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Despite neural dynamics is triggered by discrete synaptic events, the neural response is usually
obtained within the diffusion approximation (DA) representing the synaptic inputs as Gaussian
noise. We derive a mean-field formalism encompassing synaptic shot-noise for sparse balanced
neural networks. For low (high) excitatory drive (inhibitory feedback) global oscillations (GOs)
emerge via continuous or hysteretic transitions, correctly predicted by our approach, but not from
the DA. At sufficiently low in-degrees the nature of these GOs changes from drift-driven to cluster
activation.

Introduction. In several contexts the discrete nature
of stochastic events should be taken into account to cor-
rectly predict the system dynamics. A typical exam-
ple is represented by shot-noise, which is conveyed by
pulses and is therefore discontinous, at variance with
white noise, which is associated to thermal fluctuations
and is continuous [1]. The inclusion of shot-noise is fun-
damental to fully characterize the emergent phenomena
in many fields of physics ranging from mesoscopic con-
ductors [2] to driven granular gases [3].

The discrete nature of the events is an innate char-
acteristic also of the neural dynamics, where a neuron
receives inputs from other neurons via electrical pulses,
that manifest as post-synaptic potentials (PSPs). The
PSPs stimulating a neuron in the cortex are usually as-
sumed to be uncorrelated with small amplitudes and high
arrival rates. Therefore the mean-field (MF) neural dy-
namics has been examined within the framework of the
Diffusion Approximation (DA) [4, 5] by treating synaptic
inputs as a continuous Gaussian process.

However, several experiments have shown that rare
PSPs of large amplitude can have a fundamental impact
on the cortical activity [6, 7] and that synaptic weight
distributions display a long tail towards large amplitudes
[8–10]. Furthermore, networks of inhibitory neurons with
low connectivity (in-degree K ≃ 30−80) have been iden-
tified in the cat visual cortex [11] and in the rat hip-
pocampus [12], where they are believed to be at the ori-
gin of global oscillations (GOs) in the γ-band [13]. More-
over, the cortical connectivity is definitely more sparse in
primates than in rodents as recently shown [14].

These experimental evidences call for the development
of a MF formalism able to incorporate the effect of
discrete synaptic events for diluted random neural net-
works. Population based formalisms, taking into account
synaptic shot-noise, have been previously developed for

Integrate-and-Fire models [15–18]. However, such ap-
proaches are limited to stationary solutions and cannot
describe the emergence of oscillatory behaviours.

In this Letter, we introduce a complete mean-field
(CMF) approach for balanced neural networks [19, 20],
taking into account the sparseness of the network and the
discreteness of the synaptic pulses, able to reproduce all
the possible dynamical states. For simplicity, but with-
out any loss of generality, we consider inhibitory balanced
networks subject to an external excitatory drive [21–24].

Firstly, we illustrate that the DA fails in reproducing
oscillatory dynamics in spiking neural networks for suf-
ficiently low excitatory drive (high inhibitory feedback)
by considering conductance- and current-based models.
However, this regime is correctly reproduced by a MF
approach whenever the sparse and discrete synaptic in-
puts are taken into account. Moreover, for Quadratic
Integrate-and-Fire (QIF) [25, 26] networks via the CMF
approach we obtain a complete bifurcation diagram en-
compassing asynchronous (ARs) and oscillatory regimes
(ORs), where individual neurons spike irregularly. The
CMF reveals sub- and super-critical Hopf bifurcations
from the AR to the OR as well as a region of coexis-
tence of these two phases not captured by the DA [27].
Event-driven simulations of large QIF networks confirm
the scenario predicted within the CMF theory. Further-
more, we show that the GOs, induced by discrete synap-
tic events, can emerge due to two different mechanisms :
cluster activation at sufficiently small K and drift-driven
at larger K.

The balanced network. As a prototype of a dynam-
ically balanced system we consider a sparse inhibitory
network made of N pulse-coupled neurons whose mem-
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brane potentials evolve according to the equations

v̇i(t) = F (vi) + I − g

N∑
j=1

∑
n

ϵjiδ(t− t
(n)
j ) ; (1)

where I represents an external DC current, g the synap-
tic coupling, and the last term the inhibitory synaptic
current. The latter is the linear superposition of instan-

taneous inhibitory PSPs emitted at times t
(n)
j from the

pre-synaptic neurons connected to neuron i. ϵji is the
adjacency matrix of the random network with entries 1
(0) if the the connection from node j to i exists (or not),
and we assume the same in-degree K =

∑
j ϵji for all

neurons. We consider two paradigmatic models of spik-
ing neuron: the quadratic integrate-and-fire (QIF) with
F (v) = v2 [23–25, 28, 29], which is a current-based model
of class I excitability; and the Morris-Lecar (ML) [30], a
conductance-based model representing a class II excitable
membrane [31]. The DC current and the synaptic cou-
pling are assumed to scale as I = i0

√
K and g = g0/

√
K

as usually done in order to ensure a self-sustained bal-
anced state for sufficiently large K [19, 22–24, 32, 33].
Mean-field description. For a sufficiently sparse net-

work with K ≪ N , the spike trains emitted by K pre-
synaptic neurons can be assumed to be uncorrelated
and Poissonian [20, 21], therefore the MF dynamics of
a generic neuron can be represented in terms of the fol-
lowing Langevin equation:

V̇ (t) = F (V ) + I − gS(t) (2)

where S(t) is a Poissonian train of δ-spikes with rate
R(t) = Kν(t), and ν(t) the population firing rate self-
consistently estimated. Usually the Poissonian spike
trains are approximated within the the DA [5, 34] as
S(t) = R(t) +

√
R(t)ξ(t), where ξ(t) is a Gaussian white

noise term. However, the DA can fail in reproducing the
neural dynamics. Indeed, as shown in Fig. 1 (a) for a
sparse ML network, by employing the DA in (2) one ob-
tains an asynchronous dynamics (blue curve), while the
network evolution, characterized by GOs with frequency
fC ≃ 18 Hz (black dots), can be recovered only by ex-
plicitely taking into account the Poissonian spike trains
in (2) (red line).

In the MF framework the population dynamics is usu-
ally described in terms of the membrane potential proba-
bility distribution function P (V, t), whose time evolution
for the QIF model is given (according to (2)) by the con-
tinuity equation

∂tP (V, t) + ∂V [(V
2 + I)P (V, t)] = R(t)∆P (V, T ) (3)

with boundary condition limV→∞ V 2P (V, t) = ν(t) and
where ∆P (V, T ) = [P (V +, t)−P (V, t)] with V + = V +g.
By assuming that g is sufficiently small we can expand
the latter term as ∆P (V, t) =

∑∞
p=1

gp

p! ∂
p
V P (V, t) ; and

by limiting to the first two terms in this expansion we
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FIG. 1. Population firing rate ν(t) versus time for ML (a) and
QIF (b) models. Black circles refer to network simulations,
blue (red) solid line to diffusive (shot-noise) Langevin results
obtained by integrating Eq. (2). In (b) magenta (green)
dashed line denotes the DA (shot-noise) MF approximation
resulting from the integration of Eq. (3) (Eq. (4)) for the QIF
model, more details in [31]. The parameters for the ML model
are K = 20, i0 = 0.1, g0 = 5 and network size N = 20000,
other parameters are reported in the supplemental material
[31]. For the QIF model K = 200, i0 = 0.16, g0 = 4 and
N = 80000 [36].

recover the DA corresponding to the following Fokker-
Planck Equation (FPE) [35]

∂tP (V, t)+∂V [(V
2+A(t))P (V, t)] = D(t)∂2V P (V, t) (4)

where A(t) =
√
K[i0 − g0ν(t)] and D(t) = g20ν(t)/2. The

DA can give incorrect predictions for the QIF model, as
well. Indeed as shown in Fig. 1 (b) the network dynamics
is oscillatory with fc ≃ 40 Hz (black circles). This evolu-
tion is correctly captured by the MF equation (3) (green
dashed line) and by the Langevin equation (2) driven by
shot-noise (red solid line). On the contrary the FPE (4)
(dashed magenta line) and the diffusive Langevin formu-
lation (blue solid line) converge to a stable fixed point
corresponding to asynchronous dynamics. Therefore to
reproduce the collective dynamical regimes observable in
the network it is necessary to consider the continuity
equation (3). In this respect we have developed a CMF
formalism encompassing synaptic shot-noise to identify
the various possible regimes displayed by (3) and to anal-
yse their stability.
The QIF model evolution can be transformed in that

of a phase oscillator, the so-called θ-neuron [25, 37], by
introducing the phase variable θ = 2arctanV . How-
ever, this transformation has the drawback that even
uncoupled neurons are associated to a non flat distribu-
tion of the phases, thus rendering quite difficult to dis-
tiguish asynchronous from partially synchronized regimes
[38, 39]. A more appropriate phase transformation to
analyse the synchronization phenomena is the following
ψ = 2arctan (V/

√
I) ∈ [−π, π], which leads to a uni-

formly rotating phase in the absence of incoming pulses
for supra-threshold neurons with I > 0 [31].
By considering the probability distribution of the

phases w(ψ, t) = P (V, t)
(
I + V 2

)
/(2

√
I), Eq. (3) can be

rewritten in terms of the so-called Kuramoto–Daido order
parameters zn [40, 41] by expanding in Fourier space the
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distribution as w(ψ, t) = (2π)−1
∑+∞
n=−∞ zne

−inψ with
z0 = 1 and z−n = z∗n . After laborious but straight-
forward calculations, one obtains the following evolution
equations

żn = i2n
√
Izn +Kν

[
+∞∑
m=0

Inm(α) zm − zn

]
, (5)

where n = 1, 2, 3, ... , α ≡ g/
√
I = g0/(

√
i0K

3/4), and
the explicit expressions for Inm(α) are reported in [31].

The firing rate can be self-consistently determined by
the flux at the firing threshold limV→∞ V 2P (V, t) =
2
√
Iw(π, t), as follows

ν = 2
√
Iw(π, t) =

√
I

π
Re

(
1 + 2

∞∑
k=1

(−1)kzk

)
. (6)

The dynamics of the system (5,6) is controlled by only
two parameters: K and α. Thus, we can limit to derive
a bidimensional phase diagram in the plane (i0/g

2
0 ,K),

that will comprehensively cover the entire diversity of
the macroscopic regimes observable in the network. In
particular, we have estimated the stationary solutions of
Eqs. (5,6) by truncating the Fourier expansion in (5)
to M ≥ 100 modes in order to guarantee a numerical
accuracy of O(10−12) for all the parameter values. The
linear stability of the asynchronous state joined to the
derivation of the corresponding amplitude equations (via
a weakly nonlinear approach) has allowed us to identify
the HB line where the oscillatory dynamics emerges to-
gether with the super- or sub-critical nature of the bi-
furcations (for more details see section S3 in [31]). The
HB line obtained via the CMF (within the DA) is re-
ported as an orange (black) line in Fig. 2 (a). While the
HBs are always super-critical within the DA, the HBs in-
duced by the shot-noise can be either super- (solid orange
line) or sub-critical (dashed orange line), thus allowing
for regions where AR and OR coexist, see Fig. 2 (b). A
peculiarity of the CMF results is that the HB line is re-
entrant, thus in a certain range of i0/g

2
0 we have an AR

only within a finite interval of in-degrees and GOs at suf-
ficiently small and large K (as shown in Fig. 2 (c)). As
explained in the following these two oscillatory regimes
are due to different mechanisms.

Furthermore, there is a dramatic difference among the
2 MF approaches at small i0 (large g0): within the DA
GOs are observable only above a critical K diverging to
infinity for i0/g

2
0 → 0, while for the CMF analysis GOs

are present at any K value for i0/g
2
0 < 0.00029.

Network Simulations. In order to verify the CMF pre-
dictions we have performed essentially exact numerical
simulations of QIF networks, according to (1), by em-
ploying an event-driven integration scheme [42], which
allowed us to follow the network dynamics for long times,
up to 50−100 sec, for system of sizes N = 10000−80000
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FIG. 2. (a) Phase diagram for the QIF network in the plane
(i0/g

2
0 ,K): the black solid line is the super-critical HB line

obtained within the DA; the orange solid (dashed) line is the
super- (sub-) critical HB line given by the CMF; the sym-
bols refer to numerical estimations of the HBs and SNBs.
The green (blue) circles denote HBs obtained by performing
quasi-adiabatic simulations by varying K (i0) for constant i0
(K) values; the magenta stars indicate SNBs. For more de-
tails see [31]. (b-c) Average order parameter ρA versus i0 (K)
for quasi-adiabatic simulations: black circles refer to decreas-
ing (increasing) i0 (K), while red ones to increasing i0. The
blue dashed line in (b) denotes the sub-critical HB given by
the CMF and the magenta dot-dashed line to numerically esti-
mated SNB; the two green dashed lines in (c) indicate the HBs
given by the CMF. In the insets in (b-c) the population firing
rates ν(t) versus time are reported for the states indicated by
the corresponding colored filled circles, in the insets in (b) the
results for the CMF (5) are also shown as green solid lines.
The values of ρA in (b) ((c)) refer to K = 100 (i0 = 0.00055)
averaged over 5 network realizations, with N = 80000, for 30
s following a transient of 20 s. For all data g0 = 1 [36].

[31]. In particular, to characterize the macroscopic evolu-
tion of the network we measured the indicator introduced
in [43] ρ = (σ2

V /σ
2
i )

1/2, where σ2
i = ⟨v2i ⟩−⟨vi⟩2 and σV is

the standard deviation of the mean membrane potential
V =

∑N
i=1 vi/N , with · (⟨·⟩) denoting an ensemble (a

time) average. A coherent (asynchronous) macroscopic
activity is characterized by a value of ρ remaining finite
(vanishing as ρ ∝ N−1/2) for N → ∞ [24, 44]. The ac-
tual value of ρ is related to the level of synchronization
among the neurons: perfect synchrony to ρ ≡ 1.

A finite size analysis of the order parameter ρA aver-
aged over several different network realizations has al-
lowed us to identify the HBs and the Saddle-Node Bifur-
cations (SNBs) of limit cycles displayed in Fig. 2 [31]. In
particular, in Fig. 2 (a) green (blue) circles refer to HBs
identified via quasi-adiabatic simulations by varying K
(i0) for constant i0 (K) values; while the magenta stars
indicate SNBs. Numerical simulations are in good agree-
ment with the CMF results and allowed us also the iden-
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FIG. 3. (a-b) (Lower Panels) Effective input current A(t) ver-
sus time : red lines (black dots) refer to CMF (network simula-
tions) results. (Upper Panels) Membrane potential evolution
in time: black lines (other colors) refer to V0(t) (single neuron
dynamics). (c) Frequency of the GOs fc (black circles) versus
K, the red solid line refers to f0, green vertical dashed lines
have the same meaning as in Fig. 2 (c). Data correspond to
i0/g

2
0 = 0.00055 (with g0 = 20), to K = 10 (a) and K = 210

(b), network simulations to N = 80000 [36].

tification of a coexistence region for asynchronous and
oscillatory collective dynamics. A hysteretic transition
from AR to OR obtained by varying quasi-adiabatically
i0 is displayed in Fig. 2 (b), the coexistence region can
be clearly identified between the sub-critical HB (blue
dashed line) and the SNB (magenta dashed line). Two
coexisting solutions are reported in the insets of Fig. 2
(b) confirming the good agrement between CMF (green
lines) and the network simulations (red and black lines).
Furthermore, as shown in Fig. 2 (c) for sufficiently small
i0/g

2
0 values GOs are observable at small (K ≤ 30) and

large (K ≥ 200) in-degrees, while the AR is present only
at intermediate in-degrees (K ∈ [40 : 180]). The dynam-
ics in these 3 intervals is visualized by reporting in the
insets of Fig. 2 (c) the firing rates ν(t) at K = 10 (black
line), K = 60 (blue line) and K = 210 (green line).
In large part of the phase diagram (namely, for i0/g

2
0 <

0.2), both in the AR and OR we observe an irregular fir-
ing activity of the neurons associated to mean coefficient
of variations CV ≃ O(1) [45], as expected in sparse bal-
anced networks.

Two kinds of GOs. As previously mentioned, we can
identify two classes of GOs induced by discrete synaptic
events in the interval i0/g

2
0 ∈ [0.00036 : 0.00070]. Their

difference is already clear by considering the MF mem-
brane potential evolution V0(t) given by the following
zeroth-order Langevin equation for the QIF:

V̇0(t) = V 2
0 +

√
K[i0 − g0ν(t)] = V 2

0 +A(t) ; (7)

where current fluctuations have been neglected and ν(t)
is the population firing induced by the shot-noise. When-
ever A < 0 (A > 0) the QIF model displays excitable
dynamics (periodic firing) [26]. The GOs reported in the
insets of Fig. 2 (c) for K = 10 (K = 210) are character-

ized by A(t) always negative (positive for large part of
the oscillation period) as shown in Fig. 3 (a) (Fig. 3 (b))
(lower panels). Therefore, for K = 10 (K = 210) V0(t)
displays sub-threshold oscillations (large excursions from
negative to positive values driven by A(t) > 0) as shown
in the upper panel of Fig. 3 (a) (Fig. 3 (b)).
As shown in Fig. 2 (c), the low (high) in-degree

GOs are characterized by a low (high) level of coherence
among the neurons, this is confirmed by the evolution of
the membrane potentials vi(t) of 4 generic neurons re-
ported in Fig. 3 (a-b). In both cases the neurons spike
irregularly [46], however for K = 210 the single neurons
vi(t) essentially follow the MF evolution V0(t), while for
K = 10 their dynamics is quite uncorrelated.
These behaviours can be explained by 2 different mech-

anisms once noticed that for both cases the GO frequency
fC is extremely close to the firing frequency of an isolated
neuron f0 = 1/T0 =

√
I/π, see Fig. 3 (c). This sug-

gests that at a first approximation the GOs are due to
the neurons not receiving any inhibitory PSP from reset
to threshold. For low K, whenever a neuron fires large
amplitude inhibitory PSPs are delivered. These induce
a transient synchronization in the K post-synaptic neu-
rons and a sub-group, not receiving further PSPs, can
eventually reach threshold together at a time ≃ T0. This
transient synchronizing effect of small clusters of neurons
(termed cluster activation [47]) is at the basis of the GOs
observable for K = 10 in Fig. 2 (c). For increasing
K, the amplitude of the PSPs decreases, therefore above
some critical in-degree (K ≃ 30 in this case) a single
inhibitory PSP is no more able to induce a sufficiently
strong synchronizing effect on the post-synaptic neurons
and the dynamics becomes asynchronous (as shown in
Fig. 2 (c)).
For larger K, the post-synaptic neurons receive several

small inhibitory PSPs at each population burst, when-
ever K is sufficiently large a non negligible part of the
neurons can get synchronized by the discharge of in-
hibitory PSPs. As shown in Fig 3 (b), the time courses
of the membrane potentials are now extremely coherent
by approaching the threshold, where fluctuations lead to
irregular firing of the neurons. However, a sufficient per-
centage of neurons drift-driven is always able to fire to-
gether with a period ≃ T0 giving rise to the GOs.
Conclusions. We have shown that the macroscopic

phase-diagram of balanced networks is strongly influ-
enced by the discreteness and the finite amplitude of
PSPs. In particular, we have developed a CMF formal-
ism by including Poissonian shot-noise which reproduces
quite well the network simulations, at variance with the
DA. This scenario is robust and extends beyond instanta-
neous synapses to exponentially decaying PSPs, as shown
in Fig. S4 in [31].
Our analysis of balanced inhibitory networks has re-

vealed the existence of two kinds of GOs induced by dis-
crete synaptic events, thus completing the previous sce-
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nario based on the DA [21, 27]. Furthermore, we have
shown that GOs can emerge even in extremely sparse in-
hibitory networks with frequencies going from from 1-2
Hz (δ-band) to 100 Hz (γ-band). Thus providing theo-
retical support for the supposition reported in [13] that
the γ-oscillations observed in the hippocampus are gener-
ated by sub-networks of interneurons with low in-degrees
K ≃ 30− 80 [12].

The CMF approach is valid in sparse networks for
K << N . Whenever K ≃ O(N) the correlations among
the spike trains reaching the neuron should be taken in
account, an extension of the CMF in this direction will
be worth of future investigations. The effect of finite N
fluctuations has been analyzed in globally coupled QIF
networks [48, 49], it will be interesting to extend such
approach to random networks. Finally, the CMF formal-
ism can be generalised to neural systems with delay and
synaptic kinetics as shown in sub-section S3.G in [31],
this will be the subject of future studies.
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