https://hkust-vgd.github.io/scenenn/
https://rgbd.cs.princeton.edu/
https://sun3d.cs.princeton.edu/
https://github.com/facebookresearch/Replica-Dataset
https://www.rovit.ua.es/dataset/vidrilo/index.html
http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/
http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/
https://zenodo.org/records/4390295
https://zenodo.org/records/4390295
https://npm3d.fr/paris-carla-3d
https://github.com/LiDAR-Perception/LiDAR-CS
https://github.com/LiDAR-Perception/LiDAR-CS
https://www2.isprs.org/commissions/comm1/wg8/benchmark_smars/
https://www2.isprs.org/commissions/comm1/wg8/benchmark_smars/
http://www.semantic3d.net/
https://github.com/nsavinov/semantic3dnet
https://github.com/QingyongHu/SensatUrban
https://ieee-dataport.org/documents/swan-3d-point-cloud-dataset
https://ieee-dataport.org/documents/swan-3d-point-cloud-dataset
https://github.com/unmannedlab/RELLIS-3D
https://github.com/subake/DAPS3D
https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx
https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx
https://github.com/shinke-li/Campus3D
https://romainloiseau.fr/learnable-earth-parser/
https://github.com/Nathan-UW/OpenGF
https://npm3d.fr/paris-lille-3d
https://github.com/suyanfei/DLA-Net
https://github.com/WeikaiTan/Toronto-3D
https://3dom.fbk.eu/benchmarks
https://github.com/wleigithub/WHU_pointcloud_dataset
https://github.com/wleigithub/WHU_pointcloud_dataset

Remote Sens. 2025, 17, 298 8 of 58

Table 2. Cont.

Dataset Name Date Synthetic Spatial Size Resolution Mesh Links

N3C-California [55] 2023 × ≈725 km2 ≥8 pts/m2, 1 m × https://github.com/wymqqq/IKDNet-
pytorch?tab=readme-ov-file

DFC 2018 [56] 2019 × ≈4.3 km2 1 m, 0.05 m ×
https://ieee-dataport.org/open-access/20
18-ieee-grss-data-fusion-challenge-%E2%8
0%93-fusion-multispectral-lidar-and-
hyperspectral-data

DublinCity [57] 2019 × ≈2 km2 ≈299 pts/m2

0.034 m × https://v-sense.scss.tcd.ie/DublinCity/

ArCH3D [58] 2020 × - - × https://archdataset.polito.it/

TerraMobilita/iQmulus [59] 2015 × 10 km - × http://data.ign.fr/benchmarks/
UrbanAnalysis/index.html

KITTI-360 [60] 2023 × 73.7 km - × https://www.cvlibs.net/datasets/kitti-36
0/index.php

nuScenes [61] 2020 × - - × https://www.nuscenes.org/

Oakland3D [62,63] 2009 × - - × http://www.cs.cmu.edu/~vmr/datasets/
oakland_3d/cvpr09/doc/

Paris-rue-Madame [64] 2014 × 0.16 km - × https://people.cmm.minesparis.psl.eu/
users/serna/rueMadameDataset.html

Waymo [65] 2019 × 76 km2 - × https://waymo.com/open/
TUM-City-Campus [66] 2020 × 0.2 km2 - × https://www.pf.bgu.tum.de/en/pub/tst.html
SemanticKITTI [67] 2019 × 73.7 km - × http://www.semantic-kitti.org/

√
: Available; ×: Not Available; -: No Data; All links last accessed: 30 December 2024.

Most of the indoor 3DSS datasets use an RGB-D sensor to generate 3D point clouds [24,25,27–35]
predominantly in real environments. Also, there are other indoor 3DSS datasets that use
Laser Range sensors [26] or are produced using a synthetic environment [30]. Commonly
used sensors to create 3D point clouds in indoor environments are Matterport and Real
Sense cameras created by Matterport inc. and Intel Corporation respectively, Microsoft
Kinect, ASUS Xtion sensors, and SICK LMS LiDAR. In general, each indoor dataset provides
both similar and different information compared to the others; for instance, the presence of
normal vectors [24,25,34], 2D and 3D annotations [24,25,27,30–33], or camera poses [27,33].
Finally, in Figure 2, the number of the available classes, images, and scans are provided for
each dataset.

Remote Sens. 2025, 17, x FOR PEER REVIEW 9 of 62

Oakland3D [62,63] 2009 × - - ×
http://www.cs.cmu.edu/~v
mr/datasets/oak-
land_3d/cvpr09/doc/

Paris-rue-Madame [64] 2014 × 0.16 km - ×

https://people.cmm.mine-
sparis.psl.eu/us-
ers/serna/rueMadame-
Dataset.html

Waymo [65] 2019 × 76 km2 - × https://waymo.com/open/

TUM-City-Campus [66] 2020 × 0.2 km2 - ×
https://www.pf.bgu.tum.de
/en/pub/tst.html

SemanticKITTI [67] 2019 × 73.7 km - ×
http://www.semantic-
kitti.org/

√: Available; ×: Not Available; -: No Data; All links last accessed: 30 December 2024.

Most of the indoor 3DSS datasets use an RGB-D sensor to generate 3D point clouds
[24,25,27–35] predominantly in real environments. Also, there are other indoor 3DSS da-
tasets that use Laser Range sensors [26] or are produced using a synthetic environment
[30]. Commonly used sensors to create 3D point clouds in indoor environments are Mat-
terport and Real Sense cameras created by Matterport inc. and Intel Corporation respec-
tively, Microsoft Kinect, ASUS Xtion sensors, and SICK LMS LiDAR. In general, each in-
door dataset provides both similar and different information compared to the others; for
instance, the presence of normal vectors [24,25,34], 2D and 3D annotations [24,25,27,30–
33], or camera poses [27,33]. Finally, in Figure 2, the number of the available classes, im-
ages, and scans are provided for each dataset.

Figure 2. The number of classes, images, and scans provided in each indoor 3DSS dataset. The
relevant references for each dataset can be found in Table 1.

Figure 2. The number of classes, images, and scans provided in each indoor 3DSS dataset. The
relevant references for each dataset can be found in Table 1.

https://github.com/wymqqq/IKDNet-pytorch?tab=readme-ov-file
https://github.com/wymqqq/IKDNet-pytorch?tab=readme-ov-file
https://ieee-dataport.org/open-access/2018-ieee-grss-data-fusion-challenge-%E2%80%93-fusion-multispectral-lidar-and-hyperspectral-data
https://ieee-dataport.org/open-access/2018-ieee-grss-data-fusion-challenge-%E2%80%93-fusion-multispectral-lidar-and-hyperspectral-data
https://ieee-dataport.org/open-access/2018-ieee-grss-data-fusion-challenge-%E2%80%93-fusion-multispectral-lidar-and-hyperspectral-data
https://ieee-dataport.org/open-access/2018-ieee-grss-data-fusion-challenge-%E2%80%93-fusion-multispectral-lidar-and-hyperspectral-data
https://v-sense.scss.tcd.ie/DublinCity/
https://archdataset.polito.it/
http://data.ign.fr/benchmarks/UrbanAnalysis/index.html
http://data.ign.fr/benchmarks/UrbanAnalysis/index.html
https://www.cvlibs.net/datasets/kitti-360/index.php
https://www.cvlibs.net/datasets/kitti-360/index.php
https://www.nuscenes.org/
http://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/
http://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/
https://people.cmm.minesparis.psl.eu/users/serna/rueMadameDataset.html
https://people.cmm.minesparis.psl.eu/users/serna/rueMadameDataset.html
https://waymo.com/open/
https://www.pf.bgu.tum.de/en/pub/tst.html
http://www.semantic-kitti.org/

Remote Sens. 2025, 17, 298 9 of 58

After a careful examination of the available outdoor 3DSS datasets, it was concluded
that a large variety of sensors is used to map the outdoor 3D environment providing raw 3D
point clouds. Specifically, there are datasets created either using terrestrial, aerial, or mobile
laser scanner–LiDAR [36,38,39,41,43–46,48–67], photogrammetry [37,40,42,44,47], or even
using mobile range finders [36]. For instance, several datasets have been created using
Velodyne LiDAR [36,38,39,50,53,60,61,64,66,67], Oyster LiDAR [43–45], Riegl LiDAR [46,51],
DSLR cameras [46,57,58], and Unmanned Aerial Vehicles (UAVs), along with their built-in
cameras [37,42,47,58], etc. In general, each outdoor dataset provides both similar and
different information compared to the others. For example, providing data of the same
area but with different resolution (500 k, 15 M, 223 M points) [37], using a tilted LiDAR
acquisition process [38], capturing multi-temporal [46] or multimodal data [40], and data
for a specific application such as the classification of cultural heritage monuments [58] or
the semantic segmentation of facades [51]. Additionally, each photogrammetric dataset has
a different Ground Sampling Distance (GSD), and each LiDAR dataset has a different ratio
of pts/m2, both of which play a significant role in each application (Table 2). In Figure 3, the
number of the available classes, images, and scans are displayed for each dataset. Finally,
in Figure 4, the statistics about the usage of the indoor and outdoor datasets is presented
based on the examined SoTA methods in Section 5.

Remote Sens. 2025, 17, x FOR PEER REVIEW 10 of 62

After a careful examination of the available outdoor 3DSS datasets, it was concluded
that a large variety of sensors is used to map the outdoor 3D environment providing raw
3D point clouds. Specifically, there are datasets created either using terrestrial, aerial, or
mobile laser scanner–LiDAR [36,38,39,41,43–46,48–67], photogrammetry [37,40,42,44,47],
or even using mobile range finders [36]. For instance, several datasets have been created
using Velodyne LiDAR [36,38,39,50,53,60,61,64,66,67], Oyster LiDAR [43–45], Riegl Li-
DAR [46,51], DSLR cameras [46,57,58], and Unmanned Aerial Vehicles (UAVs), along
with their built-in cameras [37,42,47,58], etc. In general, each outdoor dataset provides
both similar and different information compared to the others. For example, providing
data of the same area but with different resolution (500 k, 15 M, 223 M points) [37], using
a tilted LiDAR acquisition process [38], capturing multi-temporal [46] or multimodal data
[40], and data for a specific application such as the classification of cultural heritage mon-
uments [58] or the semantic segmentation of facades [51]. Additionally, each photogram-
metric dataset has a different Ground Sampling Distance (GSD), and each LiDAR dataset
has a different ratio of pts/m2, both of which play a significant role in each application
(Table 2). In Figure 3, the number of the available classes, images, and scans are displayed
for each dataset. Finally, in Figure 4, the statistics about the usage of the indoor and out-
door datasets is presented based on the examined SoTA methods in Section 5.

Figure 3. Cont.

Remote Sens. 2025, 17, 298 10 of 58

Figure 3. The number of classes, points, and scans of the outdoor 3D semantic segmentation datasets.
The relevant references for each dataset can be found in Table 2.

Remote Sens. 2025, 17, 298 11 of 58
Remote Sens. 2025, 17, x FOR PEER REVIEW 12 of 62

Figure 4. Statistics of datasets usage based on the SoTA methods examination in Section 5. The
relevant references for each dataset can be found in Table 1 and 2.

4. Evaluation Metrics in 3D Semantic Segmentation
In general, the performance of the developed algorithms is examined using different

metrics regarding the under-investigation task. Basically, every benchmark dataset pro-
vides a set of test data and evaluation metrics for comparison purposes. Every upcoming
method that uses the benchmark is evaluated using the data and the metrics. In fact, there
are several metrics like accuracy, recall, precision, and F1-Score. In 2D and 3D semantic
segmentation, the most common metric is Intersection over Union (IoU), which better as-
sesses the performance of the model than the others. In this section, the commonly used
evaluation metrics are described. But firstly, the confusion matrix should be examined.

4.1. Confusion Matrix

The confusion matrix is the basis on the evaluation of an algorithm using test data. It
is created measuring the True Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN) for each class. In fact, such metrics are further used for the cal-
culation of the evaluation metrics presented earlier. Commonly, the measured metrics, i.e.,
TP, TN, etc., are visualized using the confusion matrix. An example of a confusion matrix
of two classes is presented below.

Comparing the predicted values with the actual values, the TP, FP, FN, and TN val-
ues could be derived forming the confusion matrix. While in Figure 5, a 2 × 2 confusion
matrix is presented, most of the time, there are more than two classes, e.g., n, and hence,
the confusion matrix could be an n × n matrix regarding the number of them. In Figure 6,
an n × n confusion matrix is presented. The TP, TN, FP, and FN values can be derived by
examining the n × n confusion matrix for each class. For instance, for Class 3, the TP are
defined by the value included in cell (3,3), the FP are defined by adding the values of the
third column, excluding cell (3,3), the FN are defined by adding the values of the third
row, excluding the cell (3,3), and, finally, the TN are defined by subtracting the TP, FP and
FN from the total instances.

Figure 4. Statistics of datasets usage based on the SoTA methods examination in Section 5. The
relevant references for each dataset can be found in Table 1 and Table 2.

4. Evaluation Metrics in 3D Semantic Segmentation
In general, the performance of the developed algorithms is examined using different

metrics regarding the under-investigation task. Basically, every benchmark dataset provides
a set of test data and evaluation metrics for comparison purposes. Every upcoming method
that uses the benchmark is evaluated using the data and the metrics. In fact, there are
several metrics like accuracy, recall, precision, and F1-Score. In 2D and 3D semantic
segmentation, the most common metric is Intersection over Union (IoU), which better
assesses the performance of the model than the others. In this section, the commonly used
evaluation metrics are described. But firstly, the confusion matrix should be examined.

4.1. Confusion Matrix

The confusion matrix is the basis on the evaluation of an algorithm using test data. It
is created measuring the True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN) for each class. In fact, such metrics are further used for the calculation
of the evaluation metrics presented earlier. Commonly, the measured metrics, i.e., TP,
TN, etc., are visualized using the confusion matrix. An example of a confusion matrix of
two classes is presented below.

Comparing the predicted values with the actual values, the TP, FP, FN, and TN values
could be derived forming the confusion matrix. While in Figure 5, a 2 × 2 confusion matrix
is presented, most of the time, there are more than two classes, e.g., n, and hence, the
confusion matrix could be an n × n matrix regarding the number of them. In Figure 6, an
n × n confusion matrix is presented. The TP, TN, FP, and FN values can be derived by
examining the n × n confusion matrix for each class. For instance, for Class 3, the TP are
defined by the value included in cell (3,3), the FP are defined by adding the values of the
third column, excluding cell (3,3), the FN are defined by adding the values of the third row,
excluding the cell (3,3), and, finally, the TN are defined by subtracting the TP, FP and FN
from the total instances.

Remote Sens. 2025, 17, 298 12 of 58Remote Sens. 2025, 17, x FOR PEER REVIEW 13 of 62

Figure 5. A 2 × 2 confusion matrix. Negative predictions (red); positive predictions (green).

Figure 6. An n × n confusion matrix. Negative predictions (red); positive predictions (green).

4.2. Evaluation Metrics

In general, the most straightforward metric is accuracy, i.e., the ratio between the
correctly predicted values divided by the total number of values. However, there are dif-
ferent accuracy metrics presented in the literature, i.e., the Overall Accuracy (OAcc), mean
class accuracy (mcAcc), and mean average accuracy (maAcc). More concretely, the OAcc
or Acc, is the predefined ratio for the test set (Equation (1)), the mcAcc is the mean accu-
racy of a class for a specific number of iterations (Equation (2)), and the maAcc is the mean
accuracy of all the classes divided by the number of classes (Equation (3)). In fact, there is
confusion between the different accuracy metrics, especially for multi-class experiments.
Hence, the reader should always examine the formulas used in any case.

OAcc = ்ା்ே்ା்ேାிାிே (1)

mcAcc = ଵ# ∑ 𝑂𝐴 cc (2)

maAcc = ଵ# ∑ 𝑂𝐴 cc (3)

where

• TP, TN, FP, FN: True Positive, True Negative, False Positive and False Negative;
• #n: Number of iterations;
• n: Iteration;
• #c: Number of classes;
• C: Class.

In fact, accuracy gives informative results when it is calculated using balanced data
regarding the classes. Hence, there are more evaluation metrics derived using the confu-
sion matrix, i.e., precision, recall, and F1-score. Intuitively, precision measures how vul-
nerable the model is in positive predictions or, in other words, the quality of the positive
predictions; recall measures how prone the model is to correctly perform a positive pre-
diction; and the F1-score is the harmonic mean between precision and recall. Another ter-
minology about recall is the True Positive rate or sensitivity.

Figure 5. A 2 × 2 confusion matrix. Negative predictions (red); positive predictions (green).

Remote Sens. 2025, 17, x FOR PEER REVIEW 13 of 62

Figure 5. A 2 × 2 confusion matrix. Negative predictions (red); positive predictions (green).

Figure 6. An n × n confusion matrix. Negative predictions (red); positive predictions (green).

4.2. Evaluation Metrics

In general, the most straightforward metric is accuracy, i.e., the ratio between the
correctly predicted values divided by the total number of values. However, there are dif-
ferent accuracy metrics presented in the literature, i.e., the Overall Accuracy (OAcc), mean
class accuracy (mcAcc), and mean average accuracy (maAcc). More concretely, the OAcc
or Acc, is the predefined ratio for the test set (Equation (1)), the mcAcc is the mean accu-
racy of a class for a specific number of iterations (Equation (2)), and the maAcc is the mean
accuracy of all the classes divided by the number of classes (Equation (3)). In fact, there is
confusion between the different accuracy metrics, especially for multi-class experiments.
Hence, the reader should always examine the formulas used in any case.

OAcc = ்ା்ே்ା்ேାிାிே (1)

mcAcc = ଵ# ∑ 𝑂𝐴 cc (2)

maAcc = ଵ# ∑ 𝑂𝐴 cc (3)

where

• TP, TN, FP, FN: True Positive, True Negative, False Positive and False Negative;
• #n: Number of iterations;
• n: Iteration;
• #c: Number of classes;
• C: Class.

In fact, accuracy gives informative results when it is calculated using balanced data
regarding the classes. Hence, there are more evaluation metrics derived using the confu-
sion matrix, i.e., precision, recall, and F1-score. Intuitively, precision measures how vul-
nerable the model is in positive predictions or, in other words, the quality of the positive
predictions; recall measures how prone the model is to correctly perform a positive pre-
diction; and the F1-score is the harmonic mean between precision and recall. Another ter-
minology about recall is the True Positive rate or sensitivity.

Figure 6. An n × n confusion matrix. Negative predictions (red); positive predictions (green).

4.2. Evaluation Metrics

In general, the most straightforward metric is accuracy, i.e., the ratio between the
correctly predicted values divided by the total number of values. However, there are
different accuracy metrics presented in the literature, i.e., the Overall Accuracy (OAcc),
mean class accuracy (mcAcc), and mean average accuracy (maAcc). More concretely, the
OAcc or Acc, is the predefined ratio for the test set (Equation (1)), the mcAcc is the mean
accuracy of a class for a specific number of iterations (Equation (2)), and the maAcc is
the mean accuracy of all the classes divided by the number of classes (Equation (3)). In
fact, there is confusion between the different accuracy metrics, especially for multi-class
experiments. Hence, the reader should always examine the formulas used in any case.

OAcc =
TP + TN

TP + TN + FP + FN
(1)

mcAcc =
1

#n∑n OAcc (2)

maAcc =
1
#c∑c OAcc (3)

where

• TP, TN, FP, FN: True Positive, True Negative, False Positive and False Negative;
• #n: Number of iterations;
• n: Iteration;
• #c: Number of classes;
• C: Class.

In fact, accuracy gives informative results when it is calculated using balanced data
regarding the classes. Hence, there are more evaluation metrics derived using the confusion
matrix, i.e., precision, recall, and F1-score. Intuitively, precision measures how vulnerable
the model is in positive predictions or, in other words, the quality of the positive predictions;
recall measures how prone the model is to correctly perform a positive prediction; and the
F1-score is the harmonic mean between precision and recall. Another terminology about
recall is the True Positive rate or sensitivity.

Precision =
TP

TP + FP
(4)

Remote Sens. 2025, 17, 298 13 of 58

Recall =
TP

TP + FN
(5)

F1 − score = 2
Precision × Recall
Precision + Recall

(6)

In most cases, the IoU metric is calculated to assess the performance of 2D and 3D
semantic segmentation models. There are different IoU metrics like the mean IoU (mIoU)
and the frequency-weighted IoU. A different terminology of the IoU is the Jaccard Index.
Intuitively, the IoU quantifies the degree of overlap between the predicted and the actual
class, e.g., of the masks. Moreover, the frequency-weighted IoU considers the amount
of data in each class to handle the class imbalance problem, e.g., in an urban area, there
will be fewer points representing the class bicycle than those representing the class street.
In fact, the class imbalance problem is a crucial challenge for ML-DL applications, while
the commonly used metrics, i.e., accuracy, precision, recall, and IoU, are affected by the
imbalance among the semantic classes. Finally, using the confusion matrix, the IoU of each
class can be calculated as follows.

IoU =
TP

TP + FP + FN
(7)

mIoU =
1
#c∑c IoU (8)

5. Three-Dimensional Semantic Segmentation
5.1. Point-Based Methods
5.1.1. Point-Wise MLP

Up to the presentation of the PointNet [68] architecture, the extraction of 3D point
cloud features was performed manually. PointNet [68] was the first architecture that en-
abled the extraction of deep learning features directly using 3D point clouds. To be more
specific, the input of the PointNet architecture was a point cloud with n × 3 dimensions.
Firstly, the authors introduced the T-Net, which learns to transform the given point cloud,
e.g., rotate, translate, and change its scale. Secondly, the transformed point cloud was
fed into multiple shared Multi-Layer Perceptrons (MLPs), resulting in a point cloud with
n × 64, i.e., local features, dimensions that finally were transformed to n × 1024 di-
mensions, i.e., global features. Thirdly, the max-pooling operation was applied on the
n × 1024 point cloud, selecting the maximum value between the 1024 values. The idea
was that the maximum value was independent to the values order; thus, it handles the
unorder characteristic of point clouds. However, PointNet has several limitations, such as
its inability to exploit the information of the local structures in point clouds. Hence, Qi et al.
(2017) [69] proposed an extension of PointNet called PointNet++. The main contribution
of PointNet++ was the proposed hierarchical structure that decodes the information of
point clouds using three abstraction levels. The first one was implemented by the Sampling
Layer, which finds the centroids of local regions by subsampling the given point cloud
using the Farthest Point Sampling (FPS) algorithm. The second one was implemented by
the Grouping Layer, which creates point neighborhoods using the Ball Query algorithm.
Each point in the neighborhood was defined with relative coordinates to the neighborhood
centroid, achieving the extraction of the neighborhood’s local characteristics. Finally, the
PointNet++ architecture, presented in Figure 7, used several mini-PointNet layers to extract
meaningful features from the point sets. PointNet++ used several abstraction levels for
the feature extraction, i.e., on multiple scales, and thus achieved the extraction of both
fine-grained and global features, resulting in an improved version of PointNet.

Remote Sens. 2025, 17, 298 14 of 58Remote Sens. 2025, 17, x FOR PEER REVIEW 15 of 62

Figure 7. The PointNet++ architecture [69].

Since the introduction of PointNet and PointNet++, several methods have been pro-
posed to improve the extraction of richer local information from point clouds, especially
with computationally efficient approaches such as the RandLA-Net [70] architecture. Spe-
cifically, Hu et al. (2020) [70] tried to expand the application of point-wise MLP methods
from small point clouds, e.g., thousands of points, to the large ones, e.g., millions of points,
without using pre/post-processing steps and by replacing the computationally heavy
sampling methods with lighter ones. To be more specific, Hu et al. (2020) stated that the
majority of methods presented so far used complicated sampling methods, categorized
into (i) Heuristic Sampling methods (Farthest Point Sampling (FPS), Inverse Density Im-
portance Sampling (IDIS), and Random Sampling (RS)) and (ii) learning-based sampling
methods (Generator-based Sampling (GS), Continuous Relaxation-based Sampling (CRS),
and Policy Gradient-based Sampling (PGS)). Furthermore, the existing local feature learn-
ers were based on point cloud transformations, e.g., voxelization and graphs, and they
did not decompose the complicated local information of point clouds of highly detailed
objects, resulting in time-consuming approaches with low performance using such data.
The authors proposed the local feature aggregation (LFA) module accompanied by Ran-
dom Sampling to overcome the aforementioned limitations. More precisely, the LFA mod-
ule included the Local Spatial Encoding (LocSE) and the attentive pooling (AP) submod-
ules. The LocSE submodule firstly found the k-nearest neighbors for each center point
using the Euclidean distance, then defined the relative point positions of the neighboring
points to the center point, and, finally, concatenated the features of the neighboring points
with the relative positions to create an augmented feature vector. The AP submodule was
introduced on behalf of max/mean pooling approaches. It first received the created feature
vector and computed attention scores using several shared MLPs and SoftMax. Finally,
the important features were selected based on a weighted summation approach. In addi-
tion to the aforementioned submodules, the authors presented the Dilated Residual Block
(DRB), which consists of multiple LocSE, AP, and skip connections in order to collect in-
formation using multiple receptive fields, preserving the local details of points’ neighbor-
hoods. In summary, the RandLA-Net architecture was constructed using several LFA
modules and Random Sampling and was evaluated on 3D semantic segmentation bench-
marks, achieving state-of-the-art results.

Fan et al. (2021) [1] proposed the SCF module, aiming to provide a robust method for
the 3D semantic segmentation of large point clouds. The SCF module was composed of
three main blocks: Local Polar Representation (LPR), Dual-Distance Attentive Pooling
(DDAP), and Global Contextual Feature (GCF). More precisely, LPR aimed to find a rep-
resentation of the local neighborhood of points that was invariant to Z-axis rotation. In
fact, the objects belonging to the same category, e.g., chairs in a scene like an office, were
presented with different orientations, resulting in 3DSS features that were orientation-

Figure 7. The PointNet++ architecture [69].

Since the introduction of PointNet and PointNet++, several methods have been pro-
posed to improve the extraction of richer local information from point clouds, especially
with computationally efficient approaches such as the RandLA-Net [70] architecture. Specif-
ically, Hu et al. (2020) [70] tried to expand the application of point-wise MLP methods
from small point clouds, e.g., thousands of points, to the large ones, e.g., millions of points,
without using pre/post-processing steps and by replacing the computationally heavy
sampling methods with lighter ones. To be more specific, Hu et al. (2020) stated that the
majority of methods presented so far used complicated sampling methods, categorized into
(i) Heuristic Sampling methods (Farthest Point Sampling (FPS), Inverse Density Importance
Sampling (IDIS), and Random Sampling (RS)) and (ii) learning-based sampling methods
(Generator-based Sampling (GS), Continuous Relaxation-based Sampling (CRS), and Policy
Gradient-based Sampling (PGS)). Furthermore, the existing local feature learners were
based on point cloud transformations, e.g., voxelization and graphs, and they did not
decompose the complicated local information of point clouds of highly detailed objects,
resulting in time-consuming approaches with low performance using such data. The
authors proposed the local feature aggregation (LFA) module accompanied by Random
Sampling to overcome the aforementioned limitations. More precisely, the LFA module
included the Local Spatial Encoding (LocSE) and the attentive pooling (AP) submodules.
The LocSE submodule firstly found the k-nearest neighbors for each center point using
the Euclidean distance, then defined the relative point positions of the neighboring points
to the center point, and, finally, concatenated the features of the neighboring points with
the relative positions to create an augmented feature vector. The AP submodule was
introduced on behalf of max/mean pooling approaches. It first received the created feature
vector and computed attention scores using several shared MLPs and SoftMax. Finally, the
important features were selected based on a weighted summation approach. In addition to
the aforementioned submodules, the authors presented the Dilated Residual Block (DRB),
which consists of multiple LocSE, AP, and skip connections in order to collect information
using multiple receptive fields, preserving the local details of points’ neighborhoods. In
summary, the RandLA-Net architecture was constructed using several LFA modules and
Random Sampling and was evaluated on 3D semantic segmentation benchmarks, achieving
state-of-the-art results.

Fan et al. (2021) [1] proposed the SCF module, aiming to provide a robust method
for the 3D semantic segmentation of large point clouds. The SCF module was composed
of three main blocks: Local Polar Representation (LPR), Dual-Distance Attentive Pooling
(DDAP), and Global Contextual Feature (GCF). More precisely, LPR aimed to find a repre-
sentation of the local neighborhood of points that was invariant to Z-axis rotation. In fact,
the objects belonging to the same category, e.g., chairs in a scene like an office, were pre-

Remote Sens. 2025, 17, 298 15 of 58

sented with different orientations, resulting in 3DSS features that were orientation-sensitive.
Thus, using LPR, the neighborhood of each point was represented using polar instead of
Cartesian coordinates. More precisely, the points’ initial local representation was defined
using the Euclidean distance. Then, the local direction of each point in the neighborhood
was extracted by calculating and then updating two angles: φ and θ. Specifically, φwas
defined among each 3D point in the neighborhood of the under-process 3D point, the
3D point, and the X-axis in the XY-plane. Moreover, θwas defined among each 3D point
in the neighborhood of the under-process 3D point, the 3D point, and the Z-axis in the
XY-plane. θ and φ were then updated based on the barycenter point of each neighborhood.
The LPR module answered the research question of how to represent the local context
of a 3D point cloud. Afterward, the DDAP module was proposed to learn local context
features using the LPR representation of points’ neighborhoods. To be more specific, the
DDAP module used the geometric distance in the world space, the feature distance in the
feature space, and geometric patterns. The feature distance was the mean value of the
subtraction between the features of the central point and the features of the under-process
neighboring point. Furthermore, the geometric patterns were created by concatenating
the LPR representation with the original coordinates and feeding them into shared MLP
layers. Afterward, the MLP output was fed into SoftMax, forming the attentive pooling
layer, which was learnable. Finally, the local contextual features were gathered using a
weighted sum operation between the neighboring point features and the output of the
attentive pooling layer. The DDAP module answered the research question of how to learn
local contextual features. Apart from local features, 3DSS methods also need global features
to achieve high-end results. To this end, the authors proposed the GCF module, which
combined the (i) local x, y, and z coordinates with (ii) a ratio, defined as the number of
points in the local neighborhood divided by the number of points in the global neighbor-
hood, using MLP. The GCF module answered the research question of how to learn global
contextual features. Finally, the SCF architecture was defined using multiple SCF modules
in an encoder–decoder structure.

Qiu, Anwar, and Barnes (2021) [71] proposed a 3DSS network aiming to solve sev-
eral limitations of SoTA approaches. To be more specific, the authors stated that SoTA
methods were time-consuming or they created intermediate representations like graphs
or voxels, which cause a partial loss of information. To this end, they proposed a point-
based method that aimed to remedy three major drawbacks: (i) ambiguity in close points,
(ii) redundant features, and (iii) inadequate global representations. Firstly, ambiguity in
close points refers to the limitations that occur due to the neighborhood selection process,
like overlapping regions or outlier selection. To alleviate the aforementioned disadvantage,
the authors proposed an augmentation of the points’ neighborhood. Secondly, redundant
features refer to the models that use the same features multiple times to increase their
performance. The authors stated that this redundant information increased the complexity
of the models rather than improving their performance. Hence, they proposed to cate-
gorize the model’s input, e.g., geometric or semantic, in order to fully utilize it. Finally,
inadequate global representations refer to the limitations of SoTA feature maps with regard
to 3DSS. Specifically, the authors stated that SoTA encoder–decoder methods decreased
the details of the created feature maps, resulting in difficulties for 3DSS. Thus, the authors
proposed a multi-resolution approach in order to preserve the fine-grained details through
the model. The aforementioned improvements proposed by the authors were included
in the Bilateral Context Module and the Adaptive Fusion Module. Firstly, the Bilateral
Context Module was decomposed into Bilateral Augmentation, Augmentation Loss, and
Mixed Local Aggregation. In the Bilateral Augmentation unit, the neighborhood of each
centroid was defined using the kNN algorithm with 3D Euclidean distance. Then, the local

Remote Sens. 2025, 17, 298 16 of 58

context (geometric and semantic) of each centroid was defined by combining its absolute co-
ordinates with the relative of the centroid coordinates for each neighboring point. The local
context was augmented by using bilateral offsets, which were guided by the Augmentation
Loss using penalties during the learning process. Finally, the Mixed Local Aggregation
unit was used to construct a neighborhood representation that precisely demonstrated the
local distinctness of neighborhoods. Secondly, the Adaptive Fusion Module was used to
extract feature maps for 3DSS using multi-resolution features. Specifically, several point
clouds with descending resolutions were processed using the Bilateral Context Module,
extracting multiple scales of information. Then, each feature map was gradually upsampled
to the original representation, forming an upsampled set of feature maps that were finally
fused adaptively at the point level. Overall, the authors proposed the BAAF-Net, which
included the aforementioned modules, units, and losses and was evaluated using different
benchmarks, metrics, and training schemes.

5.1.2. Point Convolution

Li et al. (2018) [72] proposed the PointCNN architecture, aiming to handle the irregu-
larity and unorder characteristics of point clouds for 3D learning applications. First and
foremost, the authors provided a detailed analysis of the limitations regarding the exten-
sion of conventional 2D CNN to 3D space, which was the main research question of Point
Convolution methods. Thus, they proposed to extend the application of the typical CNN to
3DSS features rather than the 3D point cloud. PointCNN aimed to weight and permute the
extracted features a predefined number of times and then to use the convolution operation
on them. To be more specific, PointCNN was fed with a set of 3D points, along with their
corresponding features. The X-Conv operator was proposed by the authors to be the main
unit of the PointCNN architecture. It was used to create a new representation based on
the input features, which had more depth in features and fewer points, e.g., it was a more
abstracted and informative representation of the data than the first one. X-Conv for 3DSS
exploited the furthest point sampling on an unorder local region of points, which were
first transformed from the global to a local coordinate system. Receptive field was crucial
for 2D CNNs, contributing seriously to the performance of 2DSS algorithms. PointCNN
defined the receptive field in 3DCNN by calculating a ratio (K/N) using the number of
neighboring points of a 3D point in the current (K) and previous layer (N). To conclude,
PointCNN was an encoder–decoder architecture that used the X-Conv operator in both the
encoder and decoder part. The main difference was that in the encoder phase, the created
representations had fewer points and richer features, while in the decoder phase, they were
the opposite, with the addition of skip connections.

Thomas et al. (2019) [73] presented the Kernel Point Convolution (KPConv) architec-
ture, which was inspired from the typical 2D convolution operator. A comparison between
image convolution and KPConv convolution is presented in Figure 8. Specifically, KPConv
weights were carried by the 3D points in Euclidean space in the same manner as the fea-
tures. In general, the rigid KPConv operator was applied on the 3D points close to the
convolution location. To be more specific, the neighborhood of the convolution location was
defined using a specific radius. The KPConv operator took as an input the neighborhood
of points with coordinates relative to the convolution location. The convolution kernel was
defined by points that were linked with their weights and aimed to transform the features
of the given neighborhood points to a new set of features. Specifically, the transformation
of feature dimensions was performed using a correlation function between the input and
the kernel points. The authors used the linear correlation function. Additionally, they
presented a comparison between the Gaussian correlation and the linear correlation to
support their choice. Moreover, the authors proposed a deformable version of the KPConv

Remote Sens. 2025, 17, 298 17 of 58

operator, which considered the local geometry of the points by applying different shifts
at the convolution location. In fact, the convolution location was critical for the proposed
operator. Furthermore, the authors included grid subsampling to handle the varying
density issue of some 3D point clouds, explained the pooling layer and the KPConv layer,
and then analyzed the selection of the network parameters. Finally, the authors proposed
two architectures. The first one was about classification, while the second one was about
segmentation. To be more specific, the segmentation architecture included the classification
architecture in the encoder part, while the decoder part applied nearest upsampling in com-
bination with skip connections between the encoder and decoder features. To conclude, the
proposed KPConv architectures were evaluated on different benchmarks for classification
and segmentation purposes.

Remote Sens. 2025, 17, x FOR PEER REVIEW 18 of 62

varying density issue of some 3D point clouds, explained the pooling layer and the
KPConv layer, and then analyzed the selection of the network parameters. Finally, the
authors proposed two architectures. The first one was about classification, while the sec-
ond one was about segmentation. To be more specific, the segmentation architecture in-
cluded the classification architecture in the encoder part, while the decoder part applied
nearest upsampling in combination with skip connections between the encoder and de-
coder features. To conclude, the proposed KPConv architectures were evaluated on dif-
ferent benchmarks for classification and segmentation purposes.

Figure 8. Comparison of image convolution and KPConv convolution in 2D space [73].

Liu et al. (2021) [74] introduced the FG-Net, a general point-based 3D deep learning
architecture that can be used in different downstream applications like 3DSS or 3D classi-
fication. First and foremost, the authors presented several limitations of SoTA methods.
For example, the SoTA methods contained time-consuming operations, like Farthest Point
Sampling, or intermediate representations, such as graphs or voxels, they could not be
applied to large-scale point clouds, and they had difficulty understanding detailed geom-
etry. To address the limitations of the existing methods, the authors proposed the FG-Net
architecture, in which the core module was called FG-Conv. Specifically, the FG-Conv
module was composed of three main parts: point-wise correlated feature mining (PFM),
Geometric Convolutional Modeling (GCM), and Attentional Aggregation (AG). Before the
PFM, the authors proposed a Noise and Outlier Filtering (NOF) approach. To be more
specific, the neighborhood of each point was determined based on a radius NN ball query
algorithm. Afterward, an estimation of a point’s neighborhood density was calculated. If
the estimated density was lower than a threshold, the point was characterized as isolated
and was deleted. Otherwise, the neighborhood of points was modeled as a Gaussian Dis-
tribution (µ, σ). Finally, neighborhood points were removed if the mean distance was not
in the confidence interval of the Gaussian Distribution. After NOF, the point cloud was
represented using the 3D coordinates along with the associated features like normals, col-
ors, and learnt latent features. Using the filtered point cloud and knowing the neighbor-
hood of each point, PFM defined a similarity score, in both 3D and features space, between
the center point and each neighboring point by calculating the inner product between
them. Afterward, the calculated similarity vector was passed into a learnt attention mech-
anism to transform the similarity scores based on the applied downstream 3D task, e.g.,
3DSS. The new similarity scores were multiplied element-wise, with the 3D points result-
ing in the augmented attentional feature matrix, which was concatenated with the original
features. PFM aimed to construct a feature space in which the relevant features were en-
hanced while the irrelevant features were attenuated. Moreover, GCM mimicked the de-
formable convolution from 2D space to 3D point cloud data and aimed to model the geo-
metric structure of points. Firstly, a correlation function was defined to calculate the asso-
ciation between the convolution kernel points and the local geometry, i.e., the points’
neighborhood in a local coordinate system. The correlation function aimed to overcome

Figure 8. Comparison of image convolution and KPConv convolution in 2D space [73].

Liu et al. (2021) [74] introduced the FG-Net, a general point-based 3D deep learning
architecture that can be used in different downstream applications like 3DSS or 3D classi-
fication. First and foremost, the authors presented several limitations of SoTA methods.
For example, the SoTA methods contained time-consuming operations, like Farthest Point
Sampling, or intermediate representations, such as graphs or voxels, they could not be
applied to large-scale point clouds, and they had difficulty understanding detailed geome-
try. To address the limitations of the existing methods, the authors proposed the FG-Net
architecture, in which the core module was called FG-Conv. Specifically, the FG-Conv
module was composed of three main parts: point-wise correlated feature mining (PFM),
Geometric Convolutional Modeling (GCM), and Attentional Aggregation (AG). Before the
PFM, the authors proposed a Noise and Outlier Filtering (NOF) approach. To be more
specific, the neighborhood of each point was determined based on a radius NN ball query
algorithm. Afterward, an estimation of a point’s neighborhood density was calculated. If
the estimated density was lower than a threshold, the point was characterized as isolated
and was deleted. Otherwise, the neighborhood of points was modeled as a Gaussian
Distribution (µ, σ). Finally, neighborhood points were removed if the mean distance was
not in the confidence interval of the Gaussian Distribution. After NOF, the point cloud was
represented using the 3D coordinates along with the associated features like normals, colors,
and learnt latent features. Using the filtered point cloud and knowing the neighborhood
of each point, PFM defined a similarity score, in both 3D and features space, between the
center point and each neighboring point by calculating the inner product between them.
Afterward, the calculated similarity vector was passed into a learnt attention mechanism
to transform the similarity scores based on the applied downstream 3D task, e.g., 3DSS.
The new similarity scores were multiplied element-wise, with the 3D points resulting
in the augmented attentional feature matrix, which was concatenated with the original
features. PFM aimed to construct a feature space in which the relevant features were
enhanced while the irrelevant features were attenuated. Moreover, GCM mimicked the
deformable convolution from 2D space to 3D point cloud data and aimed to model the

Remote Sens. 2025, 17, 298 18 of 58

geometric structure of points. Firstly, a correlation function was defined to calculate the
association between the convolution kernel points and the local geometry, i.e., the points’
neighborhood in a local coordinate system. The correlation function aimed to overcome the
unstructured and unorder characteristics of 3D point clouds by increasing their value as
the kernel points were closer to the local geometry. Then, the kernel function was defined
as the sum of the correlation values with learnable weights and applied to capture the local
geometry. Finally, the Attentional Aggregation component was defined to decrease the
information loss when using the geometric and feature patterns by finding the meaningful
features and aggregating them. The FG-Net was an encoder–decoder-based architecture
that leveraged multi-resolution point clouds. To be more specific, the encoder was based
on residual learning blocks (RLB) inspired by ResNet [75]. In fact, the FG-Conv operator
was the core of the RLB. Between the encoder and the decoder, there was Point Clouds
Global Feature Extraction, which aimed to capture the global dependencies in point clouds
using the Nonlocal Attentive Module. Finally, they proposed a learning sampling approach
called IGSAM, using the advantages of inverse density (IDS) and Gumbel SoftMax sam-
pling instead of time-consuming point sampling methods. To conclude, the FG-Net was
evaluated over different benchmarks for 3D classification and 3DSS using the mIoU metric.
Additionally, the authors evaluated the performance of different models in 3DSS regarding
their sampling technique, as well as the computation and memory consumption.

5.1.3. Recurrent Neural Networks

Huang, Wang, and Neumann (2018) [76] observed that the local information incorpo-
rated into 3D point clouds was not sufficiently exploited by SoTA methods. Additionally,
they stated that SoTA methods spent a wealth of time on the computation of local depen-
dencies. Thus, they proposed the RSNets, a series of a Slice Pooling Layer (SPL), recurrent
neural network (RNN) Layers, and a Slice Unpooling Layer (SUL). The aforementioned
components were incorporated into the Local Dependency Module. Firstly, the under-
process 3D point cloud was fed into the Input Feature Block (IFB). More concretely, the IFB
transformed an unordered 3D point cloud into a set of unordered features. The unordered
features were then input into the SPLs. More specifically, there were three SPL layers, one
for each direction, i.e., x, y, and z, called slices. Each slice contained a set of 3D points.
Afterward, a global feature vector for each slice was produced by aggregating the slice
points’ features. Finally, a set of an ordered sequence of features was created, which was
the input of the RNN layer. In fact, the SPL created a representation of the features that can
be exploited by the RNN bidirectional layers. The output features of the RNN layers were
fed into the SUL to assign them to each point. To conclude, the RSNets architecture was
evaluated using different large-scale point cloud benchmarks after a thorough analysis of
ablation studies and experiments.

5.1.4. Attention Mechanism and Transformers

In general, the attention mechanism included in the transformer architecture is promis-
ing for 3DSS, as it is independent of 3D point cloud characteristics such as irregularity and
disorder [14,23]. Based on the SoTA performance of transformers on different tasks [77],
Zhao et al. (2021) [78] stated that the self-attention mechanism appears particularly relevant
to be used in 3D tasks and proposed the Point Transformer architecture (Figure 9). First
and foremost, the authors stated that the self-attention mechanism can be categorized into
scalar and vector attention. In fact, the difference between scalar and vector attention is the
creation of scalar and vector scores, respectively. Thus, the vector attention mechanism was
selected for the Point Transformer architecture due to its ability to capture more detailed
information about neighboring 3D points [78]. The vector attention equation components

Remote Sens. 2025, 17, 298 19 of 58

were the three point-wise feature transformations (φ, ψ, α) like MLPs or linear projections,
the position encoding function δ, a normalization function ρ like SoftMax, the relation func-
tion β, and the mapping function γ. To be more specific, the vector attention mechanism of
the proposed Point Transformer Layer (PTL) was applied to a local neighborhood of points
defined using the kNN algorithm at a specific location, with subtraction as the relation
function; an MLP, two linear layers, and ReLU nonlinearity as the mapping function; and
position encoding δ into both functions γ and α. Furthermore, positional encoding was
a very important component of the transformer architecture since it was the counterpart
of convolution and recurrence operations [77]. Specifically, in Point Transformer, the po-
sitional encoding function was a trainable function based on the 3D point coordinates.
Basically, positional encoding was an MLP with two linear layers and ReLU nonlinearity
aimed to define the neighboring points’ intra-relationships. The aforementioned units
consist of the Point Transformer Layer, which was the core of the Point Transformer Block.
In fact, the Point Transformer architecture was created in encoder–decoder fashion, with
skip connections between the encoder layer and their corresponding decoder layers. More
concretely, the encoder was constructed using the Point Transformer Block and the Transi-
tion Down Layer, while the decoder was constructed using the Point Transformer Block and
the Transition Up Layer. The Transition Down and Transition Up aimed to find a subset and
superset of the input points, respectively. In 3DSS, the Output Head mapped the decoder
output to the predicted class using an MLP. To conclude, the Point Transformer architecture
was evaluated using different experiments in multiple tasks like 3DSS, classification, and
different metrics.

Remote Sens. 2025, 17, x FOR PEER REVIEW 20 of 62

local neighborhood of points defined using the kNN algorithm at a specific location, with
subtraction as the relation function; an MLP, two linear layers, and ReLU nonlinearity as
the mapping function; and position encoding δ into both functions γ and α. Furthermore,
positional encoding was a very important component of the transformer architecture since
it was the counterpart of convolution and recurrence operations [77]. Specifically, in Point
Transformer, the positional encoding function was a trainable function based on the 3D
point coordinates. Basically, positional encoding was an MLP with two linear layers and
ReLU nonlinearity aimed to define the neighboring points’ intra-relationships. The afore-
mentioned units consist of the Point Transformer Layer, which was the core of the Point
Transformer Block. In fact, the Point Transformer architecture was created in encoder–
decoder fashion, with skip connections between the encoder layer and their correspond-
ing decoder layers. More concretely, the encoder was constructed using the Point Trans-
former Block and the Transition Down Layer, while the decoder was constructed using
the Point Transformer Block and the Transition Up Layer. The Transition Down and Tran-
sition Up aimed to find a subset and superset of the input points, respectively. In 3DSS,
the Output Head mapped the decoder output to the predicted class using an MLP. To
conclude, the Point Transformer architecture was evaluated using different experiments
in multiple tasks like 3DSS, classification, and different metrics.

Figure 9. The Point Transformer architecture [78]. Point Transformer layer (yellow), Transition
Down (blue), Transition Up (green), MLP (Grey) and Global Average Pooling (Pink)

Wu et al. (2022) [79] stated that the Point Transformer architecture increases the num-
ber of channels and the weight encoding parameters as it goes deeper, resulting in over-
fitting and restricting the model to go deeper. To overcome the aforementioned problem,
the authors introduced a new attention mechanism called Group Attention (GA) instead
of the vector attention that was used in the Point Transformer architecture. GA was char-
acterized as a more general case of the vector aimed to reduce overfitting and enhance the
generalization of the model. The authors stated that neighborhood attention performs bet-
ter than shifted-grid attention. To be more specific, gathering the local neighborhood of
points using the kNN function outperforms the methods that construct the local neigh-
borhood using uniform non-overlapping cells due to the different point density of 3D
point clouds. Additionally, the authors tried to better reveal the 3D point relationships by
adding an additional positional encoding mechanism aiming to fully exploit the geomet-
ric knowledge encapsulated into the 3D point coordinates. In general, the traditional-
based pooling procedures did not consider point density and overlapping. Hence, they
proposed an improved pooling operation using uniform grid partitioning to replace the
commonly used pooling approaches such as FPS or Ball Query. Furthermore, the authors
presented extended experiments and ablation studies to strengthen the advantages of the
proposed architecture. To conclude, Point Transformer V2 was evaluated using different
benchmarks and metrics under different 3D tasks like 3DSS and 3D Shape Classification.

Figure 9. The Point Transformer architecture [78]. Point Transformer layer (yellow), Transition Down
(blue), Transition Up (green), MLP (Grey) and Global Average Pooling (Pink).

Wu et al. (2022) [79] stated that the Point Transformer architecture increases the
number of channels and the weight encoding parameters as it goes deeper, resulting in
overfitting and restricting the model to go deeper. To overcome the aforementioned prob-
lem, the authors introduced a new attention mechanism called Group Attention (GA)
instead of the vector attention that was used in the Point Transformer architecture. GA
was characterized as a more general case of the vector aimed to reduce overfitting and
enhance the generalization of the model. The authors stated that neighborhood attention
performs better than shifted-grid attention. To be more specific, gathering the local neigh-
borhood of points using the kNN function outperforms the methods that construct the local
neighborhood using uniform non-overlapping cells due to the different point density of 3D
point clouds. Additionally, the authors tried to better reveal the 3D point relationships by
adding an additional positional encoding mechanism aiming to fully exploit the geometric
knowledge encapsulated into the 3D point coordinates. In general, the traditional-based
pooling procedures did not consider point density and overlapping. Hence, they proposed
an improved pooling operation using uniform grid partitioning to replace the commonly
used pooling approaches such as FPS or Ball Query. Furthermore, the authors presented

Remote Sens. 2025, 17, 298 20 of 58

extended experiments and ablation studies to strengthen the advantages of the proposed
architecture. To conclude, Point Transformer V2 was evaluated using different benchmarks
and metrics under different 3D tasks like 3DSS and 3D Shape Classification. Finally, the
performance of the presented point-based methods in different benchmark datasets is
presented in Table 3.

Table 3. Mean Intersection over Union (mIoU) and Overall Accuracy (OA) of different benchmark
datasets for point-based methods based on the papers examined in Section 5.1.

Algorithm Year
Stanford3D Semantic3D ScanNet SemanticKITTI S3DIS SenSat Urban

mIoU OA mIoU OA mIoU OA mIoU OA mIoU OA mIoU OA

PointNet 2017 47.71 78.62 14.6 - 55.7 52.6 14.6 - 47.6 78.6 23.71 80.78
PointNet++ 2017 - - 63.1 85.7 84.5 20.1 - 54.5 81.0 39.97 84.30
RandLA-Net 2020 - - 77.4 94.8 64.5 - 53.9 88.8 70.0 88.0 52.69 89.78
SCF-Net 2021 - - - - - - - - 71.6 88.4 - -
BAAF-Net 2021 - - 75.4 94.9 - - 59.9 - 72.2 88.9 - -
PointCNN 2018 - - - - 45.8 - - - 65.4 88.1 - -
KPConv 2019 - - 74.6 92.9 68.6 - 58.8 90.3 70.6 - 57.58 93.20
FG-Net 2021 - - - - - - - - 70.8 - - -
RSNets 2018 - - - - - 76.5 - - 56.5 85.7 - -
PTv1 2021 - - - - - - - 73.5 90.2 - -
PTv2 2022 - - - - - 75.2 - - 71.6 91.1 - -

-: No Data.

5.2. Dimensionality Reduction-Based Methods
5.2.1. Multi-View

Tatarchenko et al. (2018) [80] proposed tangent convolution in order to perform 3DSS
using point clouds with millions of points. In fact, the tangent convolution approach
was an extreme case of the multi-view CNNs proposed by Su et al. (2015) [81]. Tangent
convolution was proposed for dense prediction tasks instead of the shape recognition task
that multi-view CNNs remedy. Tangent convolution can be used on different types of
3D data, e.g., mesh, point clouds, and polygon soup, with the only constraint being the
ability to estimate the normal vectors using them. In general, the authors stated that the
3D data, captured using different sensors, represent 2D structures embedded in 3D space,
and thus, tangent convolution was based on the concept that the data were drawn from
local Euclidean surfaces. To be more specific, tangent convolution first defined a tangent
plane around every point and projected the local geometry on it, creating a tangent image,
e.g., the tangent plane was exploited as an orthogonal to the point’s neighborhood, virtual
camera, i.e., along its normal vector. Moreover, for each 3D point, the orientation of the
tangent plane was derived by covariance analysis of its local neighborhood. The local
neighborhood was defined using a radius around the under-process point. Afterward,
the covariance matrix of the neighborhood was estimated, resulting in the estimation of
the neighborhood normal vector, i.e., the eigenvector of the smallest eigenvalue, and the
X-axis and Y-axis of the tangent plane, i.e., the other two eigenvectors. However, to create
virtual images using the tangent planes, the point signals must be used to estimate the
image signals. The neighborhood points were projected onto the tangent plane of the
under-process 3D points, resulting in a set of projected points. Hence, the projected points
were a sampling of the continuous image space, and so, the authors investigated different
interpolation approaches, e.g., nearest neighbor, full Gaussian mixture, or Gaussian mixture
with the top three neighbors to formulate the final tangent images. They stated that the
sophisticated interpolation methods did not result in a significant improvement in the
tangent images, and thus, they proposed using simple nearest neighbor interpolation. In
practice, the continuous space was replaced by a discrete space, i.e., a grid, resulting in the

Remote Sens. 2025, 17, 298 21 of 58

tangent images used to perform semantic segmentation. Furthermore, the authors proposed
a UNet-like network for the semantic segmentation of the tangent images. First, they de-
fined the core network operations, e.g., pooling and unpooling. To be more specific, the
pooling operation was defined by hashing the 3D points onto a progressively coarser 3D
grid with a predefined grid resolution, using modular arithmetic on individual point coordi-
nates. More precisely, the points that were hashed together in the 3D grid were used to pool
their signal. Hashing deals with the irregularity property of 3D point clouds. Unpooling
was performed by reusing the hash indices of the pooling operation. Additionally, they
proposed Local Distance Features as the mean distance between the neighborhood points
and the tangent plane. The Local Distance Features were used to create distance images
that were exploited as an additional channel of the data. The proposed encoder–decoder
architecture had two pooling layers and two unpooling layers using 3 × 3 kernels followed
by Leaky ReLU with skip connections, while the last layer exploited 1 × 1 convolutions to
assign the final classes. The pixel size of the tangent images along with the radius used to
define the points neighborhood were used to define the receptive field of the convolutional
layers. To conclude, the authors evaluated their algorithm using different benchmark
datasets and metrics.

5.2.2. Spherical

Wu et al. (2017) [82] introduced the SqueezeSeg architecture, which utilized 3D-2D
spherical projection in combination with mature 2D semantic segmentation techniques
to achieve real-time, high-end results in the 3DSS of road objects. First and foremost, the
authors described the core steps of the existing 3DSS SoTA approaches as Ground Filtering,
point grouping, hand-crafted feature extraction for each group and group classification
steps. However, they mentioned that the existing ground removal approaches were charac-
terized by poor generalization and time-consuming post-processing steps, or they relied on
iterative algorithms like RANSAC [83], which depended on the quality of the random ini-
tialization. Additionally, the multi-stage existing methods included limitations, e.g., error
aggregation phenomena. Thus, the authors proposed a dimensionality reduction learning
algorithm that was based on a combination of 2D convolutional neural networks (CNNs)
and conditional random fields (CRFs). The general idea was to transform the input LiDAR
point cloud into a compact representation, feasible for the convolution operation to extract
the semantic labels and then to be refined using a CRF. In fact, the 3D point clouds’ proper-
ties made it difficult to apply convolution directly on them. Hence, the authors proposed
projecting the input 3D point cloud onto a sphere to create a dense 2D grid base, similar
to the ordinary image’s representation. The created spherical projection had five features
for each point, i.e., 3D Cartesian coordinates, intensity, and range. Moreover, the proposed
network structure was inspired by the SqueezeNet [84] 2D architecture, which investigated
the reduction of the AlexNet [85] parameters while preserving the performance of it. The
SqueezeSeg encoder–decoder architecture was based on the fireModules and fireDeconvs
layers instead of the traditional convolution and deconvolution layers, aiming to reduce
the parameters of the model. Specifically, the fireModule input was a spherical-projected
3D point cloud. Then, the spherical image was fed into a 1 × 1 convolution, resulting
in a reduced size of the feature channels. Afterward, a parallel application of 3 × 3 and
1 × 1 convolutions were applied to recover the channel’s size. The first layer was called the
squeeze layer, while the second one was called the expand layer. The fireDeconvs were
the same as the fireModules but with a deconvolution layer in between the squeeze layer
and the expand layer. In general, 2DSS label maps suffer from blurry regions, especially
between different classes, due to the downsampling operation. Thus, the authors intro-
duced a CRF to refine the produced label maps. More concretely, they proposed an energy

Remote Sens. 2025, 17, 298 22 of 58

function that has a unary potential term and a binary potential term, along with other
terms. The latter was introduced as a punishment for labeling similar points with different
labels. More precisely, the binary potential term was defined using two Gaussian kernels:
the former used both the spherical and Cartesian coordinates and the latter used only
the spherical coordinates. Additionally, the Gaussian kernels contained a set of empirical
parameters. Overall, the labels’ refinement process was performed by trying to minimize
the aforementioned energy function using the mean-field iteration algorithm defined as an
RNN. The refined labels were finally transferred into 3D space, resulting in the real-time
3DSS of road objects. To conclude, the SqueezeSeg architecture was trained using both real
and synthetic LiDAR data and evaluated using different metrics.

However, Wu et al. (2018) [86] stated that the SqueezeSeg algorithm needed an im-
provement regarding its accuracy in order to be applied in real-world scenarios, while the
manual creation of 3D training data for 3DSS was an extremely tedious process. To this end,
Wu et al. (2018) [86] proposed the SqueezeSegV2 algorithm (Figure 10) to firstly improve the
performance of SqueezeSeg and, secondly, to investigate the improvement in the synthetic
training data creation. To be more specific, the authors stated that the accuracy degradation
was mainly due to the dropout noise of real LiDAR data caused by several circumstances
like a limited sensing range or mirror reflection. To alleviate the accuracy degradation, the
authors proposed the Context Aggregation Module (CAM), a CNN module that leverages
larger receptive fields in order to aggregate contextual information and thus to be robust
against missing points. Additionally, the authors changed the cross-entropy loss with the
focal loss to handle the imbalanced distribution of point categories throughout the LiDAR
point cloud. Furthermore, the authors enriched the created spherical images with an extra
channel indicating if a pixel was missing or existing, which improved the segmentation
accuracy. Additionally, batch normalization was included in the SqueezeSegV2 architecture
to handle the internal covariate shift phenomenon. In addition to the accuracy improve-
ment, the authors tried to deal with the domain shift problem. To be more specific, domain
shift referred to the phenomenon in which the NN was trained into a different domain than
the applied domain, i.e., the source domain was different from the target domain, and so,
the generalization was poor. To alleviate the domain shift problem, SqueezeSegV2 synthetic
data rendered an intensity channel in addition to the rest by training a neural network in a
self-supervised manner, taking point coordinates and depth as an input and outputting the
intensity values, aiming to mimic real-world data. Additionally, they proposed geodesic
correlation alignment and progressive domain calibration to reduce the gap between the
source and the target domain. Specifically, in each training step, the SqueezeSegV2 network
was fed with both synthetic and real data. Furthermore, they computed the focal loss on the
synthetic batch to capture the semantic information and the geodesic distance of the output
distributions of the synthetic batch and the real batch and reduce discrepancies between
the statistics of the source and the target domain. In progressive domain calibration, each
layer of the network was calibrated progressively, from the first to the last, without the
previous layer impacting the others. To be more specific, for each layer, output statistics
were calculated. Afterward, the output mean was re-normalized to 0, and the standard
deviation to 1, and, in parallel, the batch normalization parameters were updated with the
new statistics. Overall, the new components were evaluated by the authors with ablation
studies, resulting in better performance than the SqueezeSeg architecture.

Remote Sens. 2025, 17, 298 23 of 58
Remote Sens. 2025, 17, x FOR PEER REVIEW 24 of 62

Figure 10. The SqueezeSegV2 architecture [86].

Milioto et al. (2019) [87] stated that 3DSS LiDAR-only SoTA methods were time-con-
suming, while their models did not have enough representational capacity, i.e., the num-
ber of neurons and learnable parameters was low. In addition to time-consuming SoTA
approaches, the authors stated that there were not enough publicly available datasets for
3DSS and that SoTA methods, e.g., [68,69,80,88] cannot be applied in real-time scenarios
using large-scale point clouds. Thus, the authors proposed the RangeNet++ architecture,
which utilizes spherical projection to facilitate fast scene assessment and decision-making
of autonomous machines. In fact, the authors claimed that due to autonomous vehicle
movement, the produced point clouds were affected by skewing, i.e., the same as the roll-
ing shutter effect in images. Thus, they de-skewed the LiDAR point cloud before the pro-
jection. The spherical projection output was an enriched range image representation, e.g.,
tensor, which contained the x, y, z, range, and remission information. Afterward, the au-
thors proposed an hourglass 2DSS architecture, i.e., an encoder–decoder to perform 2DSS
using the created representation. To be more specific, the encoder was a modification of
the Darknet [89] backbone, e.g., to accept five channel images instead of three. In general,
2DSS experiences difficulties, e.g., blurry areas, especially in objects’ borders. Additionally,
the projection of the 3D point cloud onto a 2D plane resulted in a loss of information.
Other methods, e.g., SqueezeSeg, used CRF to improve the 2DSS output and hence to im-
prove 3DSS, as described earlier. However, the authors of RangeNet++ stated that the im-
provement in 2DSS using a CRF did not automatically result in better 3DSS, especially
due to the method applied to recover the 3D labels using the 2D ones, formulated as the
label re-projection problem. To be more specific, each pixel of the 2D representation had
a corresponding label; however, multiple 3D points were assigned to each pixel of the
image, resulting in assigning the same label, which was not accurate. Additionally, the
label re-projection problem effect increased when using images with smaller resolution,
which were crucial for real-time applications. To recover all the information using the
created 2D representation, the authors indexed them with the corresponding image coor-
dinates to every point of the 3D point cloud, resulting in a loss-less recovery of the 3D
labels. Furthermore, the authors proposed a GPU-based kNN algorithm to cope with the
label re-projection error. More concretely, for each point used to create the 2D spherical
image, a window representing its neighborhood was empirically defined. Afterward, the
indices stored during the creation of the 2D representation were exploited to extend the
neighborhood to contain the entire set of the range neighborhoods. Then, the range read-
ings of the central line were replaced from the unwrapped to the real ones. This represen-
tation was the key of RangeNet++ to achieve real-time performance. An analogous matrix
representation was constructed for the labels. Afterward, they created a matrix that rep-
resented the range difference between the query point and its neighborhood points. Fi-
nally, the k nearest points that voted for the label of the query point were collected by
using the inverse Gaussian kernel, argmin operation, and cut-off thresholding. The afore-
mentioned post-processing kNN-based approach was adopted from many upcoming

Figure 10. The SqueezeSegV2 architecture [86].

Milioto et al. (2019) [87] stated that 3DSS LiDAR-only SoTA methods were time-
consuming, while their models did not have enough representational capacity, i.e., the
number of neurons and learnable parameters was low. In addition to time-consuming SoTA
approaches, the authors stated that there were not enough publicly available datasets for
3DSS and that SoTA methods, e.g., [68,69,80,88] cannot be applied in real-time scenarios
using large-scale point clouds. Thus, the authors proposed the RangeNet++ architecture,
which utilizes spherical projection to facilitate fast scene assessment and decision-making
of autonomous machines. In fact, the authors claimed that due to autonomous vehicle
movement, the produced point clouds were affected by skewing, i.e., the same as the
rolling shutter effect in images. Thus, they de-skewed the LiDAR point cloud before the
projection. The spherical projection output was an enriched range image representation,
e.g., tensor, which contained the x, y, z, range, and remission information. Afterward, the
authors proposed an hourglass 2DSS architecture, i.e., an encoder–decoder to perform
2DSS using the created representation. To be more specific, the encoder was a modifi-
cation of the Darknet [89] backbone, e.g., to accept five channel images instead of three.
In general, 2DSS experiences difficulties, e.g., blurry areas, especially in objects’ borders.
Additionally, the projection of the 3D point cloud onto a 2D plane resulted in a loss of
information. Other methods, e.g., SqueezeSeg, used CRF to improve the 2DSS output
and hence to improve 3DSS, as described earlier. However, the authors of RangeNet++
stated that the improvement in 2DSS using a CRF did not automatically result in better
3DSS, especially due to the method applied to recover the 3D labels using the 2D ones,
formulated as the label re-projection problem. To be more specific, each pixel of the 2D
representation had a corresponding label; however, multiple 3D points were assigned to
each pixel of the image, resulting in assigning the same label, which was not accurate. Ad-
ditionally, the label re-projection problem effect increased when using images with smaller
resolution, which were crucial for real-time applications. To recover all the information
using the created 2D representation, the authors indexed them with the corresponding
image coordinates to every point of the 3D point cloud, resulting in a loss-less recovery
of the 3D labels. Furthermore, the authors proposed a GPU-based kNN algorithm to
cope with the label re-projection error. More concretely, for each point used to create the
2D spherical image, a window representing its neighborhood was empirically defined.
Afterward, the indices stored during the creation of the 2D representation were exploited
to extend the neighborhood to contain the entire set of the range neighborhoods. Then,
the range readings of the central line were replaced from the unwrapped to the real ones.
This representation was the key of RangeNet++ to achieve real-time performance. An
analogous matrix representation was constructed for the labels. Afterward, they created a
matrix that represented the range difference between the query point and its neighborhood
points. Finally, the k nearest points that voted for the label of the query point were collected
by using the inverse Gaussian kernel, argmin operation, and cut-off thresholding. The
aforementioned post-processing kNN-based approach was adopted from many upcoming

Remote Sens. 2025, 17, 298 24 of 58

architectures. To conclude, the authors evaluated the RangeNet++ algorithm using metrics
such as border-IoU, as well as in-detail ablation studies and figures.

Xu et al. (2020) [90] described the issue of the spatially varying feature distribution of
LiDAR images in detail. More concretely, the authors stated that the feature distribution
along LiDAR images was different from the feature distribution of RGB images, especially
for the SemanticKITTI [67] dataset due to the spherical projection applied on the data,
resulting in the poor performance of the convolution operator. To be more specific, the
feature distribution of LiDAR images was not identical across the images, while some
features may exist only in local image regions. Additionally, the authors visualized the
mean activation value of different layers of the RangeNet++ architecture, depicting the
sparse filter activation across the image. To this end, Xu et al. (2020) presented the
SqueezeSegV3 architecture, which utilized the Spatially Adaptive Convolution (SAC)
operator. On the one hand, the traditional convolution operator did not change the kernel
weights across the image. On the other hand, SAC behaved differently on each part of the
image, as the filters follow the feature variations. The authors proposed different variations
of SAC. The SqueezeSegV3 architecture was based on the RangeNet++ [87] architecture,
using a multi-layer cross-entropy loss, aiming to use features with semantic meaning. To
conclude, using different variations of SAC, the authors achieved better performance on
the 3DSS of many classes using the SemanticKITTI dataset.

Cortinhal, Tzelepis, and Aksoy (2020) [91] stated that SoTA 3DSS methods predicted
3D labels without calculating uncertainty measurements, and thus, they proposed the
SalsaNext architecture (Figure 11) for real-time uncertainty-aware 3DSS of LiDAR point
clouds. In line with the RangeNet++ [87] architecture, SalsaNext exploited the same spheri-
cal representation but used intensity instead of remission. Furthermore, they introduced
an improved SalsaNet [92] architecture to perform 2DSS using the proposed spherical
representation of the 3D point cloud. More concretely, they proposed a Context Module in
the first layers of the encoder, a Residual Dilated Convolution Block instead of traditional
ResNet blocks, a pixel-shuffle Layer, a Central Encoder–Decoder Dropout operation, and
an Average Pooling Downsampling layer instead of strided convolution to allocate less
memory than SalsaNet. The Context Module had multiple dilated convolutions, i.e., with
different kernel sizes, which fused various perceptive fields on different scales, aggregating
global context information. Furthermore, the pixel-shuffle layers were introduced instead
of transposed convolution layers during upsampling to decrease the computation com-
plexity of the network. Finally, they added dropout after both the encoder and decoder
layers, except for the first and the last layers, resulting in improved network performance.
Furthermore, the authors provided an in-depth analysis of uncertainties, divided them into
aleatoric, which refers to the data uncertainty, and epistemic, which refers to the model
uncertainty. Moreover, aleatoric uncertainty can be divided into homoscedastic, which
refers to the aleatoric uncertainty that was independent of the different types of input data,
and heteroscedastic, which refers to the uncertainty that depends on them. If the sensor
noise characteristics were known, a modified NN using assumed density filtering can be
used to provide predictions along with their aleatoric heteroscedastic uncertainties. Finally,
the authors estimated the epistemic uncertainty using Monte Carlo sampling during infer-
ence. In fact, the main drawback of dimensionality reduction methods was the information
loss due to projection from 3D to a lower space. The authors used the kNN-based post-
processing technique proposed in RangeNet++, applied during inference, to cope with the
aforementioned drawback. To conclude, the authors provided informative visualizations
of the epistemic and aleatoric uncertainties in the images of the SemanticKITTI dataset in
addition to detailed ablation studies and evaluation of the SalsaNext architecture.

Remote Sens. 2025, 17, 298 25 of 58
Remote Sens. 2025, 17, x FOR PEER REVIEW 26 of 62

Figure 11. The SalsaNext architecture [91].

Xiao et al. (2021) [93] observed that dimensionality reduction SoTA methods usually
created multi-channel images by stacking position channels, depth, intensity, and remis-
sion, commonly creating five-channel images, and processed them simultaneously with-
out considering the distinct characteristics of each modality. Thus, the authors proposed
the FPS-Net, aiming to handle the aforementioned modality gap problem by decompos-
ing five-channel images into three modalities, thus improving the performance of 3DSS
applications. Moreover, they mentioned that the naïve stacking of pixel values along chan-
nels with different distribution may result in the models being trained on modality-ag-
nostic features. To this end, they proposed a Modality-Fused Convolution Network,
which firstly learned modality-specific features and finally fused them using a high-di-
mensional feature space representation in an encoder–decoder fashion. More specifically,
modality-specific features were encoded by using a multiple receptive field residual dense
block (MRF-B) and decoded by using a recurrent convolution block (RCB). In detail, the
MRF-B was composed of multidimensional convolutions, e.g., 1 × 1 and 3 × 3, along with
concatenation, batch normalization, and ReLU, while the RCB was a recurrent neural net-
work with 3 × 3 convolution, addition operation, batch normalization, and ReLU. The
modal-specific high-dimensional features produced by MRF-B were concatenated and fed
into a 1 × 1 convolution operation. After several MRF-B and downsampling layers, the
features were passed into multiple upsampling and RCB layers. Moreover, the classifier
output the predictions. Finally, a post-processing approach similar to RangeNet++ [87]
was adopted to provide the final 3D labels. To conclude, the authors provided an evalua-
tion of the proposed algorithms along with ablation studies and experiments on well-
known benchmark datasets.

Li et al. (2021) [94] mentioned that SoTA methods were characterized by very expen-
sive operations, especially for applications requiring embedded platforms. They had low
accuracy, or they included millions of parameters; hence, they proposed the Multi-scale
Interaction Network (MINet) (Figure 12) to handle them. They introduced a lightweight
network that included multiple scale paths, each of which extracted features of different
levels, e.g., low or high, regarding the scale of the input image. Additionally, the top scale
paths were densely connected with all the lower scale paths. However, the authors pro-
posed a computation strategy to avoid redundant computations. In line with the Range-
Net++ [87] architecture, the authors created 5D spherical projection images, i.e., x, y, z,
depth, and remission, as the input to the MINet architecture. Furthermore, the MINet ar-
chitecture was composed of three modules: the Mini Fusion Module (MFM), the Multi-
scale Interaction Module (MIM), and the Up-Fusion Module (UFM). Apart from the three
modules, the MINet architecture included two different blocks: the MobileBlock and the

Figure 11. The SalsaNext architecture [91].

Xiao et al. (2021) [93] observed that dimensionality reduction SoTA methods usually
created multi-channel images by stacking position channels, depth, intensity, and remis-
sion, commonly creating five-channel images, and processed them simultaneously without
considering the distinct characteristics of each modality. Thus, the authors proposed the
FPS-Net, aiming to handle the aforementioned modality gap problem by decomposing
five-channel images into three modalities, thus improving the performance of 3DSS appli-
cations. Moreover, they mentioned that the naïve stacking of pixel values along channels
with different distribution may result in the models being trained on modality-agnostic
features. To this end, they proposed a Modality-Fused Convolution Network, which firstly
learned modality-specific features and finally fused them using a high-dimensional feature
space representation in an encoder–decoder fashion. More specifically, modality-specific
features were encoded by using a multiple receptive field residual dense block (MRF-B)
and decoded by using a recurrent convolution block (RCB). In detail, the MRF-B was com-
posed of multidimensional convolutions, e.g., 1 × 1 and 3 × 3, along with concatenation,
batch normalization, and ReLU, while the RCB was a recurrent neural network with
3 × 3 convolution, addition operation, batch normalization, and ReLU. The modal-
specific high-dimensional features produced by MRF-B were concatenated and fed into
a 1 × 1 convolution operation. After several MRF-B and downsampling layers, the features
were passed into multiple upsampling and RCB layers. Moreover, the classifier output the
predictions. Finally, a post-processing approach similar to RangeNet++ [87] was adopted to
provide the final 3D labels. To conclude, the authors provided an evaluation of the proposed
algorithms along with ablation studies and experiments on well-known benchmark datasets.

Li et al. (2021) [94] mentioned that SoTA methods were characterized by very expen-
sive operations, especially for applications requiring embedded platforms. They had low
accuracy, or they included millions of parameters; hence, they proposed the Multi-scale
Interaction Network (MINet) (Figure 12) to handle them. They introduced a lightweight net-
work that included multiple scale paths, each of which extracted features of different levels,
e.g., low or high, regarding the scale of the input image. Additionally, the top scale paths
were densely connected with all the lower scale paths. However, the authors proposed a
computation strategy to avoid redundant computations. In line with the RangeNet++ [87]
architecture, the authors created 5D spherical projection images, i.e., x, y, z, depth, and
remission, as the input to the MINet architecture. Furthermore, the MINet architecture was
composed of three modules: the Mini Fusion Module (MFM), the Multi-scale Interaction
Module (MIM), and the Up-Fusion Module (UFM). Apart from the three modules, the
MINet architecture included two different blocks: the MobileBlock and the BasicBlock. The
former had fewer parameters, as it utilized depth-wise convolutions, while the latter was

Remote Sens. 2025, 17, 298 26 of 58

more expensive. However, the MobileBlock was usually exploited using high-resolution
images, aiming to extract detailed features, while the BasicBlock exploited using lower-
resolution images, aiming to extract more abstracted features, to equalize the computation
complexity. Firstly, the input 5D image was imported into the MFM. However, due to
the different feature distributions of each modality, including x, y, and z coordinates as
separate modalities, they were mapped into a different feature space using the convolution
operation. Then, the features created from each modality were concatenated and fused
using many MobileBlocks. After MFM, MIM was applied. Specifically, MIM included
three paths, the top, middle, and bottom, with different scales. In each path, the scale was
decreased, applying the average pooling operation, while the receptive field was increased,
to gather more abstracted features. The authors showed that the previously described strat-
egy, i.e., the decreasing resolution along with the increasing receptive field among the scale
paths, resulted in efficient operations. Furthermore, the extracted feature maps on each
scale were first resized using average pooling and then were passed to all the lower paths,
allowing subsequent scale paths to focus on features that had not been extracted yet. Lastly,
UFM fused the features extracted from the first layer of MFM to gather low-level spatial
information and each path of MIM to gather multi-scale information. Then, the fused
features were upsampled to the original resolution, further processed, and added. Finally,
the 2D predictions were re-projected back into 3D space. To conclude, the authors included
several experiments and comparisons among SoTA methods and their own methods by
retraining each SoTA method from scratch and by using different metrics.

Remote Sens. 2025, 17, x FOR PEER REVIEW 27 of 62

BasicBlock. The former had fewer parameters, as it utilized depth-wise convolutions,
while the latter was more expensive. However, the MobileBlock was usually exploited
using high-resolution images, aiming to extract detailed features, while the BasicBlock
exploited using lower-resolution images, aiming to extract more abstracted features, to
equalize the computation complexity. Firstly, the input 5D image was imported into the
MFM. However, due to the different feature distributions of each modality, including x,
y, and z coordinates as separate modalities, they were mapped into a different feature
space using the convolution operation. Then, the features created from each modality
were concatenated and fused using many MobileBlocks. After MFM, MIM was applied.
Specifically, MIM included three paths, the top, middle, and bottom, with different scales.
In each path, the scale was decreased, applying the average pooling operation, while the
receptive field was increased, to gather more abstracted features. The authors showed that
the previously described strategy, i.e., the decreasing resolution along with the increasing
receptive field among the scale paths, resulted in efficient operations. Furthermore, the
extracted feature maps on each scale were first resized using average pooling and then
were passed to all the lower paths, allowing subsequent scale paths to focus on features
that had not been extracted yet. Lastly, UFM fused the features extracted from the first
layer of MFM to gather low-level spatial information and each path of MIM to gather
multi-scale information. Then, the fused features were upsampled to the original resolu-
tion, further processed, and added. Finally, the 2D predictions were re-projected back into
3D space. To conclude, the authors included several experiments and comparisons among
SoTA methods and their own methods by retraining each SoTA method from scratch and
by using different metrics.

Figure 12. The MINet architecture [94].

5.2.3. Bird’s-Eye View

Zou and Li (2021) [95] observed that recent works introduced urban-level datasets
acquired using UAVs and included both images and 3D point clouds. In general, the cre-
ated photogrammetric 3D point clouds present differences to those acquired using LiDAR
sensors; for example, the existence of RGB values along with 3D geometric information.
As such, they compared the category overlap of the points along the Z-axis in the photo-
grammetric and LiDAR point clouds and concluded that most overlapping points had the
same class as the top one. Hence, they proposed the bird’s-eye view (BEV) projection as
the more suitable one for the 3DSS of the photogrammetric point clouds created using
UAVs. To be more specific, the creation of BEV images was conducted by using a sliding
window process over the 3D points. Firstly, the scale, size, and moving step hyperparam-
eters of the sliding window were empirically defined after experiments. Then, the points

Figure 12. The MINet architecture [94].

5.2.3. Bird’s-Eye View

Zou and Li (2021) [95] observed that recent works introduced urban-level datasets
acquired using UAVs and included both images and 3D point clouds. In general, the cre-
ated photogrammetric 3D point clouds present differences to those acquired using LiDAR
sensors; for example, the existence of RGB values along with 3D geometric information. As
such, they compared the category overlap of the points along the Z-axis in the photogram-
metric and LiDAR point clouds and concluded that most overlapping points had the same
class as the top one. Hence, they proposed the bird’s-eye view (BEV) projection as the more
suitable one for the 3DSS of the photogrammetric point clouds created using UAVs. To
be more specific, the creation of BEV images was conducted by using a sliding window
process over the 3D points. Firstly, the scale, size, and moving step hyperparameters of
the sliding window were empirically defined after experiments. Then, the points in each
sliding window were sorted according to their x and y coordinates to find the minimum
and maximum values. Finally, each sliding window created a BEV image that included

Remote Sens. 2025, 17, 298 27 of 58

the RGB and altitude information. Afterward, a sparse BEV image completion process
was applied using the 2D max pooling operation to improve the sparse information of
the projected points onto the XY-plane, resulting in the final BEV images. Furthermore,
Zou and Li (2021) proposed a multimodal 2D segmentation UNet, which exploits both
the RGB and altitude modalities. Additionally, the authors stated that the RGB values
played a significant role in the segmentation performance. To conclude, the authors evalu-
ated their approach over different SoTA methods (test set) using the validation set of the
Sensat-Urban [96] benchmark.

5.2.4. Multiple Projections

Alnaggar et al. (2020) [97] stated that both BEV and spherical projection images
provide useful features for 3DSS; hence, they can complement each other to decrease the
loss of information due to the projection of 3D point clouds onto 2D space. The spherical
projection image representation is similar to the RangeNet++ [87]. The BEV representation
was a projection onto the XY-plane and discretization based on a 2D grid with specific
dimensions, while the channels were similar to the spherical image. Moreover, they pro-
posed a two-branch network, one for each projection, providing two different predictions
that were finally fused by adding them. To be more specific, the spherical branch was an
encoder–decoder architecture using the MobileNetV2 [98] backbone, while the BEV branch
was based on a UNet [99] architecture. Before fusion, the segmented images were inserted
into a post-processing step. Specifically, the 3D points were projected onto each segmented
image. Then, the neighborhood of each point was defined using a 2D square window
around the projected point. Afterward, a score vector for each point was calculated using
a weighted sum of the SoftMax probabilities of all the pixels in the neighborhood. The
weights were calculated based on the distance between the 3D point under investigation
and those represented by the pixels in the neighborhood. More concretely, the authors paid
attention to the nearest points rather than the distant ones by defining different weight val-
ues based on their distance. The final score vectors, one for each projection, were defined in
the fusion step. To conclude, the authors provided an evaluation of the proposed approach
in addition to an experimentation using data augmentation techniques.

Qiu, Yu, and Tao (2022) [2] observed that there were two widely used, complementary
projections by the dimensionality reduction methods for 3DSS: spherical range images
(RV) and top-down images, i.e., BEV. Additionally, they mentioned that the methods
that exploited both representations generally used late fusion of the predicted labels,
ignoring the complementary geometric information between the different views. Hence, the
authors introduced the Geometric Flow Network (GFNet), aiming to exploit the geometric
correspondences of each view, using the original point cloud as a bridge, in an align-
before-fuse fashion. The proposed real-time network processed each view separately by a
two-branch ResNet-based [75] encoder–decoder network, which adopted an ASPP [100]
module at the bottleneck. To be more specific, the range view images were created by using
an improved spherical projection approach proposed by Triess et al. (2020) [101]. Each
spherical image had five channels, similar to Milioto et al. (2019) [87]. Furthermore, the BEV
images were created using the top-down orthogonal projection, replacing the Cartesian
coordinates with relative polar coordinates. Each BEV image had nine channels, i.e., three
cylindrical distances (x, y, z) to the center of the BEV grid, three cylindrical coordinates
(x, y, z), two Cartesian coordinates (x, y), and remission. Moreover, the authors proposed
the Geometric Flow Module (GFM), which was divided into Geometric Alignment (GA)
and Attention Fusion (AF). In fact, GA included the geometric transformation from the
RV to BEV, and vice versa, for feature fusion. To calculate the transformation matrices, the
authors used the original point cloud (PC) as a bridge, i.e., RV to PC to BEV. Furthermore,

Remote Sens. 2025, 17, 298 28 of 58

the AF module concatenated the single-view features, e.g., from the RV image, with
the transformed features, e.g., BEV to RV, then applied self-attention on the concatenated
features to obtain attention scores, and, finally, combined them with the single-view features
by using a residual connection, resulting in the final features. In general, several GFMs
were located between the two ResNet decoders, obtaining a feature map for each view.
Finally, the 2D predictions of each branch were utilized along with grid sampling and
KPConv [73] to find the per-point predictions. In fact, the KPConv layer was exploited
instead of the kNN post-processing approach presented by Milioto et al. (2019) to create an
end-to-end learnable approach. Finally, the performance of the presented dimensionality
reduction-based methods in different benchmark datasets is presented in Table 4.

Table 4. Mean Intersection over Union (mIoU) and Overall Accuracy (OA) of different benchmark
datasets for dimensionality reduction-based methods based on the papers examined in Section 5.2.

Algorithm Year
Semantic3D ScanNet SemanticKITTI S3DIS Sensat Urban

mIoU OA mIoU OA mIoU OA mIoU OA mIoU OA

TangentConv 2018 66.4 89.3 43.8 55.1 40.9 - 52.8 82.5 33.30 76.97
SqueezeSeg 2017 - - - - 30.8 - - - - -
SqueezeSegV2 2018 - - - - 39.7 - - - - -
RangeNet++ 2019 - - - - 52.2 89.0 - - - -
SqueezeSegV3 2020 - - - - 55.9 89.5 - - - -
SalsaNext 2020 - - - - 59.5 90.0 - - - -
FPS-Net 2021 - - - - 57.1 - - - - -
MINet 2021 - - - - 55.2 - - - - -
Efficient BEV 2021 - - - - - - - - - 91.37
MPF 2020 - - - - 55.5 - - - - -
GFNet 2022 - - - - 65.4 92.4 - - - -

-: No Data.

5.3. Discretization-Based Methods

Riegler, Ulusoy, and Geiger (2017) [102] observed that SoTA discretization-based
methods required exhaustive dense convolution operations, i.e., they took into account the
3D empty space, ensuing slow computations on downstream applications like 3DSS. In this
regard, Riegler, Ulusoy, and Geiger (2017) proposed the OctNet, a 3D convolution-based
network that avoided the empty space, proposing a new intermediate sparse representation
of the 3D data. To be more specific, the new representation of the 3D data was created by
subdividing the high-resolution 3D data hierarchically into octrees, taking into account the
density of the 3D points and stopping when achieving the predefined resolution. Moreover,
the authors proposed the Hybrid Grid–Octree Data Structure (HGODS) by stacking several
shallow octrees, similar to Miller, Jain, and Mundy’s (2011) [103] representation. The scope
of the HGODS was the creation of a sparse representation that permitted rapid data access
using bit strings because several downstream applications like 3DSS commonly require
the definition of points’ neighborhoods, e.g., for convolution or pooling. To this end, the
authors stated that the discretization of the data followed their density, avoided the empty
space, concentrated the computations only on the non-empty regions, and improved the
computational and memory requirements. Furthermore, the authors presented the basic
OctNet network operations, i.e., convolution, pooling, and unpooling, along with different
applications like 3D classification and 3DSS. The 3DSS OctNet was an encoder–decoder
UNet-shaped network. To conclude, the OctNet network was trained using different voxel
sizes and features (RGB, normal vector, binary voxel occupancy, height above ground) in
combination with data augmentation.

Su et al. (2018) [88] proposed the SPLATNet architecture (Figure 13), which exploited
high-dimensional lattice space to perform the convolution operation on a set of features.

Remote Sens. 2025, 17, 298 29 of 58

To be more specific, the authors stated that SoTA 3DSS methods usually transformed the
raw 3D point clouds into 2D–3D grid representations to use the convolution operation
on them. However, those transformations resulted in a loss of information, and thus,
the authors proposed the high-dimensional lattice space for the convolution operation,
aiming to reduce the loss of information of the SoTA methods. Hence, they proposed the
SPLATNet architecture, stepping on the Bilateral Convolution Layers (BCLs) introduced by
Miller, Jain, and Mundy (2011). In fact, BCLs can easily be operated in high-dimensional lat-
tice spaces, e.g., the six-dimensional filtering space XYZRGB, which was a strong property
in order to be chosen as the main operation of the SPLATNet architecture. More concretely,
a BCL was incorporated into the Splat, Convolve, and Slice steps, each of which was written
as matrix multiplication. Firstly, the Splat operation projected the input features into the
permutohedral lattice space defined by the lattice features, using barycentric interpolation,
along with a scale factor. Secondly, the Convolve operation was applied on the lattice space,
defining N-dimensional filter weights similar to the conventional convolution operation.
Finally, the Slice operation was the opposite of the Splat operation, but with the opportunity
to choose if the resulting point cloud would be the same or different from the input one.
The authors included an in-depth analysis of BCL advantageous properties regarding the
operation using 3D point clouds. Furthermore, they performed 3DSS using two variations
of SPLATNet: one using only 3D point clouds and one including images in addition to
the 3D point cloud data. A unique characteristic of the lattice space was the scale, which
was strongly associated with the receptive field of the convolution operation. The authors
included a detailed analysis regarding the lattice scale factor. To conclude, the SPLATNet
architecture was evaluated on a series of downstream applications like 3DSS and 3D part
segmentation.

Remote Sens. 2025, 17, x FOR PEER REVIEW 30 of 62

OctNet was an encoder–decoder UNet-shaped network. To conclude, the OctNet network
was trained using different voxel sizes and features (RGB, normal vector, binary voxel
occupancy, height above ground) in combination with data augmentation.

Su et al. (2018) [88] proposed the SPLATNet architecture (Figure 13), which exploited
high-dimensional lattice space to perform the convolution operation on a set of features.
To be more specific, the authors stated that SoTA 3DSS methods usually transformed the
raw 3D point clouds into 2D–3D grid representations to use the convolution operation on
them. However, those transformations resulted in a loss of information, and thus, the au-
thors proposed the high-dimensional lattice space for the convolution operation, aiming
to reduce the loss of information of the SoTA methods. Hence, they proposed the SPLAT-
Net architecture, stepping on the Bilateral Convolution Layers (BCLs) introduced by Mil-
ler, Jain, and Mundy (2011). In fact, BCLs can easily be operated in high-dimensional lat-
tice spaces, e.g., the six-dimensional filtering space XYZRGB, which was a strong property
in order to be chosen as the main operation of the SPLATNet architecture. More concretely,
a BCL was incorporated into the Splat, Convolve, and Slice steps, each of which was writ-
ten as matrix multiplication. Firstly, the Splat operation projected the input features into
the permutohedral lattice space defined by the lattice features, using barycentric interpo-
lation, along with a scale factor. Secondly, the Convolve operation was applied on the
lattice space, defining N-dimensional filter weights similar to the conventional convolu-
tion operation. Finally, the Slice operation was the opposite of the Splat operation, but
with the opportunity to choose if the resulting point cloud would be the same or different
from the input one. The authors included an in-depth analysis of BCL advantageous prop-
erties regarding the operation using 3D point clouds. Furthermore, they performed 3DSS
using two variations of SPLATNet: one using only 3D point clouds and one including
images in addition to the 3D point cloud data. A unique characteristic of the lattice space
was the scale, which was strongly associated with the receptive field of the convolution
operation. The authors included a detailed analysis regarding the lattice scale factor. To
conclude, the SPLATNet architecture was evaluated on a series of downstream applica-
tions like 3DSS and 3D part segmentation.

Figure 13. The SPLATNet architecture [88].

Choy, Gwak, and Savarese (2019) [104] proposed a 4D spatio-temporal convolutional
neural network to interpret 3D video scan data, i.e., 3D scenes spanning over different
timestamps. In general, 3D data like point clouds or voxels included empty areas that
should be avoided during the calculations because they did not contribute to the perfor-
mance of the networks. The authors constructed two N-dimensional sparse tensors, in-
stead of the 3D data representation, to avoid the empty areas of the data. To be more spe-
cific, the sparse tensors were a more useful and homogeneous representation of the data,

Figure 13. The SPLATNet architecture [88].

Choy, Gwak, and Savarese (2019) [104] proposed a 4D spatio-temporal convolutional
neural network to interpret 3D video scan data, i.e., 3D scenes spanning over different times-
tamps. In general, 3D data like point clouds or voxels included empty areas that should be
avoided during the calculations because they did not contribute to the performance of the
networks. The authors constructed two N-dimensional sparse tensors, instead of the 3D
data representation, to avoid the empty areas of the data. To be more specific, the sparse
tensors were a more useful and homogeneous representation of the data, especially for
high-dimensional spaces. Additionally, the authors included a detailed explanation of the
generalized sparse convolution, which had multiple advantages like it was efficient, it could
be applied to high-dimensional spaces, and it could be used to reproduce the milestone 2D
techniques in high-dimensional space. The aforementioned units, e.g., sparse tensors and
the generalized sparse convolution, were included in the open-sourced Minkowski Engine.
More concretely, the Minkowski Engine included Sparse Tensor Quantization, Generalized

Remote Sens. 2025, 17, 298 30 of 58

Sparse Convolution, max pooling, global/average pooling, Sum Pooling, and non-spatial
function algorithms, which were presented in detail, including a pseudo-code explanation
for each of them. Using the components of the Minkowski Engine, the authors proposed the
Minkowski convolutional neural network, using ResNet [75] or UNet [99] as the backbone
architecture. In general, spatio-temporal convolutions had two problems. The first one
was that the computational cost was exponentially increased along with the dimensions.
The second problem was that the predictions were not consistent between the different
timestamps. Hence, the authors investigated the exploitation of non-conventional kernel
shapes to overcome the computational cost problem and the use of trilateral stationary
conditional random fields (CRFs) for the second problem. To be more specific, the authors
investigated the use of different kernels between the spatial and temporal dimensions, re-
sulting in a hybrid-shaped kernel that outperformed its counterparts, i.e., tesseract kernels.
Furthermore, the proposed CRF contained a stationary 7D kernel (3D space, 1D time, and 3D
color space), and thus, it was called Trilateral Stationary CRF. To conclude, the Minkowski
Network was evaluated in many downstream tasks, including 3DSS, using different met-
rics and benchmark datasets. Finally, the performance of the presented discretization-based
methods in different benchmark datasets is presented in Table 5.

Table 5. Mean Intersection over Union (mIoU) and Overall Accuracy (OA) of different benchmark
datasets for discretization-based methods based on the papers examined in Section 5.3.

Algorithm Year
Semantic3D ScanNet SemanticKITTI S3DIS

mIoU OA mIoU OA mIoU OA mIoU OA

OctNet 2017 50.7 80.7 18.1 76.6 - - 26.3 68.9
SPLATNet 2018 - - 39.3 - 22.8 - - -

MinkowskiNet 2019 - - 73.6 - 54.3 - 65.4 -

-: No Data.

5.4. Graph-Based Methods

Wang et al. (2019) [105] stated that convolutional neural networks (CNNs) achieved
high-end results in many 2D downstream tasks. However, using the convolution operation
in 3D space was not a straightforward process. Hence, they proposed the EdgeConv, an
operation similar to the traditional convolution, for 3D downstream applications like classi-
fication and semantic segmentation. Additionally, they proposed the DGCNN architecture
(Figure 14), which was based on the PointNet architecture but without feature transforma-
tions and included the EdgeConv operation. Specifically, the proposed architecture was
based on the Point cloud Transform Block and the EdgeConv Block. The former defined
a 3 × 3 point cloud transformation by concatenating their global and local coordinates
to align it in a canonical space. The local coordinates were defined by subtracting the
kNN neighboring point coordinates from the center point coordinates. The latter, i.e., the
EdgeConv operation, applied a convolution-based operation on graph edges, similar to
the graph neural networks. To be more specific, the authors built a local neighborhood
graph for each point, defining their neighborhood, i.e., connecting the neighboring points
with edges. More concretely, the EdgeConv operation was defined using (i) a nonlinear
and (ii) an aggregation function. Firstly, the local structure of each point in the given point
cloud was defined by computing a directed graph, e.g., a kNN graph. In fact, the computed
graph had 3D points as nodes connected to their neighboring nodes with edges. Secondly,
the calculated edges were enriched with features using the predefined nonlinear function,
i.e., edge features. Finally, the output of each EdgeConv layer was calculated by applying
the aggregation function to the previously calculated features. In general, the output point
cloud had the same number of 3D points but with more edge features than the input point
cloud. Furthermore, the authors described in detail the choice of different nonlinear and

Remote Sens. 2025, 17, 298 31 of 58

aggregation functions and how some SoTA methods, like PointNet, can be considered as
a subset of the EdgeConv operation, i.e., by defining the appropriate set of the nonlinear
and the aggregation functions. Finally, they introduced the asymmetric edge function,
which was selected for the DGCNN architecture because they stated that it was thoroughly
combined the global and local point cloud features and also could be defined as a shared
MLP. Moreover, the authors found that finding the graph kNN in a feature space other than
the Euclidean space was beneficial for their network. Thus, they proposed updating the
graph kNN dynamically into each layer. To conclude, the authors presented an evaluation
of the DGCNN architecture in a series of high-level tasks like 3D classification, 3D part
segmentation, and indoor 3DSS, using several SoTA methods as benchmark.

Remote Sens. 2025, 17, x FOR PEER REVIEW 32 of 62

using (i) a nonlinear and (ii) an aggregation function. Firstly, the local structure of each
point in the given point cloud was defined by computing a directed graph, e.g., a kNN
graph. In fact, the computed graph had 3D points as nodes connected to their neighboring
nodes with edges. Secondly, the calculated edges were enriched with features using the
predefined nonlinear function, i.e., edge features. Finally, the output of each EdgeConv
layer was calculated by applying the aggregation function to the previously calculated
features. In general, the output point cloud had the same number of 3D points but with
more edge features than the input point cloud. Furthermore, the authors described in de-
tail the choice of different nonlinear and aggregation functions and how some SoTA meth-
ods, like PointNet, can be considered as a subset of the EdgeConv operation, i.e., by de-
fining the appropriate set of the nonlinear and the aggregation functions. Finally, they
introduced the asymmetric edge function, which was selected for the DGCNN architec-
ture because they stated that it was thoroughly combined the global and local point cloud
features and also could be defined as a shared MLP. Moreover, the authors found that
finding the graph kNN in a feature space other than the Euclidean space was beneficial
for their network. Thus, they proposed updating the graph kNN dynamically into each
layer. To conclude, the authors presented an evaluation of the DGCNN architecture in a
series of high-level tasks like 3D classification, 3D part segmentation, and indoor 3DSS,
using several SoTA methods as benchmark.

Figure 14. The GCN architecture (Left) and different backbone networks created to serve as the
GCN backbone block (Right) [105].

G. Li et al. (2021) [106] observed that SoTA GCN models were shallow, basically due
to the vanishing gradients problem and the high complexity in the computation of back-
propagation. Hence, they investigated the transfer of several techniques like resid-
ual/dense connections and dilated convolutions from CNNs to GCNs to create deep GCNs
for different high-level tasks like 3DSS. First and foremost, the authors defined the mean-
ing of graphs. Furthermore, they defined the general idea of GCNs, i.e., the definition and
application of the update function (MLPs, Gated Networks, etc.) or the nonlinear function
[105] and the aggregate (mean, max, attention, etc.) function. In their framework, the au-
thors chose the max aggregation function and an MLP with batch normalization and
ReLU as the update function. Moreover, they described the differences between the fixed
graph representation, commonly used in GCNs, with the Dynamic Graph representation,
which was presented by Wang et al. (2019), concluding that the later representation was
more beneficial for the networks. Hence, they included a Dilated kNN function to dynam-
ically change the points neighbors in each layer to increase the GCNs receptive field. Af-
terward, the authors introduced in detail the Residual Connections for GCNs and the Dilated
Aggregation for GCNs operations. Then, they analyzed different Deep GCN variants, e.g.,
they included the introduced operations into the EdgeConv one, to train deeper GCNs,
etc. Most importantly, the authors included a detailed experimental process using a pleth-
ora of Graph Learning techniques. Also, they proposed three variations of the GCNs back-
bones: the PlainGCN, the ResGCN, and the DenseGCN. The selected backbone was the only

Figure 14. The GCN architecture (Left) and different backbone networks created to serve as the GCN
backbone block (Right) [105].

G. Li et al. (2021) [106] observed that SoTA GCN models were shallow, basically
due to the vanishing gradients problem and the high complexity in the computation of
backpropagation. Hence, they investigated the transfer of several techniques like resid-
ual/dense connections and dilated convolutions from CNNs to GCNs to create deep
GCNs for different high-level tasks like 3DSS. First and foremost, the authors defined
the meaning of graphs. Furthermore, they defined the general idea of GCNs, i.e., the
definition and application of the update function (MLPs, Gated Networks, etc.) or the
nonlinear function [105] and the aggregate (mean, max, attention, etc.) function. In their
framework, the authors chose the max aggregation function and an MLP with batch nor-
malization and ReLU as the update function. Moreover, they described the differences
between the fixed graph representation, commonly used in GCNs, with the Dynamic
Graph representation, which was presented by Wang et al. (2019), concluding that the later
representation was more beneficial for the networks. Hence, they included a Dilated kNN
function to dynamically change the points neighbors in each layer to increase the GCNs
receptive field. Afterward, the authors introduced in detail the Residual Connections for GCNs
and the Dilated Aggregation for GCNs operations. Then, they analyzed different
Deep GCN variants, e.g., they included the introduced operations into the EdgeConv
one, to train deeper GCNs, etc. Most importantly, the authors included a detailed ex-
perimental process using a plethora of Graph Learning techniques. Also, they proposed
three variations of the GCNs backbones: the PlainGCN, the ResGCN, and the DenseGCN.
The selected backbone was the only different part among the proposed architectures dur-
ing the experiments, i.e., the under-investigation part of the evaluation process was the
backbone architecture. More concretely, the PlainGCN architecture was similar to DGCNN.
In addition to the PlainGCN architecture, the dynamic dilated kNN graph and the residual
graph connections were added to form the ResGCN architecture. Finally, the DenseGCN
was defined by changing the residual with dense graph connections. To conclude, the
authors presented an in-depth comparison of the different architectures and modules using
many ablation studies. Finally, the performance of the presented graph-based methods in
different benchmark datasets is presented in Table 6.

Remote Sens. 2025, 17, 298 32 of 58

Table 6. Mean Intersection over Union (mIoU) and Overall Accuracy (OA) of the S3DIS benchmark
datasets for graph-based methods based on the papers examined in Section 5.4.

Algorithm Year
S3DIS

mIoU OA

DGCNN 2019 58.2 84.1
Deep GCN 2021 60.0 85.9

5.5. Hybrid Methods
5.5.1. Discretization-, Point-, and Dimensionality Reduction-Based Methods

Zhang et al. (2020) [107] introduced the PolarNet architecture, aiming to cope with
the LiDAR point cloud irregularity property and the use of many detailed semantic classes
while retaining real-time perception performance. The authors described the very important
role played by the size of the receptive field in 2DSS performance. However, they concluded
that in 3DSS, the shape of the receptive field was also important in addition to the size.
Firstly, they proposed a bird’s-eye view (BEV) representation, observing that this view of
LiDAR scans organizes the points in rings with different radii. Moreover, they described
that a partition of the BEV representation using a Cartesian grid would result in an uneven
distribution of points into each grid cell. To be more specific, the grid cells that were closer
to a LiDAR sensor would contain more points, while those that were further away would
contain fewer points. Additionally, there were many empty Cartesian grid cells. Hence,
they proposed a polar grid feature learning approach, instead of the Cartesian grid, to
exploit the rings with different radii described earlier. More concretely, the authors first
calculated the azimuth and radius of each point onto XY-plane using the LiDAR sensor
as the origin. Then, the points were assigned to a grid cell using the calculated azimuth
and radius, values resulting in the BEV grid cell representation of the input 3D point cloud.
In fact, each grid cell was similar to the point pillar representation [108], i.e., XY-plane
coordinates and unlimited spatial extent of the Z-direction. Afterward, the points inside
each cell were passed into a kNN-free PointNet followed by a max pooling operation,
resulting in a set of fixed-length features (1 × 512). The output features were assigned
to a ring matrix taking into account the spatial location of their corresponding grid cell.
Moreover, the authors proposed ring convolution, aiming to predict the 3D point labels
using the ring matrix as an input. Specifically, ring convolution was operated on the
ring matrix along the radius axis. The authors mentioned that any 2DCNN network can
process the created representation by replacing the traditional CNN operation with discrete
ring convolution. Finally, they reshaped the ring predictions into a 4D matrix to exploit
voxel-based segmentation loss. To conclude, PolarNet used various techniques inspired
by point-, dimensionality reduction-, and discretization-based methods. Also, the authors
investigated in-depth the performance of PolarNet, including several experiments with
well-known benchmark datasets and comparisons with many baseline networks.

Gerdzhev et al. (2020) [109] proposed the TORNADO-Net architecture, which in-
cluded techniques proposed into the PolarNet [107] and SalsaNext [91] architectures. To
be more specific, they used the general idea of PolarNet, but they combined features from
both BEV and range images, under the pillar projection learning scheme. Furthermore,
similar to SalsaNext, they used the same range image creation process as well as a similar
method to the Context Module, called the Diamond Contextual Block, which included different
2D techniques to improve the SalsaNet architecture. However, the main contribution of this
architecture was the implementation of a total loss function, exploiting the combination of
weighted cross-entropy loss and Lovasz–SoftMax loss, as proposed in SalsaNext but with
the addition of the total variation loss along with different weights for each part. Finally,
a cut-off thresholding [87] and a post-processing approach using kNN [87] were exploited

Remote Sens. 2025, 17, 298 33 of 58

to improve the network’s performance. To conclude, the authors presented several quanti-
tative and qualitative analyses, achieving high-end results, evaluated measuring the mIoU
on the SemanticKITTI benchmark.

Liu et al. (2023) [110] stated that the cross-modal and cross-view fusion approaches
had not been thoroughly investigated yet, while the information gathered using multimodal
data and different views of point clouds were complementary to each other. Furthermore,
the authors observed that 3D point clouds carried detailed geometric information, while im-
ages carried detailed semantic information. Hence, they proposed the UniSeg architecture
(Figure 15), which fused the features gathered from the point, range, and voxel representa-
tions of a 3D point cloud, in addition to those gathered from 2D images, to improve the
performance of both 3DSS and 3D panoptic segmentation. Firstly, the authors extracted the
point, range, voxel, and image features using conventional methods, i.e., MLPs, spherical
projected images, max pooling on the voxel representation, and the ResNet architecture,
respectively. Secondly, they proposed the Learnable cross-Modal Association (LMA) module
and the Learnable cross-View Association (LVA) module to fuse the voxel and range features
with the image features and to transform the fused features into the point space and then
combine them using different views of the point cloud, respectively. In more detail, the
LMA module fused the features gathered from the voxel and range representations with
the image features, resulting in the set of the image-enhanced voxel and range view fea-
tures. To be more specific, for each voxel, the voxel features and their corresponding image
features were passed into a multi-head cross attention module, resulting in enhanced voxel
features. The range-view features were processed similarly to the voxel features, resulting
in enhanced range features. Before the enhanced features were fed into the LVA module,
they were first transformed into the point space using trilinear and bilinear interpolation
in order to alleviate the quantity mismatch problem. Afterward, the enhanced features
were fed into the LVA module. Moreover, all the features, i.e., the transformed range
and voxel features and the point features, were concatenated, resulting in the multi-view
features. Then, the multi-view features were further processed, producing view-wised
adapted features, using the original point space features. and they were projected back to
the voxel and range representation, forming the final set of features for 3DSS. To conclude,
the UniSeg architecture exploited the created features using different heads depending
on the application, i.e., 3DSS or 3D panoptic segmentation, while it was evaluated using
different benchmark datasets like SemanticKITTI, nuScenes, and Waymo Open.

Remote Sens. 2025, 17, x FOR PEER REVIEW 35 of 62

Figure 15. The UniSeg framework [110].

5.5.2. Graph- and Discretization-Based Methods

Yan et al. (2020) [111] observed that LiDAR 3D point clouds were characterized by
sparsity, resulting in underperformance on the 3DSS task. Additionally, they stated that
combining multi-temporal scans could be used to create a dense representation of a scene
and thus to improve the performance of 3DSS. However, SoTA multi-temporal methods
were commonly used only previously to the current scans, and thus, they cannot exploit
the upcoming frames. Also, they introduced time-consuming feature aggregation tech-
niques like kNN, which harden their application on the self-driving task. Hence, Yan et
al. (2020) [111] proposed the JS3C-Net architecture, which exploited both 3DSS and 3D
Semantic Scene Completion (3DSSC) modules to equally improve them along the execu-
tion. To be more specific, the 3DSS module used a U-Net architecture implemented based
on the SparseConv operation introduced by Graham, Engelcke. and Maaten (2018) [112]
to create the voxel-based 3DSS output. Afterward, the voxel-based predictions were trans-
ferred to the original 3D point cloud by nearest neighbor interpolation. Then, the trans-
formed features were fed into three MLPs. The first MLP transformed the point-wise fea-
tures into a shape embedding (SE) that was then fed into the Point–Voxel Interaction, which
was a submodule of the 3DSSC module. The created SE was then used diversely. Firstly,
the point-wise features were fed into the second MLP and then were fused with the SE
using an element-wise summing operation. The fused features were fed into the third
MLP, resulting in the 3D point cloud semantic segmentation prediction of the 3DSS mod-
ule, which was the input for the 3DSSC module. Moreover, the proposed 3DSSC module
first densely voxelized the produced 3DSS map, creating a 3D high-resolution volume,
which was further processed using convolution, pooling, concatenation, and upsampling
layers along with skip connections to use multi-scale features. Finally, the 3DSSC module
output was a set of voxelized coarse completion features, which was also fed into the
Point–Voxel Interaction submodule. Furthermore, the Point–Voxel Interaction included the
SE from the 3DSS module and the coarse-voxel-based completion from the 3DSSC module
and aimed to exploit them to transform the coarse completion into a fine one. To achieve
that, the coarse completion non-empty voxel centers were first collected to create a new
point cloud. Then, the k-nearest neighbors between the SE and the new point cloud were
gathered. Finally, several GCN layers, inspired by Wang et al. (2019), were stacked to-
gether to obtain the refined completion exploiting the kNNs. To conclude, the authors
presented an evaluation of their hybrid architecture by comparing its performance with
SoTA methods using data from the SemanticKITTI benchmark.

Figure 15. The UniSeg framework [110].

5.5.2. Graph- and Discretization-Based Methods

Yan et al. (2020) [111] observed that LiDAR 3D point clouds were characterized
by sparsity, resulting in underperformance on the 3DSS task. Additionally, they stated

Remote Sens. 2025, 17, 298 34 of 58

that combining multi-temporal scans could be used to create a dense representation of
a scene and thus to improve the performance of 3DSS. However, SoTA multi-temporal
methods were commonly used only previously to the current scans, and thus, they cannot
exploit the upcoming frames. Also, they introduced time-consuming feature aggregation
techniques like kNN, which harden their application on the self-driving task. Hence,
Yan et al. (2020) [111] proposed the JS3C-Net architecture, which exploited both 3DSS
and 3D Semantic Scene Completion (3DSSC) modules to equally improve them along
the execution. To be more specific, the 3DSS module used a U-Net architecture imple-
mented based on the SparseConv operation introduced by Graham, Engelcke. and Maaten
(2018) [112] to create the voxel-based 3DSS output. Afterward, the voxel-based predictions
were transferred to the original 3D point cloud by nearest neighbor interpolation. Then, the
transformed features were fed into three MLPs. The first MLP transformed the point-wise
features into a shape embedding (SE) that was then fed into the Point–Voxel Interaction,
which was a submodule of the 3DSSC module. The created SE was then used diversely.
Firstly, the point-wise features were fed into the second MLP and then were fused with
the SE using an element-wise summing operation. The fused features were fed into the
third MLP, resulting in the 3D point cloud semantic segmentation prediction of the 3DSS
module, which was the input for the 3DSSC module. Moreover, the proposed 3DSSC mod-
ule first densely voxelized the produced 3DSS map, creating a 3D high-resolution volume,
which was further processed using convolution, pooling, concatenation, and upsampling
layers along with skip connections to use multi-scale features. Finally, the 3DSSC module
output was a set of voxelized coarse completion features, which was also fed into the
Point–Voxel Interaction submodule. Furthermore, the Point–Voxel Interaction included the SE
from the 3DSS module and the coarse-voxel-based completion from the 3DSSC module and
aimed to exploit them to transform the coarse completion into a fine one. To achieve that,
the coarse completion non-empty voxel centers were first collected to create a new point
cloud. Then, the k-nearest neighbors between the SE and the new point cloud were gath-
ered. Finally, several GCN layers, inspired by Wang et al. (2019), were stacked together to
obtain the refined completion exploiting the kNNs. To conclude, the authors presented an
evaluation of their hybrid architecture by comparing its performance with SoTA methods
using data from the SemanticKITTI benchmark.

5.5.3. Point- and Discretization-Based Methods

Liu et al. (2019) [113] observed that the limitations of point-based methods and
voxel-based methods were usually complementary to each other, and thus, a combination
of techniques from both could result in memory-efficient 3D deep learning models. On
the one hand, voxel-based methods quantized the given point cloud, resulting in the loss
of information while creating a regular representation with good memory locality, i.e.,
mimicking the 2D grid representation. On the other hand, point-based methods had a
significant latency in order to overcome irregular memory access as well as to find the
relative distances among the point neighbors and the center point. Basically, the irregular
property of point clouds but with the advantage of a small memory footprint. To this end,
the authors proposed the PVCNN architecture as a hybrid approach, which exploited the
advantages of voxel- and point-based methods using the proposed point–voxel convolution
(PVConv) operation. To be more specific, the PVConv operation was decomposed into
two branches, Voxel-Based Feature Aggregation (VBFA) and Point-Based Feature Transformation
(PBFT), to capture coarse-grained features and fine-grained features, respectively. More
concretely, VBFA first normalized the given point cloud before voxelization. To achieve
that, the 3D points were expressed with respect to the gravity center of the point cloud
and divided by the largest distance. Finally, the points were scaled and translated in order

Remote Sens. 2025, 17, 298 35 of 58

to span between 0 and 1. The normalized point cloud was then fed into the voxelization
step to create the 3D volumetric representation. In this regard, the authors presented
an informative figure comparing the GPU memory requirements, the information loss,
and the voxel resolution. Moreover, multiple 3D convolutions were applied using the
3D voxel grid in the feature aggregation step, followed by batch normalization and the
nonlinear activation function. Finally, the authors exploited trilinear interpolation to map
the voxel-based features to the point cloud domain. Furthermore, PBFT was applied to an
MLP directly on the original point cloud, resulting in a set of point-wise features. Finally,
the coarse-grained and the fine-grained features, created from the VBFA and the PBFT,
respectively, were fused using the addition operation. To conclude, the authors included
thorough experimentation and evaluation of the proposed architecture with respect to
different SoTA methods, stating that PVCNN and PVConv were efficient and effective.

Tang et al. (2020) [114] observed that PVConv [113] and sparse convolution [104]
operations struggled to capture the small instances of a 3D scene, especially using hardware
with limited memory, due to point cloud coarse voxelization and aggressive downsampling,
respectively. To overcome these limitations, the authors proposed the Sparse Point–Voxel
Convolution (SPVConv) module along with a 3D Neural Architecture Search (3D-NAS) process.
Specifically, the SPVConv operation had two branches, the point-based and the voxel-based
branch, which communicated through sparse voxelization and devoxelization operations.
The former preserved high-resolution details, while the latter operated on a multi-receptive
field manner. Firstly, the original point cloud was sparsely voxelized by exploiting a
GPU-based hash table representation of the data. Furthermore, the hash table was exploited
by both the devoxelization and feature aggregation procedures. More concretely, feature
aggregation was implemented using sparse convolution residual layers. The information
gathered through the voxel-based branch was transformed back into the 3D point cloud
through the devoxelization operation. In parallel, an MLP was applied on the original point
cloud, resulting in a fine detailed set of features. Both features, i.e., from the voxel-based
and point-based branches, were finally fused to be used for point labeling. Moreover,
the authors proposed the 3D-NAS process, in which multiple models were automatically
assessed in order to automatically find the most efficient one for each application. To
this end, the authors defined the searching space by incorporating the channel number
and the network depth and finally using an evolutionary architecture search regarding a
set of predefined hardware constraints to find the most efficient model. To conclude, the
best model was evaluated on 3DSS, among other downstream tasks, using different SoTA
models and the SemanticKITTI dataset.

Rosu et al. (2020) [115] presented the LatticeNet (Figure 16) a hybrid network, which
exploited both the PointNet architecture and lattices for 3DSS. Firstly, the authors described
in detail the notation used in the paper, the permutohedral lattice structure, and the existing
lattice operations, i.e., Splatting, Convolving, and Slicing, similar to the SplatNet architec-
ture. However, they observed that the weights used in the Splatting and Slicing operations,
from SoTA methods, were defined using barycentric interpolation and stated that a better
interpolation could be defined by changing the weights into a set of learnable parame-
ters. Furthermore, they proposed four new lattice operations: Distribute, Downsampling,
Upsampling, and DeformSlicing. Firstly, the Distribute operation aimed to enrich the lattice
vertices with a list of features. To achieve that, the coordinates and the features of the
contributing points were concatenated and processed using PointNet, resulting in the final
lattice vertices values. The coordinates were defined with respect to the mean value of
the contributing points, before the distribution operation, to include the local informa-
tion of the semantic class. Additionally, the authors stated that the proposed operation
aimed to avoid the naïve summation of the Splatting operation and thus to preserve the

Remote Sens. 2025, 17, 298 36 of 58

information through the network. The Downsampling and Upsampling operations fol-
lowed the same idea. Firstly, a coarse lattice was produced by repeatedly dividing the
3D point cloud coordinates by two. In each repetition, a coarse lattice was produced,
while the previous lattice was referred to as the finer lattice. On the one hand, during the
Downsampling operation, the coarse lattice was embedded into the corresponding finer
lattice by scaling it up by two, resulting in a set of coarse vertices in the finer vertices
space. Then, the convolution operation was applied on the finer lattice vertices, using a step
equal to one, to obtain the coarse vertices’ values, an idea similar to strided convolution.
On the other hand, the Upsampling operation embedded the finer vertices into the coarse
vertices’ space by dividing them by two, and then the convolution operation was applied
using a step equal to minus zero point five, similar to transposed convolution. Moreover,
the DeformSlicing operation aimed to improve the Slicing operation by learning to shift the
position of the barycentric coordinates, i.e., allowing a data-driven interpolation instead of
a simple barycentric interpolation. Finally, the authors proposed a U-Net structure network,
including, firstly, a Distribute operation then a series of ResNet blocks, Downsampling and
Upsampling operations, and, finally, a DeformSlicing operation. To conclude, the authors
presented several experiments and ablation studies to evaluate the performance of the
LatticeNet architecture.

Remote Sens. 2025, 17, x FOR PEER REVIEW 38 of 62

Figure 16. The LatticeNet architecture [115].

Cheng et al. (2021) [116] stated that SoTA methods for 3DSS were characterized by
high computational complexity and an inability to gather the fine details of small objects.
To overcome these limitations, they proposed the (AF)2-S3Net architecture, exploiting
techniques from both discretization- and point-based methods. To be more specific, the
proposed network used the MinkNet42 [104] as backbone, enriched with the Attentive Fea-
ture Fusion Module (AF2M) and the Adaptive Feature Selection Module (AFSM). First and
foremost, the input point cloud was transformed into a sparse tensor, similar to the Min-
kowskiNet approach, containing the 3D Cartesian coordinates along with per-point nor-
mals and intensity as features. Afterward, the sparse tensor was fed into the hybrid AF2
module, in which multi-scale point-wise and voxel-based features were extracted using
different branches. In total, three branches were used: the first one was focused on the fine
details of smaller objects, while the other two were focused on global features using atten-
tion maps. Finally, the multi-branch features were fused using summation. Afterward, the
fused features were further processed by convolutional layers, in an encoder–decoder
fashion, while each branch features were fed independently into the AFS module. In the
AFS module, each branch features were first processed using convolutional layers, result-
ing in a new set of features for each branch. Then, the new features were fused and fed
into a shared squeeze re-weighting network [117], resulting in the output of the module,
which was passed to the last transposed convolution for learning stability purposes. Fi-
nally, the predicted labels, first for the sparse tensor and then for the original point cloud,
were exported from the network decoder. To conclude, the authors presented an evalua-
tion of the proposed approach on two benchmark datasets for 3DSS and a qualitative anal-
ysis using several SoTA methods.

Zhu et al. (2021) [118] stated that dimensionality reduction-based methods for the
3DSS of outdoor scenes inevitably lose a significant amount of information due to the pro-
jection operation. Furthermore, they stated that discretization-based methods slightly im-
proved the dimensionality reduction methods. Moreover, they observed that outdoor 3D
point clouds suffer from sparsity and varying density. To overcome these limitations, the
authors proposed a new framework that incorporated two components: the Cylindrical
Partition (CP) and the Asymmetrical 3D Convolution Network (A3DCN). To be more specific,
the uniform cube voxelization process did not take into account the varying density of

Figure 16. The LatticeNet architecture [115].

Cheng et al. (2021) [116] stated that SoTA methods for 3DSS were characterized
by high computational complexity and an inability to gather the fine details of small
objects. To overcome these limitations, they proposed the (AF)2-S3Net architecture, ex-
ploiting techniques from both discretization- and point-based methods. To be more spe-
cific, the proposed network used the MinkNet42 [104] as backbone, enriched with the
Attentive Feature Fusion Module (AF2M) and the Adaptive Feature Selection Module (AFSM).
First and foremost, the input point cloud was transformed into a sparse tensor, similar to
the MinkowskiNet approach, containing the 3D Cartesian coordinates along with per-point
normals and intensity as features. Afterward, the sparse tensor was fed into the hybrid AF2
module, in which multi-scale point-wise and voxel-based features were extracted using
different branches. In total, three branches were used: the first one was focused on the
fine details of smaller objects, while the other two were focused on global features using
attention maps. Finally, the multi-branch features were fused using summation. Afterward,

Remote Sens. 2025, 17, 298 37 of 58

the fused features were further processed by convolutional layers, in an encoder–decoder
fashion, while each branch features were fed independently into the AFS module. In the
AFS module, each branch features were first processed using convolutional layers, resulting
in a new set of features for each branch. Then, the new features were fused and fed into a
shared squeeze re-weighting network [117], resulting in the output of the module, which
was passed to the last transposed convolution for learning stability purposes. Finally, the
predicted labels, first for the sparse tensor and then for the original point cloud, were
exported from the network decoder. To conclude, the authors presented an evaluation of
the proposed approach on two benchmark datasets for 3DSS and a qualitative analysis
using several SoTA methods.

Zhu et al. (2021) [118] stated that dimensionality reduction-based methods for the
3DSS of outdoor scenes inevitably lose a significant amount of information due to the
projection operation. Furthermore, they stated that discretization-based methods slightly
improved the dimensionality reduction methods. Moreover, they observed that outdoor
3D point clouds suffer from sparsity and varying density. To overcome these limita-
tions, the authors proposed a new framework that incorporated two components: the
Cylindrical Partition (CP) and the Asymmetrical 3D Convolution Network (A3DCN). To be
more specific, the uniform cube voxelization process did not take into account the varying
density of LiDAR outdoor point clouds, i.e., the cell size was independent of the distance.
The general idea of the authors was to use the cylindrical partition to follow the point
density, i.e., the cell size to be increased following the distance. Hence, the farther cells
contained more points than their counterparts on uniform cube voxelization, i.e., the cells
had a more balanced point distribution. To prove that, the authors explained the pros and
cons of uniform and cylindrical voxelization. More concretely, the CP component first
transformed the 3D points from a Cartesian to a Cylinder coordinate system. Then, 3D par-
titioning was performed. Meanwhile, the original point cloud was fed into multiple MLPs,
resulting in a set of features which were assigned to their corresponding cylindrical cells,
gathering the cylindrical features sets. Afterward, the cylinder was unrolled, resulting in
the representation that was fed into the A3DCN component. The authors observed that the
objects typically occupied the crisscross area of the cylindrical partition, and hence, those
cells should be strengthened compared to the others, resulting in an asymmetrical cell oper-
ation. First and foremost, the authors defined the asymmetrical upsample and downsample
operations. Then, the Asymmetrical Residual Block enhanced the kernels that operated on
the crisscross area and applied a series of asymmetrical downsample and upsample opera-
tions. Afterward, the Dimension Decomposition-based Context Modeling (DDCM) component
was applied to gather the global context of the point clouds by stacking several low-rank
features, resulting in a discretization-based 3DSS, i.e., a label for each cell, which suffered
from information loss. To this end, the authors proposed the Point-wise Refinement Module
(PRM) to enhance the 3DSS output with fine grained details. To be more specific, RPM
first projects the 3D convolution features gathered from the aforementioned process to the
point-wise features. Finally, a series of MLPSs, which communicated with the first set of
MLPs, was used to fuse point-wise and voxel-wise features, resulting in the refined output.
To conclude, the authors evaluated their framework on the SemanticKITTI and nuScenes
datasets and among different SoTA methods.

Yan et al. (2022) [119] stated that modality-specific 3DSS suffers from the limita-
tions inherited by each sensor capability. Additionally, they observed that LiDAR and
images complement each other and thus overcome some of the limitations of each sensor;
hence, fusion-base methods seem to be beneficial for 3DSS. However, different fusion tech-
niques like point–pixel correspondence construction, along with the different Field-of-View
(FOV) of the sensors and the more computational resources required, downgrade the SoTA

Remote Sens. 2025, 17, 298 38 of 58

fusion-based methods. To this end, the authors proposed the 2D Priors-Assisted Semantic
Segmentation (2DPASS) framework, aiming to overcome the aforementioned issues. To be
more specific, each modality was processed using a modal-specific architecture. Concretely,
the 2D encoder–decoder architecture was based on the ResNet34 architecture and the fully
convolutional layer (FCN), while the 3D encoder–decoder architecture was based on sparse
convolution, similar to the Tang et al. (2020) [114] implementation, resulting in a 2D and a
3D set of multi-scale features. Moreover, the authors aimed to use complementary informa-
tion and thus to create point–pixel correspondences. To achieve that, the authors exploited
the perspective projection along with a timestamp calibration between the two modalities.
In fact, the authors used the 2D branch only during training using the projected ground
truth 3D labels as 2D ground truths. Afterward, the 2D-3D features were fused using
the key component called Multi-Scale Fusion-to-Single Knowledge Distillation (MSFSKD).
More specifically, the 3D features were fed into an MLP, resulting in a new set of features
that was further concatenated with the 2D features through another MLP gathering the
fused features. However, similar to the ResNet idea, the authors enhanced the original
3D features with the new set of features, preserving the modality-specific information
through the process. Finally, both the fused and the 3D features were fed into independent
classifiers, gathering the semantic scores. To conclude, the authors evaluated their method
on the SemanticKITTI and nuScenes benchmarks among a wide range of SoTA methods.

5.5.4. Point- and Graph-Based Methods

Landrieu and Simonovsky (2018) [120] observed that SoTA methods struggled to
process large-scale point clouds, especially for 3DSS. Hence, they proposed a hybrid archi-
tecture that combined the point cloud graph representation with the PointNet architecture.
Specifically, the main contribution was the SPGraph representation, which was proposed to
handle large-scale point clouds. To be more specific, the proposed approach divided 3DSS
into four steps: Geometrically Homogeneous Partition (GHP), Superpoint Graph Construction
(SGC), Superpoint Embedding (SE), and Contextual Segmentation (CS). The first step, i.e., GHP,
took as the input the entire point cloud and aimed to decomposed it into different geomet-
rically homogeneous parts. This process was similar to simple segmentation. To achieve
that, the neighborhood of each point was defined. Furthermore, several neighborhood
characteristics were calculated, e.g., linearity, planarity, scattering, verticality, elevation, etc.,
based on the covariance matrix of the points’ neighborhood, which constituted the features
of the points in addition to the observations, i.e., color, intensity, etc. Finally, an approximate
solution of the generalized minimal partition problem was found using an adjacency graph
technique and the l0-cut pursuit algorithm [121], resulting in several point components,
each of which constituted the homogenous simple shapes called superpoints. Moreover,
the SGC was aimed at creating the oriented attributed graph representation called SPG.
More concretely, the SPG was a graph with nodes representing the superpoints, i.e., a set
of 3D points define simple shapes, which were created in the previous step, and edges
representing the adjacency between them, called super edges. The adjacent superpoints
were defined using a symmetric Voronoi adjacency graph of the original 3D point cloud,
while the edge features were defined by calculating the covariance matrix of each set of
points and finding different features like the surface ratio, volume ratio, length ratio, etc.
Thus, the SPG representation was created. Next, the SE step aimed to find a descriptor for
each superpoint. To this end, the PointNet architecture was applied to each superpoint,
which had a reliable number of points after a rescaling process. However, the original
superpoint was included as a feature after the max pooling operation to preserve the
original shape of the partition. Finally, each point in the superpoints obtained its label using
a Filter Generating Network (FGN). To be more specific, the FGN was based on the ideas of

Remote Sens. 2025, 17, 298 39 of 58

Gated Graph Neural Networks, Edge-Conditioned Convolutions, and Gated Recurrent Units
(GRUs), resulting in the point labels. To conclude, the authors included an in-depth analysis
for each terminology included in the paper along with an evaluation of the proposed
algorithm in comparison to SoTA methods and using benchmark datasets.

5.5.5. Dimensionality Reduction- and Point-Based Methods

Kochanov, Nejadasl, and Booij, (2020) [122] proposed the KPRNet architecture, which
exploited a dimensionality reduction- and point-based method. Firstly, a 2DSS was per-
formed, resulting in 2D labels. Then, the 2D labels were projected back into 3D space. The
authors observed that a wide variety of methods explored a post-processing step to refine
the re-projected labels using either a kNN- or CRF-based approach. Instead, they proposed
using a KPConv layer to predict the final 3D labels. Additionally, the authors stated that
most of the dimensionality reduction methods exploited the spherical projection to create
range images. However, they proposed unfolding the scans in a similar way to that which
LiDAR acquired data, resulting in smoother range images than spherical-projected range
images. Finally, the authors evaluated the KPRNet architecture on the SemanticKITTI
dataset and compared the metrics with those of some of the SoTA methods.

Alonso et al. (2021) [123] stated that point-based methods were computationally
expensive due to the 3D point neighborhood search and that 3D space operations were
more complex than those in 2D space. Thus, they proposed the 3D-MiniNet architecture
(Figure 17) to overcome the aforementioned limitations. Specifically, the 3D-MiniNet archi-
tecture was decomposed into three submodules: the Fast 3D Point Neighbor Search (F3PNS),
3D-MiniNet, and post-processing. Firstly, the F3PNS module received the original 3D point
cloud and projected it using the spherical projection. Then, the neighborhood of each point
was gathered using a sliding window on the spherical image. Afterward, the features of
each point in a neighborhood were augmented by computing the relative features to the
mean point of them, resulting in a set of eleven features for each point. Furthermore, the
3D-MiniNet module had two submodules: the Projection Learning Module (PLM) and the
2D Segmentation Module (2DSM). Firstly, the PLM extracted three types of features, i.e.,
local, context, ands spatial, and finally fused them. To be more specific, the input group of
points, defined in the F3PNS, were fed into the Local Feature Extractor (LFE) (Figure 17 (a)),
extracting PointNet like features. Meanwhile, after the second layer of the LFE, the
points and their features were fed into the Context Feature Extractor (CFE) (Figure 17 (b)),
in which the neighbor search implementation was applied using different window sizes,
resulting in an informative set of features. Both features, i.e., from LFE and CFE, were
concatenated and fed into the max pooling operation. Additionally, the input groups were
also fed into the Spatial Feature Extractor (SFE) (Figure 17 (c)), in which a convolution-based
implementation was applied. Then, the fused features were further concatenated with
the SFE features and fed into the feature fusion (FF) (Figure 17 (d)), submodule, which
fused the concatenated features using a three step processes. Firstly, the concatenated
features were fed into a reshaping process. Meanwhile, the concatenated features were
processed using average pooling, a 1 × 1 convolution, and a sigmoid function. Afterward,
self-attention was applied by multiplying the reshaped features and the computed features.
Finally, the features were reduced and fed into the 2DSM module. More concretely, the
2DSM contained two branches. The first branch took as the input the output of the PLM
and processed it using the MiniNet architecture. The second branch took as the input
the spherical image and processed it to extract high-resolution features. Finally, the 2DSS
labels were extracted and re-projected back into 3D space. Afterward, a kNN-based post-
processing approach similar to Milioto et al. (2019) was applied. To conclude, the authors

Remote Sens. 2025, 17, 298 40 of 58

evaluated the 3DMiniNet architecture using the SemanticKITTI dataset and compared it
with different SoTA methods.

Remote Sens. 2025, 17, x FOR PEER REVIEW 41 of 62

projected range images. Finally, the authors evaluated the KPRNet architecture on the
SemanticKITTI dataset and compared the metrics with those of some of the SoTA methods.

Alonso et al. (2021) [123] stated that point-based methods were computationally ex-
pensive due to the 3D point neighborhood search and that 3D space operations were more
complex than those in 2D space. Thus, they proposed the 3D-MiniNet architecture (Figure
17) to overcome the aforementioned limitations. Specifically, the 3D-MiniNet architecture
was decomposed into three submodules: the Fast 3D Point Neighbor Search (F3PNS), 3D-
MiniNet, and post-processing. Firstly, the F3PNS module received the original 3D point
cloud and projected it using the spherical projection. Then, the neighborhood of each
point was gathered using a sliding window on the spherical image. Afterward, the fea-
tures of each point in a neighborhood were augmented by computing the relative features
to the mean point of them, resulting in a set of eleven features for each point. Furthermore,
the 3D-MiniNet module had two submodules: the Projection Learning Module (PLM) and
the 2D Segmentation Module (2DSM). Firstly, the PLM extracted three types of features, i.e.,
local, context, ands spatial, and finally fused them. To be more specific, the input group
of points, defined in the F3PNS, were fed into the Local Feature Extractor (LFE) (Figure 17
(a)), extracting PointNet like features. Meanwhile, after the second layer of the LFE, the
points and their features were fed into the Context Feature Extractor (CFE) (Figure 17 (b)),,
in which the neighbor search implementation was applied using different window sizes,
resulting in an informative set of features. Both features, i.e., from LFE and CFE, were
concatenated and fed into the max pooling operation. Additionally, the input groups were
also fed into the Spatial Feature Extractor (SFE) (Figure 17 (c)),, in which a convolution-
based implementation was applied. Then, the fused features were further concatenated
with the SFE features and fed into the feature fusion (FF) (Figure 17 (d)), submodule,
which fused the concatenated features using a three step processes. Firstly, the concate-
nated features were fed into a reshaping process. Meanwhile, the concatenated features
were processed using average pooling, a 1 × 1 convolution, and a sigmoid function. After-
ward, self-attention was applied by multiplying the reshaped features and the computed
features. Finally, the features were reduced and fed into the 2DSM module. More con-
cretely, the 2DSM contained two branches. The first branch took as the input the output
of the PLM and processed it using the MiniNet architecture. The second branch took as
the input the spherical image and processed it to extract high-resolution features. Finally,
the 2DSS labels were extracted and re-projected back into 3D space. Afterward, a kNN-
based post-processing approach similar to Milioto et al. (2019) was applied. To conclude,
the authors evaluated the 3DMiniNet architecture using the SemanticKITTI dataset and
compared it with different SoTA methods.

Figure 17. The 3D-MiniNet architecture [123]. The Local Feature Extractor (a), extracts PointNet like
features, using the given point cloud. The Context Feature Extractor (b) exploits the points and their
LFE features to extract a new informative set of features. The Spatial Feature Extractor (c) extracts

Figure 17. The 3D-MiniNet architecture [123]. The Local Feature Extractor (a), extracts PointNet like
features, using the given point cloud. The Context Feature Extractor (b) exploits the points and their
LFE features to extract a new informative set of features. The Spatial Feature Extractor (c) extracts
convolution like features using the given point cloud. The Feature Fusion (d) module combines the
calculated features.

Robert, Vallet, and Landrieu (2022) [124] proposed a hybrid 3DSS approach that
exploited 3D point clouds and a set of images along with their poses. The authors stated
that, in general, the images better captured the textural and contextual information than
3D point clouds. Hence, the proposed method aimed to assess the given images based on
their viewing conditions and finally use them in combination with a 3D point cloud for
3DSS. First and foremost, a Point–Pixel Mapping (PPM) process was constructed to link each
3D point with a set of images in which it was visible. To achieve that, a method similar
to Z-buffering was created, resulting in a set of images for each 3D point. Afterward, its
image–point pair was assessed to extract the viewing conditions using a vector that included
the normalized depth, some local geometric descriptors, the local density, and the viewing
angle with respect to the normal vector, among other metrics. Furthermore, the authors
exploited the input data along with the PPM outputs to gather diverse features for each
point. The authors stated that based on the viewing conditions found earlier, each image
could be used diversely, contributing to different types of information, like detailed textural
information, important contextual cues, etc. To this end, the authors exploited a deep-set
architecture to predict a vector that represented the quality of the images corresponding
to a 3D point. Moreover, the predicted quality vector was fed into the SoftMax function
to obtain the attention scores. In the case that the images’ quality was poor, the authors
blocked the extraction of relevant features from them and relied only on the geometric
information, using a gating parameter. Finally, the features gathered for each image in the
image set of a 3D point were fused and assigned to it. The aforementioned method was
called the Multi-View Feature Aggregation Method by the authors and was exploited under a
Bimodal Point–Image Network for 3DSS purposes. To be more specific, the proposed bimodal
network was composed of a 2D FCN, a 3D encoder–decoder network, and a fusion of the
2D-3D features strategy. To conclude, the authors investigated different fusion techniques,
i.e., early, intermediate, and late, and evaluated their network on three benchmarks (S3DIS,
ScanNet, and KITTI-360) against several SoTA methods.

Wang, Zhu, and Zhang (2022) [125] observed that autonomous vehicles captured
sequences of LiDAR data, while SoTA 3DSS methods usually processed them using a single
frame at a time. Hence, they proposed a range residual spherical image representation,
aiming to capture both the spatial and temporal information of LiDAR sequential data for
3DSS. More specifically, the proposed approach, called Meta-RangeSeg, was composed of
three steps: Range residual image generation, feature extraction, and post-processing. The

Remote Sens. 2025, 17, 298 41 of 58

former step created a nine-channel spherical residual image representation of the sequen-
tial 3D point clouds. To be more specific, the authors called the proposed representation
residual because they included three residual channels in the created spherical images, in
addition to the remission, the 3D coordinates, and an indicator m, which defined if a pixel
position was a projected point or not. More concretely, the residual channel number was
equal to the sequential frames that were used in addition to the current frame. The authors
included three previous LiDAR scans; hence, there were three residual channels: d1, d2,
and d3. Specifically, the residual channels were created by applying three steps. Firstly,
the 3D point clouds of the previous frames were transformed into the coordinate system
of the current frame. Then, the transformed point clouds were projected, creating range
images. Finally, the residual images were created by calculating the absolute difference
among the range images of the previous frames and the range image of the current frame.
Moreover, the created spherical images were fed into the feature extraction step, which
included the MetaKernel and U-Net blocks. The MetaKernel block included a sliding
5 × 5 window on the spherical image, which was used to indicate the point neighbors.
Then, the relative 3D coordinates and range of the neighborhood with respect to the center
point were calculated and fed into an MLP. Finally, an element-wise product between the
learned weights and the MLP features was calculated, followed by concatenation and
1 × 1 convolution operations, resulting in a set of meta-features. Afterward, the
meta-features were fed into a U-Net encoder–decoder network with four downsampling
layers and upsampling layers with skip connections. Hence, two types of features were
produced: the meta-features, using the MetaKernel, and the multi-scale features, using the
meta-features fed into a UNet network. Then, the post-processing step was applied, taking as
the input only the range channel, which was the most valuable one according to the authors,
the multi-scale features, and the meta-features under the Feature Aggregation Module (FAM).
Firstly, the range channel was fed into the Context Module presented to the SalsaNext [91] ar-
chitecture, followed by several concatenation, convolution, batch normalization, ReLU, and
element-wise product operations. The resulting features were fused with the multi-scale
features, creating range-guided features, which were concatenated with the meta-features.
After the concatenation, several layers with the same operations, i.e., convolution, batch
normalization, etc., were applied, resulting in a set of 2D labels. Finally, the 2D labels were
converted into a 3D prediction following the kNN post-processing approach presented by
Milioto et al. (2019). To conclude, the authors evaluated the Meta-RangeSeg algorithm using
the SemanticKITTI [67] and SemanticPOSS [126] benchmarks along with the mIoU metric.

5.5.6. Dimensionality Reduction- and Discretization-Based Methods

Wu et al. (2024) [127] observed that the advancements in 2D deep learning methods
were based on scale principals, e.g., dataset size, the number of model parameters, the
size of the receptive field, etc. However, the investigation of the scale principals in the
3D domain was not a straightforward process due to the limited size and diversity of the
available 3D point cloud datasets. Additionally, by observing the advantages of sparse
convolution [104], especially using large 3D point clouds, they hypothesized that the 3D
deep learning algorithm’s performance was linked to the scale principals more than the
complex architecture design’s. Hence, Wu et al. (2024) [127], motivated by the introduction
of scale principals into transformers, proposed the PTv3 architecture. In fact, SoTA methods
commonly investigate a tradeoff between efficiency and accuracy. To be more specific, the
authors emphasized simplicity and efficiency over accuracy in order to leverage the scale
principals. Firstly, they propose a method different to the kNN neighborhood extraction
process by using point cloud serialization along with specific patterns using space-filling
curves. Specifically, the 3D point cloud was transformed into a structured format using

Remote Sens. 2025, 17, 298 42 of 58

the space-filling curves and transforming the position of every 3D point to an integer that
represented its order regarding the space-filling curve. During the point cloud serializa-
tion, the neighboring points were not changed, i.e., the points’ localities were preserved
while a structured format was created. Next, for the created representation, the authors
proposed the Patch Attention mechanism, which was decomposed into Patch Grouping and
Patch Interaction designs. In more detail, the former used reordering and padding opera-
tions based on the serialization pattern and neighboring patches, respectively. The latter
described the interaction among points belonging to different patches using different tech-
niques like Shift Patch, Shuffle Order, etc. Finally, the overall architecture was designed
using a U-Net structure. To conclude, the PTv3 architecture was evaluated on different
tasks and benchmarks with remarkable results. Finally, the performance of the presented
hybrid-based methods in different benchmark datasets is presented in Table 7.

Table 7. Mean Intersection over Union (mIoU) and Overall Accuracy (OA) of different benchmark
datasets for hybrid-based methods based on the papers examined in Section 5.5.

Algorithm Year
Semantic3D NuScenes SemanticKITTI S3DIS Sensat Urban

mIoU OA mIoU OA mIoU OA mIoU OA mIoU OA

PolarNet 2020 - - 69.4 54.3 90.0 - - - -
TORNADO-Net 2020 - - - - 63.1 90.7 - - - -

UniSeg 2023 - - 83.5 - 75.2 - - - - -
JS3C-Net 2020 - - 73.6 - 66.0 - - - - -
PVCNN 2019 - - - - - - 58.98 - - -

SPVConv 2020 - - 77.4 - 67.0 - - - - -
LatticeNet 2020 - - - - 52.9 - - - - -

(AF)2-S3Net 2021 - - 78.3 - 69.7 - - - - -
Cylinder3D 2021 - - - - 67.8 - - - - -

2DPASS 2022 - - 80.8 - - - - - - -
SPGraph 2018 76.2 94.0 - - 20.0 - 63.2 86.4 37.29 85.27
KPRNet 2020 - - - - 63.1 - - - - -

3D-MiniNet 2021 - - - - 55.8 89.7 - - - -
DeepViewAgg 2022 - - - - - - 69.5 - - -
Meta-RangeSeg 2022 - - - - 61.0 - - - - -

PTv3 2024 - - 83.0 - 75.5 - 80.81 - - -

-: No Data.

6. Loss Functions in 3D Semantic Segmentation
The loss or objective function is an integral part of deep learning algorithms. During

the research conducted on deep learning algorithms in 3DSS, several loss functions have
been encountered. For instance, the Boundary loss [125], Consistency loss [128], Contextual
loss [129], Contrastive loss [130,131], Dice loss [101], Focal loss [82,97,132–134], and Total
Variation loss [109] functions. However, a detailed analysis of the 3DSS loss functions is
out of the scope of this effort. Thus, a small part of the loss functions that are mostly used
and seem to guarantee their future usage is presented in this section.

Categorical Cross-Entropy Loss: One of the main losses used in 3DSS is the categorical
cross-entropy loss, which measures the difference between the predicted and the ground
truth value formulated as:

Lce(y, ŷ) = − 1
N ∑N

i ∑C
j yijlog ŷij (9)

where

• N: Number of samples;
• C: Number of classes
• y : Ground truth label;

Remote Sens. 2025, 17, 298 43 of 58

• ŷ: Predicted label.

Weighted Cross-Entropy Loss: In fact, the cross-entropy loss does not take into account
the frequency of each class, while most real-world data suffer from the class imbalance
problem. Hence, the weighted cross-entropy loss is frequently adopted in 3DSS as a
component of the total loss to deal with the class imbalance problem using the frequency
of each class.

Lwce(y, ŷ) = − 1
N ∑N

i ∑C
j wnyijlog ŷij (10)

where

• N: Number of samples;
• C: Number of classes;
• wn: Class weight;
• y : Ground truth label;
• ŷ : Predicted label.

Several methods [93,94,109,125,135] mention that the weight for each class is com-
monly calculated by using the 1√

f j
formula based on the frequency of each class, avoiding

the manual definition of the weights.
Geo-Aware Anisotropic Loss: Liu et al. (2020) presented a metric that takes into

account the variability between the semantic classes of the current voxel and its neigh-
boring voxels. To be more specific, the authors referred to this metric as Local Geometric
Anisotropy, which takes higher values when a voxel at the edge of the semantic category is
under investigation, i.e., when the neighboring voxels have a different category than the
under-investigation voxel. Overall, LGA is a factor that quantifies the significance of the
voxel position and was included in the PA loss proposed by the authors. In 3DSS, LGA is
used to recover the fine details of a 3D point cloud and, in combination with other losses,
to form a total loss [116,136]. Commonly, LGA is included in the geo-aware anisotropic
loss, formulated as follows:

Lgeo(y, ŷ) = − 1
N ∑i,j,k ∑C

c=1
MLGA

Φ
yijk,clog ŷijk,c (11)

where

• N: voxel neighborhood located at I, j, and k;
• c: Current class of classes C;
• MLGA : Local Geometric Anisotropy metric;
• y : Ground truth label;
• ŷ: Predicted label;
• Φ: Sliding window.

Lovasz–SoftMax loss: In general, the most common evaluation metric in 2D and 3D
semantic segmentation is the mean Intersection over Union score (mIoU) or the Jaccard
Index. Berman, Triki, and Blaschko (2018) [137] proposed the Lovasz–SoftMax loss to
maximize the IoU score. Commonly, the Lovasz–SoftMax loss is included in 3DSS methods
to take into account the fine details presented in the data [91,93,94,109,125]. However, the
Lovasz–SoftMax loss does not consider the points’ neighborhood during the computation,
which can lead to noise predictions [109]. The Lovasz–SoftMax loss is formulated as follows:

Lls =
1
|C|∑c ∈C ∆Jc(m(c)), and mi =

{
1 − xi(c) i f c = yi(c)

x(i)(c) otherwise
(12)

where

Remote Sens. 2025, 17, 298 44 of 58

• |C| : Number of classes;
• ∆Jc : Lovasz extension of the Jaccard Index;
• x(i)(c) ∈ [0, 1] : Predicted probability of point I for class c;
• yi(c) : The ground truth label.

7. Discussion
In this section, an informative analysis of the examined 3DSS algorithms and datasets

is presented to foster new research directions and applications in the field of 3DSS. First
and foremost, a timeline of the included 3DSS methods is presented in Figure 18. Then, the
included methods along with their code implementation are summarized in Table 8.

Remote Sens. 2025, 17, x FOR PEER REVIEW 46 of 62

7. Discussion
In this section, an informative analysis of the examined 3DSS algorithms and datasets

is presented to foster new research directions and applications in the field of 3DSS. First
and foremost, a timeline of the included 3DSS methods is presented in Figure 18. Then,
the included methods along with their code implementation are summarized in Table 8.

Figure 18. The timeline of the methods included. Point-based methods (blue), dimensionality re-
duction-based methods (green), discretization-based methods (yellow), graph-based methods (Or-
ange), and hybrid-based methods (pink).

Table 8. The included methods for 3DSS along with their code implementations. Point-based (PB),
dimensionality reduction-based (DRB), hybrid-based (HB), graph-based (GB), and discretization-
based (DB).

Algorithm Category Year Code
PointNet PB 2017 https://github.com/charlesq34/pointnet
PointNet++ PB 2017 https://github.com/charlesq34/pointnet2
SqueezeSeg DRB 2017 https://github.com/BichenWuUCB/SqueezeSeg
OctNet DB 2017 https://github.com/griegler/octnet
PointCNN PB 2018 https://github.com/yangyanli/PointCNN
RSNets PB 2018 -
SqueezeSegV2 DRB 2018 -
TangenConv DRB 2018 -
SPLATNet DB 2018 https://suhangpro.github.io/splatnet/
SPGRaph HB 2018 https://github.com/loicland/ superpoint_graph.
KPConv PB 2019 https:// github.com/ HuguesTHOMAS/ KPConv
RangeNet++ DRB 2019 https://github.com/PRBonn/lidar-bonnetal.
Minkow-
skiNet DB 2019 https://github.com/StanfordVL/MinkowskiEngine

DGCNN GB 2019 https://github.com/WangYueFt/dgcnn
PVCNN HB 2019 https://github.com/mit-han-lab/pvcnn

RandLA-Net PB 2020 https://github.com/QingyongHu/RandLA-Net
https://github.com/aRI0U/RandLA-Net-pytorch

SqueezeSegV3 DRB 2020 https://github.com/chenfengxu714/SqueezeSegV3.
SalsaNext DRB 2020 https://github.com/TiagoCortinhal/SalsaNext
MPF DRB 2020 -
PolarNet HB 2020 https://github.com/edwardzhou130/PolarSeg

Figure 18. The timeline of the methods included. Point-based methods (blue), dimensionality
reduction-based methods (green), discretization-based methods (yellow), graph-based methods
(Orange), and hybrid-based methods (pink).

Table 8. The included methods for 3DSS along with their code implementations. Point-based (PB),
dimensionality reduction-based (DRB), hybrid-based (HB), graph-based (GB), and discretization-
based (DB).

Algorithm Category Year Code

PointNet PB 2017 https://github.com/charlesq34/pointnet
PointNet++ PB 2017 https://github.com/charlesq34/pointnet2
SqueezeSeg DRB 2017 https://github.com/BichenWuUCB/SqueezeSeg
OctNet DB 2017 https://github.com/griegler/octnet
PointCNN PB 2018 https://github.com/yangyanli/PointCNN
RSNets PB 2018 -
SqueezeSegV2 DRB 2018 -
TangenConv DRB 2018 -
SPLATNet DB 2018 https://suhangpro.github.io/splatnet/
SPGRaph HB 2018 https://github.com/loicland/superpoint_graph
KPConv PB 2019 https://github.com/HuguesTHOMAS/KPConv
RangeNet++ DRB 2019 https://github.com/PRBonn/lidar-bonnetal
MinkowskiNet DB 2019 https://github.com/StanfordVL/MinkowskiEngine
DGCNN GB 2019 https://github.com/WangYueFt/dgcnn
PVCNN HB 2019 https://github.com/mit-han-lab/pvcnn
RandLA-
Net PB 2020 https://github.com/QingyongHu/RandLA-Net

https://github.com/aRI0U/RandLA-Net-pytorch
SqueezeSegV3 DRB 2020 https://github.com/chenfengxu714/SqueezeSegV3

https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2
https://github.com/BichenWuUCB/SqueezeSeg
https://github.com/griegler/octnet
https://github.com/yangyanli/PointCNN
https://suhangpro.github.io/splatnet/
https://github.com/loicland/superpoint_graph
https://github.com/HuguesTHOMAS/KPConv
https://github.com/PRBonn/lidar-bonnetal
https://github.com/StanfordVL/MinkowskiEngine
https://github.com/WangYueFt/dgcnn
https://github.com/mit-han-lab/pvcnn
https://github.com/QingyongHu/RandLA-Net
https://github.com/aRI0U/RandLA-Net-pytorch
https://github.com/chenfengxu714/SqueezeSegV3

Remote Sens. 2025, 17, 298 45 of 58

Table 8. Cont.

Algorithm Category Year Code

SalsaNext DRB 2020 https://github.com/TiagoCortinhal/SalsaNext
MPF DRB 2020 -
PolarNet HB 2020 https://github.com/edwardzhou130/PolarSeg
TORNADO-
Net HB 2020 -

JS3C-Net HB 2020 https://github.com/yanx27/JS3C-Net

SPVConv HB 2020 https://github.com/mit-han-lab/torchsparse
https://github.com/mit-han-lab/spvnas

LatticeNet HB 2020 https://github.com/AIS-Bonn/latticenet
KPRNet HB 2020 https://github.com/DeyvidKochanov-TomTom/kprnet
SCF-Net PB 2021 https://github.com/leofansq/SCF-Net

FG-Net PB 2021 https://github.com/KangchengLiu/Feature-Geometric-
Net-FG-Net

PTv1 PB 2021
https://github.com/POSTECH-CVLab/point-transformer
(Unofficial)
https://github.com/Pointcept/Pointcept

BAAF-Net PB 2021 https://github.Com/ShiQiu0419/BAAF-Net
FPS-Net DRB 2021 https://github.com/xiaoaoran/FPS-Net
MINet DRB 2021 https://github.com/sj-li/MINet
Efficient
BEV DRB 2021 -

DeepGCN GB 2021 https://github.com/lightaime/deep_gcns_torch
https://github.com/lightaime/deep_gcns

(AF)2_S3Net HB 2021 -
Cylinder3D HB 2021 https://github.com/xinge008/Cylinder3D
3D-MiniNet HB 2021 https://sites.google.com/a/unizar.es/semanticseg/

PTv2 PB 2022 https://github.com/Gofinge/PointTransformerV2
https://github.com/Pointcept/Pointcept

GFNet DRB 2022 https://github.com/haibo-qiu/GFNet
2DPASS HB 2022 https://github.com/yanx27/2DPASS
DeepViewAgg HB 2022 https://github.com/drprojects/DeepViewAgg
Meta-
RangeSeg HB 2022 https://github.com/songw-zju/Meta-RangeSeg

UniSeg HB 2023 https://github.com/PJLab-ADG/PCSeg
PTv3 HB 2024 https://github.com/Pointcept/PointTransformerV3

All links last accessed: 30 December 2024.

In Section 2, an analysis of previous review papers is performed to define a unified
taxonomy scheme for 3DSS methods. Regardless of the category in which the 3DSS
algorithms belong, i.e., point-, dimensionality reduction-, discretization-, graph-, and
hybrid-based, they aim to handle similar issues, like computational cost and memory
consumption, information loss during the algorithm execution, the properties of the 3D
point cloud, e.g., sparsity and irregularity, the introduction of a novel feature extraction
strategy, etc. However, based on their category, the advantages and disadvantages of them
as long as the new research directions are unique.

7.1. Regarding the 3DSS Method Category

Specifically, point-based methods are applied directly on a given 3D point cloud to
extract meaningful 3DSS point features; thus, there is no need for extra computational time
to create an intermediate representation of the data. To this end, the 3D spatial structure
information of the data is preserved without losing the detailed geometric information [125].
A crucial part of 3DSS using point-based methods is to preserve the detailed geometric
information of the data during the execution of the algorithm. Regarding this task, the
sampling method used to define each neighborhood centroid point is one of the main
parts. The most common sampling method is Farthest Point Sampling (FPS) [68,69,78,138].

https://github.com/TiagoCortinhal/SalsaNext
https://github.com/edwardzhou130/PolarSeg
https://github.com/yanx27/JS3C-Net
https://github.com/mit-han-lab/torchsparse
https://github.com/mit-han-lab/spvnas
https://github.com/AIS-Bonn/latticenet
https://github.com/DeyvidKochanov-TomTom/kprnet
https://github.com/leofansq/SCF-Net
https://github.com/KangchengLiu/Feature-Geometric-Net-FG-Net
https://github.com/KangchengLiu/Feature-Geometric-Net-FG-Net
https://github.com/POSTECH-CVLab/point-transformer
https://github.com/Pointcept/Pointcept
https://github.Com/ShiQiu0419/BAAF-Net
https://github.com/xiaoaoran/FPS-Net
https://github.com/sj-li/MINet
https://github.com/lightaime/deep_gcns_torch
https://github.com/lightaime/deep_gcns
https://github.com/xinge008/Cylinder3D
https://sites.google.com/a/unizar.es/semanticseg/
https://github.com/Gofinge/PointTransformerV2
https://github.com/Pointcept/Pointcept
https://github.com/haibo-qiu/GFNet
https://github.com/yanx27/2DPASS
https://github.com/drprojects/DeepViewAgg
https://github.com/songw-zju/Meta-RangeSeg
https://github.com/PJLab-ADG/PCSeg
https://github.com/Pointcept/PointTransformerV3

Remote Sens. 2025, 17, 298 46 of 58

However, several approaches mentioned that FPS is time-consuming [70,74,139], while
other sampling methods like Random Sampling (RS) can reduce the execution time while
preserving high-end results. In fact, RS has also some drawbacks due to the random picking
of points, e.g., to dropout useful point features [70]. Hence, an investigation of the new
strategies for point sampling to improve the efficiency and efficacy of point-based methods
is recommended. In general, [70] presented an in-depth analysis of many sampling methods
and, thus, it could be used as a source.

Furthermore, the definition of the points’ neighborhood plays a significant role in the
preservation of the local information of the point cloud as well as the execution time of the
algorithm. The most common approaches to define the neighborhood of points is the k
nearest neighbor (kNN) and the Ball Query algorithms. In general, point-based methods
spend most of the execution time in defining the points’ neighborhood, i.e., handling
the random memory access or, in other words, extracting the point neighbors into the
continuous space, rather than extracting features [95,104,113,114]. Frequently, point-based
methods are characterized as unreliable and time-consuming, especially for large-scale
point clouds due to the neighborhood definition step [1,74,90,91,94,116,125,140,141]. In fact,
point-based methods are applied on large-scale point clouds using point cloud partitioning
approaches. However, the partitioning operation harms the global consistency of the point
cloud, resulting in weaker global features [142]. Furthermore, the kNN algorithm is not
sufficient for modeling the local neighborhood of points [143]. Thus, efficient techniques
on the definition of the points’ neighborhood should be investigated in order to alleviate
the issue of applying point-based methods on large-scale point clouds [144]. Finally, a
more efficient definition of the points’ neighborhood will further improve the preservation
of the local information encapsulated into the points’ neighborhoods and thus enable
the application of point-based 3DSS methods in more detailed applications, e.g., point
cloud serialization.

Moreover, the local feature aggregation method, which is applied on the
points’ neighborhood to transform 3DSS local features, is crucial for the preservation
of the local information. In fact, the extraction of the local information from the points’
neighborhood is demanding due to the point cloud properties and the lack of explicit
relationship among the 3D points [145]. Furthermore, the existing 3DSS approaches do
not thoroughly capture the local information [51,76,146]. In general, the local feature ag-
gregation operations of point-based 3DSS algorithms are commonly used in maximum
or summation operation. However, these operations tend to lose the information of the
geometric structures [147]. Even more deeply, the way that the local aggregation is applied
on each category affects the performance of the model. In general, the existing 3DSS algo-
rithms process all categories using the same aggregation operation, which could result in
confusion among similar categories [148,149]. Additionally, the complex details presented
in the point clouds lead to pattern imbalances, either between the categories, resulting in the
developed algorithms learning only the dominant cases [150], or inside the same category,
resulting in a reduction in the model’s performance [151]. Overall, an improvement in the
local aggregation operators will positively affect diversely the point-based 3DSS algorithms,
and thus, an investigation of this part is recommended. In general, [152] presented an
in-depth analysis of local aggregation operators, in which they surprisingly concluded
that sophisticated local aggregation operators performed similarly to the conventional
ones using the same residual network. Hence, the analysis could be used as a source for
further exploration.

Furthermore, most 3DSS algorithms investigate local feature extraction, paying less
attention to global features, which are quite important for the performance of 3DSS al-
gorithms [153–156]. Thus, an investigation of the global feature extraction process could

Remote Sens. 2025, 17, 298 47 of 58

be performed to improve the performance of 3DSS algorithms. In addition to local and
global feature extraction, multi-scale feature extraction is also investigated, aiming to find
multi-resolution information and thus improve the performance of 3DSS methods [157,158].
Finally, point-based methods require less GPU memory in comparison to discretization-
based methods [113], while they achieve high-end results in many 3D tasks [90,152].

In general, dimensionality reduction-based (DRB) methods project the given point
cloud into a lower dimensional space, perform the semantic segmentation of the data in
that space, and then re-project it into the 3D space. Using the aforementioned methodology,
DRB methods try to alleviate the unstructured and irregularity properties of 3D point
clouds by constructing a regular representation of the data.

However, the creation of such a representation costs extra computation time and
also results in the loss of information, e.g., the geometric information and the de-
tails of the point cloud, due to the projection of the 3D data in the lower dimension
space [1,70,73,74,78,87,97,116,118,136,152,159]. Despite the extra computation time re-
quired for the creation of the new representation, DRB methods overcome the expensive
3D computations presented in point-based and graph-based methods [107]. Besides, the
projection process alters and abandons the 3D topology and the geometric relations of the
data [118,125,136,160]. However, DRB methods could benefit from mature 2DSS algorithms
and 2DSS datasets and, thus, follow their advancements [95,97,107]. Overall, DRB methods
seems to be fast, but do not exploit the benefits of 3D data [91,123].

Moreover, DRB methods require post-processing steps to re-project the semantic
information gathered into the lower space to the 3D space. In fact, the performance of 3DSS
is hampered due to the smoothed labels that are generated in the lower dimension space and
re-projected into the 3D space [87,122]; thus, a refinement technique is commonly applied to
achieve high-end results. This problem was formulated as the label re-projection problem,
while the first approaches tried to alleviate it using conditional random fields (CRFs) [82].
In general, the most common approach that handles the label re-projection problem is
that presented in RangeNet++ using the kNN algorithm [87]. Recently, an alternative
post-processing solution to avoid the kNN approach was presented by exploiting the
KPConv [73] network [2,122]. In general, new post-processing techniques to alleviate the
label re-projection problem could be explored.

In fact, DRB methods stack several channels to create multi-channel range images
from 3D point cloud data. Commonly, the created images contain the x, y, z, range,
and remission or intensity channels. However, the feature distribution of such images
varies and is different from RGB images. Xu et al. (2020) [90] mentioned that the con-
volution operator performs poorly using spatially varying feature images. Additionally,
Xiao et al. (2021) [93] stated that each channel has unique characteristics and thus should be
treated differently. In general, an investigation of how the developed algorithm will fully
exploit the information presented in the generated multi-channel images of DRB methods
will be beneficial.

Moreover, DRB methods most commonly use the spherical projection of 3D data.
However, there are other projections, like the bird’s-eye view (BEV), which are exploited
to perform 3DSS. Jiang et al. (2023) [161] stated that the methods that exploit the BEV
projection could achieve real-time inference on 3DSS. Recently, a combination of such
projections was used to perform 3DSS, mentioning that each one contains complementary
information to the other [2,97]. Thus, a further exploration of projections in order to
fully exploit the 3D information of point clouds could be performed, e.g., using scan
unfolding [122].

In fact, point-based methods and discretization-based (DB) methods have some
similarities regarding the feature extraction process, i.e., both extract features using the

Remote Sens. 2025, 17, 298 48 of 58

points’ neighborhood. However, the neighborhood definition is different, i.e., using kNN
or voxels. DB methods transform an unstructured point cloud into a regular representation,
e.g., voxel grid, on which the well-known convolution operation could be applied. How-
ever, the creation of a regular grid is a time-consuming operation due to the cubic growth of
voxels with respect to the density of the given point cloud and the requirements of the voxel
grid resolution [1,2,70,72,74,78,80,87,88,97,102,104,111,113,114,152,159,162,163]. Addition-
ally, the quantization of the given point cloud results in a loss of information, especially
when points of different categories are included in the voxels or a large-scale point cloud is
used [1,74,93,105,113,114,152,159,164]. Mainly, the computation cost of DB methods is due
to the large amount of empty voxels, i.e., of the empty space, involved in the computations.
Thus, sparse structures like octrees, kd-trees, and hash-maps [67,73,80,88,102,104,162] and
post-processing techniques like CRFs [67,80] were introduced to alleviate the aforemen-
tioned problem. However, the convolution kernels that are exploited by sparse voxel-based
methods are small and thus harm the network’s performance [165]. Furthermore, voxel-
based methods have good memory locality, i.e., preserving the spatial relationship due to
the regular grid representation [74,113]. To conclude, DB methods are commonly applied
separately but also in combination with other methods, e.g., point-based, forming hybrid
architectures. A further investigation of the hybrid architecture exploiting the advantages
of DB methods is recommended. Additionally, high-dimensional lattices could be exploited
as a base for the exploration of multi-modal 3DSS.

In general, graph-based (GB) methods aim to create a new graph representation and
then to extract 3D features by exploiting the convolution operation. However, the creation
of such representation is time-consuming [74]. Additionally, GB methods are commonly
limited to very shallow models [106]. However, the graph representation of the data
preserves the local geometry of the data while it can capture complex shapes. Moreover,
the edges could be used to carry features on them [105]. Finally, the graph representation
could be exploited differently than the 3D Euclidean space, e.g., feature space, [105] which
is advantageous for the creation of hybrid methods.

The four main categories of 3DSS methods, i.e., point, dimensionality reduction, dis-
cretization, and graph, are commonly combined to form architectures that leverage the
advantages of each category and complement the disadvantages of them. In general, the
receptive field plays a significant role in the performance of both 2D and 3D architec-
tures. However, in 3D space, the shape, apart from the size of the receptive field, is also
important [104,107]. Hence, several hybrid approaches that exploit discretization-based
methods tried to define voxels that follow the distribution of LiDAR points, e.g., using polar
grid [107], cylindrical voxel shapes with different sizes depending on the distance of the 3D
point [118], or crisscross shape voxels [104]. In fact, LiDAR-based methods dominate the
research on 3DSS. Hence, different shaped voxels follow the acquisition of LiDAR point
clouds. A further exploration of the voxel shape regarding other types is of interest.

Moreover, discretization-based and point-based methods are commonly combined
to leverage the efficient memory locality and the extraction of fine-grained details, re-
spectively [113,114,116,118], using two branch feature extraction approaches. Different
fusion strategies, e.g., early or late fusion, could be explored using features gathered using
different approaches.

Additionally, the complementarity among different data modalities is also explored,
mainly using a combination of images and 3D point clouds [119,124]. The general idea is
that the images contain better textural and contextual information than 3D point clouds. To
conclude, the complementarity among the different categories of 3DSS methods should be
further explored to advance the performance and efficiency of 3DSS algorithms.

Remote Sens. 2025, 17, 298 49 of 58

7.2. Regarding the Datasets and the Data

In general, most 3DSS algorithms are trained using supervised learning, i.e., having
available 3D ground truth information. In Section 3, several 3DSS datasets for indoor and
outdoor environments are presented. In fact, most of the datasets were created using an
RGB-D camera and a LiDAR sensor in indoor and outdoor environments, respectively.
Additionally, even the available datasets use the same sensors, like the Matterport camera
(indoor) and Velodyne LiDAR (outdoor). On the one hand, the combination of datasets is
more straightforward due to the same data acquisition sensor type [166]. On the other hand,
datasets with a different acquisition method, e.g., using photogrammetric approaches or
different sensors, should be released. To be more specific, the 3D point clouds created using
a LiDAR sensor are strongly differ from those created using photogrammetry or terrestrial
laser scanners with respect to point density and point distribution. Thus, more datasets
using such techniques should be released to explore the 3DSS concept. In Figure 19 an
example of an annotated indoor and outdoor dataset is presented.

Remote Sens. 2025, 17, x FOR PEER REVIEW 51 of 62

In general, most 3DSS algorithms are trained using supervised learning, i.e., having
available 3D ground truth information. In Section 3, several 3DSS datasets for indoor and
outdoor environments are presented. In fact, most of the datasets were created using an
RGB-D camera and a LiDAR sensor in indoor and outdoor environments, respectively.
Additionally, even the available datasets use the same sensors, like the Matterport camera
(indoor) and Velodyne LiDAR (outdoor). On the one hand, the combination of datasets is
more straightforward due to the same data acquisition sensor type [166]. On the other
hand, datasets with a different acquisition method, e.g., using photogrammetric ap-
proaches or different sensors, should be released. To be more specific, the 3D point clouds
created using a LiDAR sensor are strongly differ from those created using photogramme-
try or terrestrial laser scanners with respect to point density and point distribution. Thus,
more datasets using such techniques should be released to explore the 3DSS concept. In
Figure 19 an example of an annotated indoor and outdoor dataset is presented.

Figure 19. Labeled point clouds in indoor (ScanNet dataset [28]) and outdoor (Hessigheim dataset
[46]) environments.

Additionally, there are not so many 3DSS datasets that explore multimodality. Spe-
cifically, multimodal 3DSS segmentation should be explored with regard to using com-
plementary information with different types of data to improve 3DSS performance, e.g.,
using images in combination with 3D point clouds or other types of data like text. The
aforementioned problem is also referred as the sensory gap problem [9]. However, the
aforementioned exploration should be assisted with well-constructed benchmark datasets,
which currently are lacking.

Furthermore, in order for 3DSS algorithms to achieve better generalization, data from
different geographic locations should be available. In fact, the 3DSS datasets do not span
different geographic locations [166]. Thus, datasets from different places on earth should
be released to advance the interpretation of 3DSS algorithms.

Moreover, a common problem regarding the datasets is the class imbalance problem
[91,93,95]. More concretely, the number of points in each category significantly differs
from each other, e.g., the class motorcycle will have fewer points than the class street or
pavement, resulting in the underperformance of 3DSS on these classes. Additionally, the
intra class geometry between the instances of each class plays a significant role in the per-
formance of 3DSS algorithms. A further exploration of the class-imbalance problem and

Figure 19. Labeled point clouds in indoor (ScanNet dataset [28]) and outdoor (Hessigheim
dataset [46]) environments.

Additionally, there are not so many 3DSS datasets that explore multimodality. Specif-
ically, multimodal 3DSS segmentation should be explored with regard to using comple-
mentary information with different types of data to improve 3DSS performance, e.g.,
using images in combination with 3D point clouds or other types of data like text. The
aforementioned problem is also referred as the sensory gap problem [9]. However, the
aforementioned exploration should be assisted with well-constructed benchmark datasets,
which currently are lacking.

Furthermore, in order for 3DSS algorithms to achieve better generalization, data from
different geographic locations should be available. In fact, the 3DSS datasets do not span
different geographic locations [166]. Thus, datasets from different places on earth should
be released to advance the interpretation of 3DSS algorithms.

Moreover, a common problem regarding the datasets is the class imbalance prob-
lem [91,93,95]. More concretely, the number of points in each category significantly differs
from each other, e.g., the class motorcycle will have fewer points than the class street or
pavement, resulting in the underperformance of 3DSS on these classes. Additionally, the
intra class geometry between the instances of each class plays a significant role in the
performance of 3DSS algorithms. A further exploration of the class-imbalance problem and

Remote Sens. 2025, 17, 298 50 of 58

an investigation of the differences in the intra-class geometry is recommended to improve
the performance of 3DSS algorithms on these categories.

In general, the available 3DSS datasets offer static information, i.e., specific temporal
information. Hence, the creation of spatio-temporal datasets of the same scene will be
beneficial for several applications like constructions inspection, etc.

Finally, application-oriented datasets, such as construction, cultural heritage, climate
change, etc., are important to create to advance 3DSS performance in each application.
However, this process is time-consuming and tedious and requires experts for the labeling
annotation process. A counterpart of the creation of real application-oriented datasets is
the creation of application-oriented synthetic datasets. However, there are limitations due
to the domain shift problem, i.e., different acquisition circumstances between the real and
the synthetic data.

7.3. Regarding the Application

In general, the application plays a significant role in the characteristics of using the
3DSS algorithm. In more detail, some applications need real-time 3DSS algorithms, e.g., in
an autonomous driving scenario. Moreover, other applications need lightweight architec-
tures, e.g., embedded systems, while other applications require unique implementations
due to the large scale of the available data, e.g., the urban scale 3DSS. Therefore, a fur-
ther exploration of methods or the advancement of existing methods, regarding a specific
application, is recommended.

7.4. Regarding the Learning Approach

In fact, most of the available 3DSS methods use a supervised learning approach,
i.e., they exploit available 3D ground-truth data to train the algorithms. However, the
creation of such data is a time-consuming and tedious process and is commonly referred
as the data-hungry problem [9], i.e., the existing algorithms require a large amount of
fine annotated data to be trained on [52,86,167,168]. Additionally, the creation of manual
annotated data is error-prone, especially in the 3D domain [169,170]. To this end, other
learning approaches, like semi-supervised, weakly supervised, few/zero-shot learning, or
even un-supervised learning, have been proposed to alleviate the aforementioned limita-
tion [168,171]. To be more specific, in 3D space, the exploitation of these learning techniques
is crucial regarding the difficulty in finding application-oriented datasets. Additionally,
such techniques could be used to enrich the available datasets with new classes and un-
seen objects, i.e., the open-set problem. Moreover, weaker types of annotations have been
released, such as scribble annotations [128], to define an easier way to create annotated
datasets. Furthermore, continual learning techniques could be adopted to further improve
the interpretation of 3DSS algorithms. To this end, the exploration of extracting further
knowledge about a scene using the available information could also be explored, com-
monly referred as the semantic gap problem [9]. Therefore, the exploration of methods
different from the supervised learning techniques for 3DSS is recommended to alleviate the
data-hungry problem and to define open-set 3DSS approaches.

8. Conclusions
In this effort, we surveyed in detail many of the most notable deep learning 3DSS

algorithms and datasets of the previous years. Firstly, based on the analysis of the existing
methods, along with the investigation of previous review papers, we proposed a unified
taxonomy scheme. In detail, we categorized 3DSS methods into point-, dimensionality
reduction-, discretization-, graph-, and hybrid-based methods. Additionally, we presented
a thorough review of the existing indoor and outdoor 3DSS benchmarks, along with

Remote Sens. 2025, 17, 298 51 of 58

their characteristics and evaluation metrics. Moreover, a non-exhaustive but informative
presentation of the loss functions used in 3DSS was included. Furthermore, a fruitful
discussion of the examined 3DSS algorithms and datasets was presented to foster new
research directions and applications in the field of 3DSS. Finally, a GitHub repository
(Supplementary Materials: https://github.com/thobet/Deep-Learning-on-3D-Semantic-
Segmentation-a-Detailed-Review, accessed on 30 December 2024), which includes an initial
classification of over 400 3DSS algorithms, was included.

Supplementary Materials: A GitHub repository (https://github.com/thobet/Deep-Learning-on-
3D-Semantic-Segmentation-a-Detailed-Review, accessed on 30 December 2024) was created to store
an initial classification of over 400 3DSS papers using the proposed taxonomy scheme, which are not
all referenced here.

Author Contributions: Conceptualization, T.B. and A.G.; methodology, T.B. and A.G.; investigation,
T.B.; writing—original draft preparation, T.B.; writing—review and editing, T.B, A.G, A.D. and P.G.;
supervision, A.G. and A.D.; funding acquisition, A.G. All authors have read and agreed to the
published version of the manuscript.

Funding: The publication of this paper was partially funded by NTUA Research Committee project
number 950368 entitled “INVESTIGATION OF 3D MODELING PROCESSES FOR THE RECORDING,
RESTORATION AND PRESERVATION OF MONUMENTS".

Acknowledgments: This manuscript was awarded the Laura Bassi Scholarship—Spring 2024, by the
Bassi Foundation and Editing Press, as part of the research of the first author towards his PhD at NTUA.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fan, S.; Dong, Q.; Zhu, F.; Lv, Y.; Ye, P.; Wang, F.-Y. SCF-Net: Learning Spatial Contextual Features for Large-Scale Point

Cloud Segmentation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA, 20–25 June 2021; pp. 14499–14508.

2. Qiu, H.; Yu, B.; Tao, D. GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation. arXiv 2022, arXiv:2207.02605.
3. Weinmann, M.; Schmidt, A.; Mallet, C.; Hinz, S.; Rottensteiner, F.; Jutzi, B. Contextual Classification of Point Cloud Data by

Exploiting Individual 3d Neigbourhoods. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3/W4, 271–278. [CrossRef]
4. Poux, F.; Neuville, R.; Billen, R. Point Cloud Classification of Tesserae from Terrestrial Laser Data Combined with Dense Image Matching

for Archaeological Information Extraction. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-2/W2, 203–211. [CrossRef]
5. Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic Point Cloud Interpretation Based on Optimal Neighborhoods, Relevant

Features and Efficient Classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [CrossRef]
6. Sevgen, E.; Abdikan, S. Classification of Large-Scale Mobile Laser Scanning Data in Urban Area with LightGBM. Remote Sens.

2023, 15, 3787. [CrossRef]
7. Bello, S.A.; Yu, S.; Wang, C. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729. [CrossRef]
8. Camuffo, E.; Mari, D.; Milani, S. Recent Advancements in Learning Algorithms for Point Clouds: An Updated Overview. Sensors

2022, 22, 1357. [CrossRef]
9. Gao, B.; Pan, Y.; Li, C.; Geng, S.; Zhao, H. Are We Hungry for 3D LiDAR Data for Semantic Segmentation? A Survey of Datasets

and Methods. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6063–6081. [CrossRef]
10. Griffiths, D.; Boehm, J. A Review on Deep Learning Techniques for 3D Sensed Data Classification. Remote Sens. 2019, 11, 1499.

[CrossRef]
11. Grilli, E.; Menna, F.; Remondino, F. A Review of point Clouds Segmentation and Classification Algorithms. Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 339–344. [CrossRef]
12. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern

Anal. Mach. Intell. 2021, 43, 4338–4364. [CrossRef] [PubMed]
13. Jhaldiyal, A.; Chaudhary, N. Semantic Segmentation of 3D LiDAR Data Using Deep Learning: A Review of Projection-Based Methods.

Appl. Intell. 2023, 53, 6844–6855. [CrossRef]
14. Rauch, L.; Braml, T. Semantic Point Cloud Segmentation with Deep-Learning-Based Approaches for the Construction Industry:

A Survey. Appl. Sci. 2023, 13, 9146. [CrossRef]

https://github.com/thobet/Deep-Learning-on-3D-Semantic-Segmentation-a-Detailed-Review
https://github.com/thobet/Deep-Learning-on-3D-Semantic-Segmentation-a-Detailed-Review
https://github.com/thobet/Deep-Learning-on-3D-Semantic-Segmentation-a-Detailed-Review
https://github.com/thobet/Deep-Learning-on-3D-Semantic-Segmentation-a-Detailed-Review
https://doi.org/10.5194/isprsannals-II-3-W4-271-2015
https://doi.org/10.5194/isprs-annals-IV-2-W2-203-2017
https://doi.org/10.1016/j.isprsjprs.2015.01.016
https://doi.org/10.3390/rs15153787
https://doi.org/10.3390/rs12111729
https://doi.org/10.3390/s22041357
https://doi.org/10.1109/TITS.2021.3076844
https://doi.org/10.3390/rs11121499
https://doi.org/10.5194/isprs-archives-XLII-2-W3-339-2017
https://doi.org/10.1109/TPAMI.2020.3005434
https://www.ncbi.nlm.nih.gov/pubmed/32750799
https://doi.org/10.1007/s10489-022-03930-5
https://doi.org/10.3390/app13169146

Remote Sens. 2025, 17, 298 52 of 58

15. Rizzoli, G.; Barbato, F.; Zanuttigh, P. Multimodal Semantic Segmentation in Autonomous Driving: A Review of Current
Approaches and Future Perspectives. Technologies 2022, 10, 90. [CrossRef]

16. Xiao, A.; Zhang, X.; Shao, L.; Lu, S. A Survey of Label-Efficient Deep Learning for 3D Point Clouds 2023. In IEEE Transactions on
Pattern Analysis and Machine Intelligence; IEEE: Piscataway, NJ, USA, 2024.

17. Xiao, A.; Huang, J.; Guan, D.; Zhang, X.; Lu, S.; Shao, L. Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 11321–11339. [CrossRef]

18. Xie, Y.; Tian, J.; Zhu, X.X. Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geosci. Remote
Sens. Mag. 2020, 8, 38–59. [CrossRef]

19. Yang, S.; Hou, M.; Li, S. Three-Dimensional Point Cloud Semantic Segmentation for Cultural Heritage: A Comprehensive Review.
Remote Sens. 2023, 15, 548. [CrossRef]

20. Zhang, A.; Li, S.; Wu, J.; Li, S.; Zhang, B. Exploring Semantic Information Extraction From Different Data Forms in 3D Point
Cloud Semantic Segmentation. IEEE Access 2023, 11, 61929–61949. [CrossRef]

21. Zhang, H.; Wang, C.; Tian, S.; Lu, B.; Zhang, L.; Ning, X.; Bai, X. Deep Learning-Based 3D Point Cloud Classification: A Systematic
Survey and Outlook. Displays 2023, 79, 102456. [CrossRef]

22. Zhang, J.; Zhao, X.; Chen, Z.; Lu, Z. A Review of Deep Learning-Based Semantic Segmentation for Point Cloud. IEEE Access
2019, 7, 179118–179133. [CrossRef]

23. Zhang, R.; Wu, Y.; Jin, W.; Meng, X. Deep-Learning-Based Point Cloud Semantic Segmentation: A Survey. Electronics 2023, 12, 3642.
[CrossRef]

24. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D Semantic Parsing of Large-Scale Indoor
Spaces. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
27–30 June 2016; pp. 1534–1543.

25. Armeni, I.; Sax, S.; Zamir, A.R.; Savarese, S. Joint 2D-3D-Semantic Data for Indoor Scene Understanding. arXiv 2017,
arXiv:1702.01105.

26. Freiburg Campus 360 Degree 3D Scans—Arbeitsgruppe: Autonome Intelligente Systeme. Available online: http://ais.informatik.
uni-freiburg.de/projects/datasets/fr360/ (accessed on 17 March 2023).

27. Chang, A.; Dai, A.; Funkhouser, T.; Halber, M.; Nießner, M.; Savva, M.; Song, S.; Zeng, A.; Zhang, Y. Matterport3D: Learning from
RGB-D Data in Indoor Environments. arXiv 2017, arXiv:1709.06158.

28. Dai, A.; Chang, A.X.; Savva, M.; Halber, M.; Funkhouser, T.; Nießner, M. Scannet: Richly-Annotated 3d Reconstructions of Indoor
Scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 5828–5839.

29. RGB-D Scenes Dataset v.2. Available online: http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/ (accessed on
4 October 2023).

30. McCormac, J.; Handa, A.; Leutenegger, S.; Davison, A.J. SceneNet RGB-D: 5M Photorealistic Images of Synthetic Indoor
Trajectories with Ground Truth. arXiv 2016, arXiv:1612.05079.

31. Hua, B.-S.; Pham, Q.-H.; Nguyen, D.T.; Tran, M.-K.; Yu, L.-F.; Yeung, S.-K. Scenenn: A Scene Meshes Dataset with Annotations.
In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016;
pp. 92–101.

32. Song, S.; Lichtenberg, S.P.; Xiao, J. SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite. In Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 567–576.

33. Xiao, J.; Owens, A.; Torralba, A. SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels. In Proceedings of
the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1625–1632.

34. Straub, J.; Whelan, T.; Ma, L.; Chen, Y.; Wijmans, E.; Green, S.; Engel, J.J.; Mur-Artal, R.; Ren, C.; Verma, S.; et al. The Replica
Dataset: A Digital Replica of Indoor Spaces. arXiv 2019, arXiv:1906.05797.

35. Martínez-Gómez, J.; García-Varea, I.; Cazorla, M.; Morell, V. ViDRILO: The Visual and Depth Robot Indoor Localization with
Objects Information Dataset. Int. J. Robot. Res. 2015, 34, 1681–1687. [CrossRef]

36. Behley, J.; Steinhage, V.; Cremers, A.B. Performance of Histogram Descriptors for the Classification of 3D Laser Range Data in
Urban Environments. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA,
14–18 May 2012; pp. 4391–4398.

37. Can, G.; Mantegazza, D.; Abbate, G.; Chappuis, S.; Giusti, A. Semantic segmentation on Swiss3DCities: A benchmark study on
aerial photogrammetric 3D pointcloud dataset. Pattern Recognit. Lett. 2021, 150, 108–114. [CrossRef]

38. Deschaud, J.-E.; Duque, D.; Richa, J.P.; Velasco-Forero, S.; Marcotegui, B.; Goulette, F. Paris-CARLA-3D: A Real and Synthetic
Outdoor Point Cloud Dataset for Challenging Tasks in 3D Mapping. Remote Sens. 2021, 13, 4713. [CrossRef]

39. Fang, J.; Zhou, D.; Zhao, J.; Tang, C.; Xu, C.-Z.; Zhang, L. LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for
3D Object Detection. arXiv 2023, arXiv:2301.12515.

https://doi.org/10.3390/technologies10040090
https://doi.org/10.1109/TPAMI.2023.3262786
https://doi.org/10.1109/MGRS.2019.2937630
https://doi.org/10.3390/rs15030548
https://doi.org/10.1109/ACCESS.2023.3287940
https://doi.org/10.1016/j.displa.2023.102456
https://doi.org/10.1109/ACCESS.2019.2958671
https://doi.org/10.3390/electronics12173642
http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/
http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/
http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/
https://doi.org/10.1177/0278364915596058
https://doi.org/10.1016/j.patrec.2021.06.004
https://doi.org/10.3390/rs13224713

Remote Sens. 2025, 17, 298 53 of 58

40. Fuentes Reyes, M.; Xie, Y.; Yuan, X.; d’Angelo, P.; Kurz, F.; Cerra, D.; Tian, J. A 2D/3D Multimodal Data Simulation Approach
with Applications on Urban Semantic Segmentation, Building Extraction and Change Detection. ISPRS J. Photogramm. Remote Sens.
2023, 205, 74–97. [CrossRef]

41. Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J.D.; Schindler, K.; Pollefeys, M. Semantic3D.Net: A New Large-Scale Point Cloud
Classification Benchmark. arXiv 2017, arXiv:1704.03847. [CrossRef]

42. Hu, Q.; Yang, B.; Khalid, S.; Xiao, W.; Trigoni, N.; Markham, A. Towards Semantic Segmentation of Urban-Scale 3D Point
Clouds: A Dataset, Benchmarks and Challenges. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Nashville, TN, USA, 20–25 June 2021.

43. Ibrahim, M.; Akhtar, N.; Anwar, S.; Mian, A. SAT3D: Slot Attention Transformer for 3D Point Cloud Semantic Segmentation.
IEEE Trans. Intell. Transp. Syst. 2023, 24, 5456–5466. [CrossRef]

44. Jiang, P.; Osteen, P.; Wigness, M.; Saripalli, S. RELLIS-3D Dataset: Data, Benchmarks and Analysis. In Proceedings of the 2021
IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021.

45. Klokov, A.A.; Pak, D.U.; Khorin, A.; Yudin, D.A.; Kochiev, L.; Luchinskiy, V.D.; Bezuglyj, V.D. DAPS3D: Domain Adaptive
Projective Segmentation of 3D LiDAR Point Clouds. IEEE Access 2023, 11, 79341–79356. [CrossRef]

46. Kölle, M.; Laupheimer, D.; Schmohl, S.; Haala, N.; Rottensteiner, F.; Wegner, J.D.; Ledoux, H. The Hessigheim 3D (H3D)
Benchmark on Semantic Segmentation of High-Resolution 3D Point Clouds and Textured Meshes from UAV LiDAR and
Multi-View-Stereo. ISPRS Open J. Photogramm. Remote Sens. 2021, 1, 100001. [CrossRef]

47. Li, X.; Li, C.; Tong, Z.; Lim, A.; Yuan, J.; Wu, Y.; Tang, J.; Huang, R. Campus3D: A Photogrammetry Point Cloud Benchmark
for Hierarchical Understanding of Outdoor Scene. In Proceedings of the 28th ACM International Conference on Multimedia,
Seattle, WA, USA, 12–16 October 2020; pp. 238–246.

48. Loiseau, R.; Vincent, E.; Aubry, M.; Landrieu, L. Learnable Earth Parser: Discovering 3D Prototypes in Aerial Scans. arXiv 2023,
arXiv:2304.09704.

49. Qin, N.; Tan, W.; Ma, L.; Zhang, D.; Li, J. OpenGF: An Ultra-Large-Scale Ground Filtering Dataset Built Upon Open ALS
Point Clouds Around the World. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Nashville, TN, USA, 20–25 June 2021.

50. Roynard, X.; Deschaud, J.-E.; Goulette, F. Paris-Lille-3D: A Large and High-Quality Ground-Truth Urban Point Cloud Dataset for
Automatic Segmentation and Classification. Int. J. Robot. Res. 2018, 37, 545–557. [CrossRef]

51. Su, Y.; Liu, W.; Yuan, Z.; Cheng, M.; Zhang, Z.; Shen, X.; Wang, C. DLA-Net: Learning Dual Local Attention Features for Semantic
Segmentation of Large-Scale Building Facade Point Clouds. Pattern Recognit. 2021, 123, 108372. [CrossRef]

52. Tan, W.; Qin, N.; Ma, L.; Li, Y.; Du, J.; Cai, G.; Yang, K.; Li, J. Toronto-3D: A Large-Scale Mobile LiDAR Dataset for Semantic
Segmentation of Urban Roadways. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 797–806.

53. Trybała, P.; Szrek, J.; Remondino, F.; Kujawa, P.; Wodecki, J.; Blachowski, J.; Zimroz, R. MIN3D Dataset: MultI-seNsor 3D Mapping
with an Unmanned Ground Vehicle. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2023, 91, 425–442. [CrossRef]

54. Wang, L.; Huang, Y.; Shan, J.; Liu, H. MSNet: Multi-Scale Convolutional Network for Point Cloud Classification. Remote Sens.
2018, 10, 612. [CrossRef]

55. Wang, Y.; Wan, Y.; Zhang, Y.; Zhang, B.; Gao, Z. Imbalance Knowledge-Driven Multi-Modal Network for Land-Cover Semantic
Segmentation Using Aerial Images and LiDAR Point Clouds. ISPRS J. Photogramm. Remote Sens. 2023, 202, 385–404. [CrossRef]

56. Xu, Y.; Du, B.; Zhang, L.; Cerra, D.; Pato, M.; Carmona, E.; Prasad, S.; Yokoya, N.; Hänsch, R.; Le Saux, B. Advanced Multi-Sensor
Optical Remote Sensing for Urban Land Use and Land Cover Classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1709–1724. [CrossRef]

57. Zolanvari, S.M.I.; Ruano, S.; Rana, A.; Cummins, A.; da Silva, R.E.; Rahbar, M.; Smolic, A. DublinCity: Annotated LiDAR Point
Cloud and Its Applications. arXiv 2019, arXiv:1909.03613.

58. Matrone, F.; Lingua, A.; Pierdicca, R.; Malinverni, E.S.; Paolanti, M.; Grilli, E.; Remondino, F.; Murtiyoso, A.; Landes, T. A
Benchmark for Large-Scale Heritage Point Cloud Semantic Segmentation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
2020, XLIII-B2-2020, 1419–1426. [CrossRef]

59. Vallet, B.; Brédif, M.; Serna, A.; Marcotegui, B.; Paparoditis, N. TerraMobilita/iQmulus Urban Point Cloud Analysis Benchmark.
Comput. Graph. 2015, 49, 126–133. [CrossRef]

60. Liao, Y.; Xie, J.; Geiger, A. KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D. IEEE Trans.
Pattern Anal. Mach. Intell. 2023, 45, 3292–3310. [CrossRef]

61. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes:
A Multimodal Dataset for Autonomous Driving. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 11618–11628.

62. Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual Classification of Lidar Data and Building Object Detection in Urban Areas.
ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165. [CrossRef]

https://doi.org/10.1016/j.isprsjprs.2023.09.013
https://doi.org/10.5194/isprs-annals-IV-1-W1-91-2017
https://doi.org/10.1109/TITS.2023.3243643
https://doi.org/10.1109/ACCESS.2023.3298706
https://doi.org/10.1016/j.ophoto.2021.100001
https://doi.org/10.1177/0278364918767506
https://doi.org/10.1016/j.patcog.2021.108372
https://doi.org/10.1007/s41064-023-00260-0
https://doi.org/10.3390/rs10040612
https://doi.org/10.1016/j.isprsjprs.2023.06.014
https://doi.org/10.1109/JSTARS.2019.2911113
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1419-2020
https://doi.org/10.1016/j.cag.2015.03.004
https://doi.org/10.1109/TPAMI.2022.3179507
https://doi.org/10.1016/j.isprsjprs.2013.11.001

Remote Sens. 2025, 17, 298 54 of 58

63. Oakland 3D Point Cloud Dataset—CVPR 2009 Subset. Available online: https://www.cs.cmu.edu/~vmr/datasets/oakland_3d/
cvpr09/doc/ (accessed on 17 March 2023).

64. Serna, A.; Marcotegui, B.; Goulette, F.; Deschaud, J.E. Paris-Rue-Madame Database—A 3D Mobile Laser Scanner Dataset for
Benchmarking Urban Detection, Segmentation and Classification Methods. In Proceedings of the 4th International Conference on
Pattern Recognition, Applications and Methods ICPRAM 2014, Anger, France, 6–8 March 2014; Science and and Technology
Publications—ESEO: Angers, France, 2014; pp. 819–824.

65. Open Dataset—Waymo. Available online: https://waymo.com/open/ (accessed on 18 February 2023).
66. Zhu, J.; Gehrung, J.; Huang, R.; Borgmann, B.; Sun, Z.; Hoegner, L.; Hebel, M.; Xu, Y.; Stilla, U. TUM-MLS-2016: An Annotated

Mobile LiDAR Dataset of the TUM City Campus for Semantic Point Cloud Interpretation in Urban Areas. Remote Sens. 2020, 12,
1875. [CrossRef]

67. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9296–9306.

68. Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 21–26 July 2017;
pp. 77–85.

69. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings
of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; p. 10.

70. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation
of Large-Scale Point Clouds. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 11105–11114.

71. Qiu, S.; Anwar, S.; Barnes, N. Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion.
In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA,
20–25 June 2021; pp. 1757–1767.

72. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. PointCNN: Convolution On X-Transformed Points. In Proceedings of the Advances
in Neural Information Processing Systems 31 (NeurIPS 2018), Montréal, QC, Canada, 3–8 December 2018.

73. Thomas, H.; Qi, C.R.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and Deformable Convolution
for Point Clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea,
27 October–2 November 2019.

74. Liu, K.; Gao, Z.; Lin, F.; Chen, B.M. FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network Leveraging Correlated
Feature Mining and Geometric-Aware Modelling. arXiv 2021, arXiv:2012.09439.

75. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

76. Huang, Q.; Wang, W.; Neumann, U. Recurrent Slice Networks for 3d Segmentation of Point Clouds. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2626–2635.

77. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.

78. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.S.; Koltun, V. Point Transformer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Montreal, BC, Canada, 11–17 October 2021.

79. Wu, X.; Lao, Y.; Jiang, L.; Liu, X.; Zhao, H. Point Transformer V2: Grouped Vector Attention and Partition-Based Pool-
ing. In Proceedings of the Advances in Neural Information Processing Systems 35 (NeurIPS 2022), New Orleans, LA, USA,
28 November–9 December 2022.

80. Tatarchenko, M.; Park, J.; Koltun, V.; Zhou, Q.-Y. Tangent Convolutions for Dense Prediction in 3D. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3887–3896.

81. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-View Convolutional Neural Networks for 3D Shape Recognition. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015.

82. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object
Segmentation from 3D LiDAR Point Cloud. arXiv 2017, arXiv:1710.07368.

83. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

84. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer
Parameters and <0.5 MB Model Size. arXiv 2016, arXiv:1602.07360.

85. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

https://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/
https://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/
https://waymo.com/open/
https://doi.org/10.3390/rs12111875
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/3065386

Remote Sens. 2025, 17, 298 55 of 58

86. Wu, B.; Zhou, X.; Zhao, S.; Yue, X.; Keutzer, K. SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation
for Road-Object Segmentation from a LiDAR Point Cloud. arXiv 2018, arXiv:1809.08495.

87. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet ++: Fast and Accurate LiDAR Semantic Segmentation. In Proceedings
of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019;
pp. 4213–4220.

88. Su, H.; Jampani, V.; Sun, D.; Maji, S.; Kalogerakis, E.; Yang, M.-H.; Kautz, J. SPLATNet: Sparse Lattice Networks for Point Cloud
Processing. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 2530–2539.

89. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
90. Xu, C.; Wu, B.; Wang, Z.; Zhan, W.; Vajda, P.; Keutzer, K.; Tomizuka, M. SqueezeSegV3: Spatially-Adaptive Convolution for

Efficient Point-Cloud Segmentation. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK,
23–28 August 2020, Proceedings, Part XXVIII 16; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer
Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12373, pp. 1–19, ISBN 978-3-030-58603-4.

91. Cortinhal, T.; Tzelepis, G.; Aksoy, E.E. SalsaNext: Fast, Uncertainty-Aware Semantic Segmentation of LiDAR Point Clouds for
Autonomous Driving. In Advances in Visual Computing, Proceedings of the 15th International Symposium, ISVC 2020, San Diego, CA, USA,
5–7 October 2020, Proceedings, Part II 15; Springer International Publishing: Berlin/Heidelberg, Germany, 2020.

92. Aksoy, E.E.; Baci, S.; Cavdar, S. SalsaNet: Fast Road and Vehicle Segmentation in LiDAR Point Clouds for Autonomous Driving.
In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020;
pp. 926–932.

93. Xiao, A.; Yang, X.; Lu, S.; Guan, D.; Huang, J. FPS-Net: A Convolutional Fusion Network for Large-Scale LiDAR Point Cloud
Segmentation. ISPRS J. Photogramm. Remote Sens. 2021, 176, 237–249. [CrossRef]

94. Li, S.; Chen, X.; Liu, Y.; Dai, D.; Stachniss, C.; Gall, J. Multi-Scale Interaction for Real-Time LiDAR Data Segmentation on an
Embedded Platform. IEEE Robot. Autom. Lett. 2021, 7, 738–745. [CrossRef]

95. Zou, Z.; Li, Y. Efficient Urban-Scale Point Clouds Segmentation with BEV Projection. arXiv 2021, arXiv:2109.09074.
96. Hu, Q.; Yang, B.; Khalid, S.; Xiao, W.; Trigoni, N.; Markham, A. SensatUrban: Learning Semantics from Urban-Scale Photogram-

metric Point Clouds. Int. J. Comput. Vis. 2022, 130, 316–343. [CrossRef]
97. Alnaggar, Y.A.; Afifi, M.; Amer, K.; Elhelw, M. Multi Projection Fusion for Real-Time Semantic Segmentation of 3D LiDAR Point

Clouds. arXiv 2020, arXiv:2011.01974.
98. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

99. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany,
5–9 October 2015, Proceedings, Part III 18; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture Notes in Computer
Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241, ISBN 978-3-319-24573-7.

100. Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,
arXiv:1706.05587.

101. Triess, L.T.; Peter, D.; Rist, C.B.; Zöllner, J.M. Scan-Based Semantic Segmentation of Lidar Point Clouds: An Experimental Study.
In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020;
pp. 1116–1121.

102. Riegler, G.; Ulusoy, A.O.; Geiger, A. OctNet: Learning Deep 3D Representations at High Resolutions. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6620–6629.

103. Miller, A.; Jain, V.; Mundy, J.L. Real-Time Rendering and Dynamic Updating of 3-d Volumetric Data. In Proceedings of the Fourth
Workshop on General Purpose Processing on Graphics Processing Units; ACM: Newport Beach, CA, USA, 5 March 2011; pp. 1–8.

104. Choy, C.; Gwak, J.; Savarese, S. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 3070–3079.

105. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds.
ACM Trans. Graph. (TOG) 2019, 38, 1–12. [CrossRef]

106. Li, G.; Müller, M.; Qian, G.; Delgadillo, I.C.; Abualshour, A.; Thabet, A.; Ghanem, B. DeepGCNs: Making GCNs Go as Deep as
CNNs. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; p. 1.
[CrossRef]

107. Zhang, Y.; Zhou, Z.; David, P.; Yue, X.; Xi, Z.; Gong, B.; Foroosh, H. PolarNet: An Improved Grid Representation for Online
LiDAR Point Clouds Semantic Segmentation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 9598–9607.

https://doi.org/10.1016/j.isprsjprs.2021.04.011
https://doi.org/10.1109/LRA.2021.3132059
https://doi.org/10.1007/s11263-021-01554-9
https://doi.org/10.1145/3326362
https://doi.org/10.1109/TPAMI.2021.3074057

Remote Sens. 2025, 17, 298 56 of 58

108. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection From Point Clouds. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 12697–12705.

109. Gerdzhev, M.; Razani, R.; Taghavi, E.; Liu, B. TORNADO-Net: mulTiview tOtal vaRiatioN semAntic Segmentation with Diamond
inceptiOn Module. arXiv 2020, arXiv:2008.10544.

110. Liu, Y.; Chen, R.; Li, X.; Kong, L.; Yang, Y.; Xia, Z.; Bai, Y.; Zhu, X.; Ma, Y.; Li, Y.; et al. UniSeg: A Unified Multi-Modal LiDAR
Segmentation Network and the OpenPCSeg Codebase. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, Paris, France, 2–6 October 2023.

111. Yan, X.; Gao, J.; Li, J.; Zhang, R.; Li, Z.; Huang, R.; Cui, S. Sparse Single Sweep LiDAR Point Cloud Segmentation via Learning
Contextual Shape Priors from Scene Completion. arXiv 2020, arXiv:2012.03762. [CrossRef]

112. Graham, B.; Engelcke, M.; Maaten, L. van der 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 9224–9232.

113. Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-Voxel CNN for Efficient 3D Deep Learning. In Proceedings of the Advances in Neural
Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019.

114. Tang, H.; Liu, Z.; Zhao, S.; Lin, Y.; Lin, J.; Wang, H.; Han, S. Searching Efficient 3D Architectures with Sparse Point-Voxel
Convolution. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020,
Proceedings, Part XXVIII; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer
International Publishing: Cham, Switzerland, 2020; Volume 12373, pp. 685–702, ISBN 978-3-030-58603-4.

115. Rosu, R.A.; Schütt, P.; Quenzel, J.; Behnke, S. LatticeNet: Fast Point Cloud Segmentation Using Permutohedral Lattices. In
Proceedings of the Robotics: Science and Systems 2020, Corvalis, Oregon, USA, 12–16 July 2020.

116. Cheng, R.; Razani, R.; Taghavi, E.; Li, E.; Liu, B. (AF)2-S3Net: Attentive Feature Fusion with Adaptive Feature Selection for Sparse
Semantic Segmentation Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Nashville, TN, USA, 20–25 June 2021.

117. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

118. Zhu, X.; Zhou, H.; Wang, T.; Hong, F.; Ma, Y.; Li, W.; Li, H.; Lin, D. Cylindrical and Asymmetrical 3D Convolution Networks for
LiDAR Segmentation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA, 20–25 June 2021; pp. 9934–9943.

119. Yan, X.; Gao, J.; Zheng, C.; Zheng, C.; Zhang, R.; Cui, S.; Li, Z. 2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR
Point Clouds. In Computer Vision—ECCV 2022, Proceedings of the 17th European Conference, Tel Aviv, Israel, 23–27 October 2022,
Proceedings, Part XXVIII; Springer Nature: Cham, Switzerland, 2022.

120. Landrieu, L.; Simonovsky, M. Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs. In Proceedings of
the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4558–4567.

121. Landrieu, L.; Obozinski, G. Cut Pursuit: Fast Algorithms to Learn Piecewise Constant Functions on General Weighted Graphs.
SIAM J. Imaging Sci. 2017, 10, 1724–1766. [CrossRef]

122. Kochanov, D.; Nejadasl, F.K.; Booij, O. KPRNet: Improving Projection-Based LiDAR Semantic Segmentation. arXiv 2020,
arXiv:2007.12668.

123. Alonso, I.; Riazuelo, L.; Montesano, L.; Murillo, A.C. 3D-MiniNet: Learning a 2D Representation from Point Clouds for Fast and
Efficient 3D LIDAR Semantic Segmentation. IEEE Robot. Autom. Lett. 2020, 5, 5432–5439. [CrossRef]

124. Robert, D.; Vallet, B.; Landrieu, L. Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic Segmentation. In
Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022; pp. 5565–5574.

125. Wang, S.; Zhu, J.; Zhang, R. Meta-RangeSeg: LiDAR Sequence Semantic Segmentation Using Multiple Feature Aggregation.
IEEE Robot. Autom. Lett. 2022, 7, 9739–9746. [CrossRef]

126. Pan, Y.; Gao, B.; Mei, J.; Geng, S.; Li, C.; Zhao, H. SemanticPOSS: A Point Cloud Dataset with Large Quantity of Dynamic Instances.
In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020.

127. Wu, X.; Jiang, L.; Wang, P.-S.; Liu, Z.; Liu, X.; Qiao, Y.; Ouyang, W.; He, T.; Zhao, H. Point Transformer V3: Simpler, Faster,
Stronger. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
16–22 June 2024.

128. Unal, O.; Dai, D.; Van Gool, L. Scribble-Supervised LiDAR Semantic Segmentation. In Proceedings of the 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 2687–2697.

129. Liu, K.; Gao, Z.; Lin, F.; Chen, B.M. FG-Net: A Fast and Accurate Framework for Large-Scale LiDAR Point Cloud Understanding.
IEEE Trans. Cybern. 2023, 53, 553–564. [CrossRef]

https://doi.org/10.1609/aaai.v35i4.16419
https://doi.org/10.1137/17M1113436
https://doi.org/10.1109/LRA.2020.3007440
https://doi.org/10.1109/LRA.2022.3191040
https://doi.org/10.1109/TCYB.2022.3159815

Remote Sens. 2025, 17, 298 57 of 58

130. Jiang, L.; Shi, S.; Tian, Z.; Lai, X.; Liu, S.; Fu, C.-W.; Jia, J. Guided Point Contrastive Learning for Semi-Supervised Point
Cloud Semantic Segmentation. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
Montreal, QC, Canada, 11–17 October 2021; pp. 6403–6412.

131. Rozenberszki, D.; Litany, O.; Dai, A. Language-Grounded Indoor 3D Semantic Segmentation in the Wild. In Computer
Vision—ECCV 2022, Proceedings of the 17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part XXXIII;
Springer Nature: Cham, Switzerland, 2022.

132. Kuras, A.; Jenul, A.; Brell, M.; Burud, I. Comparison of 2D and 3D Semantic Segmentation in Urban Areas Using Fused
Hyperspectral and Lidar Data. J. Spectr. Imaging 2022, 11, a11. [CrossRef]

133. Pan, J.; Cao, K.; Zhao, B.; Li, W.; Zhang, T. Semantic Segmentation of Large-Scale Point Clouds by Encoder-Decoder Shared MLPs
with Weighted Focal Loss. In Proceedings of the 2022 IEEE 21st International Conference on Cognitive Informatics & Cognitive
Computing (ICCI*CC), Toronto, ON, Canada, 8–10 December 2022; pp. 153–159.

134. Yunxiang, Z.; Ankang, J.; Limao, Z.; Xiaolong, X. Sampling-Attention Deep Learning Network with Transfer Learning for
Large-Scale Urban Point Cloud Semantic Segmentation. Available online: https://reader.elsevier.com/reader/sd/pii/S0952197
622005449?token=0833CEF881FED5ED093428D5EA678689AF0A9DE084A74D1624F22803FFEC668ED661E8AB56D0F5BA368
53717D48A451D&originRegion=eu-west-1&originCreation=20221209104154 (accessed on 9 December 2022).

135. Liu, Y.; Li, J.; Yuan, X.; Zhao, C.; Siegwart, R.; Reid, I.; Cadena, C. Depth Based Semantic Scene Completion with Position
Importance Aware Loss. arXiv 2020, arXiv:2001.10709. [CrossRef]

136. Cheng, R.; Razani, R.; Ren, Y.; Bingbing, L. S3net: 3d Lidar Sparse Semantic Segmentation Network. In Proceedings of the 2021
IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 14040–14046.

137. Berman, M.; Triki, A.R.; Blaschko, M.B. The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-
Over-Union Measure in Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4413–4421.

138. Yan, X.; Zheng, C.; Li, Z.; Wang, S.; Cui, S. Pointasnl: Robust Point Clouds Processing Using Nonlocal Neural Networks with
Adaptive Sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
14–19 June 2020; pp. 5589–5598.

139. Stearns, C.; Fu, A.; Liu, J.; Park, J.J.; Rempe, D.; Paschalidou, D.; Guibas, L.J. Curvecloudnet: Processing point clouds with 1d
structure. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; IEEE: Piscataway, NJ, USA, 2024;
pp. 27981–27991.

140. Truong, G.; Gilani, S.Z.; Islam, S.M.S.; Suter, D. Fast Point Cloud Registration Using Semantic Segmentation. In Proceedings of
the 2019 Digital Image Computing: Techniques and Applications (DICTA), Perth, Australia, 2–4 December 2019; pp. 1–8.

141. Zhang, F.; Fang, J.; Wah, B.; Torr, P. Deep Fusionnet for Point Cloud Semantic Segmentation. In Computer Vision–ECCV 2020, Proceedings
of the 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXIV 16; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 644–663.

142. Huang, W.; Zhu, L.; Wang, W. Semantic Segmentation for Point Cloud Based on Distance Weighted and Adaptive Augmen-
tation. In Proceedings of the 2022 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 15–17 August 2022;
pp. 6106–6111.

143. Xu, Y.; Tang, W.; Zeng, Z.; Wu, W.; Wan, J.; Guo, H.; Xie, Z. NeiEA-NET: Semantic Segmentation of Large-Scale Point Cloud Scene
via Neighbor Enhancement and Aggregation. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103285. [CrossRef]

144. Balado, J.; Fernández, A.; González, E.; Díaz-Vilariño, L. Semantic Point Cloud Segmentation Based on Hexagonal Klemperer
Rosette and Machine Learning. In Advances in Design Engineering III, Proceedings of the XXXI INGEGRAF International Conference
29–30 June, Málaga, Spain, 1 July 2022; Cavas-Martínez, F., Marín Granados, M.D., Mirálbes Buil, R., de-Cózar-Macías, O.D., Eds.;
Springer International Publishing: Cham, Switzerland, 2023; pp. 617–629.

145. Hassan, R.; Fraz, M.M.; Rajput, A.; Shahzad, M. Residual Learning with Annularly Convolutional Neural Networks for
Classification and Segmentation of 3D Point Clouds. Neurocomputing 2023, 526, 96–108. [CrossRef]

146. Wang, C.; Samari, B.; Siddiqi, K. Local Spectral Graph Convolution for Point Set Feature Learning. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 52–66.

147. Fang, Y.; Xu, C.; Cui, Z.; Zong, Y.; Yang, J. Spatial Transformer Point Convolution. arXiv 2020, arXiv:2009.01427.
148. Lu, T.; Wang, L.; Wu, G. CGA-Net: Category Guided Aggregation for Point Cloud Semantic Segmentation. In Proceedings of

the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 11688–11697.

149. Wang, Z.; Rao, Y.; Yu, X.; Zhou, J.; Lu, J. SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022.

150. He, T.; Gong, D.; Tian, Z.; Shen, C. Learning and Memorizing Representative Prototypes for 3d Point Cloud Semantic and
Instance Segmentation. In Computer Vision–ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020,
Proceedings, Part XVIII 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 564–580.

https://doi.org/10.1255/jsi.2022.a11
https://reader.elsevier.com/reader/sd/pii/S0952197622005449?token=0833CEF881FED5ED093428D5EA678689AF0A9DE084A74D1624F22803FFEC668ED661E8AB56D0F5BA36853717D48A451D&originRegion=eu-west-1&originCreation=20221209104154
https://reader.elsevier.com/reader/sd/pii/S0952197622005449?token=0833CEF881FED5ED093428D5EA678689AF0A9DE084A74D1624F22803FFEC668ED661E8AB56D0F5BA36853717D48A451D&originRegion=eu-west-1&originCreation=20221209104154
https://reader.elsevier.com/reader/sd/pii/S0952197622005449?token=0833CEF881FED5ED093428D5EA678689AF0A9DE084A74D1624F22803FFEC668ED661E8AB56D0F5BA36853717D48A451D&originRegion=eu-west-1&originCreation=20221209104154
https://doi.org/10.1109/LRA.2019.2953639
https://doi.org/10.1016/j.jag.2023.103285
https://doi.org/10.1016/j.neucom.2023.01.026

Remote Sens. 2025, 17, 298 58 of 58

151. Zhao, Y.; Wang, J.; Li, X.; Hu, Y.; Zhang, C.; Wang, Y.; Chen, S. Number-Adaptive Prototype Learning for 3D Point Cloud Semantic
Segmentation. In Computer Vision, Proceedings of the ECCV 2022 Workshops, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part III;
Karlinsky, L., Michaeli, T., Nishino, K., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 695–703.

152. Liu, Z.; Hu, H.; Cao, Y.; Zhang, Z.; Tong, X. A Closer Look at Local Aggregation Operators in Point Cloud Analysis. In
Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXIII;
Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer International Publishing:
Cham, Switzerland, 2020; Volume 12368, pp. 326–342, ISBN 978-3-030-58591-4.

153. Ma, Y.; Guo, Y.; Liu, H.; Lei, Y.; Wen, G. Global Context Reasoning for Semantic Segmentation of 3D Point Clouds. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, Website, 2–5 March 2020; pp. 2931–2940.

154. Chen, Q.; Zhang, Z.; Chen, S.; Wen, S.; Ma, H.; Xu, Z. A Self-Attention Based Global Feature Enhancing Network for Semantic
Segmentation of Large-Scale Urban Street-Level Point Clouds. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102974. [CrossRef]

155. Lai, X.; Liu, J.; Jiang, L.; Wang, L.; Zhao, H.; Liu, S.; Qi, X.; Jia, J. Stratified Transformer for 3D Point Cloud Segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022.

156. Huang, Z.; Wu, X.; Zhao, H.; Zhu, L.; Wang, S.; Hadjidemetriou, G.; Brilakis, I. GeoSpark: Sparking up Point Cloud Segmentation
with Geometry Clue. arXiv 2023, arXiv:2303.08274.

157. Zheng, Y.; Xu, X.; Zhou, J.; Lu, J. PointRas: Uncertainty-Aware Multi-Resolution Learning for Point Cloud Segmentation.
IEEE Trans. Image Process. 2022, 31, 6002–6016. [CrossRef]

158. Wan, J.; Zeng, Z.; Qiu, Q.; Xie, Z.; Xu, Y. PointNest: Learning Deep Multi-Scale Nested Feature Propagation for Semantic
Segmentation of 3D Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9051–9066. [CrossRef]

159. Xu, J.; Zhang, R.; Dou, J.; Zhu, Y.; Sun, J.; Pu, S. RPVNet: A Deep and Efficient Range-Point-Voxel Fusion Network for
LiDAR Point Cloud Segmentation. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
Montreal, QC, Canada, 11–17 October 2021; pp. 16004–16013.

160. Zhou, H.; Zhu, X.; Song, X.; Ma, Y.; Wang, Z.; Li, H.; Lin, D. Cylinder3D: An Effective 3D Framework for Driving-Scene LiDAR
Semantic Segmentation. arXiv 2020, arXiv:2008.01550.

161. Jiang, F.; Gao, H.; Qiu, S.; Zhang, H.; Wan, R.; Pu, J. Knowledge Distillation from 3D to Bird’s-Eye-View for LiDAR Semantic
Segmentation. In Proceedings of the 2023 IEEE International Conference on Multimedia and Expo (ICME), Brisbane, Australia,
10–14 July 2023.

162. Hua, B.-S.; Tran, M.-K.; Yeung, S.-K. Pointwise Convolutional Neural Networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 984–993.

163. Wang, Z.; Lu, F. VoxSegNet: Volumetric CNNs for Semantic Part Segmentation of 3D Shapes. arXiv 2018, arXiv:1809.00226.
[CrossRef]

164. Zhou, W.; Cao, X.; Zhang, X.; Hao, X.; Wang, D.; He, Y. Multi Point-Voxel Convolution (MPVConv) for Deep Learning on Point
Clouds. arXiv 2021, arXiv:2107.13152. [CrossRef]

165. Wang, P.-S. OctFormer: Octree-Based Transformers for 3D Point Clouds. ACM Trans. Graph. 2023, 42, 1–11. [CrossRef]
166. Genova, K.; Yin, X.; Kundu, A.; Pantofaru, C.; Cole, F.; Sud, A.; Brewington, B.; Shucker, B.; Funkhouser, T. Learning 3D Semantic

Segmentation with Only 2D Image Supervision. In Proceedings of the 2021 International Conference on 3D Vision (3DV), Online,
1–3 December 2021; pp. 361–372.

167. Wei, J.; Lin, G.; Yap, K.-H.; Hung, T.-Y.; Xie, L. Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation
on Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
14–19 June 2020.

168. Xu, X.; Lee, G.H. Weakly Supervised Semantic Point Cloud Segmentation: Towards 10x Fewer Labels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 13706–13715.

169. Zhao, J.; Huang, W.; Wu, H.; Wen, C.; Yang, B.; Guo, Y.; Wang, C. SemanticFlow: Semantic Segmentation of Sequential LiDAR
Point Clouds from Sparse Frame Annotations. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5701611. [CrossRef]

170. Peters, T.; Brenner, C.; Schindler, K. Semantic Segmentation of Mobile Mapping Point Clouds via Multi-View Label Transfer.
ISPRS J. Photogramm. Remote Sens. 2023, 202, 30–39. [CrossRef]

171. Zhao, N.; Chua, T.-S.; Lee, G.H. Few-Shot 3D Point Cloud Semantic Segmentation. In Proceedings of the 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 8869–8878.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jag.2022.102974
https://doi.org/10.1109/TIP.2022.3205208
https://doi.org/10.1109/JSTARS.2023.3315557
https://doi.org/10.1109/TVCG.2019.2896310
https://doi.org/10.1016/j.cag.2023.03.008
https://doi.org/10.1145/3592131
https://doi.org/10.1109/TGRS.2023.3264102
https://doi.org/10.1016/j.isprsjprs.2023.05.018

	Introduction
	Taxonomy Scheme of Deep Learning 3D Semantic Segmentation Methods
	Previous 3DSS Review Papers
	Proposed 3DSS Taxonomy Scheme
	Point-Based Methods Taxonomy Scheme
	Dimensionality Reduction-Based Methods Taxonomy Scheme
	Discretization-Based Methods Taxonomy Scheme
	Graph-Based Methods Taxonomy Scheme
	Hybrid Methods Taxonomy Scheme

	Three-Dimensional Semantic Segmentation Datasets
	Evaluation Metrics in 3D Semantic Segmentation
	Confusion Matrix
	Evaluation Metrics

	Three-Dimensional Semantic Segmentation
	Point-Based Methods
	Point-Wise MLP
	Point Convolution
	Recurrent Neural Networks
	Attention Mechanism and Transformers

	Dimensionality Reduction-Based Methods
	Multi-View
	Spherical
	Bird’s-Eye View
	Multiple Projections

	Discretization-Based Methods
	Graph-Based Methods
	Hybrid Methods
	Discretization-, Point-, and Dimensionality Reduction-Based Methods
	Graph- and Discretization-Based Methods
	Point- and Discretization-Based Methods
	Point- and Graph-Based Methods
	Dimensionality Reduction- and Point-Based Methods
	Dimensionality Reduction- and Discretization-Based Methods

	Loss Functions in 3D Semantic Segmentation
	Discussion
	Regarding the 3DSS Method Category
	Regarding the Datasets and the Data
	Regarding the Application
	Regarding the Learning Approach

	Conclusions
	References

