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Abstract—This paper is a Systematization of Knowledge (SoK)
on Directed Acyclic Graph (DAG)-based consensus protocols,
analyzing their performance and trade-offs within the framework
of consistency, availability, and partition tolerance inspired by the
CAP theorem.

We classify DAG-based consensus protocols into availability-
focused and consistency-focused categories, exploring their design
principles, core functionalities, and associated trade-offs. Fur-
thermore, we examine key properties, attack vectors, and recent
developments, providing insights into security, scalability, and
fairness challenges. Finally, we identify research gaps and outline
directions for advancing DAG-based consensus mechanisms.

I. INTRODUCTION

Distributed Ledger Technology (DLT) has become funda-

mental in supporting secure and transparent transaction sys-

tems across decentralized networks. Maintaining an immutable

and append-only ledger, DLT enables a trustless environment

where participants can transact directly without intermediaries.

This technology, particularly its application in cryptocurren-

cies like Bitcoin and Ethereum, has attracted wide interest

due to its potential for enhanced transparency, operational

efficiency, and decentralization. However, standard blockchain

architectures face key performance limitations, including low

throughput and high confirmation latency. Studies have fur-

ther highlighted trade-offs in speed, security [1], and perfor-

mance [2], as well as the inherent challenge in achieving de-

centralization, consistency, and scalability simultaneously (the

DCS-satisfiability theorem) [3], [4]. In response, DAG-based

DLTs have emerged, using alternative consensus structures

to improve scalability and support more efficient consensus

mechanisms.

A. What is a DAG-based Consensus Protocol

Traditional blockchain protocols, such as Bitcoin’s

Nakamoto consensus [5], arrange blocks of transactions

sequentially in a chain, where each block references its

predecessor, extending back to the genesis block. Consensus

in these systems often proceeds in rounds, with new blocks

added to the longest chain, which participants recognize

as the valid ledger. This linear structure, however, imposes

limitations on scalability and throughput.

In contrast, DAG-based consensus protocols allow blocks

to reference multiple predecessors, creating a Directed Acyclic

Graph (DAG) structure. This referencing mechanism enables a

tim
e

Fig. 1. Blockchain and blockDAG

framework where multiple blocks can be added concurrently,

supporting parallel processing of transactions. By diverging

from the sequential constraints of traditional models, DAG-

based protocols offer improved scalability and flexibility in

transaction processing.

B. Why a DAG-based Consensus Protocol

In the pursuit of transcending the inherent trade-off between

security and performance and in response to the performance

bottlenecks, DAG-based consensus protocols were proposed as

a solution. These protocols promise high scalability and fast

confirmation of transactions, hence effectively addressing the

intricate balance between security and performance. Follow-

ing, we describe the promises and challenges of DAG-based

consensus protocols compared to linear chain protocols.

Advantages and promises of DAG-based consensus proto-

cols compared to blockchains

1) Scalability: DAG-based protocols can process transactions

in parallel rather than sequentially, as in blockchains.

http://arxiv.org/abs/2411.10026v1


This capability offers improved scalability and throughput

compared to sequential blockchains.

2) Latency: Latency in DAG-based protocols, particularly

regarding transaction confirmation time, varies with the

underlying consensus mechanism. In PoW-based protocols,

a DAG structure enables shorter block times and faster

transaction confirmation. In some Proof of Stake (PoS)-

based protocols, using additional reliable broadcast primi-

tives increases the latency. Therefore, the extent to which

DAG-based protocols reduce latency is conditional on the

specific consensus approach and the architectural decisions

around synchrony and security.

3) Flexibility: The DAG architecture allows for more flexible

consensus mechanisms and can adapt to various network

conditions, potentially making it more versatile than a

blockchain. For example, in traditional blockchains, every

block serves three roles: acting as a leader that validates

transactions, providing content in the form of transaction

data, and voting on the causal history. However, blocks

in a DAG structure can have differentiated roles, e.g., see

Section III-A2, enabling a more distributed approach to

consensus and transaction validation.

4) Parallel writing: DAG-based protocols enable concurrent

block production, diverging from the leader-based block

generation model of traditional blockchains. This architec-

ture permits multiple participants to simultaneously append

transactions or blocks to the ledger, effectively broaden-

ing writing access. In its most extreme situation, every

participant may independently produce blocks, eliminating

reliance on a single or group of block producers. This

property may remove the need for additional mempools

of transactions, reduce the latency, and remove bottlenecks

associated with sequential block generation.

Challenges in DAG-based consensus protocols compared to

blockchains

1) Security risks: The increased complexity of DAG structures

introduces additional potential attack vectors, as more intri-

cate systems often expose a broader range of vulnerabilities

compared to simpler protocols.

2) Understanding and adoption: The more complex nature of

DAG-based protocols can make them harder to understand

and adopt, particularly for developers accustomed to tradi-

tional blockchain technology. Protocols that only provide

partial ordering may encounter more difficulties adapting

to existing infrastructures.

3) Consensus mechanism maturity: Consensus mechanisms

used within DAG-based DLTs are often newer and less

tested than those used with blockchains, creating uncer-

tainty around their long-term stability and resilience against

evolving network threats.

4) Reachability challenge: The concept of reachability within

a DAG refers to the ability of a new block to reference

earlier transactions or blocks, which is central to the struc-

ture’s integrity and efficient functioning. This ability has

ramifications for functionalities, such as pruning (removing

old data to save space) and the operation of light clients

(nodes that do not store the full ledger data).

The number of DAG-based consensus protocols has been in-

creasing. However, there have been few attempts to consolidate

these protocols and provide a comprehensive analysis of them.

As the DAG-based DLT community grows, it is becoming

increasingly important to have a holistic understanding of the

various architectures and trade-offs involved.

C. Contribution

This SoK offers:

• A structured classification of DAG-based consensus proto-

cols into Availability-focused and Consistency-focused cat-

egories, analyzing their attributes, trade-offs, and consensus

approaches (Sec. III).

• A systematic overview of attack vectors relevant to each

protocol category, detailing potential vulnerabilities and

countermeasures (Sec. IV).

• An examination of desirable properties currently emphasized

in DAG-based DLT research (Sec. V).

• A discussion of recent advancements in DAG-based DLTs

that relate to consensus mechanisms but extend beyond the

primary classification (Sec. VI).

• An outline of research gaps and future directions to inform

and guide ongoing work in the field (Sec. VII).

Note: This paper focuses on the conceptual/architectural

design of the DAG-based consensus protocols. However, the

paper does not discuss or present any performance evaluation

of the included protocols.

D. Related Work

Recently, there has been a growing interest in DAG-based

protocols in both industrial and academic circles. Numerous

DAG-based consensus protocols have been developed to opti-

mize the complex interplay between security and performance.

This paper seeks to systematize a wide variety of research

on these DAG-based consensus protocols. An overview of the

development of these protocols is depicted in Figure 2.

Wang et al. [8] provides a review of DAG-based systems,

exploring essential aspects such as consensus mechanisms,

security, and performance. However, the study does not address

emerging insights and critical open research questions in

DAG-based consensus. Furthermore, recent advancements in

consistency-focused DAG protocols necessitate an updated,

synthesized reference for researchers.

In contrast, [9] organizes DAG-based ledgers into structural

categories—main chain, parallel chains, natural topology, and

layered DAGs—providing a taxonomy based on the consensus

structure. Our SoK introduces a different framework by clas-

sifying DAG protocols through an availability and consistency

lens. This approach enables a more conceptual understanding

of the trade-offs and challenges relevant to DAG-based con-

sensus protocols.

Other studies have examined distributed ledger technologies

(DLTs) across a broader spectrum. Bellaj et al. [10] survey
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Fig. 2. The evolution of DAG-based consensus protocols over time. Our
estimation of the total number of protocols is based on a manual review of
papers citing previous work starting with Hashgraph [6] and Tangle [7] - in
Google Scholar and their related work sections. This count, intended as a
rough approximation, highlights the growing diversity and interest in DAG
protocols.

DLTs using a layered model, categorizing them into chained,

chainless, and hybrid types, providing a high-level overview

that includes both blockchain and non-blockchain structures.

Kannengießer et al. [11] analyze various DLT characteristics

and the inherent trade-offs between them, highlighting the

diverse operational and structural choices within DLT sys-

tems. Wu et al. [12] review both chain-based and DAG-based

ledgers, offering a taxonomy that differentiates consensus

mechanisms and structural variations. They also identify open

research questions relevant to each category, giving insights

into potential future developments.

II. DAG-BASED CONSENSUS IN A NUTSHELL

A DAG-based consensus protocol arranges blocks in a DAG

instead of a linear chain. The directed edges in the DAG

establish a causal order linked by cryptographic means, pro-

viding evidence of node communication. Nakamoto’s proposal

already presents this concept of causal dependency, but DAG-

based consensus protocols use it more explicitly. Crucially,

the architecture allows each block to reference multiple pre-

decessors, thereby facilitating the inclusion of more blocks.

This contrasts with the traditional blockchain approach, which

privileges the blocks along the longest chain.

More precisely, the DAG consists of vertices and directed

edges between them. Each vertex represents a block, while

the directed edges represent the relationships between these

vertices. Specifically, an edge between two vertices represents

a partial order relationship, where one vertex verifies, confirms,

or witnesses the other vertex. An edge represents a hash

reference from one vertex to another. In this way, a reference

gives a causal order of the vertices (blocks). The fact that the

DAG is acyclic and thus does not contain any cycle guarantees

the absence of circular dependencies in our DAG structure. We

also refer to Figure 1 for an illustrative comparison between a

blockchain and a (block)DAG.
In a traditional linear blockchain, the longest chain rule

serves two purposes: 1) agreeing on the included blocks and 2)

establishing their order. Transitioning to DAG-based structures

necessitates redefining these mechanisms due to the non-linear

nature of DAGs. Two principal categories of protocols have

emerged: those that perform both tasks directly on the DAG

itself and Byzantine Fault Tolerant (BFT) protocols that utilize

supplementary broadcast primitives for the agreement on the

included blocks.

Within this SoK, the analysis of principal design decisions is

essential. These decisions determine the structural and opera-

tional attributes of the underlying DLT systems and impact

scalability, security, and efficiency. Such scrutiny is crucial

for comparing the attributes and constraints of different DLT

architectures. Therefore, we will present these design choices

for DAG-based DLTs.

A. Ordering

In distributed ledgers, consensus is often associated with

establishing a total ordering of blocks. However, total ordering

is not always essential, particularly for payment systems (e.g.,

[13]–[15]). In these cases, a partial ordering—provided natu-

rally by the underlying DAG structure—can be sufficient to

confirm transactions. This approach can significantly improve

throughput and efficiency for applications that do not rely on

strict sequential processing of transactions.

B. Ledger Model

Most consensus protocols are agnostic to the underlying

ledger models as they rely on a total ordering of transac-

tions. However, some protocols, like those in SPECTRE [16],

IOTA [17], and Avalanche [18], deviate by adopting a partial

order, challenging the idea that total ordering is indispensable.
Two prevalent ledger models serve as the backbone for

transaction management:

1) UTXO (Unspent Transaction Output): In a UTXO model,

transactions are transfers of value from previous transac-

tion outputs to new unspent outputs in an inductive way.

New unspent transaction outputs are called UTXO and

are used as inputs for new transactions. Bitcoin [5], and

Cardano [19], epitomises this approach. It was adapted

to the DAG-setting by IOTA [17] and Avalanche [18]1

since it sidesteps the need for total ordering by structuring

the UTXOs as a DAG, promising higher parallelism in

transaction processing.

2) Account-based: In an account-based model, each public ad-

dress is considered an account. Each account has a balance

associated with it. Transactions signify direct value trans-

fers between these accounts, enabling a straightforward

balance update mechanism exemplified by Ethereum [20].

1The Avalanche crypto project is no longer pursuing the case of UTXOs
and their Avalanche consensus protocol on its main net and currently uses an
account-based ledger state with a consensus protocol named Snowman.



Object-based and message-based models offer a more gen-

eral description of possible ledger models. In object-based

ledgers, such as the UTXO model, transactions modify objects

and thus only affect local states. Due to its localized change

impact, this model naturally lends itself to sharding solutions.

The causality in object-based models forms a DAG, suggesting

that many scenarios do not require a total ordering of trans-

actions thanks to their innate parallelism, as explored in the

reality-based ledger model [21]. Conversely, message-based

ledgers conceptualize transactions as messages that induce

changes across a global state, highlighting a fundamental

distinction in how transactions are processed and effectuated.
A mention of owned and shared objects and how they

interplay in contemporary platforms like SUI [22] further

refines this classification, showcasing a transition towards more

granular and flexible state management within DLTs. Such

differentiation could enhance understanding and stimulate the

development of more scalable ledger solutions, as done in [23].

C. Consensus Participation and Writing Access

The model of consensus participation determines who can

validate and contribute to the DAG. This model directly

impacts the system’s openness, security, and decentralization.

Consensus participation generally falls into four categories:

1) Lottery-based: Participation is determined by a Proof-of-

Work (PoW) or Proof-of-Stake (PoS) lottery mechanism,

where nodes are selected based on computational work or

stake holdings.

2) Permissioned: Participation is restricted to a predefined

set of validators granted access by the network initiator

or governed by protocol-defined rules. All participants are

typically aware of one another.

3) Committee-based: A rotating subset of validators is selected

to participate in consensus for a designated period, allowing

for flexibility while maintaining control over participation.

4) Open Participation: Any node can join as a validator

without permission, allowing fully open participation in the

consensus process.

Recent work by Lewis-Pye and Roughgarden [24] outlines a

hierarchy of “degrees of permissionlessness” describing how

participants’ knowledge affects the consensus mechanism.
While many permissioned protocols could theoretically

incorporate committee-based selection, we categorize them

as permissioned unless committee selection is explicitly ad-

dressed in their theoretical design.
Writing access, or the ability to propose new blocks, typ-

ically aligns with consensus participation. However, specific

protocols like [17] and [25] may allow broader access to block

proposals while limiting consensus participation to a subset of

nodes, balancing decentralization and efficiency.

D. Network Model

Consensus protocols are designed based on different net-

work models that describe how communication occurs between

the participants. These models are often defined by the poten-

tial power of an adversary to control message delays. Three

commonly used communication models are synchronous, asyn-

chronous, and partially synchronous. To comprehend these

models, it is essential to have a formal understanding of the

following key concepts in network systems.

The delay parameter ∆ defines the maximum delay (in

time steps) a message suffers in a synchronous phase. The

parameter ∆ is known upfront to the nodes in the protocol.

The Global Stabilization Time (GST) dictates when the un-

derlying communication network switches from asynchronous

to synchronous. Unlike ∆, GST is not known upfront in the

protocol and can be chosen by an adversary. More precisely:

1) Synchronous: In a synchronous model, the messages be-

tween nodes are delivered within known and predictable

time frames. Nodes follow a common global clock or

synchronized time intervals to operate in lockstep. In short,

for any message sent, an adversary can delay its delivery

by at most ∆. This model is used in time-sensitive systems,

making it suitable for some DLT-based real-time systems.

2) Asynchronous: In an asynchronous model, the messages

between nodes experience varying delays. An adversary can

delay the delivery of any message sent by any finite amount

of time, but eventually, the message gets delivered. This

offers the most flexibility, as message delivery times are

unpredictable. This model is standard and used in scenarios

where global synchronization is impractical.

3) Partially Synchronous: In a partially synchronous model,

messages are delivered within an unknown finite time. In

the equivalent eventually synchrony model, the GST event

will occur after a certain, unspecified time has passed.

Moreover, any message sent at time t must be delivered

by time ∆ + max(t,GST). This model offers a balance

between flexibility and accuracy. Nodes in this model aim

to operate with timers that can measure time ∆ after an

event, and there is no guarantee about the exact timing of

message deliveries. These models are common in network

environments where transient conditions may cause disrup-

tions. After GST, the network guarantees that messages

are delivered within the delay parameter ∆, providing

a window of predictability that can be very useful for

consensus algorithms, especially in fault-tolerant systems

that must operate under the assumption of periodic network

instability. This model is particularly relevant for DLT

systems that aim to achieve consensus despite unpredictable

network conditions.

E. Dynamic Availability

In certain consensus protocols, as highlighted by Neu et

al. (2022) [26], nodes operate within a fluid participation

framework that aligns well with consensus algorithms built

on the “sleepy” model, put forth by Pass and Shi (2017) [27].

In these consensus protocols, nodes can exhibit dynamic avail-

ability, seamlessly transitioning between periods of activity and

dormancy up to a specified Global Awake Time (GAT). After

this moment, an assumption is made that all honest nodes will

be consistently online, facilitating consensus in an environment



reflective of real-world participation and connectivity patterns.

Thus, dynamic availability ensures transactions are processed

and finalized despite any transient fault.

F. Additional Broadcast Primitive

DAG-based consensus protocols adopt different strategies

to ensure the reliable propagation of blocks. These strategies

can be broadly classified based on their reliance on additional

reliable broadcast primitives.

Many DAG-based systems use established Reliable Broad-

cast (RB) protocols [28] to distribute blocks. These systems

implement an RB protocol as an additional layer, ensuring

consistent and reliably disseminated information among nodes,

even in the face of network challenges or adversarial behaviour.

Conversely, some protocols employ the blockDAG structure

itself to replicate the functionality of a reliable broadcast

mechanism. The DAG’s architecture inherently distributes data

across the network so that blocks are organically verified and

propagated without needing a specialized RB protocol.

Both approaches aim to maintain a secure and coherent state

across distributed participants. However, they differ fundamen-

tally in whether they view the blockDAG as sufficient for

reliable broadcasting or require an additional overlay of RB

protocol to strengthen information dissemination and security.

The additional use of RB typically influences latency by

increasing it for several network rounds.

G. Adversarial Model

The adversary model defines attacker capabilities essential

for setting security parameters and building resilient consen-

sus mechanisms. Typically, these models assume adversaries

with bounded computational power, limited to polynomial-

time algorithms or unbounded power, capable of breaking

cryptographic primitives. This model is intrinsically connected

to the network’s communication model. The FLP impossibility

result, [29], highlights the challenges of achieving consensus

in a purely asynchronous network with just one faulty node.

To address this, DLTs may assume partial synchrony or in-

corporate elements of randomness to secure consensus against

adversarial actions within probabilistic bounds. In systems that

use PoW and PoS offering probabilistic finality, the critical

threshold is 50%. This means that if more than 50% of the par-

ticipants are honest and not faulty, the network is operational,

guaranteeing safety and liveness. On the other hand, BFT

mechanisms adopt a 2/3 threshold, requiring more than 2/3 of

honest and non-faulty nodes, and offer a deterministic finality.

These two thresholds are fundamental to the security models

of DLTs and reflect a balance between resilience to adversarial

control and consensus outcome under varying assumptions of

network synchrony.

H. Leader-based V/s Leaderless Consensus

Consensus mechanisms within DLTs typically adopt either a

leader-based or a leaderless structure. Leader-based consensus

protocols designate a leader to propose an orderly view of

the ledger transactions. This view becomes committed when a

sufficient consensus, or votes, affirming the view is reached.

Leaders may be chosen through various mechanisms, such as

PoW/PoS lottery or a round-robin selection.

In contrast, leaderless consensus protocols decentralize the

proposal process, with decisions emerging from the collective

input of all nodes.

I. Mempool

For protocols where writing access is probabilistic or

requires selection from a group, such as lottery-based or

committee-based systems, a mempool is essential.

A mempool, short for memory pool, is a temporary storage

for transactions broadcasted to the network but not yet included

in a block. The mempool serves several important roles:

1) Transaction Queue: It acts as a queue for pending trans-

actions, maintaining them in an accessible state until they

are selected and confirmed by a node with writing access.

2) Prioritization: The mempool can prioritize transactions

based on specific criteria, such as fee rates, ensuring that

transactions with higher fees are confirmed more quickly.

3) Availability: It ensures that transactions remain avail-

able for selection and confirmation, even when uncertain

which node will write the next block into the ledger.

4) Synchronization: In systems with multiple potential writ-

ers or validators, the mempool is crucial for synchronizing

the state across these entities, allowing them to view and

validate the same set of unconfirmed transactions.

Some protocols use a blockDAG as a distributed mempool

for pending transactions, eliminating the need for a separate

mempool structure. The blockDAG then maintains a real-time

“ledger” of unconfirmed transactions, making the system more

transparent and accessible. This more structured mempool can

mitigate transaction duplicates; see also discussion in Section

VII.

J. Finality

Finality refers to the point at which a transaction or a block

of transactions is considered irreversible, permanently part of

the ledger, and its execution is settled. Finality comes in two

forms: probabilistic and deterministic (or absolute).

1) Probabilistic Finality: It means the order of a block can be

reverted, but the risk decreases as it gets more embedded

in the blockchain or blockDAG. In PoW systems, finality

is probabilistic, and in most cases, the probability of a

block being reverted decreases exponentially over time.

2) Deterministic Finality: It ensures that the order of a block

or the presence of a transaction in the ledger is permanent

once it is recorded. Protocols that use BFT ideas usually

offer deterministic finality. They require an agreement

2The finality results included here represent claims or descriptions by the
respective protocol authors. Many protocols listed lack complete formal proofs
within their stated models, and results are often based on suggested behaviour
rather than rigorous validation.

3The network model is not always given explicitly in the corresponding
papers. In this case, we attempt to classify it based on the information in the
paper. These cases are marked by this footnote.



TABLE I
OVERVIEW OF DAG-BASED CONSENSUS PROTOCOLS

Protocol Participation

Additional

Broadcast

Primitive

Additional

Mempool

Leader-

based

Dynamic

Availability
Ordering Finality2 Network Model3 Innovation/Relation

Nakamoto [5] PoW No Yes Yes Yes Total Probabilistic Synchronous Genesis of blockchain and cryptocurrencies

GHOST [30] PoW No Yes Yes Yes Total Probabilistic Synchronous3 Improved upon Nakamotos’s chain structure for higher throughput using heaviest chain selection

Inclusive [31] PoW No Yes Yes Yes Total Probabilistic Synchronous3 Evolved from GHOST, presents a game-theoretic model for reward among miners.

Byteball [32] Open No Yes No Yes Total Deterministic Synchronous3 Witness nodes for syncing and ordering transactions using main chain index (MCI)

SPECTRE [16] PoW No Yes No Yes Partial Probabilistic Partial Synchronous Further evolved from GHOST, prioritizing fast confirmations using pairwise voting

PHANTOM [33] PoW No Yes No Yes Total Probabilistic Synchronous Introduced k-cluster for better structure over SPECTRE’s DAG

GHOSTDAG [33] PoW No Yes No Yes Total Probabilistic Synchronous Focused on reducing latency and refined k-cluster approach

DAG KNIGHT [34] PoW No Yes No Yes Total Probabilistic Partial Synchronous3 Parameterless expansion from GHOSTDAG without latency bounding

Prism [35] PoW No Yes Yes Yes Total Probabilistic Synchronous Separated consensus functions into multiple parallel chains

GHAST [36] PoW No Yes Yes Yes Total Probabilistic Synchronous Tree-graph approach and adaptive mechanisms for performance and security

Hashgraph [6] Permissioned No No No No Total Deterministic Asynchronous First optimistic DAG with fair ordering derived from block’s timestamps

Jointgraph [37] Permissioned No No Yes No Partial Deterministic Synchronous3 Improves throughput and latency of Hashgraph using a supervisor node with additional events

Aleph [38] Permissioned Yes Yes No No Total Deterministic Asynchronous Round-based DAG with retrospective randomized leader selection

DAG-Rider [39] Permissioned Yes Yes No No Total Deterministic Asynchronous Reduced latency compared to Aleph by a new commit rule

Avalanche [18] Permissioned No No No No Partial Probabilistic Synchronous Introduced leaderless consensus using repeated sub-sampled querying

OHIE [40] PoW No Yes No Yes Total Probabilistic Synchronous Many parallel instances of the Nakamoto consensus

Parallel Chains [41] PoW / PoS No Yes No Yes Total Probabilistic Partial synchronous theoretical framework for optimistic throughput

Expected consensus [42] PoS No Yes No Yes Total Probabilistic Synchronous Increased throughput and adapted consensus for storage resource

Nano [43] Open No Yes No Yes Partial Deterministic Synchronous3 Block-lattice structure allowing asynchronous updates

Chainweb [44] PoW No Yes No No Partial Probabilistic Synchronous3 Employs simple payment verification (SPV) for token transfer

Meshcash [45] PoW No Yes No Yes Total Deterministic Asynchronous Ebb-and-flow type protocol

Tusk [46] Permissioned Yes Yes No No Total Deterministic Asynchronous Mempool management by Narwhal, resulting in high throughput; Tusk orders digests of blocks

Bullshark [47] Permissioned Yes Yes Both No Total Deterministic Partially Synchronous / Asynchronous Improved latency by introducing new commit rule; garbage collection and timely fairness after GST

Cordial Miner [48] Permissioned No No Both No Total Deterministic Asynchronous Reduced latency by using best effort broadcast and committing leader blocks

Tangle 2.0 [17] PoS No No No No Partial Deterministic Synchronous3 Conflict resolution using the DAG and reality-based ledger state

BBCA-Chain [49] Permissioned Yes Yes Yes No Total Deterministic Partially Synchronous Latency reduction by several network trips by using a new BBCA primitive for leader blocks

Mysticeti [23] Permissioned No No Yes No Total Deterministic Partially Synchronous Pipelined leader schedule, fast finality for owned object transactions, epoch-closing mechanism

Shoal [50] Permissioned No No Yes No Total Deterministic Partially Synchronous Improved the latency compared to Bullshark by pipelining leader blocks

Shaol++ [51] Permissioned No No Yes No Total Deterministic Partially Synchronous Optimised latency by operating multiple DAGs in parallel.

Sailfish [52] Permissioned No No Yes No Total Deterministic Partially Synchronous Reduced latency compared to Shoal by having multiple leaders every round and novel commit rule

Mahi-Mahi [53] Permissioned No No Yes No Total Deterministic Asynchronous Reduced latency compared to Cordial miners through boost rounds

Slipstream [54] Permissioned No No No Yes Total Deterministic Partially Synchronous Ebb-and-flow DAG-based protocol and fast path confirmation on DAG

from at least a supermajority of the validators, making

it irrevocably part of the ledger.

Additionally, some DLTs with DAG structures may initially

only offer probabilistic finality. However, they can obtain

deterministic finality by designating special roles; for instance,

witness nodes in Byteball [32] or nodes creating snapshot

chains in Vite [55] and IOTA 2.0 [56].

K. Overview

Table I presents a diverse range of DAG-based consen-

sus protocols, their underlying models, technical specifica-

tions/features, and key innovation ideas. The column “Innova-

tion/Relation” highlights the novel contributions of each pro-

tocol or delineates its evolution from preexisting technologies.

III. DAG-BASED CONSENSUS PROTOCOLS

In distributed systems, consensus is crucial for agreeing on

a single version of the system’s state. In DAG-based DLTs,

nodes collaboratively build a blockDAG and agree on a subset

of interconnected blocks called a prefix4 to ensure a shared

understanding of the ledger’s history. Once nodes agree on

this prefix, they can establish a total ordering for the included

transactions. In certain protocols, they might only ascertain a

partial ordering, which can suffice for transaction execution

depending on the chosen ledger model, see Section II-B.

As we develop our systematization, it’s essential to recog-

nize the fundamental limitations imposed by the CAP theorem.

This theorem states that any distributed system can achieve a

4A prefix in this context is a set of blocks in a DAG which is closed by
causal order relations imposed by the DAG.

maximum of two out of three key properties - consistency,

availability, and partition tolerance - at the same time. Our

SoK is based on this principle, which guides our analysis and

comprehension of the inherent trade-offs and design choices.

It’s important to note that these properties are defined origi-

nally in [57], but we emphasize the need to interpret them in

the current context, e.g., [58]. The exact definition varies, and

we give the definition provided by Brewer in [58].

The CAP theorem states that any networked shared-data

system can have at most two of three desirable properties:

• Consistency (Safety): consistency (C) equivalent to having a

single up-to-date copy of the data;

• Availability (Liveness): high availability (A) of that data (for

updates); and

• Partition Tolerance: tolerance to network partitions (P).

In the above, we informally correlate “consistency” with

“safety” and “availability” with “liveness,” despite recognising

that these terms traditionally describe distinct concepts within

distributed systems literature. This correlation hopefully high-

lights the most essential trade-offs in DAG-based DLT systems.

Given these constraints, DAG-based consensus protocols

face trade-offs and are classified into two primary classes.

1) Availability-focused Protocols:

Focusing primarily on maintaining the continuous progress

of the ledger, most of these protocols use variations of a

weighted5 lottery, where nodes are randomly selected to

propose new blocks to the DAG and vote on the existing

ones. Such protocols are typically suited for permissionless

5For instance, the weight could be computing power, stake, or storage.



TABLE II
CATEGORIZATION OF CONSENSUS PROTOCOLS IN DAG-BASED DLTS

DAG-based consensus protocols

Availability-Focused Consistency-Focused
Structured DAG Unstructured DAG Optimistic DAG Certified DAG

Expected consensus [42] SPECTRE [16] Hashgraph [6], [59] Aleph [38]
Inclusive [31] PHANTOM [60] Jointgraph [37] DAG-Rider [39]

GHAST/Conflux [36], [61] GHOSTDAG [33] Cordial Miners [48] Tusk [46]
OHIE [40] DAG KNIGHT [34] Tangle 2.0 [17] Bullshark [47]

Chainweb [44] Slipstream [54] Mysticeti [23] BBCA-Ledger [62]
Parallel chains [41] Byteball [32] Slipstream [54] BBCA-Chain [49]

Prism [35] Meshcash [45] Mahi-Mahi [53] Shoal, Shoal++ [50], [63]
Graphchain [64] Sailfish [65]
Avalanche [66]

or dynamically available settings [24]. In this setting, a po-

tentially large number of entities participate in the consen-

sus process, and the list of active participants is unknown

and changing over time. Canonical examples of availability-

focused consensus protocols among linear blockchains are

Nakamoto consensus [5] and Ouroboros [67]. When ap-

plied in a DAG-based architecture, this approach manifests

in different forms, including structured and unstructured

DAGs. It is worth noting that, if guaranteed, finalization in

availability-focused protocols is often probabilistic.

a) Structured DAG: These protocols enforce strict block

addition rules, keeping an organized DAG topology.

b) Unstructured DAG: These protocols represent a more

flexible approach to DAG construction, where nodes

have greater liberty in attaching new blocks without

stringent adherence to predefined rules. However, the

trade-off often lies in increased complexity for achiev-

ing consensus and validating transactions.

2) Consistency-focused Protocols:

The protocols of this type prioritize ledger consistency

by drawing from classical Byzantine Fault Tolerant (BFT)

protocols [28], [68], [69]. Consistency is mostly achieved in

permissioned and quasi-permissionless environments, e.g.,

see [24]. These protocols can be further categorized based

on how participants disseminate their blocks.

a) Optimistic DAG: In these protocols, block dissemi-

nation is done through the best-effort broadcast, i.e.

sending blocks to other nodes without providing any

guarantees about the uniqueness of the blocks. Thereby,

such protocols require mechanisms to handle equivoca-

tion.

b) Certified DAG: These protocols employ reliable and

consistent broadcast primitives for block dissemination.

This means that every block in a locally maintained

DAG can be seen as a certificate signed by a quorum

of nodes. Such protocols ensure participants maintain

a consistent DAG view.

We depict Table II to show which consensus protocols fall in

which category. The subsequent subsections will explore these

categories, analyzing key protocols and their innovations.

A. Availability-focused Protocols with Structured DAG

1) Parallel instances of Nakamoto consensus: The most

straightforward approach to improve Bitcoin’s scalability is to

execute m concurrent instances of the Nakamoto consensus

protocol as proposed in Parallel Chains [41] and OHIE [40].

Mining simultaneously and uniformly for all m chains is

achieved by a similar technique in both protocols. A newly

mined block must include the digests of the latest blocks from

all chains, and a miner remains unaware of which chain a

new block will extend until it solves the PoW puzzle. After

successful mining, the block’s hash value decides which chain

it belongs to.

Establishing total ordering on parallel chain architectures

can be achieved in different ways. In OHIE, a ranking system

for blocks is used. Each block is equipped with a current

rank and a next rank; the current rank mirrors the next rank

of its referenced predecessor, while the next rank represents

the highest current rank observed across all chains. Parallel

Chains employs a different strategy, where one specific chain

is designated for synchronization. Each block in the parallel ar-

chitecture references a block from this synchronization chain.

The chronological order of the entire network is then inferred

based on the sequence of blocks in this special chain.

Parallel Chains and OHIE guarantee the same safety prop-

erties as the Nakamato Consensus, [5], and improve either

the throughput or latency, as their scalability does not offer

both desired features simultaneously. Multiple other protocols

can also fall into this category, e.g., Chainweb [44], but

they degrade in security or latency compared to Nakamoto

consensus. Nano [43], Vite [55] protocols follow a similar

concept where participants maintain their parallel chains.

2) Decoupling block’s functionalities: A conceptual ap-

proach suggested in Prism [35] to augment scalability in paral-

lel chain architectures involves deconstructing the multifaceted

functionalities of blocks, as seen in Nakamoto’s consensus.

Traditionally, blocks in Bitcoin simultaneously fulfil three

key roles: 1) leader election, 2) transaction proposing, and

3) voting on the causal history through parent links. Prism

proposes a clear segregation of these functions into distinct

types of blocks, each dedicated to a specific purpose, such as

transaction processing, block proposal, and voting.



This segregation results in the formation of different types

of chains within the architecture. Primarily, it creates one

proposer chain, where each block references a preceding block

within the proposer chain and several transaction blocks. In

parallel, m vote chains emerge, with each chain functioning

to cast votes determining the total order of blocks within the

proposer chain. Such a structural reorganization clarifies the

roles within the blockchain and allows high throughput, low

(constant) latency, and the same safety guarantees as in the

Nakamoto consensus.

Note that there are predecessors of Prism where functionali-

ties of blocks are decoupled, e.g., FruitChain [70], Bitcoin-NG

[71], but have not improved some other aspects, e.g., latency.

3) Tree-structure in a DAG: In GHAST (Greedy Heaviest

Adaptive SubTree) [36], [61], each block except genesis has

precisely one outgoing parent edge and can have multiple

outgoing reference edges. The parent edges construct a tree

within the broader DAG, and the reference edges establish

temporal precedence, indicating that the referenced block

predates the block containing the reference. Once a winning

chain within the tree is selected, a deterministic order over

all referenced blocks can be established. The selection of

this winning chain is influenced by the weights assigned to

each block, akin to the GHOST protocol [30]. Here, the

fork choice rule systematically favours the heaviest subtree

at every fork, typically equating block weight with the extent

of computational work done.

GHAST diverges from traditional protocols in its adaptive

response to potential liveness attacks. During such scenarios, it

modifies the weight distribution among blocks. While normally

all blocks carry equal weight, under attack detection, the

protocol randomly selects a few blocks to assign non-zero

weights and keeps the expected block weight at the same level.

In Inclusive [31], the main idea was to include transactions

from all the blocks in the ledger. An inclusive rule is defined to

select a main chain from the DAG, and further non-conflicting

blocks from the outside DAG are appended to the final block

structure. The Inclusive protocol also rewards miners whose

blocks are not in the main chain but are contained within the

DAG.

4) Round-based chain of tipsets: Another attempt to im-

prove the latency of Nakamoto’s consensus was suggested in

Expected Consensus [42]. This heaviest-chain style protocol

operates in rounds. Each round involves a cryptographic sor-

tition on the weighted list of participants. It is parametrized

such that, on average, a given number of m participants may

be eligible to propose a block every round. Every block must

reference a tipset, a set of blocks sharing the same round and

a parent tipset. Every block adds weight (determined by the

sortition) to the chain of tipsets, and the consensus is achieved

by following the heaviest chain of tipsets.

B. Availability-focused Protocols with Unstructured DAG

1) Unstructured Block-DAG protocols: The GHOST pro-

tocol [30] diverges from Nakamoto’s longest chain rule in

selecting the Greedy Heaviest-Observed Sub-Tree. This en-

ables shorter intervals between block creations without com-

promising security, a concept explored in [72] in further detail.

GHOST capitalizes on the proof of work in “off-chain” blocks,

traversing the tree-like structure that emerges from chain

forks. This alternate selection method for the main chain is

specifically tailored to mitigate issues associated with network

latency.

The SPECTRE [16] protocol focuses on building a

blockDAG structure with separate mechanisms for mining and

consensus, leading to a notion of weak liveness for higher scal-

ability. SPECTRE uses a recursive weighted voting technique

where each new block in the DAG submits votes (preference

ordering) over every pair of blocks based on which block

they believe occurred first. The final ordering in SPECTRE

is based on the majority vote on pairwise ordering across all

the blocks. However, this ordering is not extendable to a total

order due to Condorcet paradox [73]. While SPECTRE only

achieves partial ordering, it works under a partial synchronous

network model. This partial ordering makes SPECTRE suitable

for payment systems but not for systems that rely on account-

based ledgers.

PHANTOM [60] is an extension of the SPECTRE protocol.

It aims to achieve a total ordering but under a synchronous

network model. PHANTOM works by separating block cre-

ation or mining from the consensus mechanisms. It builds on

the intuition that blocks created by honest miners are well-

connected, while adversarial blocks are not well-connected and

thus should be excluded. The notion of k-cluster expresses

this well-connectedness. Once this k-cluster is determined, a

total block order is established via a topological ordering. The

synchronicity assumptions become apparent in the choice of

the parameter k, which depends on the latency. Moreover, the

identification of such k-cluster is NP-hard, GHOSTDAG, [33],

is proposed as a practical alternative; it also addressed possible

attack vectors, pointed out by [74].

DAG KNIGHT [34] is an evolution of GHOSTDAG. Unlike

GHOSTDAG, DAG KNIGHT assumes no upper bound on

network latency. It leverages a dual min-max optimization

approach to dynamically find the largest k-cluster for each

k, selecting the minimal k covering at least 50% of the DAG.

This design accommodates latency variations for safety and

provides a responsive protocol to actual network latency rather

than a hard-coded latency bound as in GHOSTDAG.

Meshcash [45] is a framework containing two layered pro-

tocols to reach a consensus on the blocks added to the DAG

using PoW. The blocks are arranged in layers; each block

belongs to a layer and refers to blocks in the previous layer.

The consensus protocol is an ebb-and-flow style consensus

protocol [75] with a slower protocol that favors safety and

a faster one that favors liveness. The slower protocol works

for the blocks in the far past (in old layers), where a weighted

voting is performed to decide on the consistency of the blocks.

Tangle 2.0 [17] employs a unique approach to conflict

resolution, preventing the locking of funds by actively voting



on conflicts within the DAG. Leveraging the reality-based

ledger [21], transactions can be treated optimistically, allowing

nodes to build on unresolved or unconfirmed transactions. This

approach enables concurrent versions to coexist within the

ledger without requiring strict total ordering.

The Slipstream protocol, [54], is also ebb-and-flow style

consensus protocol [75]. As such, it offers two types of

block orderings: an optimistic ordering, which is live and

secure in a sleepy model under up to 50% Byzantine nodes,

and a final ordering, which is a prefix of the optimistic

ordering and ensures safety and liveness in an eventual lock-

step synchronous model under up to 33% Byzantine nodes.

Slipstream utilizes wall clocks instead of Lamport clocks,

allowing for dynamic availability in the network. Each node

in Slipstream generates commitments based on its view of

the local DAG and the online nodes within fixed-duration

time intervals (rounds). Each commitment represents a hash

of the accepted data (e.g., blocks and transactions) within

that round, linking to the commitment of the previous round

to form a commitment chain. This chain, representing the

prefix of a DAG, allows the network to progress and maintain

the available ledger state even during partitions. When a

partition resolves and a supermajority of validators is online,

nodes merge the commitment chains, resuming finalization.

Slipstream also incorporates a UTXO payment system that

enables fast transaction confirmation independently of block

ordering. During synchrony, transactions can be confirmed in

three rounds, with unconfirmed double spends resolved using

the DAG structure in a novel approach.
2) Unstructured Transaction-DAG protocols: This class

includes protocols that append transactions directly in their

DAGs without the block as a wrapper, e.g., Graphchain [64].

The Byteball [32] protocol allows users to add transaction

units to the DAG by signing them. These units are linked in the

DAG, containing hashes of prior units to confirm their validity

and create a partial order. Users choose trustworthy nodes,

called witnesses, based on their reputation. These witness

nodes periodically generate transaction units that help compute

a main chain in the DAG. Consensus is then found by the total

ordering of the transaction using the main chain.

Avalanche [66] protocol allows nodes to repeatedly query a

random group of nodes about the validity of a transaction.

Further, to be able to vote on several transactions at the

same time, the nodes employ a DAG structure. When a

node promptly accumulates sufficient positive responses for

its query, it solidifies its decision. Critiques have emerged

regarding the security (especially liveness) of the protocol [76],

[77], and the Avalanche project stopped working on the DAG-

version of the consensus and maintains a chain version of it.

C. Consistency-focused Protocols with Optimistic DAG

The protocols in this category rely on validators, a special

subset of nodes with a non-zero weight in the voting process.

Blocks are propagated using best-effort broadcast or gossiping

protocol. During this propagation, the nodes need to ensure that

the recipient of the new block also knows the causal history of

the block. In optimistic cases, this can result in fewer network

trips to achieve block finality. Typically, these protocols can

tolerate adversarial validators holding less than 1/3 of the total

weight. It will be convenient to refer to validators holding more

than 2/3 of the total weight as a supermajority, and the main

assumption in the following protocols is there exists an honest

supermajority of validators.

One main problem of reliable or consistent broadcasting

blocks among the validators is the problem of equivocations.

This describes the situation where a validator presents different

blocks to different parts of the network. In the following

protocols, the DAG structure is used to avoid equivocations

using a mechanism of double approvals. Specifically, a block

X is approved by a block Y if X is reachable from Y in

the DAG and the block creator of X does not equivocate in

the causal history of block Y. A block X is doubly approved

by a block Y if a supermajority of blocks exists in the causal

history of block Y. Each validator can be shown to have at most

one block in a given round, which is doubly approved by a

supermajority of nodes. The idea was introduced in Hashgraph

[6], [59], and its variation was used in other protocols.

Hashgraph suggests constructing a DAG by gossiping over

gossiping events6. In this protocol, each node maintains its

chain of events. When receiving an event block from another

node, it randomly selects at least one peer to disseminate

information about its current knowledge about blocks, e.g.,

a new block within the maintained chain is created which in

addition references the received block. A node advances to the

next round once its block doubly approves a supermajority of

blocks from the previous round.

By employing this idea of double approval in the resulting

DAG structure, the Hashgraph protocol decides when the

network reliably receives each event. The received timestamp

is then assigned, and the total ordering is achieved by sorting

events over the received timestamps.

Jointgraph [37] reduces the number of voting rounds in

Hashgraph by introducing a supervisor node. An event in

Jointgraph is final if the event receives more than 2/3 votes

from the nodes in which one of the votes is from the supervisor

node. The supervisor node also creates snapshots and storage

events to finalize the events from the ordinary nodes and

provide a total order. When the supervisor node is offline,

Jointgraph switches to the Hashgraph process.

Cordial Miners [48] is a family of simple and efficient DAG-

based consensus protocols with instances for the asynchronous

and eventual synchronous models. Similar to Hashgraph, the

core idea of Cordial Miners is to utilize the constructed

optimistic DAG, called the blocklace, for different tasks such

as block distribution, equivocation-exclusion, and block or-

dering. While Hashgraph uses timestamps for ordering, Cor-

dial Miners commit leader blocks, and the slices between

committed leader blocks result in ordering. The blocklace is

fragmented into waves using the rounds assigned to blocks.

Each wave could have at most one committed leader block

6In Hashgraph, the term an event is used instead of a block



chosen using either a round-robin for a partially synchronous

network model or a retrospective random selection for an

asynchronous network model.

It has been shown [13] that a system that enables participants

to make simple payments needs to solve a simpler task. In

cases where payments are independent of one another (e.g.

single-owned token assets or UTXO transactions), there is

no necessity to order them, and partial ordering is sufficient.

Hence, consensus is not required, and the payment system

can be realized deterministically in an asynchronous network

setting. Flash [15] is built by encoding payment transactions

into the blocks of the blocklace (see Cordial Miners). The

resulting ordering is only partial and hence weaker than the

total ordering achieved by Cordial Miners.
Mysticeti [23] improves Cordial Miners for a partially

synchronous network. Compared to its predecessor, this con-

sensus protocol allows pipelined leader blocks to be used,

improving the finality time for average transactions and faster

confirmation in the presence of crashed nodes. It integrates

fast payment for owned object transactions using the same

underlying DAG and enables checkpoints and epoch-closing

mechanisms embedded into the DAG.
Mahi-Mahi [53] is a practical improvement of Cordial

Miners for an asynchronous network. Like Mysticeti, this

protocol allows multiple leaders to be committed per round.

In addition, Mahi-Mahi developed the commit rule of Cordial

Miners, which resulted in an improved average latency to

commit a leader.

D. Consistency-focused Protocols with Certified DAG

These consensus protocols are based on classical BFT

algorithms. These protocols are round-based, i.e., a node can

increase the round number only when the DAG contains

a quorum of blocks with the current round number. These

protocols optimize their performance by assigning leaders

for certain rounds and using special commit rules for leader

blocks. Committed leader blocks form a backbone sequence

that allows for the partitioning of the DAG into slices and the

deterministic sequencing of blocks in the slices.

Aleph [38] protocol improves the Hashgraph complexity

by building a round-based structured DAG and employing an

efficient binary agreement protocol [78]. Like the Hashgraph

protocol, Aleph separates the network layer (communication

DAG) from the protocol logic (virtual voting and ordering).

Every block created in Aleph is disseminated using a Byzan-

tine Reliable Broadcast (BRB) primitive. Thereby, nodes build

a certified DAG. The protocol operates in an asynchronous

network and utilizes a trustless ABFT Randomness Beacon to

circumvent the FLP-impossibility result, see [29], to reach a

total ordering.

DAG-Rider [39] is an asynchronous Byzantine Atomic

Broadcast (BAB) protocol. DAG-Rider creates the round-based

structured DAG similar to Aleph. DAG-Rider is constructed

in two layers: communication and ordering layer. In the

communication layer, nodes reliably broadcast their proposals

(messages) and form a DAG of the messages they deliver.

In each round of DAG-Rider, each node broadcasts at most

one message, which should contain references (strong edges)

to messages (i.e., at least 2f + 1) of previous rounds. The

message can also have references (weak edges) to messages of

rounds before the previous round. The weak edges ensure the

validity property of BAB. Furthermore, in the ordering layer

of DAG-Rider, each node observes its local DAG and locally

orders all the messages in DAG by employing randomization.

This randomization is achieved through a global perfect coin,

implemented using threshold signatures that circumvent the

FLP-impossibility result.

Narwhal & Tusk [46]: Narwhal is a DAG-based, structured

mempool incorporating concepts from reliable broadcast [79]

and reliable storage [80], with the addition of a byzantine

fault-tolerant threshold clock [81] for round advancement. The

Tusk protocol is built atop Narwhal to achieve asynchronous

consensus with minimal latency. This approach empowers each

node to reach a consensus on agreed-upon values by examining

its local DAG without additional messages.

Tusk refines DAG-Rider, transforming it from theory into an

implementable system. This is achieved through three pivotal

steps: Firstly, Tusk adopts a Quorum-based reliable broadcast

instead of the conventional reliable broadcast utilized in DAG-

Rider. Secondly, refining the commit rules enhances the latency

in common cases. Lastly, Tusk removes the weak links of

DAG-Rider, enabling efficient garbage collection.

Bullshark [47] is a zero-overhead BFT protocol on top

of the Narwhal’s DAG optimized for the synchronous case

and achieves substantially reduced latency compared to both

Tusk and DAG-Rider. In the partially synchronous version,

Bullshark is the most performant and robust compared to

existing protocols. Bullshark upholds all the desired properties

of DAG-Rider while reducing the common-case latency during

the period of synchrony. The main feature of the Bullshark

protocol is to exploit the synchronous periods and remove the

complex processes of view-change and view-synchronization.

Bullshark attains amortized complexity and addresses the

imperative facet of fairness. Shoal [50] reduces the latency of

non-leader blocks by interleaving two instances of Bullshark.

BBCA-Chain [49] introduces a new broadcast primitive,

called Byzantine Broadcast with Complete-Adopt (BBCA) to

reduce this latency and simplify the consensus logic. BBCA

is applied only for leader blocks, while Best-Effort Broadcast

(BEB) is applied for all other blocks. The nodes build the

DAG as a mixture of certified and optimistic approaches.

In addition, BBCA-Chain makes all rounds symmetric by

assigning leaders every round. Note that there has been a

similar effort; specifically, Sailfish [52] and Shoal++ [51]

assign a leader node for every round and allow committing

even before BRB instances deliver voting blocks.

IV. SECURITY AND ATTACK VECTORS

Consensus protocols must satisfy two essential properties:

safety and liveness. Safety ensures that all honest nodes agree

on a consistent state, free of conflicting information, while



liveness guarantees the continuous addition of new transactions

to the ledger.

Security assessments of consensus protocols are conducted

under specific theoretical assumptions, primarily defined by the

network model (see Section II-D) and the adversary model,

which is typically described by the proportion of faulty or

malicious nodes or weights in the system.

In academic analysis, security properties are proven to

hold under these assumptions. Often, specific attack vectors

reveal protocol vulnerabilities and help establish tight security

bounds, highlighting optimal adversarial strategies. Given the

varying theoretical approaches to analyzing protocol security,

we categorize only the main attack vectors relevant to DAG-

based consensus in the following section.

A. Attack Vectors

We focus here on attack vectors specific to the DAG

structure in consensus protocols, excluding general attacks like

Sybil, DDoS and Spamming, and double-spending attacks,

common across blockchain systems.

DAG-based protocols are susceptible to attacks that leverage

the following adversarial actions:

• Interfering with network communication (as constrained

by the network model) and withholding blocks selectively.

• Sending blocks to only a subset of honest nodes.

• Producing blocks beyond the protocol’s allowed rate (rele-

vant in PoS, committee-based, and permissioned systems,

but generally not in PoW protocols).

We categorize attacks by protocol focus—availability-

focused or consistency-focused—and by DAG structure (struc-

tured vs. unstructured) and certification type (optimistic vs.

certified). Availability-focused protocols are generally more

vulnerable to safety attacks, while consistency-focused pro-

tocols often encounter liveness issues.

Attacks are valuable in theoretical analysis, as they help

determine security bounds, and understanding their impact

ensures better security resilience. Below, we summarize several

key attack types relevant to DAG-based structures:

Balance Attack: A balance attack aims to keep a distributed

ledger system in an undecided or ”balanced” state, where the

network is split between at least two competing subDAGs.

This can lead to different outcomes depending on the protocol

type: for consistency-focused protocols, the attack causes live-

ness issues by stalling confirmation; for availability-focused

protocols, it creates safety issues by risking conflicting views.

The balance attack on Conflux [61] demonstrates this vul-

nerability under high throughput conditions [40]. By main-

taining balanced subDAGs, adversaries can manipulate the

protocol’s confirmation rules to induce either liveness or safety

issues based on the timing and visibility of the attack.

GHOST, although secure at low mining rates [72], is sus-

ceptible to balance attacks when mining rates increase [82],

[83], effectively limiting its throughput in a manner similar to

Bitcoin. Protocols that rely on GHOST, such as Inclusive [31]

and Conflux [61], inherit this limitation.

Recent advancements address this challenge in different

ways. GHOSTDAG [33] introduces a parameter to handle high

throughput, enhancing resilience against balance attacks, while

DAG-Knight [34] offers an adaptive solution by dynamically

adjusting protocol parameters based on the system’s through-

put.

Parasite-Chain Attack: In this attack, the adversary con-

structs a hidden subDAG in parallel to the honest DAG,

intending to replace it at some point. This is particularly

effective in protocols like IOTA’s Tangle and SPECTRE, which

rely on recent tip selection strategies [7], [16].

Equivocation Attack: Equivocation involves presenting dif-

ferent information to different nodes, leading to conflicting

states. This attack is challenging for deterministic systems

that aim for linearizability, as demonstrated in foundational

work on Byzantine fault tolerance [69], [84]. Every PoS

or permission system is concerned, and there is a natural

connection to the balancing attack.

Liveness Attack: Liveness attacks target the confirmation

or finalization of transactions by selectively slowing down

consensus. Leader-based DAG protocols face liveness risks

from attacks that delay leader block broadcasts, e.g., [53], or

introduce equivocation of the leader blocks, both of which

disrupt consensus progression.

Censorship Attack: Censorship attacks aim to exclude spe-

cific blocks or transactions by withholding blocks from par-

ticular nodes, hindering consensus progress. In Avalanche,

for example, selective censorship can cause liveness issues,

see [85], although recent work has proposed mitigations [18],

[86].

Fork-Bomb Attack: Initially described in [38], this spam

attack forces honest nodes to process excessive data, risking

system overload.

Data-Availability Attack: In this attack, adversaries withhold

blocks from certain parts of the network, risking protocol

stalling [38].

Table III provides an overview of these attack vectors

across different DAG-based protocols, categorizing protocols

analyzed under each type of attack. This categorization does

not imply vulnerability but indicates that the protocol has been

analyzed for resilience against these attacks. Additionally, the

presence of a protocol in a specific category suggests that the

respective attack vector may be relevant or of interest, given

the protocol’s design.

We also note the absence of attacks for certified DAGs.

This stems from the additional use of certificates and reliable

broadcast primitives. These external certificates present a pos-

sible attack vector, as the block signature flood attack for Tusk

studied in [87].

V. DESIRABLE PROPERTIES

A. Ordering

Ordering in distributed ledgers refers to the organization

of vertices (blocks/transactions). In blockchain, blocks are

typically organized linearly, while in DAG-based systems,



TABLE III
STUDIED ATTACK VECTORS IN DAG-BASED DLTS

Availability-Focused Consistency-Focused
Structured DAG Unstructured DAG Optimistic DAG Certified DAG

Balance Attack [31], [36], [40], [42], [61] [7], [17], [32], [88], [89]
Parasite-Chain Attack [7], [16]
Equivocation Attack [42] [6], [23], [37], [48], [90]

Liveness Attack [85], [91], [92] [53]
Censorship Attack [85], [91], [92]
Fork-Bomb Attack [38] [38] [38], [90]

Data-Availability Attack [38] [38] [38]

ordering depends on factors like graph structure and the

underlying consensus protocol. Ordering in DAG-based DLTs

can be classified into two types: Partial order and Total order.

Partial order arranges DAG blocks through topological

sorting, common in protocols like IOTA [7], Graphchain [64],

SPECTRE [16], and Nano [43], where not all blocks are

reachable from each other. This approach enables efficient

handling of simple payment transactions but limits the use

of smart contracts, as shared global states are not inherently

supported.

Total order organizes blocks in a linear sequence based

on parameters such as weight, votes, or timestamp. Some

protocols, like GHOST [30], PHANTOM [33], and DAG

KNIGHT [34], determine total order as blocks are added to

the DAG by constructing a backbone chain. Others, includ-

ing the consistency focused protocols, calculate order after

rounds of leader selection, which leads to a total order. In

Slipstream [54], total ordering is achieved during synchronous

network conditions without a dedicated leader.

Fast Path: To optimize transaction processing, some DAG-

based systems combine partial and total ordering. Simple

payment transactions, which do not require global consensus,

are confirmed through partial ordering for rapid verification.

In contrast, transactions needing a consistent global state, such

as those in shared smart contracts, use total ordering.

Sui-Lutris [93], Mysticeti-FPC [23], and Slipstream [54],

implement this approach with variations. Sui-Lutris includes

a subprotocol allowing nodes to confirm owned-object trans-

actions before they are included in consensus blocks by

constructing explicit transaction certificates. In both Mysticeti-

FPC and Slipstream, confirmation of owned-objects and

UTXO transactions happens after including them in consensus

blocks by interpreting the local DAGs.

B. Fairness

Fairness is a fundamental consideration in consensus proto-

cols within DLT systems, addressing technical, economic, and

social dimensions. Unfair conditions can foster dissatisfaction

among participants, potentially slowing technology adoption.

For DAG-based protocols, fairness often involves accepting

contributions from slower but honest nodes, defined as those

with lower computing power in PoW-based protocols, lower

stakes in PoS-based protocols, or substantial communication

delays.

In traditional blockchain protocols, centralized, leader-based

designs often challenge fairness where a single leader per

round has disproportionate influence over block ordering and

transaction inclusion. By contrast, DAG-based consensus pro-

tocols distribute the role of advancing the ledger across multi-

ple nodes, reducing individual influence over state progression

and enhancing fairness.
Raikwar et al. [94] examine fairness in DAG-based DLTs,

focusing on participant inclusion, consensus ordering, and

component roles within the protocol. They define various

fairness criteria and propose methods to support fair partic-

ipation across different aspects of the system. We discuss two

important topics of fairness in the following two sections.

C. MEV Protection

Ordering in a consensus protocol can be exploited through

Miner Extractable Value (MEV) attacks, where an adversary

attempts to include, exclude, or reorder clients’ transactions

to maximize profit. MEV, initially introduced as a measure in

Flash Boys 2.0 [95], was later renamed Maximal Extractable

Value to reflect its broader applicability. These attacks allow

validators to extract value at the cost of regular users, impact-

ing the fairness and efficiency of the protocol.
In major DLTs like Ethereum, the urgency for MEV pro-

tection is well-known. There have been a few studies to

countermeasure these MEV attacks. Yang et al. [96] present

a SoK on MEV attacks and its countermeasures. A recent

paper [97] presents important insights about MEV extraction

on Ethereum through MEV bot bidding strategies where a bid

is the highest bribe per computation.

MEV attacks can be executed on leader-based DAG proto-

cols, yet they can also occur in unstructured DAG protocols

where adversaries can act as block proposers. Fino [98] proto-

col integrates MEV protection into a BFT-based DAG protocol

by employing k-out-of-n secret-sharing technique. Nasrulin et

al. [99] present an accountable base layer protocol, Lø, which

detects and mitigates transaction manipulations by creating a

secure mempool of verifiable transactions.

D. Garbage Collection

In DAG-based consensus protocols, ensuring validity and

fairness demands nodes to have unlimited (fast) memory,

posing challenges for deploying these protocols. Due to the

necessity for boundless memory, nodes can’t garbage collect

old data, risking the loss of honest but slower nodes’ blocks.



Garbage collection clashes with fairness, especially within an

asynchronous network framework where blocks may experi-

ence indefinite delays. This creates a crucial trade-off between

ensuring fairness and optimizing performance.

Garbage collection methods vary across DAG-based con-

sensus protocols, aiming to balance the need for memory

optimization. The blocks of the DAG can be garbage collected

based on their depth (or round), timestamp (or age), or finality.

It can also be performed in DAG-based consensus protocols

Vite [55] and Jointgraph [37], which maintain snapshot blocks

(or chain). Consequently, older blocks can be garbage col-

lected since their history is stored within the snapshot blocks.

Jointgraph uses its snapshot and storage events to release the

previous memory.

Narwhal [46] cleans up its DAG by discarding information

up to a specific round from the genesis. However, this com-

promises fairness at the block level, risking disposal of slower

nodes’ data before proper ordering. In contrast, Bullshark [47]

employs a garbage collection mechanism while mitigating

fairness issues. Bullshark and IOTA 2.0 [56] garbage collects

blocks that are not committed for a long period of time,

ensuring fairness post-GST during synchronous periods.

VI. DISCUSSION

A. Broadcast Techniques

Broadcast techniques in DAG-based consensus protocols

ensure the propagation of blocks. The protocols using a

certified DAG, see Table II, rely on underlying reliable and

consistent broadcast primitives to disseminate blocks, whereas

the protocols using an optimistic DAG (this includes, in

addition, most availability-focused protocols, see Table II) use

best-effort broadcast.

• Byzantine Consistent Broadcast (BCB) guarantees that a

sender cannot send conflicting blocks ( equivocate). It

employs a multi-step communication pattern between the

sender and the receiver. In DAG-based protocols, e.g.

Tusk [46], BCB is treated as an abstract entity. For each

block, the block creator calls its own BCB broadcast in-

stance. In [49], [62], an abortable variant of BCB, called

BBCA, is introduced that is then used to broadcast only the

leader blocks.

• Byzantine Reliable Broadcast (BRB) ensures the reliable

dissemination of messages, even when a certain number

of nodes in the system may be malicious or faulty. BRB

requires at least f + 1 honest nodes to unanimously agree

on a value v before committing across all nodes. While BRB

adds an extra step compared to BCB, DAG-based protocols,

e.g., Bullshark [47], use BRB to ensure the liveness of the

protocol.

• Best-Effort Broadcast (BEB) facilitates block dissemination

optimistically. In this approach, when a node intends to

share a block, it simply transmits it with some (potentially

unknown) part of its causal history to all other nodes,

requiring only a single round of communication instead of

at least two rounds when utilizing CB. This approach is

demonstrated in Hashgraph [6] and Cordial Miners [48].

To minimize the communication overhead, many actual

implementations of DAG-based protocols do not send the

causal history of the block; instead, they use a pull strategy

to minimize the communication overhead in the common

case.

B. Latency and Throughput

Network latency and round trip time (RTT) are essential for

consensus. Latency is the time for a packet to travel from

point A to point B, while RTT encompasses the time for

a packet to go from A to B and back, including encoding,

queuing, processing, decoding, and propagation delays. These

factors, typically consistent for a given pair of endpoints, can

be affected by network congestion, adding variability to RTT.

It’s important to note that latency is not necessarily half of

RTT due to potential differences in delays between endpoints.

Consistency-focused consensus protocols based on BFT

incur high latency in asynchronous networks. Recent works

aim to minimize the latency of these protocols. Spiegelman et

al. [50] introduced Shoal, a protocol-agnostic framework that

improves the latency of the BFT-based consensus protocols.

Shoal [50] enhances the latency of Narwhal-based consensus

protocols by employing a leader reputation mechanism to

prevent failures and introducing pipelining to ensure a well-

ordered DAG construction without timeout requirements.

Liu et al. [100] present a novel DAG-based commit rule that

effectively reduces transaction latency in the UTXO model.

Their novel commit rule accelerates transaction confirma-

tion and reduces the confirmation latency. Another recent

work [101] presents a flexible advancement in asynchronous

BFT consensus protocols, bridging the ordering and agreement

components and reduces the latency of the consensus.

The primary advantage of DAG-based protocols over

blockchains is their enhanced throughput. Various DAG-based

consensus protocols demonstrate high throughput. Amores-

Sesar and Cachin [102] present a construction that takes a

DAG-based consensus protocol Π as input and outputs a new

DAG-based protocol Π′ which has superior throughput and

latency.

C. Execution Bottlenecks in High-Throughput DAG-Based

DLTs

In DAG-based DLTs, the increased throughput shifts the

primary bottleneck from data writing and consensus to trans-

action execution, necessitating an efficient, parallelized exe-

cution layer. Prism addresses this by decoupling consensus

from transaction validation, achieving high throughput inde-

pendently of consensus finality [103]. This design emphasizes

the need for scalable execution frameworks. Block-STM [104]

scales smart contract processing through speculative execution,

dynamically resolving conflicts to maintain high throughput.

Pilotfish [105], a distributed execution engine, leverages a

novel crash-recovery protocol and versioned-queues schedul-

ing to ensure state consistency while maximizing parallelism,

even with complex read-write dependencies.



D. Mathematical Models and Simulations

A mathematical model can analyze DAG-based consensus

protocol metrics, but constructing a generic model to simulate

and evaluate these protocols is a challenging task. Some

attempts have been made to build such models and simulations.

S. Popov’s initial mathematical model for a DAG-based

protocol [7] assumed new message arrivals following a unique

Poisson process, leading to a conjecture about the stationary

rate of unapproved transactions. Simulations supporting this

conjecture with homogeneous delays spurred interest in devel-

oping new mathematical models for DAG-based protocols, as

seen in studies such as [106], [107]. Works like [108] explored

non-Poisson message arrival scenarios, often assuming a cen-

tral node managing ledger records with other nodes accessing

the ledger state through it. Penzkofer et al. [109] extended

Popov’s model, introducing heterogeneous delays instead of

homogeneous ones. Zander et al. introduced DAGsim [110], a

multi-agent simulator based on a heterogeneous delay model

for DAG-based protocols. Recent research [111], [112] em-

ployed a discrete-time Markov chain to model the evolution

of unapproved transactions under heterogeneous delay. Lin et

al. developed TangleSim [113] to implement leaderless Tangle

2.0 in various network scenarios and byzantine environments.

Bullshark [47].

For the simulation of deterministic protocols, Schett and

Danezis [114] formalized a blockDAG protocol implementing

a reliable point-to-point channel, embedding deterministic BFT

protocols while maintaining safety and liveness properties.

They utilized deterministic state machines for node com-

munication, affirming properties claimed by Hashgraph [6],

Blockmania [115], and Flare [116] within their framework.

Attiya et al. [117] extended this work, faithfully simulating

non-deterministic (Randomized) BFT protocols on blockDAG,

capturing probabilistic guarantees and enabling analysis of

protocols like Aleph [38], DAG-Rider [39], and Bullshark [47].

We want to mention that a series of recent performance

evaluations are based on similar testbeds. For instance, the per-

formance of optimistic DAGs is evaluated in [23] (Mysticeti),

[53] (Mahi-Mahi), and in [25] (Obelia). The comparison of

certified DAG-based consensus protocols such as Bullshark,

Shoal, and Sailfish is provided in [52].

E. Lightweight DAG-based Protocols

DAG-based protocols provide advantages in performance

and scalability over traditional blockchains but encounter chal-

lenges related to storage scalability due to data redundancy.

This issue increases costs for developers of decentralized

applications (dApps), who must efficiently track and verify

state changes. This is a general challenge for high-throughput

DLTs, and here we provide a brief overview of solutions

specifically proposed for DAG-based protocols.

To support diverse applications like Vehicular Social Net-

works (VSN) and the Internet-of-Things (IoT), lightweight

protocols have been developed to address resource constraints.

Yang et al. [118] proposed LDV, a DAG-based protocol

optimized for VSNs, which selectively retains necessary in-

formation and prunes historical data, making it suitable for

resource-limited vehicles. Similarly, Cherupally et al. [119]

introduced LSDI, a scalable DAG-based ledger designed for

verifying IoT data integrity within cloud-based architectures.

LSDI enhances lightweight functionality by pruning outdated

segments.

Recently, Dai et al. [120] proposed GeckoDAG, a

lightweight DAG protocol that addresses data redundancy

issues. GeckoDAG reduces account and reference redundancy

by consolidating transactions and introducing reference over-

ride for efficient reference management. These optimizations

reduce storage requirements without compromising security.

VII. FUTURE RESEARCH

The following presents an overview of emerging discussion

points and future research questions.

Performance Evaluation: No standardized benchmarks exist

for evaluating DAG-based consensus protocol performance.

Research papers often focus on specific metrics, emphasiz-

ing protocol benefits. Developing standardized performance

metrics is crucial for objectively evaluating whether DAG-

based approaches mitigate performance bottlenecks in chain-

based protocols. Actual protocol implementations, when avail-

able, frequently diverge from their theoretical designs due

to practical considerations. This discrepancy underscores the

importance of real-world testing in validating the effectiveness

of DAG-based systems.

Security Analysis: Formal security proofs for DAG-based

protocols appear sporadically and vary in scope and depth.

Developing a comprehensive framework is necessary to under-

stand and compare these protocols’ security features. Further-

more, the confluence of ideas and concepts within these pro-

tocols highlights the need for a generalized abstraction. This

abstraction would facilitate a universal treatment of security

measures and attack vectors, allowing for a more structured

analysis of protocol security.

Incentive Attacks and Game-Theoretic Challenges: In DAG-

based distributed ledgers, traditional blockchain incentive con-

cerns—such as protocol deviations for selfish gain—remain

underexplored. Analyzing these challenges in the context of

availability- and consistency-focused protocols could reveal

generalized principles for ensuring fair participation. For in-

stance, availability-focused systems might require incentive

mechanisms that prevent balancing attacks, while consistency-

focused systems may benefit from mechanisms that discourage

strategic manipulations of block ordering and equivocations.

Transaction duplicates: Transaction duplicates pose a chal-

lenge for DAG-based protocols to enhance system efficiency.

The issue arises when multiple validators pull transactions

from a shared mempool for parallel block proposals, risking

transaction duplication and negating parallel execution bene-

fits. A solution like assigning transactions to specific validators

could mitigate repetition but potentially enable censorship and

centralized control, undermining decentralization principles.

Some DAG-based projects address it through ad hoc methods



as the random association between transactions and nodes.

However, there is a need for research focused on strategies

to prevent transaction duplication without sacrificing system

fairness or decentralization.

Fairness: Research on fairness within DAG-based protocols

should assess the implications of more open writing access

on transaction equity, particularly in the Maximal Extractable

Value (MEV) context. It is essential to consider how the

total ordering of transactions, despite more open writing ac-

cess, can influence MEV opportunities. This inquiry should

extend to the role of entry points, the underlying peer-to-

peer (P2P) and Remote Procedure Call (RPC) nodes, which

are critical in MEV dynamics. Investigating these aspects

will provide insight into whether decentralization in writing

access successfully mitigates fairness issues. Moreover, it is

essential to understand the relationship between access control,

tokenomics, and consensus mechanisms to understand fairness

and evaluate the level of decentralization.

Privacy: DAG-based consensus protocols should priori-

tize constructing privacy-preserving mechanisms that leverage

higher bandwidth in DAG structures. Implementing privacy in

DAG-based protocols introduces challenges. The tip selection

process may become costlier as validating transactions in the

tips requires computational effort due to cryptographic privacy

measures on transaction data encoded within the tips. This,

alongside concerns about transaction ordering and transaction

auditability in the DAG, underscores the significance of select-

ing the appropriate privacy technique. Therefore, efforts should

be directed at developing protocols that protect identities and

transaction data without sacrificing performance, exploring

ways to balance confidentiality with the enhanced capacity of

the DAG network.

Mempool Abstraction: Mempool abstraction allows decou-

pling transaction dissemination from the consensus protocol,

streamlining the ordering process for better efficiency. The

selection of transactions can be optimized to prevent redun-

dancy upon their block inclusion. Additionally, leveraging

load-balancing protocols for distribution across nodes can con-

tribute to equitable transaction handling. Consequently, further

investigation is required to explore how mempool abstraction

affects fairness within DAG-based consensus protocols and its

implications for the cost of transaction ordering.

VIII. CONCLUSION

In this SoK, we analyzed DAG-based consensus protocols,

classifying them by availability and consistency requirements.

We outlined key models, components, security aspects, poten-

tial attack vectors, and relevant countermeasures. The study

also highlighted recent developments in execution scalability

and fairness, reflecting the unique demands of high-throughput

DLTs.

IX. CALL FOR CONTRIBUTIONS AND FUTURE UPDATES

While we have aimed to provide a comprehensive overview

of relevant works in DAG-based consensus protocols, some

research may have been unintentionally omitted. We encourage

researchers to contact us if any important work has been

missed. We also intend to keep this study up-to-date as long

as there is interest. We invite you to share new developments

with us or cite this work to facilitate discovery.
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[45] I. Bentov, P. Hubáček, T. Moran, and A. Nadler, “Tortoise and hares

consensus: the meshcash framework for incentive-compatible, scalable
cryptocurrencies,” in Cyber Security Cryptography and Machine Learn-

ing: 5th International Symposium, CSCML 2021, Be’er Sheva, Israel,

July 8–9, 2021, Proceedings 5. Springer, 2021, pp. 114–127.
[46] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman, “Nar-

whal and Tusk: a DAG-based mempool and efficient BFT consensus,”
in Proceedings of the Seventeenth European Conference on Computer

Systems, 2022, pp. 34–50.
[47] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,

“Bullshark: DAG BFT protocols made practical,” in Proceedings of

the 2022 ACM SIGSAC Conference on Computer and Communications

Security, 2022, pp. 2705–2718.
[48] I. Keidar, O. Naor, and E. Shapiro, “Cordial miners: A family of simple,

efficient and self-contained consensus protocols for every eventuality,”
arXiv preprint arXiv:2205.09174, 2022.

[49] D. Malkhi, C. Stathakopoulou, and M. Yin, “BBCA-CHAIN: One-
Message, Low Latency BFT Consensus on a DAG,” arXiv preprint

arXiv:2310.06335, 2023.
[50] A. Spiegelman, B. Aurn, R. Gelashvili, and Z. Li, “Shoal: Improving

DAG-BFT Latency And Robustness,” arXiv preprint arXiv:2306.03058,
2023.

[51] B. Arun, Z. Li, F. Suri-Payer, S. Das, and A. Spiegelman, “Shoal++:
High throughput dag bft can be fast!” arXiv preprint arXiv:2405.20488,
2024.

[52] N. Shrestha, R. Shrothrium, A. Kate, and K. Nayak, “Sailfish: Towards
improving latency of dag-based bft,” Cryptology ePrint Archive, 2024.

[53] P. Jovanovic, L. K. Kogias, B. Kumara, A. Sonnino, P. Tennage, and
I. Zablotchi, “Mahi-mahi: Low-latency asynchronous bft dag-based
consensus,” 2024. [Online]. Available: https://arxiv.org/abs/2410.08670

[54] N. Polyanskii, S. Muller, and M. Raikwar, “Slipstream: Ebb-and-flow
consensus on a dag with fast confirmation for utxo transactions,”
2024. [Online]. Available: https://arxiv.org/abs/2410.14876

[55] C. Liu, D. Wang, and M. Wu, “Vite: A high performance asynchronous
decentralized application platform,” White Paper, 2018.

[56] IOTA Foundation, “Consensus on a DAG,”
2023, accessed: 19.11.2023. [Online]. Available:
https://wiki.iota.org/learn/protocols/iota2.0/core-concepts/consensus/introduction/

[57] E. A. Brewer, “Towards robust distributed systems,” in PODC, vol. 7,
no. 10.1145. Portland, OR, 2000, pp. 343 477–343 502.

[58] E. Brewer, “Cap twelve years later: How the ”rules” have changed,”
Computer, vol. 45, no. 2, pp. 23–29, 2012.

[59] L. Baird, M. Harmon, and P. Madsen, “Hedera: A governing council &
public hashgraph network,” The trust layer of the internet, whitepaper,
vol. 1, pp. 1–97, 2018.

[60] Y. Sompolinsky and A. Zohar, “Phantom,” IACR Cryptology ePrint

Archive, Report 2018/104, 2018.
[61] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long, and

A. C.-C. Yao, “A decentralized blockchain with high throughput and
fast confirmation,” in 2020 {USENIX} Annual Technical Conference

({USENIX}{ATC} 20), 2020, pp. 515–528.
[62] C. Stathakopoulou, M. Wei, M. Yin, H. Zhang, and D. Malkhi, “BBCA-

LEDGER: High Throughput Consensus meets Low Latency,” arXiv

preprint arXiv:2306.14757, 2023.
[63] B. Arun, Z. Li, F. Suri-Payer, S. Das, and A. Spiegelman, “Shoal++:

High throughput dag bft can be fast!” 2024. [Online]. Available:
https://arxiv.org/abs/2405.20488

[64] X. Boyen, C. Carr, and T. Haines, “Graphchain: A blockchain-free scal-
able decentralised ledger,” in Proceedings of the 2nd ACM Workshop

on Blockchains, Cryptocurrencies, and Contracts, 2018, pp. 21–33.
[65] N. Shrestha, A. Kate, and K. Nayak, “Sailfish: Towards

improving latency of dag-based bft,” IACR Cryptol. ePrint

Arch., vol. 2024, p. 472, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:268678908

[66] S. Buttolph, A. Moin, K. Sekniqi, and
E. G¨un Sirer, “Avalanche native token ($avax)
dynamics,” 2020, accessed: 14.11.2023. [Online]. Available:
https://assets.website-files.com/5d80307810123f5ffbb34d6e/6008d7bc56430d6b8792b8
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