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Abstract— Depression and anxiety are prevalent mental
health disorders that frequently cooccur, with anxiety signif-
icantly influencing both the manifestation and treatment of de-
pression. An accurate assessment of anxiety levels in individuals
with depression is crucial to develop effective and personalized
treatment plans. This study proposes a new noninvasive method
for quantifying anxiety severity by analyzing head movements
-specifically speed, acceleration, and angular displacement -
during video-recorded interviews with patients suffering from
severe depression. Using data from a new CALYPSO Depression
Dataset, we extracted head motion characteristics and applied
regression analysis to predict clinically evaluated anxiety levels.
Our results demonstrate a high level of precision, achieving a
mean absolute error (MAE) of 0.35 in predicting the severity of
psychological anxiety based on head movement patterns. This
indicates that our approach can enhance the understanding of
anxiety’s role in depression and assist psychiatrists in refining
treatment strategies for individuals.

I. INTRODUCTION

Depression is a prevalent mental health disorder that
affects approximately 280 million people worldwide [33].
According to the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5), the symptoms of Clinical Depression
can manifest in many various ways, including severe depres-
sion with suicidal thoughts [4]. Objective means of detecting
severe depression are crucial to enable early diagnosis and
better medical treatments. Recent research has shown that
multiple, non-verbal, behavioral indicators of depression can
be used for this objective [5], [2], [10].

However, depression remains a complex condition that
varies significantly between individuals [3]. Severely de-
pressed patients often experience additional symptoms, such
as psychomotor retardation or anxiety, which can present as
physical or psychological distress. Psychiatrists frequently
observe these symptoms. Evaluation of these symptoms is
critical in guiding treatment decisions and supporting patient
recovery [8]. In other words, understanding the severity of
each symptom allows clinicians to tailor treatments more
effectively to each patient.

The use of behavioral indicators to provide a detailed
analysis of a patient’s status has not yet been fully ex-
plored. Patient examinations are heavily based on subjective
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evaluations, depending on the clinician’s experience and
the patient’s ability to communicate their symptoms [14].
This variability affects the reliability of diagnoses and may
miss subtle but important differences in symptoms such
as anxiety. Automatic detection algorithms based on non-
verbal cues could help overcome these challenges by offering
more consistent and objective evaluations, providing critical
insights into managing severely depressed patients.

Wearable physiological devices, such as heart rate mon-
itors or electrodermal activity sensors, have been used to
detect several anxiety disorders.While these physiological
measures provide valuable information, they are often costly
and not easily accessible for widespread clinical use. Addi-
tionally, the intrusive nature of wearable devices can impact
patient comfort and compliance, limiting their practicality in
routine assessments.

At the same time, it has become a general fact that
emotion and patients’ feelings can be understood from visual
media [30]. Moreover, extracting behavioral markers, such as
head movements, from videos offers the advantage of being
discreet and easily integrated into standard interactions, pro-
viding continuous and real-time analysis without specialized
equipment.

To explore the possibility of obtaining personalized, adap-
tive treatments based on objective, non-intrusive markers, we
captured the CALYPSO Depression Dataset. This dataset
includes data from patients diagnosed with severe depres-
sion, along with detailed psychiatrist-assessed anxiety levels.
Moreover, it contains informal interviews designed to repro-
duce daily life scenarios, such as meetings with a general
practitioner.

Won et al. [32] have shown that head movements are a
useful indicator of anxiety. Anxiety, whether psychological
or physiologic, is a common symptom of severe depression.
In particular, it intensifies the effects of depression and
complicates treatment [8]. The presence of psychological
anxiety is always reported in Hamilton interviews [17], [13],
making this data available for our approach. We introduce
a novel method to assess whether or not, measuring anxiety
levels of severely depressed patients can be done using head
motion information. This method is by nature, non-invasive
and analyzes head movements by separating motion and non-
motion sequences during the interview. Our pipeline pro-



vides objective, measurable, and interpretable data that can
improve diagnostic accuracy and support more personalized
treatment strategies.

Our approach emphasizes objectivity by focusing on non-
depression-specific behavioral markers—head motion dy-
namics—that are observable even during a patient’s first
clinical interaction. Unlike methods requiring longitudinal
tracking or disorder-specific symptom coding, we analyze
motion patterns inherently linked to anxiety, ensuring ap-
plicability in real-world scenarios where clinicians may
lack prior patient history. By avoiding depression-specific
features, our method enhances generalizability, providing a
practical tool for rapid anxiety assessment across diverse
populations. It could also be applicable to other patient
groups and non-clinical populations, further extending its
utility. This aligns with clinical workflows, where initial
interviews often serve as the primary basis for early diagnosis
and treatment planning.

II. RELATED WORK

A. Automatic Depression Detection Using Nonverbal Cues

Clinicians have observed for a long time that severe
depression is correlated with reduced physiological activities,
such as monotonic tone, reduced intensity of facial expres-
sions, or low quantity of body motion [4].

Several studies have indeed shown that modern computer
science tools can be used to extract those non-verbal cues
and provide an objective way to assess the level of de-
pression. Features extracted from body gestures [20], speech
patterns [9], facial expressions [11], and head movement [21]
are used to automatically and accurately predict depression
severity. However, the interpretability of most approaches
remains unclear. Many recent approaches rely on deep neural
networks [28], [29], with improved accuracy but providing
limited insights for clinicians.

Most studies on detecting depression focus on separating
severely depressed and healthy populations but lack inter-
pretability. Gahalawat et al. [15] addressed this issue by
proposing an interpretable approach using head motion pat-
terns for binary classification. However, while their method
enhances explainability, it remains focused on distinguishing
between groups rather than evaluating the precise state of
depressed patients.

B. Automatic Anxiety Detection

Similar to depression, research has shown that several anx-
iety disorders can be automatically detected using non-verbal
cues [24]. Most studies have primarily focused on physiolog-
ical signals—such as heart rate variability, skin conductance,
and cortisol levels—using wearable devices [23], [19].

In [27], the authors extract facial features, such as face
and mouth motion, to predict whether patients are anxious
or relaxed. This analysis was later extended in [16]. Mo et
al. [26] propose using facial cues to accurately detect anxiety
and distress in a non-intrusive manner. However, their feature
extraction process relies on deep learning and is therefore
non-interpretable.

In our approach, anxiety is considered a symptom of
depression, whereas most of the cited works treat anxiety
as an independent illness. It remains unclear whether these
methods would be effective in detecting anxiety in depressed
patients.

C. Tracking behavior with head motion

Head movements are significant nonverbal indicators for
behavioral analysis and are well studied, as they are easy to
track in virtual reality environments [25] or dyadic interac-
tions [31]. In virtual reality settings, head movements serve
as valuable features for analyzing social interactions [18],
emotional states [34], and simulation sickness in virtual
environments [6].

By extracting head motion dynamics from videos of
structured Hamilton interviews, Kacem et al. [21] classified
depression severity, finding that depressed individuals
exhibit less head movement. Dibeklioglu et al. [12]
combined head movements with facial dynamics and vocal
prosody for depression detection, noting differences in
nodding frequency and amplitude between depressed and
non-depressed populations. Finally, head movements have
also been shown to be valuable for anxiety prediction [32].

We summarize the main contributions of our work below:

1) We introduce the CALYPSO dataset, a longitudinal
study of clinical depression. In particular, we propose
to use the videos of informal interviews of the study
to analyze anxiety in severe depression using head
movements extracted from the videos.

2) We propose segmenting videos into head-moving and
non-moving phases. This approach allows us to extract
a more comprehensive set of head motion features for
our analysis. We further select the most significant
features and train a regression model to predict psy-
chological anxiety.

3) We validate our method on the CALYPSO dataset
and demonstrate its effectiveness in daily life settings
by applying it to informal interviews with depressed
patients. For the first time, we establish a link between
anxiety in severe depression and objectively measur-
able nonverbal cues, based on head motion character-
istics extracted from pose angular displacements.

III. METHODOLOGY

In this section, we outline our methodology. Our approach
is based on videos of informal interviews from the CA-
LYPSO dataset. We divide our approach into several steps.
First, we automatically extracted the head pose and detailed
its motion from the videos. Then, we extracted statistical
features from the poses and motion sequences. Our final
step is a trainable pipeline to select features and train a
linear, interpretable model to predict physical anxiety from
the selected features.
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Fig. 1. Overview of our proposed pipeline. We apply the same process to all videos of the informal interviews of the CALYPSO dataset. We first extract
the head pose and its motion (speed and acceleration) automatically. We then apply statistical feature analysis to extract a feature vector of size 283 for
each video. Finally, we apply a cross-validated approach to select features and train a linear model to accurately regress psychological anxiety levels.

Fig. 2. Interview Room Setup for the Calypso Depression Dataset.

A. Head pose and motion extraction

Pose Extraction
To track head orientation in 3D space throughout the
video, we used MediaPipe software [22]. We captured
the head orientation using Euler angles—pitch, yaw, and
roll—representing the different axes of rotation.

As shown in the figure 3, the three primary axes of rotation
are:

• Pitch (θ): Rotation around the x-axis (nodding up and
down).

• Yaw (φ): Rotation around the y-axis (turning left and
right).

• Roll (ψ): Rotation around the z-axis (tilting the head
side to side).

This process resulted in a time series of angles that describe
the head’s orientation throughout the interview, as shown in
Figure 4.
Angular Velocity Calculation

Yaw (ϕ) 

Pitch
(θ) 

Roll
(ψ) 

Fig. 3. Diagram of head motion axes—pitch, roll, and yaw—used in our
analysis.

To measure head motion, we calculated the angular velocity
for yaw, pitch, and roll. Let t be a time step and t+∆t be the
following step. As the pose can be described as a rotation
matrix (computed from the yaw pitch and roll angles), we
compute the derivative of the rotation matrix Rt.

This derivative is computed using the following formula:

ω(t) ≈ 1

∆t

(
Rt+∆tR

T
t − I

)
.

The product Rt+∆tR
T
t is the relative rotation between

two consecutive poses, and we measure its deviation from
the identity matrix I . The resulting matrix ω(t) is a skew-
symmetric matrix, from which we can recover the angular
velocity across yaw, pitch, and roll axes:

ω(t) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


where ωx is the angular velocity around the pitch-axis, ωy

is the angular velocity around the yaw-axis, and ωz is the
angular velocity around the roll-axis.
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Fig. 4. Illustration of the head pose and motion extraction.

Acceleration Calculation
Since the skew-symmetric matrix space is linear, calculating
the angular acceleration is simply derived from:

ω̇(t) ≈ ωt+1 − ωt

∆t

where ωt and ωt+1 are the angular velocities at consec-
utive timestamps t and t + 1, and ∆t is the time interval
between the measurements.

The pitch, yaw, and roll acceleration are defined as
ω̇x, ω̇y, ω̇z .

B. Motion segmentation

We observed that statistical features extracted from the full
interview sequences are not discriminative enough to provide
reliable predictions (see Table 1). Moreover, we noted that
the head pose of the patient alternates between two states:
moving (the patient is changing position on the chair) and
steady (the patient is on a stable position and has limited
motion). This motivated us to segment interviews in moving
and steady sequences.

To provide a flexible yet straightforward method for
achieving this, the velocity data was clustered into two
groups using a Gaussian Mixture Model (GMM). The two
clusters are effective at classifying head movement between
the intuitive ”moving” and ”steady” states.

This approach can be generalized across different patients,
making the classification robust for various head movement
behaviors. The whole process is illustrated in Figure 5.
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Fig. 5. We apply a Gaussian Mixture Model (GMM) to cluster head
rotational velocities (pitch, yaw, roll) into ”moving” and ”steady” states,
segmenting interviews into sequences (e.g., F21-F60, representing frames
21 to 60). The plot illustrates the velocity profiles for each axis.

C. Feature Extraction

Using the resulting clustering from the Gaussian Mixture
Model (GMM), the interview videos were segmented into
moving and steady sequences. For each segment, head move-
ments were analyzed in terms of pitch, yaw, and roll, along
with their velocities and accelerations. This resulted in a total
of nine core features: three rotational angles (pitch, yaw, roll),
their velocities, and their accelerations. (9 features across 2
clusters)

To comprehensively capture the characteristics of head
movement, we extracted three types of statistical features:

• Global statistical features: For a general overview,
we grouped the “moving” and “stable” segments into
two subsets and calculated summary statistics, includ-
ing Mean, Median, Range, Median Absolute Deviation
(MAD), Skewness, Kurtosis, and Standard Deviation for
each feature. This resulted in a total of 7 statistics for 9
features across 2 clusters (moving and stable). (7×9×2)

• Sequence-Level Features: We then separated each
moving and steady sequence and analyzed them indi-
vidually. We then computed the following 7 statistics:
Mean, Median, Range, MAD, Skewness, Kurtosis, and
Standard Deviation of pitch, yaw, roll, velocities, and
accelerations. These features were then averaged across
all sequences in each group (moving or steady) (7 ×
9 × 2). Additionally, we included the sum of absolute
values for all speeds and accelerations (cumulative
displacement, cumulative acceleration). (1× 6× 2).

• Temporal Features: For the temporal analysis, we
focused on the duration of each movement or stable
segment. We calculated the mean, median, standard
deviation, skewness, range of durations, and the ratio
of time spent in each state (moving vs. stable). Ad-
ditionally, we computed the number of transitions per
minute, which reflects how often the subject switched
between movement and stillness. (6× 2 + 1)

This process resulted in a feature vector of size 283 ( 126
global, 144 sequence-level, and 13 temporal) for each video.

D. Feature Selection and Model Development

To reduce the risk of overfitting given the high number
of features, we applied a selection method that reduces the
number of features. Such approaches have shown useful
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Fig. 6. Illustration of the full feature extraction process.

in extracting interpretable features for depression assess-
ment [1], [7].
Correlation Filtering To ensure that the model was not
impacted by multicollinearity, and to simplify the process,
we first computed the correlation between all extracted
features. Any features with a correlation coefficient greater
than ±0.8 were removed (with a preference for non-derivative
features). This step reduced redundancy and eliminated high
correlation in features that could affect the reliability of the
model. After applying this filtering process, we retained a
refined set of 96 features.

We then employed Sequential Feature Selection (SFS),
which allowed us to identify the most relevant features for
our task. Sequential Feature Selection is a feature selection
technique that iteratively adds or removes features based
on their contribution to the model’s performance. In our
approach, we explored two variations of SFS:

Sequential Selection by Exclusion: This method sequen-
tially removes the least significant feature based on a pre-
defined performance criterion (e.g., Mean Squared Error
(MSE)). At each iteration, the feature whose exclusion results
in the least degradation or the most improvement in model
performance is removed. This process continues until no
features are left. We then select the set of features that
provided the best performance during the process.

Sequential Backward Floating Selection (Inclu-
sion/Exclusion): This approach adds a conditional inclusion
step to backward selection. After removing a feature,
the algorithm evaluates whether reintroducing any of the
previously excluded features can enhance the model’s
performance. This mechanism thus dynamically adjusts the
feature subset, which allows recovering from suboptimal
exclusions and identifying a more optimal set of features.

E. Regression model

We used a linear regression model to allow for interpreta-
tion of the model behavior. We used the Lasso regularization
as it consistently yielded the best results. All steps using
training data as input were included in the cross-validation
process to ensure our results were not overfitted or exhibiting
spurious correlations.

IV. RESULTS
In this section, we present the outcomes of our regression

analysis aimed at predicting anxiety levels based on head
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Fig. 7. The plot shows the cross-validation (CV) scores during feature
selection across 10 folds. The blue line represents the mean CV score as
the number of selected features increases, with the shaded area indicating the
standard deviation. The x-axis shows the number of selected features, and
the y-axis shows the mean squared error (MSE). The red marker indicates
the mean of the lowest CV scores across all folds.

movement features. We evaluate multiple machine learning
models under different feature selection processes and assess
the impact of incorporating motion segmentation. We finally
provide an interpretation of our model behavior and features
that are shown to be linked with the presence or absence of
anxiety in severe depression.

A. CALYPSO dataset

Patient Selection
Patients admitted to the hospital undergo standard diagnostic
evaluations with an attending psychiatrist. A clinician then
conducts a first examination to determine if the patient’s
history and symptoms align with the DSM-5 (Diagnostic and
Statistical Manual of Mental Disorders) conditions for severe
clinical depression [4]. Patients who meet the inclusion crite-
ria are proposed for a more in-depth interview, contributing
directly to the CALYPSO depression dataset. In total, 32
patients meeting these criteria were included in the study.
The CALYPSO clinical trial has been reviewed and approved
by the Ethics Committee under approval number 2022-
A01160-43, ensuring adherence to ethical standards and
guidelines. All patients provided written informed consent
before participation in the study.

The study participants were predominantly French nation-
als (ethnicity data were not collected), with an equal gender



distribution (50% male, 50% female).
Interview Process
Selected patients participated in structured clinical interviews
conducted in a controlled environment, as shown in Figure 2.
The interview was divided into two distinct phases: an
initial informal segment that consists of a casual conversation
between the psychologist and the patient, lasting only a
few minutes, during which the patient is asked non-medical
questions.

After the informal conversation, the clinician conducts
a structured interview aimed at evaluating the Hamilton
Depression Rating Scale (HDRS) for the patient. This assess-
ment specifically includes measuring psychological anxiety.
After the interview, the clinician assigns a psychological
anxiety score ranging from 0 (no anxiety) to 4 (high anxiety),
based on the patient’s responses and observed behaviors, as
shown in Figure 8.
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To assess if the head motion patterns can be used in daily
life interviews, such as discussions with a general practi-
tioner, we conducted our analysis on the video recordings
from the informal part of the interview.

B. Experimental setup

To identify the most effective set of features and minimize
the risk of overfitting, we employed Sequential Feature
Selection (SFS) in combination with 10-fold cross-validation.
We evaluated multiple machine learning models and fine-
tuned the alpha parameter to determine the optimal config-
uration for our dataset. In each cross-validation fold, SFS
was applied to the training data (comprising 9 folds) to
select the best-performing features, resulting in 10 distinct
feature lists. We then consolidated these results by selecting
features that appeared in at least five of the ten lists, ensuring
that only the most consistently important features were
retained. This approach enhanced the model’s robustness and
generalizability by focusing on reliable predictors. Finally,
we trained the final model using this refined set of features,
which streamlined the model and improved its performance
on unseen data.

C. Evaluation Metrics

The regression performance was evaluated using the mean
absolute error (MAE);

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

and the coefficient of determination (R2 score),:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(2)

where, n is the number of observations, yi is the actual value,
ŷi is the predicted value, and ȳ is the mean of the actual
values.

To further assess the practical applicability of our re-
gression model, we converted the regressed predictions into
discrete values. Each predicted value is converted to the
closest integer. We then report the classification accuracy
based on the predicted anxiety level.

D. Psychological Anxiety Level Prediction

For predicting psychological anxiety levels, the best-
performing model was Lasso regression, achieving a Mean
Absolute Error (MAE) of 0.31 and a coefficient of determi-
nation (R2) of 0.87 with only 14 features needed (see Figure
9).
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anxiety levels for the best Lasso model, each point represents a patient

E. Impact of segmentation

To evaluate the significance of the interview motion seg-
mentation in our feature extraction process, we compared it
to a baseline model without the segmentation. The baseline
approach involved extracting features directly from the raw
head motion data without segmentation. We computed the
same statistical measures (mean, median, range, skewness,
kurtosis, standard deviation) for the head angles (pitch, yaw,
roll), velocities, and accelerations, for a total of 54 features.

As shown in Table I, our approach significantly improves
the predictive performance of the model compared to the
baseline.



TABLE I
REGRESSION RESULTS FOR PSYCHOLOGICAL ANXIETY LEVEL

Selection Process Features MAE R2 Accuracy
Full model (ours) 14 0.31 0.87 0.75
Without GMM 16 0.90 0.10 0.44

F. Comparison of Feature Selection Methods

We also compared different feature selection methods to
evaluate their impact on model performance. Specifically, we
examined exclusion-only selection, inclusion and exclusion
(I/E) selection, and no selection at all. Table II summarizes
the results.

TABLE II
COMPARISON OF FEATURE SELECTION METHODS FOR

PSYCHOLOGICAL ANXIETY LEVEL

Selection Process No. of MAE R2 Accuracy
Features

Exclusion Only 12 0.48 0.76 0.50
Inclusion and Exclusion (I/E) 14 0.31 0.87 0.75
I/E - Without GMM 16 0.90 0.10 0.44
No selection 283 0.98 -0.05 0.31

The results indicate that the inclusion and exclusion (I/E)
feature selection method yields the best performance. No-
tably, the exclusion only process results in fewer features
than the inclusion and exclusion strategy. Moreover, the
Lasso L1 penalty alone is not sufficient to select the features
without overfitting or satisfying performance (R2 score is
almost zero, meaning that the model always predicts the
mean value).

G. Classification Performance Analysis

To provide a qualitative analysis of the classification, we
present the confusion matrix of our model in Figure 13.
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Fig. 10. Confusion Matrix: Classification results by grouping continuous
anxiety level predictions into classes with a tolerance of ±0.5 units.

We observe that all wrong predictions differ by one,
which we find acceptable given the inherent variability in
psychiatrist ratings. This result suggests that our model’s
performance is comparable to human-level error margins in
clinical settings.

H. Interpretation of results

Figure 11 presents the best model coefficients derived from
the regression analysis predicting anxiety levels based on
head movement data. Each bar represents the importance or
weight of a specific feature, with the feature names listed
on the y-axis and their respective coefficient values on the
x-axis. The key observations include:

• Global — Pitch Degree — Median — Steady: This
feature shows the highest negative coefficient, indicating
that steady pitch movements (up and down head move-
ments) are inversely linked to anxiety levels. In other
words, when the median pitch degree is low (indicating
the head is raised), anxiety levels tend to be higher.

• Temporal — Skewness — Moving: The second-
highest coefficient (positive) indicates that patients with
high anxiety tend to spend longer periods in sequences
where they are moving. Skewness highlights the imbal-
ance in time spent during movement. In other words,
patients with a high level of physical anxiety have an
irregular duration of motion, and alternate between long
moments of motion, and shorter ones, compared to more
stability for non anxious patients.

• Temporal — Visits per Minute: This feature measures
the number of transitions between moving and steady
periods per minute during the observation period. It
correlates negatively with anxiety levels, which might
seem counterintuitive at first. However, this suggests
that more anxious patients tend to either stay moving
for long periods or remain still for extended durations,
resulting in fewer transitions between motion and steady
states. By combining information from other features,
we deduce that higher anxiety levels are associated
with patients staying in motion for longer stretches,
while less anxious patients frequently alternate between
moving and stopping.

The density plots in Figure 12 illustrate how these key
features vary across different anxiety levels, offering a more
detailed insight into the trends that correspond with the
model’s predictions.

Overall, the model suggests that stable head motion is
linked to lower anxiety, while unstable head motion, par-
ticularly with longer and more irregular motion sequences,
is associated with higher anxiety.

V. LIMITATIONS AND FUTURE WORK

A. Limitations

While our method demonstrates strong performance in
predicting psychological anxiety levels using head motion
patterns, it is less effective in assessing somatic anxiety.
We applied the same technique to provide a regression
model for somatic anxiety levels. However, the regression
models yielded lower predictive accuracy, with a Mean
Absolute Error (MAE) of 0.47 and an R² score of 0.53. With
these results, the large error obtained does not allow for a
clear differentiation between the affected and non-affected
populations.
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Fig. 11. This plot illustrates the coefficients of the Lasso regression model
for each feature in the best model.
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Fig. 12. Density distributions of key features across different anxiety score
groups. The blue, orange, and red areas represent the density estimates
for individuals with anxiety scores of 0-1 (non-anxious), 2 (moderately
anxious), and 3-4 (highly anxious), respectively.

Somatic anxiety manifests through physical symptoms
such as muscle tension, restlessness, and other bodily sen-
sations that may not be fully captured by analyzing head
movements alone. We believe those manifestations often
involve subtle physiological changes or whole-body move-
ments that require additional modalities to detect accurately.
Incorporating other physiological or behavioral cues may be
necessary to comprehensively assess this subtype of anxiety
in individuals with severe depression.

B. Future Works

Several avenues of research are possible to validate and
expand upon this work.

Multimodal Analysis: This study focuses on head motion
patterns. However, CALYPSO dataset contains full videos of
patients. Integrating other features, from facial expressions,

body gestures or speech patterns could help provide mea-
surements of depression symptoms. Combining multimodal
data may improve the predictive accuracy of the model and
offer deeper insights into the behavioral manifestations of
anxiety in depression.

Longitudinal Studies: In this study, our goal was to
develop a model that accurately predicts anxiety levels in
depressed patients based on their first clinical interview.
However, future work will explore applying this approach
to longitudinal data to monitor anxiety evolution throughout
treatment. Investigating whether changes in head motion
patterns correlate with treatment response could provide
valuable insights for adjusting therapeutic strategies over
time.

VI. CONCLUSION

In this study, we introduced a novel, non-invasive method
for quantifying anxiety severity in patients with severe de-
pression by analyzing head motion patterns during clinical
interviews. We propose also a new depression dataset named
CALYPSO, introduced in this paper, which contains video
data of depressed patients, from which we extracted features
related to head motion. Moreover, our new approach, sep-
arating moving and non-moving segments of the interview,
allows us to extract more valuable features for the analysis.
We demonstrated that we can train an interpretable model
based on the selected features for predicting the anxiety
level of depressed patients, achieving a Mean Absolute Error
(MAE) of 0.31 and an R2 of 0.87.

These results suggest that head motion patterns can serve
as reliable, objective indicators of anxiety severity in individ-
uals with severe depression. By providing an automated and
quantifiable assessment tool, our approach has the potential
to assist psychiatrists in making more informed decisions
regarding diagnosis and treatment planning. This method en-
hances the understanding of anxiety’s role in depression and
contributes to more personalized and effective interventions
for patients suffering from both conditions.

VII. APPENDIX

A. Confusion matrix of somatic Anxiety

We show in Figure 13 the confusion matrix of our ap-
proach regression model for somatic anxiety. Notably, the
moderately anxious class is hardly well predicted compared
to the results of psychological anxiety in the main paper,
supporting the need for more non-verbal features to assess
the somatic anxiety symptom.

B. Supplementary results for prediction of psychological
anxiety

We provide in Table III, a detailed ablation of each
pipeline parameter. In particular, we show that the Lasso
model is the best regularization for regressing psychological
anxiety.



TABLE III
FULL ABLATION STUDY OF OUR MODEL FOR PSYCHOLOGICAL ANXIETY. THE BEST MODEL IS THE LASSO MODEL WITH I/E SELECTION PROCESS.

Selection Process for SFS Model Alphaa Number of Features Selectedb MAEc R2c
Exclusion Only Ridge 1.0 23 0.35 0.87

0.1 16 0.49 0.76
Lasso 0.01 12 0.48 0.76
Linear Regression N/A 23 0.53 0.64
ElasticNet 0.01 13 0.59 0.65

Inclusion and Exclusion Ridge 1.0 18 0.46 0.78
0.1 16 0.49 0.76

Lasso 0.1 6 0.63 0.61
0.01 14 0.31 0.87
0.001 16 0.63 0.60

Linear Regression N/A 13 0.72 0.45
ElasticNet 0.01 9 0.57 0.68

0.001 14 0.60 0.67
Inclusion and Exclusion
(Without GMM)

Ridge 1.0 17 0.80 0.35

0.1 24 0.67 0.45
Lasso 0.01 16 0.90 0.10
Linear Regression N/A 30 1.6 -2.45
ElasticNet 0.01 7 0.76 0.42
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Fig. 13. Confusion Matrix obtained using the best model from Table IV.
Classification results are shown by grouping continuous anxiety level
predictions into classes with a tolerance of ±0.5 units.

C. Supplementary results for prediction of somatic anxiety

We provide in Table IV, a similar ablation for somatic
anxiety. Notably, the Lasso model fails to provide similar
accuracy. Moreover, no model is able to provide similar
results as for psychological anxiety.
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