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Marseille, France
sebastian.muller@univ-amu.fr

Olivia Saa
IOTA Foundation
Berlin, Germany

olivia.saa@iota.org

Abstract—The Fast Probabilistic Consensus on a Set (FPCS)
is a leaderless voting consensus protocol designed for achieving
agreement among nodes on a preferred maximal independent
set within a graph of conflicts. The protocol’s robustness and
efficiency have been previously established for complete graphs
under the security threshold of q < β < 1/3, where q represents
the proportion of Byzantine nodes. In this paper, we analyze a
protocol edge case - a star graph. We show that the security
threshold found for complete graphs is not restrictive enough
and conjecture a new threshold of q < β < 1/4. This advance
highlights the tradeoff between versatility and reduced security,
showing the protocol’s adaptability across a broader range of
scenarios at the cost of tighter security constraints.

Index Terms—Distributed systems, consensus protocols, byzan-
tine infrastructures.

I. INTRODUCTION

The Fast Probabilistic Consensus on a Set (FPCS) is a
voting consensus protocol designed as the natural evolution
of the Fast Probabilistic Consensus (FPC), [1]. Both protocols
share several characteristics: they are divided into rounds, are
probabilistic in nature (achieving termination, integrity, and
agreement with high probability), and their outcomes depend
on the existence of a global coin.

While FPC addresses the classical problem of achieving
consensus on the value of a bit, FPCS achieves consensus on
a Maximal Independent Set (MIS) of a graph of conflicting
spendings. This distinction is crucial, as it allows FPCS to
manage more complex scenarios, particularly in the context
of UTXO-based Distributed Ledger Technologies (DLTs) like
Bitcoin, Cardano, Kaspa, and IOTA, where two transactions
spending the same output are considered to be in conflict.

Conflicts can arise from malicious behavior but also as the
result of faulty node behavior, concurrency and contention in
UTXO-based smart contracts, and transaction duplicates when
the block times are lower than the network latency.

Despite the differences in the origins of the conflicts,
this distinction does not affect our results. We consider a
proportion q of nodes to be Byzantine. This encompasses both
those actively trying to delay or disrupt consensus (malicious)
and those simply defective or unlucky (faulty).
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Consider a scenario with three transactions: u, v, and
w, where u conflicts with both v and w, but v does not
conflict with w. To update their ledgers, nodes must choose
between accepting the set {u} or the set {v, w} as legitimate.
Each round of our protocol generates a set of transactions
to be liked by the nodes, which may change significantly
in the initial rounds. However, the protocol is designed to
stabilize after a few rounds, with nodes consistently liking
similar transactions, eventually triggering a stop criterion and
rendering the consensus final.

A. Related Work and Contribution

The total ordering of transactions solves the consensus prob-
lem. However, it is shown in [12] that in cases where payments
are independent of one another (e.g., UTXO transactions),
ordering payments becomes unnecessary. These lower require-
ments were later observed in multiple papers [11], [13], [14].
Typically, nodes create blocks to approve transactions included
in prior blocks, and a quorum of approvals is sufficient to
commit a UTXO transaction. While these solutions achieve
low communication complexity and latency, they face some
practical concerns, as the locking of UTXOs when no quorum
of approvals is achieved. Our approach solves the problem of
conflicts proactively using a sub-sampling voting procedure.

The protocol and results presented here are relevant to
the wider field of majority-dynamics models and particularly
interesting to UTXO-based DLTs. By addressing both the
classical consensus problem and the complexities of modern
transaction conflicts, FPCS offers a different approach to
developing consensus mechanisms, which may contribute to
more versatile and efficient distributed systems.

II. DESCRIPTION OF THE PROTOCOL

A. Notation

Consider a set of N nodes denoted by N = {1, . . . , N}
and a set of conflicting transactions T = {u1, . . . , uT }, which
we call the conflict set. For our purposes, we assume that
a transaction is composed of a unique transaction identifier
(“Id”, for short), a set of inputs – often referred to as UTXOs
(unspent transaction outputs) – and a set of outputs.

We say two transactions x, y ∈ T are in conflict if they
consume the same UTXO (i.e., if at least one of their inputs
is the same) and denote this by x ↔ y. If x and y are not



in conflict, we write x ↮ y. A transaction x conflicts with a
set B ⊂ T if it conflicts with every element of B and this is
represented by x ↔ B. It is natural to represent the set T and
its conflicts as a graph G = (T, E), where given x, y ∈ T an
edge (x, y) ∈ Et denotes that x ↔ y.

In this paper, we assume that the structure of the con-
flict graph can be arbitrary, and depending on the network
throughput, the set T can be very large. A natural way to
resolve conflicts is by total ordering of the set of transactions.
A popular way to do this is through a cryptographic hash
function [6] (CHF for short). For the purpose of the paper, we
will also assume that the CHF is a pseudo-random function.
In particular, our hash function satisfies the property that
any random perturbation in the input results in a uniformly
distributed independent new output. Let us note that the hash
function allows us to define an order on some arbitrary data
x, y: one can say that x < y if hash(x) < hash(y).

Considering discrete time t = 0, 1, 2 . . . (we refer to it as the
round t), we define by A

(n)
t the set of transactions known by

the node n at time t and call it the node’s vision. Furthermore,
we assume that A(n)

0 ⊂ A
(n)
1 ⊂ . . . ⊂ T for any n ∈ N .

We say a node likes a transaction if it prefers it to its
conflicts. Moreover, we define node n’s opinion at round t

as the collection O
(n)
t =

{
θ
(n,x)
t ; x ∈ A

(n)
t

}
, where θ

(n,x)
t

assumes the values:

θ
(n,x)
t =

{
1, if node n likes transaction x at time t,
0, otherwise.

For a set W ⊂ T, we say θ
(n,W )
t = 1 if θ

(n,w)
t = 1 for all

w ∈ W .
We also assume there exists a public sequence of random

numbers Xt ∼ U [β, 1 − β], which is either provided by a
trusted source or generated by the nodes themselves using
some decentralized random number generating protocol. This
approach is referred to as a global coin in many works on
Byzantine consensus, for example, in [7]–[10]. We assume
all random numbers and messages between the nodes are
delivered on time in every round.

Our objective is to formulate a protocol that facilitates con-
sensus among the nodes N regarding a Maximal Independent
Set (MIS) within T. A designated proportion q of the nodes,
referred to as malicious, may opt not to adhere to our protocol,
thereby choosing to impede or disrupt the consensus process.
For a constant c ∈ [0, 1], we say the protocol is resistant up
to a threshold c if, for any q < c, consensus can be achieved
with high probability.

Without loss of generality, we assume that the first (1−q)N
nodes are honest (i.e., not malicious) and define the proportion
of likes among honest nodes of a transaction u ∈ T as

p
(u)
t :=

1

(1− q)N

(1−q)N∑
j=1

θ
(j,u)
t . (1)

For a set U ∈ T, the proportion of likes p
(U)
t is defined as the

proportion of honest nodes that like every u ∈ U .

We define the Interval of Control of the malicious nodes
over a transaction v at round t as

I(v)
q,t := [(1− q)p

(v)
t , (1− q)p

(v)
t + q].

The lower/upper boundary of this interval is precisely the
overall proportion of likes (i.e., considering both honest and
malicious opinions) that the transaction has when all malicious
nodes dislike/like it. Malicious nodes can, thus, control the
overall proportion of likes of a transaction within this interval.

Our results hinge on the observation that once a significant
majority of honest nodes align on a specific transaction or
set of transactions, it becomes difficult for malicious nodes to
reverse this opinion. To precisely delineate the threshold for a
significant majority, we introduce the abbreviation

µ :=
β − q

2(1− q)
.

Fig. 1 illustrates the concept of Intervals of Control and the
relations between β and q. In particular, we will assume that
q < β, or in other words, that µ is positive.

0 1βµ q

p
(w)
t

>
β − q

2

0 11− µ1− β 1− q

p
(u)
t

>
β − q

2

Fig. 1. The intervals of control I(u)
q,t for a transaction u which has a proportion

of likes among honest nodes p(u)t > 1−µ (in blue), and I(w)
q,t for a transaction

w such that p(v)t < µ (in red). Notice that these intervals are separated from
the support [β, 1− β] of Xt.

B. Protocol

For t = 0, the initial visions, A
(n)
0 , and opinions, O

(n)
0 ,

can be arbitrary, as long as the set of liked transactions for
each node forms a maximal independent set of the conflict
graph induced by A

(n)
0 . Then, the following protocol should

be executed by each node iteratively once for every round
t ≥ 1 until the stop criterion is met:

1) Query k (uniformly) random nodes1 about their liked
transactions.

2) Store any received transactions it was not aware of.
3) The node, denoted by n, stores the collection{

η
(n,x)
t ; x ∈ A

(n)
t

}
, where η

(n,x)
t corresponds to the

number of 1-opinions it received from the queries in
round t with respect to the transaction x.

4) Receive a random value Xt ∼ U [β, 1− β]2.

1Every node can use its own source of randomness.
2Every nodes receives the same random value.
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5) Define an auxiliary collection of opinions{
θ′(x); x ∈ A

(n)
t

}
, that will not be shared and

will last only until the end of the round (hence we omit
the dependence on n and t), using the following rule:

θ′(x) =

{
1, if η

(n,x)
t /k > Xt

0, otherwise.

6) Let B :=
{
x ∈ A

(n)
t ; θ′(x) = 1

}
. The node must find

a way to assign 1 only to the opinions of a maximal
independent subset of A

(n)
t . To do so, it iteratively

removes from B the transaction x ∈ B with the largest
hash(Idx, Xt) (this means the hash of Idx concatenated
with the random number Xt) until it obtains an in-
dependent set. Note that using the “largest hash” is
not crucial, as any deterministic rule leading to un-
predictable results is sufficient. Explicitly, it performs
the following algorithm: Consider B′ := elim(B,Xt).

Algorithm 1 elim(U,Xt)
1: W = U
2: while W is not an independent set do
3: Compute

y = argmax
x∈W :∃z∈W :z↔x

hash(Idx, Xt),

4: W = W \ {y}
5: end while
6: return W

While this set is independent by construction, it may
not be maximal. Then, starting with B′, the node in-
cludes iteratively the non-conflicting transaction with the
smallest hash(x,Xt) until a maximal independent set
is obtained. Explicitly, the node executes the following:

Let B′′ := compl(B′, A
(n)
t , Xt). Finally, the node

Algorithm 2 compl(U, V,Xt)
1: W = U
2: while W is not a maximal independent set do
3: Compute

y = argmin
x∈V \N(W,V )

hash(x,Xt)

4: W = W ∪ {y}
5: end while
6: return W

assigns value 1 to the opinion θ
(n,x)
t+1 of every transaction

x ∈ B′′ and zero to the others.
If the node’s opinion about a transaction does not change
for ℓ rounds, then it is considered final and will not be further
modified in the subsequent rounds.

III. RESULTS

In [2], the specific scenario where T represented a complete
graph was studied, yielding robust findings regarding consen-
sus within a security threshold q < β < 1/3.

While complete graphs, commonly known as n-spends in
classical cryptocurrency literature, represent a typical form of
attack, they do not constitute the most sophisticated form. In
more intricate situations, malicious nodes extend their influ-
ence beyond mere voting, manipulating T itself—for instance,
by introducing new conflicting transactions—to advance their
objectives. We explore now an edge case in which the thresh-
old q < β < 1/3 proves insufficient to guarantee consensus.

A. Star Graphs

A Sj star graph is a complete bipartite graph constituted by
one internal vertex connected to a set of j external vertices,
called leaves. Of course, the two only possible maximal
independent sets in this graph are the set of leaves and the
singleton of the interior vertex.

Assume that T = Sj for some integer j ≥ 2 and designate
u as the interior vertex. Consider also that k = N or, in
other words, that nodes will query every other node every
round. Assume malicious nodes will adopt the following
strategy: when queried by a node that likes u (resp. N(u)),
the malicious will reply it also likes u (resp. N(u)). Moreover,
consider that p(u)t = 1/[2(1− q)] and define as p̂

(x)
t and p̃

(x)
t

the overall proportion of likes (i.e. including the opinions of
malicious nodes) that a transaction x ∈ T has at round t from
the perspective of a node that likes u and N(u) respectively.

Now consider the case 1/6 < q < β < 1/3 where malicious
nodes control a significant, though not critical, proportion of
nodes. Then it can easily be verified (see Fig. 2) that

p̃
(N(u))
t = p

(N(u))
t (1− q) < β;

p̃
(u)
t = p

(u)
t (1− q) + q > 1− β;

p̂
N(u)
t = p

(N(u))
t (1− q) + q = p

(u)
t (1− q) = p̂

(u)
t = 1/2.

From the first two relations, we observe that regardless of the
outcome of Xt, nodes that liked u at the beginning of the
round will see no reason to change their mind since p̃

(u)
t >

1− β > Xt > β > p̃
(N(u))
t .

On the other hand, nodes that originally liked N(u) will
encounter a tie p̂

(u)
t = p̂

(N(u))
t = 1/2 and then for every

x ∈ T either assign θ′(x) = 1 if Xt < 1/2, or assign
θ′(x) = 0 if Xt > 1/2. In both cases, step 7) of our
protocol will pick between {u} and N(u), the set that contains
the transaction with the smallest hash(Idx, Xt). Due to the
uniformity property of the hash function, the smallest hash
will be in N(u) with probability j/(j + 1). This implies that
malicious nodes can, with high probability, bypass the random
component of the protocol and compel nodes that liked N(u)
initially to persist in liking N(u). If this situation persists for
ℓ rounds, opinions become final, and consensus is broken.

This attack is only possible because the union of the
intervals of control I(u)

q,t ∪ I(N(u))
q,t covers the whole support

of Xt. An intuitive way to solve this is to decrease β (and
consequently enlarge the support of Xt), but by doing that,
since q must be smaller than β, we are also getting less
resistant.
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0 11/2 1− ββ

p
(u)
tp

(v)
t

0 11− ββ

p̃
(u)
tp̃

(v)
t

0 11− ββ
p̂
(u)
t

p̂
(v)
t

Fig. 2. The interval of control in blue for the interior edge u, and in red for
a leaf transaction v ∈ N(u). Notice that the union of the intervals of control
covers the whole support of Xt.

To find a middle ground, we decrease β by a margin just
enough to guarantee that the support of Xt is larger than 2q
(two times the length of an interval of control). In other words,
we want to maximize β subject to the constraints 2q < 1−2β
and q < β. The result is the security threshold q < β < 1/4.

A fundamental property of the system under this security
threshold is that, under certain outcomes of Xt, nodes are
not only likely to approve any transaction u ∈ T that has a
sufficiently large proportion of likes but also, at the same time,
disapprove any transaction in N(u).

To find exactly how large this proportion of likes has to be,
notice that if u ∈ T has p

(u)
t = (1 − β − q)/(1 − q) then

the upper boundary of I(u)
q,t is 1 − β (which is equal to the

upper boundary of the support of Xt); on the other hand, if
p
(u)
t = 1/[2(1− q)], then the lower boundary of I(u)

q,t is 1/2.
We define p∗ as the middle point between these two values:

p∗ :=
1

2

[
1− β − q

1− q
+

1

2(1− q)

]
=

1

2(1− q)
+
1− 2β − 2q

4(1− q)
.

This way if p(u)t < p∗ (resp. p(u)t ≥ p∗) there will be a gap of
at least size h := (1/2−β−q)/2 between I(u)

q,t and 1−β (resp.
1/2). This last property motivates the following conjecture.

Conjecture III.1. Under the security threshold q < β < 1/4,
the FPCS protocol is capable of achieving consensus on a MIS
within an arbitrary conflict graph T with high probability.

The basis for this conjecture arises from the following
observation: The elim/compl steps of the algorithm, for any
graph, select a maximal independent set (MIS) at random. In
the case of complete graphs, the preferred transaction is the
one with the smallest hash, resulting in a uniformly random
selection of the MIS. For star graphs, however, the MIS is not
chosen uniformly at random but is influenced by the number of
leaves in the star. This is what allows attackers to circumvent
the randomness of the protocol when 1/6 ≤ q < β < 1/3.
Importantly, the dependence of the MIS selection by the
elim/compl step on the size of the MIS is not restricted to
star graphs, but a general property. Furthermore, it is also

a general property that the union of the intervals of control
I(u)
q,t ∪I(N(u))

q,t over any transaction u does not fully cover the
support of Xt under the security condition q < β < 1/4.

IV. CONCLUSION AND FUTURE WORK

This paper describes a vector of attack for the FPCS pro-
tocol in which consensus is broken considering q < β < 1/3.
We propose an alternative security threshold q < β < 1/4 for
which this attack is mitigated. Furthermore, we conjecture that
this new threshold is sufficient to guarantee consensus for an
arbitrary conflict graph with high probability.

A critical feature of our protocol is its reliance on a sequence
of random numbers Xt,. We believe that perfect randomness
is not required, and future research will aim to rigorously
demonstrate this aspect. Additionally, we aim to relax the
synchronicity assumptions of the underlying communication
system. The inherent randomness of the subsampling makes
the protocol robust to different local perceptions, and this
intuition should be made more rigorous in future research.
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