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Abstract
Flexible fibers at the microscopic scale, such as flagella and cilia, play essential roles in

biological and synthetic systems. The dynamics of these slender filaments in viscous flows
involve intricate interactions between their mechanical properties and hydrodynamic drag. In
this paper, considering a 1D, planar, inextensible Euler-Bernoulli rod in a viscous fluid modeled
by Resistive Force Theory, we establish the existence and uniqueness of solutions for the N -
link model, a mechanical model, designed to approximate the continuous filament with rigid
segments. Then, we prove the convergence of the N -link model’s solutions towards the solutions
to classical elastohydrodynamics equations of a flexible slender rod. This provides an existence
result for the limit model, comparable to those by Mori and Ohm [Nonlinearity, 2023], in a
different functional context and with different methods. Due to its mechanical foundation, the
discrete system satisfies an energy dissipation law, which serves as one of the main ingredients
in our proofs. Our results provide mathematical validation for the discretization strategy that
consists in approximating a continuous filament by the mechanical N -link model, which does
not correspond to a classical approximation of the underlying PDE.

Keywords: swimming at low Reynolds number, inextensibility, filament elastohydrodynamics,
N -link model, well-posedness, convergence.

1 Introduction
Flexible fibers are ubiquitous in nature, particularly at microscopic scale, playing key roles as
flagella and cilia for microbiological locomotion [19] and structural components of cell membranes,
polymer chains [10], and micro-robotics [6].

The dynamics of a slender filament in a fluid is governed by the coupling between mechanical
properties of the deformable filament and hydrodynamic interactions between the filament and the
fluid. In addition, internal or external effects such as gravity, magnetic field, or internal activity
can produce a broad range of behaviors like undulating, twisting, or knotting.

Casting this fluid-structure interaction problem as a set of equations requires various modeling
assumptions [12], [21], going from a full 3D description of both filament and fluid to simplifications
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pertaining to the filament slenderness and the specificities of low-Reynolds number hydrodynamics.
In the slender filament limit, for planar motion, and neglecting the effects of internal shear, elastic
restoring torque is linearly related to local curvature and bending stiffness, according to Euler-
Bernoulli beam theory [4], [30].

For the treatment of hydrodynamics, Resistive Force Theory (RFT) [17], developed in the 1950s
and which approximates local drag as a linear anisotropic operator related to local velocity, remains
to this day a prominently popular choice for micro-filament modelling and simulation, offering a
simple approximation with satisfying accuracy [34]. More complex and non-local models, often
termed as slender body theory (SBT), and regularized Stokeslet methods typically provide higher
accuracy at the price of more involved computations [25], [30].

In this article, we focus on a 1D, planar, inextensible Euler-Bernoulli deformable rod in a viscous
fluid modeled through RFT. It leads to a fourth-order nonlinear partial differential equation (PDE)
system that is considered standard in the literature on filament elastohydrodynamics [4], [18], [19].

The nonlinear terms arising from the inextensibility constraint make the filament elastohydro-
dynamics equations notoriously tricky to solve numerically with reasonable levels of accuracy and
computational efficiency [15]. In parallel of classical PDE discretization methods, mechanical dis-
crete models have been proposed, based on replacing the continuous elastic body with a collection
of rigid parts connected by elastic junctions. Common examples include the N -beads formulation
[22], for which the filament is seen as a chain of spheres, and the N -link, for which it is seen
as a chain of slender straight rods [1]. It is worth noting that these models not only constitute
approximations of a flexible fiber, but also faithfully describe the structure of a certain type of
flexible micro-robots built as an assembly of magnetic parts [2], [23], [28].

The N -link model, considered in this article, relies on analytic integration of the hydrody-
namic force density given by RFT, carried out on individual segments; in turn, the dynamics
is reduced to a first-order differential-algebraic equation system. This powerful approach allows
further modelling refinements on dealing with hydrodynamics [31] and obstacles [13], [29].

Whether it is on the PDE formulation or its discrete N -link approximation, the mathematical
analysis of elastohydrodynamics is relatively scarce, with the first well-posedness result in the
continuous case (existence and uniqueness of the solution for a given initial data) having been
stated only recently by Mori & Ohm [24]. Relying on the Banach fixed-point theorem, the authors
establish global existence of solutions for small initial data and local existence of solutions for
arbitrary initial data. On the other hand, justification of existence and uniqueness of the solutions
of the N -link system is currently lacking.

Furthermore, the approximation of a flexible fiber by a collection of small rigid segments has
reasonable physical grounds and we observe numerical convergence towards the continuous model
[23]. However, no formal proof of convergence as the number N of links tends to infinity is available
to the best of our knowledge.

The objective of the present paper is to address both of these questions. Hence, we establish
the well-posedness of the N -link equations (Theorem 2.1), and the convergence (up to extraction of
a subsequence) of this solution in suitable functional spaces towards the solution of the continuous
elastohydrodynamics equations (Theorem 2.2). Considered together, Theorems 2.1 and 2.2 imply
the global existence of solutions for the elastohydrodynamic PDE (Corollary 2.1).

Both proofs rely on classical arguments. Theorem 2.1 for free boundary conditions is an applica-
tion of the Cauchy-Lipschitz theorem, which requires verifying that the hydrodynamic resistance
matrix is invertible, and the use of an energy dissipation estimate (Proposition 3.1) to ensure
boundedness of the solutions. Extension to other standard boundary conditions is also discussed.
For Theorem 2.2, in order to connect the finite- and infinite-dimensional variables of both systems,
we define piecewise-constant, and continuous-piecewise-affine interpolates of the N -link system
variables (position, orientation, forces and moments). We derive uniform bounds in N for each
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of them, again mostly relying on energy dissipation, and prove convergence using compactness
methods.

The paper is structured as follows. In Section 2, we describe the continuous model, the coarse-
grained N -link model, and state the two main results. Section 3 is dedicated to establishing the
energy dissipation formula. The proofs of Theorems 2.1, 2.2 and Corollary 2.1 are presented Section
4. Finally, we discuss a list of possible model extensions and a few open problems in Section 5.

s = 0

r(t, s)

s = L

θ(t, s)

(a)
αi(t) = θi(t) − θi−1(t)

ri(t)

h = L/N

(b)

ex

ey

e∥e⊥
ei,∥

ei,⊥n(t, s), m(t, s), f(t, s)
ni+1(t), mi+1(t)ni(t), mi(t)
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ri+1(t)
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Figure 1: Diagram and notations for (a) the continuous elastohydrodynamic flagellum model and
(b) the N -link model.

2 Problem formulation and main results

2.1 Continuous model

We consider a filament of length L > 0 undergoing planar deformations in a fluid at a low Reynolds
number, parametrized by

r :
{

R+ × [0, L] → R2 ⊂ R3

(t, s) 7→ r(t, s)

where s is the filament arclength and t the time, as shown in Figure 1(a). The filament is assumed
to be inextensible and unshearable. We call n(t, s) and m(t, s) the contact forces and moments
inside the filament, and f(t, s) the external force density due to the fluid. The filament dynamics
is then classically governed by the following system of equations [4]

ns + f = 0,
ms + rs × n = 0,
m = Eθsez = Erss × rs,
|rs|2 = 1,

(1)

where θ(t, s) is defined as the angle between the x axis and the tangent vector to the filament e∥,

with e∥ = rs(t, s) := ∂r

∂s
(t, s). Assumed to be differentiable, θ is uniquely determined on [0, L]

once a representative has been chosen at s = 0. The first two equations of (1) reflect the force and
torque balance on the filament. The third equation is the constitutive materical equation linking
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contact moments m to the angle θ. Here, we use a neo-Hookean description and the bending
moment is therefore linearly related to the local curvature with bending stiffness E > 0. Finally,
the last equation encapsulates the inextensibility constraint.
Remark 2.1. In Antman [4], an additional term ℓ appears in the second equation of System (1),
accounting for external torque density, with a typical example of such effects being the torque
induced by a magnetic field on a magnetized rod [2]. Here, no such effects are considered, and
there is no torque due to hydrodynamic drag, because the motion is planar [11], [31].

Using Resistive Force Theory [17], the density of external fluid forces can be modeled as:

f(t, s) = −c⊥(e⊥ · ṙ)e⊥ − c∥(e∥ · ṙ)e∥ = C(θ(t, s))ṙ, (2)

where ṙ(t, s) is defined as ∂r
∂t (t, s), e∥ = (cos θ, sin θ)⊺, e⊥ = (− sin θ, cos θ)⊺. The parallel and

perpendicular drag coefficients, respectively c∥ and c⊥, are non-negative with c∥ ̸= c⊥. Finally,

C(θ) = −
[
c⊥

(
− sin θ
cos θ

)(
− sin θ , cos θ

)
+ c∥

(
cos θ
sin θ

)(
cos θ , sin θ

)]

is a negative definite 2 × 2 matrix, depending regularly on the variable θ. In a slight abuse of
notation, it will sometimes be convenient to rewrite C(θ) as a function of u = (cos(θ), sin(θ))⊺:

C(u) = −
(
c⊥I + (c∥ − c⊥)uu⊺

)
.

To complete the description of the model, it remains to set boundary conditions at s = 0 and
s = L for any time t > 0. At s = L, we assume a free end, leading to Dirichlet boundary conditions
for n and m:

n(t, L) = 0, m(t, L) = 0. (3)

At s = 0, we investigate three possible cases:

• free end, identical to the other end:

n(t, 0) = 0, m(t, 0) = 0, (4)

• pinned end, for which the position of the filament at s = 0 is fixed in space, but its orientation
rs(t, 0) is free to change:

ṙ(t, 0) = 0, m(t, 0) = 0, (5)

• clamped end, for which the extremity has a fixed position and orientation:

ṙ(t, 0) = 0, θ̇(t, 0) = 0. (6)

We finally present the corresponding full elastohydrodynamics system of equations in the case of
free boundary conditions at both ends as

ns + C(rs)ṙ = 0,
ms + rs × n = 0,
n(t, 0) = n(t, L) = 0,
m(t, 0) = m(t, L) = 0,
m = Erss × rs = Eθsez,
|rs|2 = 1.

(7)
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Extension to pinned and clamped boundary conditions can be obtained simply by changing the
third and fourth lines and straightforwardly adapting the proofs. Notice that this system has to
be supplied with an initial condition r0 for r at t = 0.

Existence and uniqueness of solutions to System (7) has recently been established by Mori
and Ohm [24, Theorem 1.1], although in a different formulation, based on the curvature variable
κ = rss, and involving different functional spaces than the ones we use in this paper. We provide
a detailed discussion on this matter at the end of this section.

2.2 N-link model

We now introduce the discrete filament model, which can be interpreted as a coarse-grained version
of a continuous flexible filament. This model is often called the N -link system [1], [23] in the context
of microscopic locomotion. The N -link filament, represented in Figure 1(b), is composed of N rigid
segments (or “links”) of size h = L/N connected by torsional springs and surrounded by a fluid
at zero Reynolds number. The extremities of the i-th segment, for 1 ≤ i ≤ N , are at positions
ri(t) and ri+1(t), with (ri(t))1≤i≤N+1 given in R2 ⊂ R3. From this, the position of the point of
arclength s on the discrete filament can be expressed as

rh(t, s) = ri(t) +
(
s− (i− 1)h

)(ri+1(t) − ri(t)
h

)
, (8)

for s ∈ Li = [(i− 1)h, ih] and 1 ≤ i ≤ N , which is the linear interpolate between ri(t) and ri+1(t)
on the i-th segment.

Due to the inextensibility condition we have |rh
s | = 1 which translates into

|ri+1(t) − ri(t)|
h

= 1, 1 ≤ i ≤ N . (9)

We can then define the unit vector parallel to the i-th segment as

ei,∥(t) = ri+1(t) − ri(t)
h

=
(

cos θi(t)
sin θi(t)

)
, 1 ≤ i ≤ N (10)

where we call, for each link, θi an angle between ex and ei,∥, defined modulo 2π. The choice of the
representative θi is immaterial for this geometric description but matters later when introducing
the elastic torques. In fact, once a choice (θ0

i )1≤i≤N of (θi)1≤i≤N is made at t = 0, its representative
at all times will be uniquely determined by dynamics. This is a fundamental difference between
the discrete and continuous systems that is further discussed in Remark 2.2.

For 2 ≤ i ≤ N , we denote by ni(t), mi(t) the contact force and moment exerted by Li on Li−1.
The forces and moments at both extremities n1, m1, nN+1, mN+1 are given by the boundary
conditions, which mirror those used for the continuous filament (Eqs. (3)-(6)): the extremity of
the N -th segment is left free, which translates to mN+1(t) = 0 and nN+1(t) = 0, while for the first
segment, we consider the following three cases:

• free end:
n1(t) = 0, m1(t) = 0;

• pinned end:
ṙ1(t) = 0, m1(t) = 0,

leaving n1(t) unknown;
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• clamped end:
ṙ1(t) = 0, θ̇1(t) = 0,

leaving both n1(t) and m1(t) unknown.

Then, denoting by fext,i(t) the drag force exerted by the fluid on the i-th segment and using
Equation (2), one has

fext,i(t) =
∫

Li

C(θi(t)) ṙh(t, s) ds

= h C(θi(t)) ṙi+ 1
2
(t) ,

where ri+1/2 = ri + ri+1
2 . The force balance on the i-th segment is therefore given by

hC(θi(t)) ṙi+ 1
2
(t) + ni+1(t) − ni(t) = 0, 1 ≤ i ≤ N. (11)

Similarly, the drag torque from the fluid, with respect to the origin of the reference frame, can
be computed as (omitting the dependence in time for brevity)

mext,i =
∫

Li

rh × C(θi) ṙh ds

=
∫

Li

(rh − ri+1/2) × C(θi) (ṙh − ṙi+1/2) ds+ h ri+1/2 × C(θi) ṙi+1/2

=
∫

Li

(ri+1 − ri) × C(θi) (ṙi+1 − ṙi)
(1

2 + s− (i− 1)h
h

)
ds+ h ri+1/2 × C(θi) ṙi+1/2

= −h3

12c⊥θ̇iez + h ri+1/2 × C(θi) ṙi+1/2,

and the torque balance equation on the i−th segment then reads

−h3

12c⊥θ̇iez + h ri+1/2 × C(θi) ṙi+1/2 +mi+1 −mi + ri+1 × ni+1 − ri × ni = 0 .

Using the force balance equation (11), together with the definition of ei,∥, this simplifies to

mi+1 −mi + h ei,∥ × ni+1 + ni

2 − h3

12c⊥θ̇iez = 0, 1 ≤ i ≤ N . (12)

Finally, we model the relation between the angles and the elastic torque as

mi(t) = γ(θi(t) − θi−1(t))ez, 2 ≤ i ≤ N , (13)

where the stiffness of the elastic junctions is defined as γ = E/h in order to be consistent with the
previous continuous model.
Remark 2.2. Here, there is a subtle but important difference between the continuous description
and the N -link model in the way θ is deduced from r at t = 0. Indeed, in the continuous case, the
choice of r(0, ·) naturally defines θs(0, ·), which in turn determines a unique differentiable θ(0, ·),
provided that one representative θ(0, 0) has been chosen. On the other hand, in the N -link model,
the local representative of (θi)i is not uniquely determined from the knowledge of (ri)i and θ1 at
t = 0. Therefore, a global choice of representatives at t = 0 for each of the (θi)i is compulsory. In
particular, this choice of local representative matters in computing the local moment from (13).
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Gathering Eqs. (9), (11), (12) and (13) with free boundary conditions, we finally obtain:

ni+1 − ni + hC(θi) ṙi+1/2 = 0, 1 ≤ i ≤ N,

mi+1 −mi + h ei,∥ × ni+1 + ni

2 − h3

12c⊥θ̇iez = 0, 1 ≤ i ≤ N,

n1 = nN+1 = 0,
m1 = mN+1 = 0,
mi = E

h
(θi − θi−1)ez, 2 ≤ i ≤ N,

|ri+1 − ri|
h

= 1, 1 ≤ i ≤ N,

(14)

where the variables (ri)1≤i≤N+1 and (θi)1≤i≤N are coupled by (10). Recall also that the system
can be adapted for pinned or clamped boundary conditions, by replacing the third and fourth lines
with the corresponding boundary conditions on the first segment.

As already mentioned in Remark 2.2, here one needs to give both an initial condition for
(ri)1≤i≤N+1 and (θi)1≤i≤N still coupled by (10), while for the continuous system, the initial con-
dition on θ could be deduced from the one for r.

In the following, we establish that System (14) has a unique solution for any given initial
condition. However, this solution does not prevent self-intersection of the filament. This is also
true for the continuous system (7). In reality, self-intersection is impossible for 2D motion, and is
usually enforced in models e.g. by solving Stokes equations more accurately, adding short-range
repulsion forces or Lagrange multipliers.

Several terms in System (14) can be seen as discretized counterparts of corresponding terms in
the continuous elastohydrodynamics equations (7). The space derivatives ns, ms, rs and θs in (7)
are immediately identified to forward finite differences in (14). Then, the terms ṙ and rs × n in
(7) can be matched to the terms of half-sum type (ri+1/2 and (ni+1 + ni)/2) in (14). Finally, the
second equation in (14) features an additional term, −h3

12 c⊥θ̇iez, that cannot be matched to the
moment balance in (7), because it accounts for the hydrodynamic torque on a rigid link of positive
length h. Heuristically, one can expect that this term vanishes when h goes to zero, which is in
agreement with the fact that external moments are neglected in (7) as stated in Remark 2.1.

Nonetheless, the presence of this supplementary term highlights the important fact that the
equations governing the dynamics of the N -link model cannot be obtained as any direct numerical
discretization of System (7). In a sense, they rather arise from a mechanical discretization of a
continuous rod. This means that the mathematical convergence of one model to another, although
physically plausible and numerically verified [23], is not obvious, and this is the purpose of the
present study.

2.3 Matrix expression

In order to proceed, we rewrite (14) as an differential-algebraic matrix system. Let us introduce the
vectors X = (θ1, . . . , θN , r

x
1 , r

y
1)⊺, N = (nx

1 , n
y
1, . . . , n

x
N , n

y
N )⊺, and M = (mz

1, . . . , m
z
N )⊺, where,

for any v ∈ R3, we have denoted by vx, vy, vz its coordinates in the ex, ey and ez directions. We
now rewrite the system (14) using X,N,M as unknowns.

Notice that the boundary conditions nN+1 and mz
N+1 do not appear among the unknowns

in N and M due to the free boundary conditions, while we keep mz
1 and n1 since we might

consider different boundary conditions at the first end. The (ri)2≤i≤N+1 were also removed from
the unknowns, knowing that, due to the definition (10) of ei,∥, ri can be expressed in terms of r1
and (θk)1≤k≤N as

ri = r1 + h
i−1∑
k=1

(
cos θk

sin θk

)
, 2 ≤ i ≤ N + 1. (15)
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Let us now rewrite (14) in a matrix form. First, by differentiation of (15), one has ṙi+1/2 =
(G(X)Ẋ)i, where the matrix G(X), of size (2N,N + 2), is such that for any W = (Wi)i ∈ RN+2

and 1 ≤ i ≤ N ,

(G(X)W)i =
(
WN+1
WN+2

)
+ h

i−1∑
k=1

(
− sin θk

cos θk

)
Wk + h

2

(
− sin θi

cos θi

)
Wi ∈ R2. (16)

As a consequence, we rewrite (14) as: A11 A12(X) 02N,N

A21(X) A22 A23
0N,2N 0N,N+2 IN


 N

Ẋ
M

 =

 F1
F2

F3(X)

 , (17)

where, using
C(X) = diag(C(θ1), . . . , C(θN )), (18)

the underlying matrices are defined by

A11 =



−I2 I2 · · · · · · 02
02 −I2 I2 · · · 02
... . . . . . . . . . ...
... . . . . . . . . . ...

02 · · · · · · 02 −I2


, A12(X) = hC(X)G(X) ,

A21(X) = h

2



e⊺1,⊥ e⊺1,⊥ 02 · · · 02
02 e⊺2,⊥ e⊺2,⊥ · · · 02
... . . . . . . . . . ...

02 · · · · · · e⊺N,⊥ 02
I2 02 · · · · · · 02

 , A22 = −h3

12c⊥


1

. . .
1

0
0

 ,

A23 =


−1 1 0 · · · 0
0 −1 1 · · · 0
... . . . . . . . . . ...
0 · · · · · · −1 0
0 · · · · · · · · · 0

 ,

and
F1 = 02N , F2 = 0N+2, F3(X) = E

h
(0, θ2 − θ1, · · · , θN − θN−1)⊺ .

Note that the (ei,⊥)1≤i≤N in A21 stem from the fact that for any v ∈ R2 ⊂ R3 and 1 ≤ i ≤ N ,
ei,∥ × v · ez = ei,⊥ · v. The system (17) needs to be complemented with initial conditions for X i.e.
for (θi)1≤i≤N and r1.

Through the use of (15), the differential-algebraic system (17), complemented with the con-
ditions nN+1(t) = 0 and mz

N+1(t) = 0 for all t ≥ 0, is evidently equivalent to the original prob-
lem (14).
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2.4 Main results

The aim of this paper is to show that the solution of the discrete system (17) (or equivalently (14))
is well defined and converges to the solution of the continuous system (7), as h goes to 0.

For the sake of completeness, let us recall the definitions of the (classical) functional spaces
which are used in this section. Let Ω be an open set of Rd. We define

H1(Ω) =
{
f ∈ L2(Ω) / ∂if ∈ L2(Ω) for 1 ≤ i ≤ d

}
, ∥f∥2

H1(Ω) = ∥f∥2
L2(Ω) +

∑
i

∥∂if∥2
L2(Ω),

H2(Ω) =
{
f ∈ H1(Ω) / ∂i∂jf ∈ L2(Ω) for 1 ≤ i, j ≤ d

}
, ∥f∥2

H2(Ω) = ∥f∥2
H1(Ω)+

∑
i,j

∥∂i∂jf∥2
L2(Ω),

where ∂i denotes the derivative with respect to the i-th variable in Rd. If T > 0 is given and H is
a Hilbert space of functions defined from Ω to R, we also define the space of functions L2 in time
with values in H :

L2(0, T ;H) =
{
f : [0, T ] × Ω → R /

∫ T

0
∥f(t, ·)∥2

H dt < +∞
}
,

endowed with the norm

∥f∥L2(0,T ;H) =
(∫ T

0
∥f(t, ·)∥2

H dt
)1/2

.

Finally, if f is a vector-valued function, the notation f ∈ H (resp. f ∈ L2(0, T ;H)) means that
each component of f belongs to H (resp. L2(0, T ;H)).

Theorem 2.1 (Well-posedness for the N -link swimmer). The discrete system (17), given a set of
initial conditions r1(0) = r0

1 ∈ R2, θi(0) = θ0
i ∈ R for 1 ≤ i ≤ N , admits a unique global solution

r1 ∈ C1(R+), (θi)1≤i≤N ∈ C1(R+)N , (mz
i )1≤i≤N ∈ C1(R+)N , (ni)1≤i≤N ∈ C1(R+)N .

For i = 1, · · · , N+1, let ϕi be continuous and piecewise linear functions, defined in H1(0, L) by
ϕi(jh) = δi−1,j for j = 0, · · · , N and Vh := Span((ϕi)1≤i≤N+1) = {vh ∈ C0(0, L) | vh affine on [(i−
1)h, ih] for 1 ≤ i ≤ N}. We then introduce the following linear interpolates in Vh, for T > 0 and
(t, s) ∈ QT = [0, T ] × [0, L]

rh(t, s) =
N+1∑
i=1

ri(t)ϕi(s), (19)

mh,z(t, s) =
N+1∑
i=1

mz
i (t)ϕi(s), (20)

nh(t, s) =
N+1∑
i=1

ni(t)ϕi(s). (21)

Note that (19) is nothing but a rewriting of (8). We also highlight that rh
s (t, s) = ri+1(t) − ri(t)

h
for s ∈ [(i− 1)h, ih], from which we deduce that |rh

s (t, s)|2 = 1 by construction. Now, let us define
the piecewise constant interpolate

θ̄h(t, s) =
N∑

i=1
θi(t)1Li(s). (22)
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which belongs to Wh = {wh ∈ L2(0, L) |wh constant on ((i− 1)h, ih) for 1 ≤ i ≤ N}.
For technical reasons, we also introduce a piecewise linear interpolate for θ in Vh and a piecewise

constant interpolate for m in Wh:

θh(t, s) =
N∑

i=1
θi(t)ϕi+1(s) + θ1(t)ϕ1(s), (23)

m̄h,z(t, s) =
N∑

i=1
mz

i (t)1Li(s). (24)

Eventually, we define

r̂h(t, s) = rh(t, 0) +
∫ s

0
(cos θh(t, u), sin θh(t, u))⊺ du,

in such a way that r̂h
s = (cos θh, sin θh)⊺. As θh is continuous and piecewise linear, this last

expression is differentiable in s and we have

r̂h
ss = θh

s (− sin θh, cos θh)⊺,

which gives in particular
m̄h,z = E(r̂h

ss × r̂h
s ) · ez = Eθh

s .

We can now state the second main result.

Theorem 2.2 (Convergence). Let r0 ∈ C2(0, L) be given together with a representative θ0 ∈
C1(0, L) such that r0

s = (cos θ0, sin θ0)⊺ ∈ C1(0, L).
Let T > 0. For all N ∈ N∗, let a set of discrete initial conditions X0 = (θ0

1, . . . , θ
0
N , r

x,0
1 , ry,0

1 ) ∈
RN+2 be given together with the associated solutions of the discrete problem (14) on [0, T ] (Theorem
2.1). The corresponding interpolants rh,mh,z, nh are defined from (19 – 21).

Assume that
rh(0, ·) −−−−−→

N→+∞
r0 in L2(0, L), (25)

and that there exists C0 > 0, independent of h, such that, for all N ∈ N∗,

E

2

N−1∑
i=1

h

(
θi+1(0) − θi(0)

h

)2
= C0

h ≤ C0. (26)

Then, there exist r ∈ H1(QT ), m ∈ L2(0, T ;H1(0, L)) and n ∈ L2(0, T ;H1(0, L)) such that, up
to extraction of a subsequence when h → 0, we have

rh ⇀ r weakly in H1(QT ),
mh,zez ⇀m weakly in L2(0, T ;H1(0, L)),
nh ⇀ n weakly in L2(0, T ;H1(0, L)).

Moreover, r ∈ L2(0, T ;H2(0, L)) and (r,m, n) satisfy System (7) for a.e. (s, t) ∈ QT with initial
condition r0.

As we shall prove, for any initial data r0 ∈ C2(0, L), it is possible to construct discrete initial
conditions X0 satisfying hypotheses (25) and (26). As a consequence, we obtain the following
existence result.

10



Corollary 2.1 (Existence of solutions to the continuous system). Given r0 ∈ C2(0, L), there
exists at least one solution r ∈ H1(QT ) ∩ L2(0, T ;H2(0, L)), m ∈ L2(0, T ;H1(0, L)) and n ∈
L2(0, T ;H1(0, L)) to System (7) with initial condition r0.

Despite both establishing existence of solutions for the elastohydrodynamics equation (7),
Corollary 2.1 and the result of Mori and Ohm [24, Theorem 1.1], slightly differ. Indeed, Mori
and Ohm prove local existence (and global existence for small enough initial data) and uniqueness
for κ (which stands for θs in their work) in C0([0, T ];L2(0, L))∩C0((0, T ];H1(0, L)). On the other
hand, Corollary 2.1 establishes global existence of solutions (for any suitably regular initial data)
such that θs = mz/E belongs to L2(0, T ;H1(0, L)).

Of course, an extension of [24, Theorem 1.1] to a space compatible with Corollary 2.1 would
allow to combine both results to provide global existence and uniqueness of solutions for any
initial data. Recent developments have been obtained by Ohm [26], studying a three-dimensional
version of the filament dynamics including shear deformation (Kirchhoff rod), and casting the
dynamics in terms of rss instead of κ. This paves the way to show that (7) is well posed for
r ∈ L2(0, T ;H2(0, L)). This would confirm the uniqueness of the solutions of Corollary 2.1.
Consequently, the convergences obtained in Theorem 2.2 would not hold only for subsequences
but for the whole family (rh,mh,z, nh).

3 Energy dissipation
The main idea to prove Theorem 2.1 consists in ensuring that all the variables of System (14)
remain bounded uniformly in time. For Theorem 2.2, estimates on the interpolates (19)-(24),
uniform in h and in well-chosen functional spaces, are the cornerstone of the proof. As a matter of
fact, for both proofs, most of these key estimates derive from a single formula, that characterizes
the dissipation of energy in solutions of System (14). This formula is established in the following
proposition.

Proposition 3.1 (Energy dissipation). Let (ri)1≤i≤N+1, (θi)1≤i≤N , (mi)1≤i≤N+1, (ni)1≤i≤N+1 be
a solution to system (14). Then, the following identity holds for all t ∈ R+:

1
2

d
dt

[
E

N−1∑
i=1

h

(
θi+1 − θi

h

)2]
+

N∑
i=1

h3

12c⊥θ̇
2
i −

N∑
i=1

hC(θi) ṙi+ 1
2

· ṙi+ 1
2

= 0 . (27)

Proof. Multiplying the force balance equation (11) by the velocity ṙi+ 1
2
, and summing over i =

1, . . . , N leads to

h
N∑

i=1
C(θi) ṙi+ 1

2
· ṙi+ 1

2
= −

N∑
i=1

ṙi+ 1
2

· (ni+1 − ni) ds

=
N∑

i=1
(ṙi+1 − ṙi) · ni+1 + ni

2 ,

using a summation by parts and the boundary conditions n1 = nN+1 = 0. But, since ri+1 − ri =
h ei,∥, we have ṙi+1 − ṙi = h θ̇iei,⊥. This, together with the moment balance equation (14), and the
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boundary conditions m1 = mN+1 = 0 gives

h
N∑

i=1
C(θi) ṙi+ 1

2
· ṙi+ 1

2
= h

N∑
i=1

θ̇iei,⊥ · ni+1 + ni

2

= h
∑

i

θ̇iez · ei,∥ × ni+1 + ni

2

=
N∑

i=1
θ̇iez ·

[
mi −mi+1 + h3

12c⊥θ̇iez

]

=
N∑

i=1

h3

12c⊥θ̇
2
i +

N∑
i=1

θ̇iez · (mi −mi+1)

=
N∑

i=1

h3

12c⊥θ̇
2
i +

N∑
i=2

(θ̇i − θ̇i−1)ez ·mi.

Now, observing that we have mi · ez = E
h (θi − θi−1) for i = 2, · · · , N , we deduce

E

h

N−1∑
i=1

(θ̇i − θ̇i−1)(θi − θi−1) +
N∑

i=1

h3

12c⊥θ̇
2
i − h

N∑
i=1

C(θi) ṙi+ 1
2

· ṙi+ 1
2

= 0

which directly yields (27).

Remark 3.1. Recalling from (16) that ṙi+ 1
2

depends linearly on Ẋ =
(
θ̇1, . . . , θ̇N , ṙ

x
1 , ṙ

y
1

)⊺
, the

energy identity (27) can also be rewritten in matrix form,

1
2

d
dt

[
E

N−1∑
i=1

h

(
θi+1 − θi

h

)2]
+ Ẋ⊺M(X)Ẋ = 0. (28)

In (28), M(X) = M1 +M2(X) with

M1 = h3

12c⊥


1

. . .
1

0
0

 , M2 = −hG(X)⊺C(X)G(X),

where G(X) and C(X) are defined in equations (16) and (18).
Remark 3.2. Notice that the various discrete integrations by parts in the proof of Proposition 3.1
remain true when one considers pinned (2.2) or clamped (2.2) boundary conditions, so (36) still
holds for those cases.

4 Proofs

4.1 Proof of Theorem 2.1

The proof of the existence of a global solution to the N-link model is structured as follows: first,
we show the local-in-time well-posedness of the system (14) or equivalently (17) for free boundary
conditions at both ends. Then, we deduce the global existence.
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Local-in-time existence and uniqueness. Let N ∈ N∗, and let us prove that, for a set of initial
conditions X0 = (θ0

1, . . . , θ
0
N , r

x,0
1 , ry,0

1 ) ∈ RN+2, System (17) admits a unique solution (N,X,M)
in C0([0, T ])2N × C1([0, T ])N+2 × C0([0, T ])N for T > 0 sufficiently small. We recall the matrix
formulation (17) of the N -link system from equation (17): A11 A12(X) 02N,N

A21(X) A22 A23
0N,2N 0N,N+2 IN


 N

Ẋ
M

 =

 02N

0N+2
F3(X)

 .

Note that the system in this form is an differential-algebraic system, combining differential
equations on X and algebraic equations on N and M. It is suitable to recast it as a differential
system, which in turn allows use of the Cauchy-Lipschitz theorem to establish the existence of

solutions. To do so, note that the matrix
(

A11 02N,N

0N,2N IN

)
is clearly invertible. Therefore, we

can rewrite (17) as
B(X)Ẋ = F̃ (X) (29)

with

B(X) = A22 − (A21(X)A23)
(
A11 02N,N

0N,2N IN

)−1(
A12(X)
0N,N+2

)
= A22 −A21(X)A−1

11 A12(X) (30)

and
F̃ (X) = F2 −A23F3(X) −A21(X)A−1

11 F1 = −A23F3(X) .

Both B and F̃ are Lipschitz continuous in X since A12, A21 and F3 depend on X in Lipschitzian
way.

Now, it remains to show that, for all X = (θ1, . . . , θN , r
x
1 , r

y
1) ∈ RN+2, B(X) is invertible

or, since it is a square matrix, one-to-one. From (30), one can see that it is sufficient to prove

that A(X) =
(

A11 A12(X)
A21(X) A22

)
is one-to-one (it is in fact equivalent). Indeed, suppose that

A(X) is one-to-one and let W ∈ RN+2 be such that B(X)W = 0. By direct computation, setting
V = −A−1

11 A12(X)W, we obtain A(X)(V,W)⊺ = 0, which implies (V,W) = 0. In particular,
W = 0 which proves that B(X) is one-to-one.

So, let us now prove that A(X) is indeed one-to-one. We take V = (Vi)i ∈ R2N and W =
(Wi)i ∈ RN+2 such that

A(X)
(

V
W

)
= 03N+2

that we rewrite as

A11V +A12(X)W = 02N , (31)
A21(X)V +A22W = 0N+2 , (32)

and prove that, necessarily, V = 02N and W = 0N+2. First, notice that the last two lines in (32)
imply V1 = V2 = 0. Then we compute

0 = W⊺(A21(X)V +A22W)

=
N∑

i=1
hWi

(
− sin θi

cos θi

)
· Vi+1 + Vi

2 + h

2 WN

(
− sin θN

cos θN

)
· VN −

N∑
i=1

h3

12c⊥W
2
i .
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Using G(X) as introduced in equation (16), and the fact that V1 = V2 = 0, one has, by
summation by parts,

0 = h

2

N∑
i=2

Vi ·
(
Wi−1

(
− sin θi−1
cos θi−1

)
+Wi

(
− sin θi

cos θi

))
−

N∑
i=1

h3

12c⊥W
2
i

=
N∑

i=2
Vi · ((G(X)W)i − (G(X)W)i−1) −

N∑
i=1

h3

12c⊥W
2
i

= −
N∑

i=1
(Vi+1 − Vi) · (G(X)W)i −

N∑
i=1

h3

12c⊥W
2
i .

Using (31), we also have that for 1 ≤ i ≤ N , Vi+1 − Vi = −h(C(X)G(X)W)i and we recover

0 =
N∑

i=1
h(C(X)G(X)W)i · (G(X)W)i −

N∑
i=1

h3

12c⊥W
2
i . (33)

The matrix C(X) is block diagonal with negative definite blocks, so both terms in (33) are negative,
which then yields Wi = 0 and (G(X)W)i = 0 for all i ∈ {1, · · · , N}. Moreover, from (16), we
deduce that

0 = (G(X)W)1 =
(
WN+1
WN+2

)
+ h

2

(
− sin θ1
cos θ1

)
V1 =

(
WN+1
WN+2

)
,

which finishes to prove that W = 0N+2. Finally, using (31), we deduce that V = 02N , which
means that A(X), and hence B(X), are both invertible.

We can now apply Cauchy-Lipschitz theorem to equation (29), and conclude that for any initial
condition, System (14) admits a unique C1 solution X = (θ1, . . . , θN , r1) locally in time.

Global existence and uniqueness. The solution X = (θ1, . . . , θN , r1) to System (14) can be
extended to R+ as long as it does not blow up in finite time, which is ensured by the following
lemma.

Lemma 4.1 (Bounds on (ri)i and (θi)i). For any T > 0, assume that we can define all (ri)1≤i≤N+1
and (θi)1≤i≤N on [0, T [. Then, they stay bounded in [0, T ] in the following sense:

|θi(t) − θi(0)| ≤ C1T
1/2, (34)

|ri(t) − ri(0)| ≤ C2T
1/2, (35)

for all 1 ≤ i ≤ N , for all t ∈ [0, T ], and where C1, C2 > 0 are constants that do not depend on T .

Proof. Let T > 0 and assume that the solution (ri)1≤i≤N+1 and (θi)1≤i≤N exists on [0, T [. First
of all, integrating equation (27) over time t ∈ [0, T ], we obtain

1
2

[
E

N−1∑
i=1

h

(
θi+1(T ) − θi(T )

h

)2]
+
∫ T

0

N∑
i=1

h3

12c⊥θ̇
2
i (t) dt

−
∫ T

0

N∑
i=1

hC(θi) ṙi+ 1
2
(t) · ṙi+ 1

2
(t) dt = C0

h,

(36)

where the terms on the left-hand side are all positive, and C0
h = 1

2

[
E

N−1∑
i=1

h
(

θi+1(0)−θi(0)
h

)2
]
> 0

is a constant that depends on the initial condition and on h, but not on T .
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To prove (34), we write

N∑
i=1

|θi(t) − θi(0)| =
N∑

i=1

∣∣∣∣∫ t

0
θ̇i(u) du

∣∣∣∣ ≤
N∑

i=1

∫ T

0

∣∣∣θ̇i(u)
∣∣∣ du

≤
N∑

i=1
T 1/2

(∫ T

0
|θ̇i(u)|2 du

)1/2

≤ (NT )1/2
(

N∑
i=1

∫ T

0

∣∣∣θ̇i(u)
∣∣∣2 du

) 1
2

≤ (NT )1/2
( 12
h3c⊥

C0
h

) 1
2
,

where the last inequality comes from (36).
It now remains to prove (35). First, we write similarly

N∑
i=1

|ri(t) − ri(0)| = (NT )1/2
(

N∑
i=1

∫ T

0
|ṙi(u)|2 du

) 1
2

. (37)

To bound the right-hand side of (37), we proceed in two steps. On the one hand, the matrix
C(θi) is negative definite for all (θi), with eigenvalues (−c∥,−c⊥) independent of i, so that from (36)
we have ∫ T

0

N∑
i=1

h |ṙi+1/2(u)|2 du ≤ C̃0
h, (38)

where C̃0
h = C0

h/min(c∥, c⊥).
On the other hand, using (15), one can write ṙi+1 − ṙi = h θ̇iei,⊥. Hence, from (36) we obtain

∫ T

0

N∑
i=1

h |ṙi+1(u) − ṙi(u)|2 du =
∫ T

0

N∑
i=1

h |h θ̇i(u)ei,⊥|2 du =
∫ T

0

N∑
i=1

h3θ̇2
i (u) du ≤ 12

c⊥
C0

h. (39)

Combining equations (38) and (39) finally leads to

∫ T

0

N+1∑
i=1

h|ṙi(u)|2 du ≤ 4C̃0
h + 12

c⊥
C0

h. (40)

which concludes the proof.

Lemma 4.1 guarantees that the solution (θ1, . . . , θN , r1) to system (14) can not blow up in
finite time. The system (14) with initial conditions (θ0

1, . . . , θ
0
N , r

0
1) ∈ RN+2 therefore admits a

unique C1 solution for all time, which concludes the proof of Theorem 2.1.

Remark 4.1. For pinned (resp. clamped) boundary conditions, the system and the proof can be
adapted by removing (rx

1 , r
y
1) (resp. (rx

1 , r
y
1 , θ1)) from the unknowns and by looking at a new matrix

in (17), of size 4N × 4N (resp. (4N − 1) × (4N − 1)).

4.2 Proof of Theorem 2.2

In this section, we prove Theorem 2.2: namely, that the discrete solution to the N-link model
computed from Theorem 2.1 converges towards the solution to the continuous model.

To begin, we assume that r0 ∈ C2(0, L) is given together with a representative θ0 ∈ C1(0, L)
such that r0

s = (cos θ0, sin θ0)⊺ ∈ C1(0, L).
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Let T > 0. For all N ∈ N∗, a set of discrete initial conditions X0 = (θ0
1, . . . , θ

0
N , r

x,0
1 , ry,0

1 ) ∈
RN+2 is given from which the solutions of the discrete problem (14) is computed on [0, T ] thanks
to Theorem 2.1. The corresponding interpolants rh,mh,z, nh, θ̄h, θh and m̄h,z are then defined from
(19 – 24).

Furthermore we assume that (25) and (26) hold, namely

rh(0, ·) −−−−−→
N→+∞

r0 in L2(0, L),

E

2 ∥θh
s (0, ·)∥L2(0,L) = E

2

N−1∑
i=1

h

(
θi+1(0) − θi(0)

h

)2
= C0

h ≤ C0

where C0 does not depend on h.
The proof is split into three propositions. In Proposition 4.1, we bound the interpolates in-

dependently of h in suitable function spaces. Then, Proposition 4.2 establishes the existence of a
limit to each of these interpolates as h goes to zero. Finally, Proposition 4.3 shows that this limit
is a solution of System (7) in a weak sense and the proof is concluded proving that the limit satisfy
System (7) almost everywhere in QT , with the initial condition r0.

Let BV (0, L) be defined as the space of functions of bounded variation on [0, L], equipped with
the norm ∥u∥BV (0,L) = ∥u∥L1(0,L) +TV L

0 (u), for u ∈ BV (0, L), where TV L
0 (u) is the total variation

of u on (0, L) [3].

Proposition 4.1 (Bounds on interpolates). If (θh
s (0, ·))h is bounded uniformly h in L2(0, L), the

interpolates defined in equations (19-24) satisfy the following bounds, uniformly in h.

1. (rh)h is bounded in H1(QT );

2. (ṙh
s )h is bounded in L2(0, T ;H−1(0, L));

3. (rh
s )h is bounded in L2(0, T ;BV (0, L));

4. (nh)h is bounded in L2(0, T ;H1(0, L));

5. (mh,z)h is bounded in L2(0, T ;H1(0, L));

6. (h ˙̄θh)h is bounded in L2(QT );

7. (θh
s )h is bounded in L2(QT ).

Proof. Point 1. Bounding (rh)h in H1(QT ). Since rh is the piecewise linear interpolate of the
(ri)1≤i≤N+1, it comes that

rh
s (t, s) =

N∑
i=1

ri+1(t) − ri(t)
h

1Li(s) .

Then, the inextensibility condition (9) implies that |rh
s | = | ri+1−ri

h | = 1 which ensures that (rh
s )h

is bounded in L2(QT ).
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Then, we bound ṙh in L2(QT ). Direct calculations show that

∥ṙh∥2
L2(QT ) =

∫ T

0

N∑
i=1

∫
Li

∣∣∣∣ṙi(t) + s
ṙi+1(t) − ṙi(t)

h

∣∣∣∣2 ds dt

≤ 2
∫ T

0

N∑
i=1

∫
Li

|ṙi(t)|2 ds dt+ 2
∫ T

0

N∑
i=1

∫
Li

s2 (ṙi+1(t) − ṙi(t))2

h2 ds dt

≤ 2
∫ T

0

N∑
i=1

h |ṙi(t)|2 dt + 2
3

∫ T

0

N∑
i=1

h3θ̇2
i (t) dt .

This gives the bound using (40) for the first term and (36,26) for the second one.
It now remains to bound rh in L2(QT ). To do so, we write rh(t, s) = r̄h(t) + δrh(t, s), with

r̄h(t) = 1
L

∫ L
0 rh(t, s) ds. Then, the Poincaré-Wirtinger inequality yields

∥δrh∥L2(QT ) = ∥rh − r̄h∥L2(QT ) ≤ C∥rh
s ∥L2(QT ),

which is bounded uniformly in h. Then, to bound r̄h in L2(QT ), we write

|r̄h(t) − r̄h(0)| ≤
∫ T

0
| ˙̄rh| ≤ T 1/2

(∫ T

0
| ˙̄rh|2

)1/2

,

and using the L2(QT ) orthogonal decomposition ṙh = ˙̄rh + δ̇r
h, we obtain

|r̄h(t) − r̄h(0)| ≤
(
T

L

)1/2
∥ṙh∥L2(QT ) ≤ C,

which concludes the proof.

Point 2. Bounding (ṙh
s )h in L2(0, T ;H−1(0, L)). Since (ṙh)h is bounded in L2(QT ) (Point

1. above), we immediately deduce that (ṙh
s )h is bounded in L2(0, T ;H−1(0, L)) because, for all

u ∈ L2(0, L), ∥us∥H−1(0,L) ≤ ∥u∥L2(0,L).

Point 3. Bounding (rh
s )h in L2(0, T ;BV (0, L)). Since rh

s is piecewise constant, if we define rh
s,i

as the value of rh
s on [(i− 1)h, ih] we have

TV L
0 (rh

s (t, ·)) =
N−1∑
i=1

|rh
s,i+1(t) − rh

s,i(t)|.

Recalling that ei,∥(t) = ri+1(t)−ri(t)
h = rh

s,i and |rh
s (t, s)| = 1 for any (t, s) ∈ QT , we get

∥rh
s (t, ·)∥BV (0,L) = ∥rh

s (t, ·)∥L1(0,L) + TV L
0 (rh

s (t, ·)) = L+
N−1∑
i=1

|ei+1,∥(t) − ei,∥(t)|.

Then, using Cauchy-Schwarz inequality and the fact that θ → (cos θ, sin θ)⊺ is 1-Lipschitz, it comes
that

∥rh
s (t, ·)∥BV ≤ L+

N−1∑
i=1

|θi+1(t) − θi(t)| ≤ L+
√
N − 1

(
N−1∑
i=1

|θi+1(t) − θi(t)|2
)1/2

≤ L+
√
L

(
N−1∑
i=1

h
|θi+1(t) − θi(t)|2

h2

)1/2
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which is bounded from (36,26) and from which we deduce the L2(0, T ;BV (0, L)) bound.

Point 4. Bounding (nh)h in L2(0, T ;H1(0, L)). First, using the boundary condition nh(t, L) =
0, it is sufficient to prove that (nh

s )h is bounded in L2(QT ). But, using the force balance of (14),
we notice that

∥nh
s (t, ·)∥2

L2(0,L) =
N∑

i=1
h

∣∣∣∣ni+1(t) − ni(t)
h

∣∣∣∣2

=
N∑

i=1
h
∣∣∣C(θi(t))ṙi+1/2(t)

∣∣∣2 .
Integrating over [0, T ], we get

∥nh
s ∥2

L2(QT ) =
∫ T

0

N∑
i=1

h
∣∣∣C(θi(t))ṙi+1/2(t)

∣∣∣2 dt.

Using again (36,26) and the fact that C(θ) is bounded, we obtain that (nh
s )h is bounded in L2(QT )

uniformly in h.

Point 5. Bounding (mh,z)h in L2(0, T ;H1(0, L)). As for nh before, since, for all t > 0,
mh,z(t, L) = 0, it is sufficient to prove that (mh,z

s )h is bounded in L2(QT ). Let us write

∥mh,z
s (t, ·)∥2

L2(0,L) =
N∑

i=1
h

∣∣∣∣∣mz
i+1(t) −mz

i (t)
h

∣∣∣∣∣
2

=
N∑

i=1
h

∣∣∣∣mi+1(t) −mi(t)
h

∣∣∣∣2 . (41)

Then, using the moment balance from the system of equations (14), we also have that∣∣∣∣mi+1(t) −mi(t)
h

∣∣∣∣ ≤
∣∣∣∣ni+1(t) + ni(t)

2

∣∣∣∣+ h2

12c⊥|θ̇i(t)|. (42)

Combining equations (41) and (42) leads to

∥mh,z
s (t, ·)∥2

L2(0,L) ≤ 2
N∑

i=1
h

∣∣∣∣ni+1(t) + ni(t)
2

∣∣∣∣2 + 2
N∑

i=1
h
h4

144c
2
⊥|θ̇i(t)|2. (43)

Moreover, one can notice that

∥nh(t, ·)∥2
L2(0,L) =

N∑
i=1

∫ h/2

−h/2

∣∣∣∣ni(t) + ni+1(t)
2 + 2s

h

ni+1(t) − ni(t)
2

∣∣∣∣2 ds

≥
N∑

i=1
h

∣∣∣∣ni(t) + ni+1(t)
2

∣∣∣∣2 . (44)

Using equation (44) into equation (43) and integrating over time then gives

∥mh,z
s ∥2

L2(QT ) ≤ 2
∫ T

0
∥nh(t, ·)∥2

L2(0,L) dt+
∫ T

0

2h2

144c
2
⊥

N∑
i=1

h3|θ̇i(t)|2 dt,

which is bounded uniformly in h, by virtue of Point 4. and Equations (36,26).
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Point 6. Bounding (h ˙̄θh)h in L2(QT ). We have

∫ T

0

N∑
i=1

∫
Li

(h ˙̄θh(t, s))2 ds dt =
∫ T

0

N∑
i=1

h3 θ̇2
i (t) dt,

which is again bounded from (36,26).

Point 7. Bounding (θh
s )h in L2(QT ).

Writing θh
s (t, s) =

N−1∑
i=1

θi+1−θi

h 1Li+1 we have

∥θh
s ∥2

L2(QT ) =
∫ T

0

N−1∑
i=1

h

∣∣∣∣θi+1(t) − θi(t)
h

∣∣∣∣2 dt

which is bounded from (36,26).

From the previous estimates, we can now establish the convergence of the interpolates.

Proposition 4.2 (Convergent subsequences). There exist r ∈ H1(QT ) ∩ L2(0, T ;H2(0, L)), n ∈
L2(0, T ;H1(0, L)), mz ∈ L2(0, T ;H1(0, L)) and α ∈ L2(QT ) such that up to the extraction of a
subsequence, as h → 0:

1. (rh)h converges to r weakly in H1(QT ) and strongly in L2(QT );

2. (rh
s )h strongly converges to rs in L2(0, T ;Lp(0, L)) for all 1 ≤ p < ∞;

3. (r̂h)h converges to r strongly in L2(0, T ;H1(0, L)) and weakly in L2(0, T ;H2(0, L));

4. (nh)h weakly converges to n in L2(0, T ;H1(0, L));

5. (mh,z)h weakly converges to mz in L2(0, T ;H1(0, L));

6. (m̄h,z)h weakly converges to mz in L2(0, T ;Lp(0, L)) for all 1 ≤ p < ∞;

7. (h2 ˙̄θh)h strongly converges to 0 in L2(QT );

8. (θh
s )h weakly converges to α in L2(QT ).

Proof. Points 1., 4., 5., 7. and 8. These points immediately follow from the bounds 1., 4., 5., 6.
and 7. in Proposition 4.1. Notice that Point 1. is obtained using also Rellich-Kondrachov theorem.

Point 2. Convergence of (rh
s )h in L2(0, T ;Lp(0, L)) for all 1 ≤ p < ∞. We know from Propo-

sition 4.1, that (ṙh
s )h is bounded in L2(0, T ;H−1(0, L)) and (rh

s )h is bounded in L2(0, T ;BV (0, L)).
Let us recall that for all 1 ≤ p < ∞, BV (0, L) is compactly embedded in Lp(0, L) [3, Corollary
3.49]. Then, from Aubin-Lions-Simon theorem [5], [8], we deduce that (rh

s )h is relatively compact
in L2(0, T ;Lp(0, L)).
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Point 3. Convergence of (r̂h
s )h in L2(0, T ;H1(0, L)) and L2(0, T ;H2(0, L)). Using equation

(14), we have

∥θ̄h − θh∥2
L2(QT ) =

∫ T

0

N∑
i=2

∫ h

0
(θi − θi−1)2

(
1 − s

h

)2
dsdt

=
∫ T

0

N∑
i=2

h3

3E2m
z
i+1

2 dt

≤ h2

3E2 ∥m̄h,z∥2
L2(QT ).

But (m̄h,z)h is bounded in L2(QT ). Indeed, (mh,z)h is bounded in L2(QT ) from Point 5. in
Proposition 4.1, and computing the difference

∫ T

0
∥m̄h,z(t, ·) −mh,z(t, ·)∥2

L2(0,L) dt =
∫ T

0

N∑
i=1

∫ h

0
(mz

i (t)(1 − s/h) +mz
i+1(t)s/h−mz

i (t))2 ds dt

=
∫ T

0

N∑
i=1

∫ h

0
1/E2(mz

i (t) −mz
i+1(t))2(s/h)2 ds dt

≤ h

3 ∥mh,z∥2
L2(0,T ;H1(0,L)), (45)

we obtain the claimed bound on m̄h,z. Hence, ∥θ̄h − θh∥L2(QT ) goes to zero when h → 0. Then,
this also means that

lim
h→0

∥r̂h
s − rh

s ∥L2(QT ) = lim
h→0

∥(cos θh, sin θh)⊺ − (cos θ̄h, sin θ̄h)⊺∥L2(QT ) = 0.

Since, from Point 2., (rh
s )h strongly converges towards rs in L2(QT ), we also have that (r̂h

s )h

strongly converges towards rs in L2(QT ). Using Point 7. in Proposition 4.1, (θh
s )h is uniformly

bounded in h in L2(QT ), from which we get that (r̂h
ss)h is uniformly bounded in L2(QT ) as well,

so it weakly converges towards a limit (up to extraction of a subsequence). Remembering that
r̂h

s ∈ L2(0, T ;H1(0, L)) converges towards rs in L2(QT ), by uniqueness of the limit, rs is differen-
tiable in s and r̂h

ss weakly converges towards rss in L2(QT ).

Point 6. Convergence of (m̄h,z)h in L2(QT ). The convergence of (m̄h,z)h towards mz follows
from (45), and the weak convergence of (mh,z)h.

Of particular note, the extractions of subsequences may be done in a row, which means we
can assume that the above-mentioned convergences are obtained for all sequences with the same
extracted indices (hn)n∈N with hn → 0 as n → +∞.

In order to prove Theorem 2.2, it now remains to establish that the limits obtained in Propo-
sition 4.2 are solutions of the continuous system (7) in the sense of distributions:

Proposition 4.3 (Limit equations). The limits r ∈ H1(QT ), m ∈ L2(0, T ;H1(0, L)) and n ∈
L2(0, T ;H1(0, L)) of the interpolates satisfy the following system of equations: for any φ ∈ C∞

c (0, L)
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and ψ ∈ C∞
c (0, T ),

∫ T

0

∫ L

0
(C(rs(t, s))ṙ(t, s) + ns(t, s))φ(s)ψ(t) ds dt = 0, (46a)

∫ T

0

∫ L

0
(ms(t, s) + rs(t, s) × n(t, s))φ(s)ψ(t) ds dt = 0, (46b)

∫ T

0

∫ L

0
mz(t, s)φ(s)ψ(t) ds dt = E

∫ T

0

∫ L

0
(rss(t, s) × rs(t, s)) · ezφ(s)ψ(t) ds dt, (46c)

|rs(t, s)| = 1, for a.e. (t, s) ∈ QT , (46d)

n(t, 0) = n(t, L) = 0, for a.e. t ∈ [0, T ], (46e)

m(t, 0) = m(t, L) = 0, for a.e. t ∈ [0, T ]. (46f)

Proof. In order to proceed, let φ ∈ C∞
c (0, L) and ψ ∈ C∞

c (0, T ) be given. Notice that, defining φ̄h

by, for s ∈ [0, L]

φ̄h(s) =
N∑

i=1

1
h

(∫
Li

φ(u) du
)
1Li(s).

we can rewrite System (14) as

∫ T

0

∫ L

0

(
C(rh

s (t, s))ṙh(t, s) + nh
s (t, s)

)
φ̄h(s)ψ(t) ds dt = 0, (47a)

∫ T

0

∫ L

0

((
−h2

12c⊥
˙̄θh(t, s)ez +mh

s (t, s)
)
φ(s) +

(
rh

s (t, s) × nh(t, s)φ̄h(s)
))

ψ(t) ds dt = 0, (47b)

∫ T

0

∫ L

0
m̄h,z(t, s)φ(s)ψ(t) ds dt = E

∫ T

0

∫ L

0
(r̂h

ss(t, s) × r̂h
s (t, s)) · ezφ(s)ψ(t) ds dt, (47c)

∣∣∣rh
s (t, s)

∣∣∣ = 1, for a.e. (t, s) ∈ QT , (47d)

nh(t, 0) = nh(t, L) = 0, for a.e. t ∈ [0, T ], (47e)

mh(t, 0) = mh(t, L) = 0, for a.e. t ∈ [0, T ], (47f)

Then we pass to the limit h → 0 in this discrete system.

First, notice that
φ̄h → φ strongly in L∞(0, L). (48)

Indeed, let s ∈ [0, L] and i such that s ∈ Li. Then we have∣∣∣φ̄h(s) − φ(s)
∣∣∣ =

∣∣∣∣1h
∫

Li

(φ(u) − φ(s)) du
∣∣∣∣

≤ 1
h

∫
Li

|φ(u) − φ(s)| du

≤ h∥φs∥∞

which proves the claim.
Force balance. Since (rh

s )h strongly converges to rs in L2(0, T ;L4(0, L)), according to Point 2.
in Proposition 4.2, we deduce that C(rh

s ) strongly converges in L2(QT ) to C(rs). Moreover, Points
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1. and 4. in Proposition 4.2 also state that (ṙh)h weakly converges towards ṙ in L2(QT ), and
(nh

s )h weakly converges towards ns in L2(QT ). This is sufficient, using (48), to pass to the limit
in equation (47a) and obtain (46a).

Moment balance. From Points 7. and 5. in Proposition 4.2, we have that h2 ˙̄θh strongly con-
verges towards zero in L2(QT ) and that mh

s also weakly converges to ms in L2(QT ) respectively.
The moment equation (46b) then follows from passing to the limit in (47b) using also (48).

Inextensibility constraint. The limit rs ∈ L2(0, T ;L4(0, L)) of rh
s satisfies the inextensibility

constraint (46d), according to Point 2. in Proposition 4.2, together with (47d).

Boundary conditions. We notice that both (nh)h and (mh)h are in L2(0, T ;H1
0 (0, L)) which is

closed with respect to the weak L2(0, T ;H1(0, L)) convergence. Therefore the weak limits n and
m satisfy the boundary conditions (46e) and (46f).

Relation between m and θ. On the one hand, from Point 6. in Proposition 4.2 (m̄h,z)h weakly
converges to mz in L2(QT ). On the other hand we know from Point 3. in Proposition 4.2 that

r̂h
s → rs strongly in L2(QT ),

r̂h
ss ⇀ rss weakly in L2(QT ).

This is sufficient to pass to the limit in (47c).

In order to conclude the proof of Theorem 2.2, we first remark that from the variational
formulation (46), the equations of the continuous system (7) are satisfied in a L2(QT ) sense and
therefore for a.e. (s, t) ∈ QT . It then remains to show that the initial conditions can also be
deduced. But, we know that rh converges weakly to r in H1(QT ) which allows to deduce that
rh(0, ·) weakly converges to r(0, ·) in L2(0, L) which, from (25), gives r(0, ·) = r0.
Remark 4.2. Note that Propositions 4.1, 4.2 and 4.3 do not use any assumption on boundary
conditions in s = 0. Therefore, they remain valid throughout regardless of choice of free, pinned
or clamped boundary conditions.

4.3 Proof of Corollary 2.1

In this section we prove Corollary 2.1, establishing the existence of a global solution to the con-
tinuous problem in suitable spaces. Let r0 ∈ C2(0, L) be given together with a representative
θ0 ∈ C1(0, L) such that r0

s = (cos θ0, sin θ0)⊺.
Let N ≥ 1 be an integer. From Theorem 2.2, it is sufficient to construct an initial condition

X = (θ1, . . . , θN , r
x,0
1 , ry,0

1 ) for the N -link system such that the corresponding interpolant converges
to r0 in the sense of (25) and which satisfies the bound (26).

In order to proceed, we consider r0
1 = r0(0), θ0

i = 1
h

∫
Li
θ0(u) du and r0

i , 2 ≤ i ≤ N from (15).
Let rh,0 and θ̄h,0 be the corresponding interpolants given by (19) and (22).
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On the one hand, we have

∥θ0 − θ̄h,0∥2
L2(0,L) =

N∑
i=1

∫
Li

|θ0(s) − θ0
i |2 ds

=
N∑

i=1

∫
Li

∣∣∣∣θ0(s) − 1
h

∫
Li

θ0(u) du
∣∣∣∣2 ds

≤ Ch2
N∑

i=1

∫
Li

|θ0
s(s)|2 ds ≤ C ′h2.

due to Poincaré-Wirtinger inequality and using θ0 ∈ C1(0, L). Therefore, θ̄h,0 converges strongly
to θ0 in L2(0, L).

On the other hand, for the convergence of rh,0, we first notice that rh,0 − r0 vanish at 0 and
satisfies

|rh,0
s − r0

s | = |(cos(θ̄h,0) − cos(θ0), sin(θ̄h,0) − sin(θ0))⊺| ≤ |θ̄h,0 − θ0|.

This furnishes the bound
∥rh,0

s − r0
s∥L2(0,L) ≤ ∥θ̄h,0 − θ0∥L2(0,L)

which tends to 0 from the preceding calculation. This permits us to deduce that

rh,0 → r0 strongly in H1(0, L),

and therefore (25) holds.
We finish by proving the uniform bound (26). From the definition of (θ0

i )1≤i≤N we have for all
1 ≤ i ≤ N − 1

|θ0
i+1 − θ0

i | = 1
h

∣∣∣∣∣
∫ h

0
(θ0(ih+ u) − θ0((i− 1)h+ u)) du

∣∣∣∣∣
≤ 1

h

∫ h

0

∣∣∣θ0(ih+ u) − θ0((i− 1)h+ u)
∣∣∣ du

≤ h∥θ0
s∥L∞

which enables us to deduce
N−1∑
i=1

h
|θ0

i+1 − θ0
i |2

h2 ≤ Nh∥θ0
s∥2

L∞(0,L) ≤ L∥θ0
s∥2

L∞(0,L).

Since θ0 ∈ C1(0, L), we get the result.

5 Discussion
In this paper, we have addressed the mathematical validity of the N -link formulation for the elas-
tohydrodynamics of a filament in a viscous flow. Theorems 2.1, 2.2 and Corollary 2.1 respectively
establish the existence and uniqueness of solutions to the N -link model, the convergence (up to ex-
traction), in a weak sense, of (14) towards the classical filament elastohydrodynamics formulation
(7), and the existence of a solution to the continuous system for smooth enough initial data. This
constitutes a novel theoretical guarantee that the N -link model is a well-founded discretization of
a continuous filament.

23



The proofs of both theorems strongly rely on an energy dissipation formula (27). The fact that
this formula holds for System (14) and precisely leads to convergence underlines, in particular, the
prevalence of the N -link model over more straightforward discretized versions of equation (7), such
as ones stemming from a finite difference scheme on the filament arclength. Consequently, when
numerically implementing filament dynamics, Theorem 2.2 justifies the use of an N -link filament
as an equivalent system.

Further extensions of the discrete and continuous models to physically relevant cases and their
potential difficulties to establish convergence are discussed in this section.

Non-local and non-Newtonian hydrodynamics. It is worth recalling that the modeling of
hydrodynamic interactions in both Systems (7) and (14) are based on resistive force theory, which
is a relatively coarse approximation retaining only local drag. Inclusion of nonlocal effects in the
elastohydrodynamics equation may be challenging from the functional analysis point of view, as
it requires to deal with integral terms in System (14). On the other hand, the matrix formulation
of the N -link model as stated in Equation (17) can handle the inclusion of nonlocal terms within
the hydrodynamic matrix [31], while retaining the same structure. Then, establishing invertibility
of the resistance matrix to extend the results of Theorem 2.1 may still be tractable by following
the same system reduction (Eq. (29)).

Non-Newtonian fluids also constitute and important avenue of research for future extensions
of this study, with many biological fluids exhibiting viscoelastic behaviors or complex rheologies
[29]. Well-posedness for continuous elastohydrodynamics featuring an additional coupling modeling
linear viscoelasticity was tackled by Ohm in [27], whilst rigorous treatment of corresponding coarse-
grained versions remains an open problem.

Active filament. Modeling internal activity within the curvature dynamics of the filament is a
crucial step to fully describe the dynamics of biological filaments such as microswimmer flagella
and cilia, rather than that of a passive elastic fiber for the present study. Activity is typically
represented as an internal torque forcing, say τ , which would appear in the moment equation (fifth
line of System (7)). By perturbative arguments, it is likely that well-posedness and convergence
are preserved in the case of “small enough” τ , following the proofs of Theorems 2.1 and 2.2 and
including suitable assumptions on the norm and regularity of τ . The general case for arbitrarily
large τ is trickier, and probably does not admit more than local existence in time, as noted by
Mori & Ohm for continuous elastohydrodynamics [24].

Three-dimensional motion. Whilst the flagellar waveform of many organisms, such as human
sperm cells, is largely restricted to a two-dimensional space [20], other microswimmers like rodent
spermatozoa [32] and Escherichia coli [7] bacteria are known to exhibit out-of-plane deformation
of their flagella. Three-dimensional deformation of rods notoriously requires a more cumbersome
description of the filament kinematics, with local deformation containing both bend and twist for
inextensible filaments, and several more degrees of freedom in shear and compression in the general
case of a Cosserat rod [9]. In the context of 3D deformation of an elastic filament immersed in a
Stokes flow, well-posedness of elastohydrodynamics equations in the lines of [24, Theorem 1.1] is
currently being studied by Ohm [26].

Regarding modeling and simulation, three-dimensional coarse-grained models similar to the
N -link swimmer with RFT-like approximations of the hydrodynamic drag are available [14], [16]
with the one developed by Walker et al. [31] being the most analogous formulation to the two-
dimensional N -link model studied in the present paper. In particular, the dynamics of their model
is governed by a matrix-vector system of equation with a similar structure to that of Equation
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(17):
−BAQΘ̇ = R, (49)

where BAQ is square of dimension (3N+3)×(3N+3), and where blocks can be identified with the
corresponding equation as in the N -link system (force or torque balance, constitutive equations).
In this setting, B links the vector of torques and forces to a vector R, such that −B

(
F T

)⊺
= R

represents the force and torque balance; while A links the vector of velocities Ẋ to the forces, and
Q is a transition matrix from linear to angular velocities, i.e. QΘ̇ = Ẋ. From there, one may hope
to establish convergence of the solutions to (49) with the same strategy than in this paper: writing
(49) as a fully differential equation to check well-posedness, obtaining bounds on interpolates in
well-chosen functional spaces, and extracting convergent subsequences.

Multiple filaments. Biological settings often feature several interacting filaments, whether it
is seen in several monoflagellate organisms swimming together, multiple flagella beating in syn-
chrony, or interconnected networks of actin filaments. In such cases, hydrodynamic interactions
introduce coupling terms within the dynamics of each interacting filament, which may lead to
synchronization, attraction and repulsion phenomena [12], [33]. To the best of our knowledge,
coupled elastohydrodynamics equations have not been addressed from the point of view of well-
posedness in the literature. Formally, in the continuous formulation of M filaments interacting
with each other through the surrounding fluid, coupling terms would appear as external forces f
and moments l in System (1) and within the boundary conditions, with one notable effect being the
loss of translational and rotational invariance with respect to one filament’s fixed frame. Similar
additional terms would appear in the resistance matrices of M coupled N -link filament models.
Various approximations for these coupling hydrodynamics terms are available for modelling and
simulation [12]. From there, one could either consider each of the filaments as a single filament
with “unknown” (that is, with no explicit expression available) source terms, hopefully possessing
appropriate boundedness properties to preserve well-posedness; or study the whole coupled system
of M filaments – a challenging task in that case being to check the invertibility of the as sociated
resistance matrices.
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