
HAL Id: hal-04943474
https://hal.science/hal-04943474v1

Submitted on 12 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Re-evaluating Metamorphic Testing of Chess Engines: A
Replication Study

Axel Martin, Djamel Eddine Khelladi, Théo Matricon, Mathieu Acher

To cite this version:
Axel Martin, Djamel Eddine Khelladi, Théo Matricon, Mathieu Acher. Re-evaluating Metamorphic
Testing of Chess Engines: A Replication Study. Information and Software Technology, 2025, pp.1-38.
�10.1016/j.infsof.2025.107679�. �hal-04943474�

https://hal.science/hal-04943474v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Highlights

Re-evaluating Metamorphic Testing of Chess Engines: A Replica-
tion Study

Axel Martin, Djamel Eddine Khelladi, Théo Matricon, Mathieu Acher

• Our work reproduced the original study and also replicated it while
varying three factors, namely: 1) the depth value; 2) the dataset
through the inclusion of realistic positions; and 3) the version of Stock-
fish.

• The metamorphic relations are not as effective as in the original article,
especially on realistic chess positions and increase of depth.

• We raise awareness of the sensitivity of depth: metamorphic relations
may only be violated at specific depths, and there is a depth threshold
beyond which the testing method becomes ineffective.

• Through a rigorous and in-depth analysis of the source code, we found
why Stockfish can exhibit discrepancies on transformed positions and
why at certain low depths, metamorphic relations are not effective. Our
overall conclusion is that it is not a bug, but a feature of the exploration
process of modern chess engines.

Re-evaluating Metamorphic Testing of Chess Engines:

A Replication Study

Axel Martina, Djamel Eddine Khelladia, Théo Matriconb, Mathieu Achera,c

aUniv Rennes, CNRS, Inria, IRISA, Rennes, France
bUniversity of Bordeaux, CNRS, LaBRI, Bordeaux, France
cInstitut Universitaire de France (IUF), Rennes, France

Abstract

Context: This study aims to confirm, replicate and extend the findings of
a previous article entitled ”Metamorphic Testing of Chess Engines” that re-
ported inconsistencies in the analyses provided by Stockfish, the most widely
used chess engine, for transformed chess positions that are fundamentally
identical. Initial findings, under conditions strictly identical to those of the
original study, corroborate the reported inconsistencies.
Objective: However, the original article considers a specific dataset (includ-
ing randomly generated chess positions, end-games, or checkmate problems)
and very low analysis depth (10 plies1, corresponding to 5 moves). These
decisions pose threats that limit generalizability of the results, but also their
practical usefulness both for chess players and maintainers of Stockfish. Thus,
we replicate the original study.
Methods: We consider this time (1) positions derived from actual chess
games, (2) analyses at appropriate and larger depths, and (3) different ver-
sions of Stockfish. We conduct novel experiments on thousands of positions,
employing significantly deeper searches.
Results: The replication results show that the Stockfish chess engines
demonstrate significantly greater consistency in its evaluations. The meta-
morphic relations are not as effective as in the original article, especially on
realistic chess positions. We also demonstrate that, for any given position,
there exists a depth threshold beyond which further increases in depth do
not result in any evaluation differences for the studied metamorphic relations.

1A ply refers to a single turn taken by one player in a game. Two plies, one from each
player, together constitute a complete move.

Preprint submitted to IST February 12, 2025

We perform an in-depth analysis to identify and clarify the implementation
reasons behind Stockfish’s inconsistencies when dealing with transformed po-
sitions.
Conclusion: A first concrete result is thus that metamorphic testing of
chess engines is not yet an effective technique for finding faults of Stockfish.
Another result is the lessons learned through this replication effort: meta-
morphic relations must be verified in the context of the domain’s specificities;
without such contextual validation, they may lead to misleading or irrelevant
conclusions; changes in parameters and input dataset can drastically alter the
effectiveness of a testing method.

Keywords: Reproducibility, Replicability, Metamorphic Testing, Chess
Engines

1. Introduction

A test oracle determines whether a test execution reveals a fault, by
typically comparing the observed program output to the expected output [4].
This is not always practical, for example when a program’s input-output
relation is complex and difficult to capture formally [23]. Chess engines
enter in this category and are an excellent instance of such programs. Given
a chess position as input, what should be the evaluation score (the output)
that is supposed to quantify the advantage of white or black pieces? The
ground truth is most of the time not known: chess is far from being resolved
while top chess players are unable to formulate an accurate assessment and
struggle to find the best moves. In practice, chess players are largely inferior
and rely on chess engines to get hopefully reliable evaluations – no need to
say they cannot play the role of testers that know the expected result.

Metamorphic testing [28, 5] has been useful in addressing the oracle prob-
lem, which arises when testers lack a specification to decide if the observed
outputs are expected. Instead of deciding on individual outputs, metamor-
phic analyzes a set of inputs and outputs to check for violations of certain
relations, called metamorphic relations, and has proven to be versatile in test-
ing complex systems across various fields. Metamorphic testing is thus an
appealing candidate to test chess engines. The article entitled ”Metamorphic
Testing of Chess Engines”, published at IST journal in 2023 [22], proposes
a metamorphic testing approach to test chess engines. The key underlying
idea is to define metamorphic relations that state that the evaluation of two

2

equivalent positions should be the same. For example, considering a posi-
tion and rotating all the pieces with respect to the central axis, then both
positions should have the same evaluation. Méndez et al. reported incon-
sistencies in the analyses provided by Stockfish, the most widely used chess
engine, for transformed chess positions that are fundamentally identical.

This study aims to confirm, replicate and extend the findings of Méndez
et al. [22]. Our motivation was that the original article considers a spe-
cific dataset (including randomly generated chess positions, end-games, or
checkmate problems) and very low analysis depth (10 plies, corresponding
to 5 moves). These decisions pose threats that limit generalizability of the
results, but also their practical usefulness, both for users and maintainers
of Stockfish. Based on our discussions and domain knowledge, we hypoth-
esize that the specificities of the dataset and the low depth of the analysis
may be open to question. There is also a need to understand why Stockfish
can exhibit discrepancies on transformed positions, something that was not
addressed in the original article. In a nutshell, we aim to re-evaluate the
effectiveness of metamorphic testing of chess engine. In general, there is this
question whether metamorphic relations, though theoretically appealing and
reasonable, are effective in practice for testing complex programs and reveal
actual faults that would justify an effort to fix them.

Thus, we carefully design a replicability study considering this time (1)
positions derived from actual chess games, (2) analyses at appropriate and
larger depths, and (3) different versions of Stockfish. The replication re-
sults show that the Stockfish chess engines demonstrate significantly greater
consistency in its evaluations. The metamorphic relations are not as effec-
tive as in the original article, especially on realistic chess positions. We
also demonstrate that, for any given position, there exists a depth thresh-
old beyond which further increases in depth do not result in any evaluation
differences for the studied metamorphic relations. We further conduct an in-
depth analysis to find and explain why Stockfish can exhibit discrepancies on
transformed positions. The move ordering of legal moves during the search
process is identified as a key factor that can lead to evaluation differences.
This factor explains most of the discrepancies observed in our experiments.
It also explains why, at a certain depth, the evaluation differences disappear.

The contributions of this paper are as follows:

• Under conditions strictly identical to those of the original study, we
confirm the reported inconsistencies in the analysis provided by Stock-

3

fish for transformed chess positions that are fundamentally identical.
Hence, despite non-significant differences, we were able to reproduce
the original results.

• We design a replicability study and make explicit our hypothesis about
chess positions of the dataset, Stockfish depth, and version based on
the review of the original study as well as discussions, observations,
and knowledge of the domains of chess and chess engine.

• We execute the replicability study and provide a detailed account of
the results, systematically analyzing the sensitivity of the proposed
metamorphic testing to the dataset, the depth of the analysis, and the
version of Stockfish. Our findings reveal that the Stockfish chess engine
demonstrates significantly greater consistency in its evaluations when
operating on realistic chess positions and at higher depths.

• We find why Stockfish can exhibit discrepancies on transformed po-
sitions – it is a feature of the Stockfish implementation, not a bug.
It also explains most of the discrepancies and why at certain depths,
metamorphic relations are not effective.

Overall, metamorphic testing of chess engines has been shown to be less
effective than expected. We provide such evidence, and explain the under-
lying reasons. The practical usefulness of the approach is thus currently
limited, both for chess players and for maintainers of Stockfish.

2. Background

This section provides a generic understanding of chess engines and how
they function, along with the metamorphic relations used in the original
paper and related work.

2.1. Chess engines

Chess engines are software programs that analyze chess positions in the
chess board and propose the best following moves. A board (and position)
is represented as a single string in the standard Forsyth– Edwards Notation
(FEN). The main goal of a chess engine analysis is to decide which player
has an advantage and evaluate how big the advantage is. Using this analysis,
they can decide on the next best moves to play. State-of-the-art chess engines
are strong players that can consistently beat even the best human players.

4

Chess engines usually evaluate a given position with a value in centipawns
(cp), which is a unit of measurement in chess engine analysis that quantify
the advantages or disadvantages of the position. A positive score means
that White has an advantage and a negative score means that Black has an
advantage.

Definition 1. An evaluation e ∈ Z ∪ {(w, b)×N} represents the advantage
one player has over the other. If e is a positive number, then we say White has
a lead over Black of e centipawns; if e is a negative number, then Black has
a lead over White of −e centipawns. If e = 0 then we say that the position
is even. Finally, if e = (w, x) (respectively e = (b, x)) we say that White
(respectively Black) has checkmate in x moves. An evaluation is performed
given a tuple (p, depth) where p is an FEN string with the board information
and depth ∈ N is the analysis depth.

One of the most popular open source state-of-the-art chess engines is
Stockfish [31]. It has consistently won most of the editions of the Top Chess
Engine Championship (TCEC) [1]. It is the chosen subject in the original
study by Mendez et al. [22]. Stockfish is a powerful open-source chess engine
renowned for its strength and efficiency. It analyzes chess positions and makes
closed to optimal moves [31, 1] – even though we ignore optimal moves in
general and chess is not resolved. Stockfish’s strength lies in its ability to
assess positions deeply. Indeed, one of the most important values in chess
engines is the depth. It is a value of chess engine analysis that indicates
the number of half moves (i.e., a move made by one side only) the engine
looks ahead. A higher depth value usually means better analysis results as
it evaluates a larger number of possible moves. This also allows navigating
complex tactical and strategic scenarios with good precision.

Figure 1 shows two chess boards evaluated by Stockfish of a game by
Magnus Carlsen grand master at depth = 20. We will further explain their
relationship in the next section. In Figure 1, Stockfish returns an evaluation
of +0.66 for the first board and of -2.17 for the second board. It respectively
interprets as a slight advantage for white and a decisive advantage for black.

2.2. Metamorphic testing of chess engines

This section presents the four metamorphic relations introduced by
Méndez et al. [22] et al. to test the chess engines. As motivated by the
original study, although the chess engines can be fantastic players, it is hard
to ensure that their code is fault free because it is very difficult to test them.

5

Figure 1: Original position and symmetry mirror. Evaluation of SF15 is +0.66 and -2.17
at depth=20

In particular, they face the oracle problem: if the chess engine plays better
than a tester, how can the tester claims that a given evaluation of the next
move is wrong or not the best one in general. Thus, Méndez et al. [22] et al.
used metamorphic testing to test chess engines with the following metamor-
phic relations:

• Equivalent relation: It aims to detect situations where two equivalent
positions have different evaluations by the chess engine. Herein, two
symmetries are considered, namely:

1. the symmetry on the axis where all pieces are rotated w.r.t. the
central axis sim axis, and

2. the symmetry on the diagonal sim diag where all pieces are rotated
w.r.t. the right diagonal a1h8. Note that this later symmetry only
applies if no pawns are in the chess board.

The second and sixth boards in Figure 2 show an example of the two
symmetries applied on the first and fifth boards. Therefore, two sym-
metric positions are equivalent if any move on one board can also be
executed in its symmetric board.

• Mirror relation – sim mirror: It also aims to detect situations where
two equivalent positions have different evaluations by the chess engine.
Herein, a third type of symmetry is applied, which is where black and

6

white pieces are exchanged with a board rotation. The third board in
Figure 2 shows an example of this symmetry applied to the first board.
It is basically a mirroring of the position that is symmetric to another
vertically, but with the different colors and with the opposite player to
move. For example, a position with black/white to move is mirrored
to a position with white/black to move.

• Better relation – better: This aims to assess the evaluation of positions
where a piece is replaced by a better one. This aims to detect whether
having a better position yields at least the same evaluation. For ex-
ample, replacing a rook or a bishop by a queen can only improve the
evaluation of the original evaluation, as the queen can perform more
moves than the original pieces. The fourth board in Figure 2 shows an
example of this relation applied to the first board.

• First relation – first: This aims to assess equivalent positions after the
best suggested move by the chess engine. It aims to detect whether
the evaluation of two related positions with the above symmetries is
preserved after the best suggested move. In fact, the evaluation of a
position gives the advantage of a player at a given position. After per-
forming the best move suggested by Stockfish, such advantage should
be mostly preserved.

In the remainder of this article, we consistently use specific terms like ’Equiv-
alent relation,’ ’Mirror relation,’ ’Better relation,’ and ’First relation.’ These
terms are intentionally chosen to align with the original study that forms
the basis of our work. Although these terms might appear to occupy dif-
ferent hierarchical levels – where ’Mirror relation’ indicates types of symme-
try and ’Better relation’ suggests a purposeful change in piece value – this
choice of nomenclature is deliberate. Each term is selected to represent the
unique characteristics of the chess positions they describe. ’Mirror relation’
illustrates symmetry transformations, ’Better relation’ highlights upgrades
in piece value, and ’First relation’ evaluates the outcomes of recommended
moves. We adhere to this terminology to maintain consistency with the
original study, ensuring clarity and ease of understanding for both seasoned
experts and those new to chess engine testing.

In Figure 1, the metamorphic relation sim mirror with a mirror symmetry
is applied on the right board. One would assume a similar evaluation by
Stockfish, but at depth = 20, the chess engine gives different results. It

7

increases the advantage from slight to decisive advantage (of the previously
white and now black).

Figure 2: Example of the metamorphic relations.

Thresholds. A distinguishing feature with respect to usual metamorphic
testing approaches is the use of thresholds that allow deviations from the
expected result. Expecting the same centipawns was too strong. Specifically,
the authors considered two thresholds associated with two measures of the
deviation.

The first one allows small deviations between evaluations in relative terms
while the second one, in case the first one fails, allows small deviations in
absolute terms. Intuitively, there is not much difference between having an
advantage of 1000 centipawns and an advantage of 1100 because in both cases
the player has a clear advantage and will win the game. In contrast, having
an advantage of 50 centipawns versus an advantage of 150 is a completely
different situation: an advantage of 50 indicates that the player has a slight
advantage while 150 pawns is a comfortable advantage for competent players.
The best way to interpret these thresholds is twofold. On the one hand, the
looser the threshold, the more critical the faults detected, as they generate a
bigger difference between the analysis of positions that should be equivalent.
On the other hand, the tighter the threshold, the less critical the faults
detected, as they produce smaller differences in the analysis [22].

Definition 2 (Relative and Absolute Distance). Let x, y ∈ Z and d ∈ R.
We define the following predicates:

• distrel(x, y, d) holds iff
|x−y|
|x|+|y| ≤ d.

• distabs(x, y, d) holds iff |x− y| ≤ d.

8

It should be noted that

max
x,y∈Z

{
|x− y|
|x|+ |y|

}
= 1

and this value is reached only if x and y have opposite signs.

Definition 3 (Metamorphic relation). A metamorphic relation for chess en-
gines computing at depth depth is a relation

R(p1, p2, e1, e2, δ, ε)

over:

• two inputs (positions p1 and p2), p1 being the original position and p2
being the transformed position,

• their corresponding outputs (evaluations e1 = StockFish(p1, depth) and
e2 = StockFish(p2, depth)),

• and two thresholds δ and ε to parameterize the acceptable relative and
absolute evaluation difference

A typical expectation is that distrel(e1, e2, δ) ∨ distabs(e1, e2, ε) holds.
There are some of course some specificities depending on the transformed
position (and we refer the reader to the original article for more details).
However, the overall idea remains there should not have evaluation differ-
ences under certain thresholds.

In order to display the results of our experiments, we use so-called
heatmaps in which the y-axis displays different values for the threshold δ
used as part of distrelwhile the x-axis displays different values for the thresh-
old ε used as part of distabs(see Definition 2). For example, in Figure 3, for
δ = 0.05 and ε = 10, the percentage is 30.93. That is, there are 30.93% of
positions’ evaluation that differ from either 10 centipawns (0.1) in absolute
terms or with a ratio of 0.05 between evaluation of the original position and
the transformed position. 10 centipawns is a small difference, and the ratio is
also very low. Hence, it is typical of negligible difference and has little to no
practical impact for users. Another example in Figure 3: 10.48% of positions
(value at the bottom-right and corresponding to δ = 0.5 and ε = 100) violate
the MR property.

9

3. Motivation and Design

In this section, we elaborate on our motivations to replicate the work
of Méndez et al. [22].

3.1. Review of the original study

To instrument and experiment with the approach briefly summarized in
previous section, the original article considers:

• a dataset constituted of randomly generated chess positions, end-
games, checkmate problems, and realistic positions;

• a depth of 10 plies, corresponding to 5 moves;

• Stockfish version 15 (and other chess engines), with Stockfish being
central ;

We now review these three constituents, as well as some results and con-
clusions of the study.

Dataset. Randomly generated chess positions are interesting input test
cases. However, only relying on them can be problematic, since the realism
of positions is important for (1) users that want to analyze real-world games
or prepare known openings; (2) contributors of Stockfish that are driven to-
wards delivering state-of-the-art performance in terms of real-world playing.
Using unrealistic positions for testing might divert the development focus
away from this goal. It is crucial to also use positions from actual games to
ensure the chess engine’s performance is optimized for real-world scenarios.
Furthermore, there is a risk that the metamorphic testing method mainly
works for this kind of random input – and less on realistic one. At least, it
is an hypothesis about the generality and sensitivity of the approach that
we aim to verify or refute. End-games are also of interest, but the existence
of pre-computed syzygy-tablebases [32] for positions with 7 pieces limits the
interest. Hence, end-games with at least more than 7 pieces should be pri-
oritized. Checkmate problems and puzzles are relevant, but finding them
requires large computation depth. From this perspective, depth=10 might
be too low to find a checkmate in e.g., 18 moves. Overall, we found that the
dataset of positions can be better balanced and diversified for assessing the
effectiveness of the method on other inputs.

Depth. The choice of a low depth (10) is the first thing that strikes us
as intriguing. We fully understand that searching to a greater depth requires

10

more computational resources, especially when analyzing thousands of po-
sitions, however, 10 is too low. It corresponds to 5 moves, something club
level chess players can handle. Furthermore, as confirmed by practitioners
(see subsection 3.2), people are now using higher depths thanks to the com-
moditization of powerful hardware and the innovation made in chess engines
(Stockfish). A low depth also can cause the engine to miss tactical opportu-
nities or threats that require a deeper search to be found. A depth of 10 is
only the starting point of the search space and a comprehensive search typ-
ically requires a much greater depth. It is even unclear what the Elo rating
of Stockfish at depth=10 can be. Specifically to the original study, there is a
general question on the sensitivity of the method regarding depth. Hence, it
is worth considering higher values and study the impact of depth values on
the effectiveness.

Version. The original article considers a specific Stockfish version (15).
It is a threat to validity, and we can envision to assess the effectiveness
changes (if any) when changing the version. Exploring different versions of
the chess engine can well be combined with varying the search depth, and
the use of different datasets to evaluate the generalizability of the original
results. By varying these factors, a better understanding of how they interact
and influence the testing method can be gained.

Causality. Méndez et al. [22] uncover a huge amount of violation of
metamorphic relations. As recognized by the authors, it was unclear why
such discrepancies occur. There are some speculations and hypothesis, but
nothing concrete. In fact, whether metamorphic relations have caught actual
faults that deserve to be considered or fixed is a general question in meta-
morphic testing [9]. Looking at the Stockfish community, we did not find
activity related to the possible issues raised by the original study. An ex-
ception is this short discussion https://github.com/official-stockfish/

Stockfish/discussions/4610, but to the best of our knowledge, there was
no contribution or deep exchanges. Hence, an axis of research is to investigate
the reason why discrepancies across transformed positions occur.

3.2. Chess players perspective

To gain further insights about chess engines, we conducted a semi-
structured interview with n=4 chess players. Two are grand-masters, one
is a FIDE Master, and one is a woman FIDE Master. All of them have ex-
perience and interest in livestreaming, coaching, preparation of top players
or themselves, or analysis of chess games.

11

https://github.com/official-stockfish/Stockfish/discussions/4610
https://github.com/official-stockfish/Stockfish/discussions/4610

We asked a first question about the adequacy of setting the search depth
to 10 in a chess engine. For any usage, all responded that it is not enough.
One respondent stated that ”the only usefulness of chess engines is to analyze
and arrive at a certain truth, so a module with a depth of 10 often gives
inaccurate results.”

We then asked about search depth usually employed as part of their
activities. One respondent said ”I have access to a good computer that can
reach a depth of 30 in just a few seconds... it’s reassuring. good machines
give you confidence and above all, save time”. Two respondents said they
rely on chess engines hosted in platforms like Lichess or chess.com. One
reported that ”when using the chess.com module, it’s Stockfish with a depth
of 18. Overall, it’s not bad, but it can definitely make mistakes, so it’s not
sufficient if one wants to do precise work.” while another concurred ”Rarely
below 25, except for watching online when we activate the modules on the
platforms.”. Respondents tend to align with the need to use high depth ”For
analysis, I use my computer, and depending on the positions, I try to go at
least to depth 30 to be sure. And for all the preparation work, you need even
more powerful computers, and I would say that 30 is really the minimum”.

As a final topic, discussions were around possible fluctuations in the eval-
uations provided by the Stockfish chess engine during analysis. Specifically,
from what difference in centipawns do they consider this change to be sig-
nificant? All brought a nuanced answer and perspective on this issue: ”It
really depends on the position, when it’s flat, for example in Italian games,
getting a +0.3 is good, so it can be significant.[...] In Gruenfeld I would say
that 0.4-0.5 starts to be really critical or even risky.” or ”The flatter it is,
the more concerning the changes in evaluation are. When it’s chaotic, it’s
complicated. One must assess the human ability to find moves beyond the
computer’s evaluation, so even losses of 500 cp can be acceptable.”.

3.3. Replication

We are using the following definitions of reproducibility and replicability
as presented in the National Academies of Science, Engineering and Medicine
report “Reproducibility and Replication in Science” [11] (overview). Repro-
ducibility is obtaining consistent results using the same input data, compu-
tational steps, methods, and code, and conditions of analysis. This definition
is synonymous with ”computational reproducibility.” Replicability is obtain-
ing consistent results across studies aimed at answering the same scientific

12

question, each of which has obtained its own data. Two studies may be con-
sidered to have replicated if they obtain consistent results given the level of
uncertainty inherent in the system under study.

We fall in the two categories. We first aim to reproduce original re-
sults, a pre-condition before considering deviating and making variations.
We then want to replicate the original study considering this time variations
of datasets, depths, and versions:

• (1) a different dataset (mainly positions derived from actual chess
games and a subset of the original dataset)

• (2) analyses at appropriate and larger depths. As argued, 10 is too
low. Hence, we choose to explore larger values (depth=20) and infinite
depth for a sample.

• (3) different versions of Stockfish (SF15 and SF16)

4. Reproduction

In the following, we first report on our attempts to reproduce the fault
discovery findings of Méndez et al. with the original implementation2.

We reused all the code used to perform the experiments, in particular the
implementation of MRs and the datasets, available in https://github.com/

MMH1997/MT_ChessEngines. The notebooks and procedures run out of the
box. The sole effort was to set the path to the Stockfish binary. There are
different versions of Stockfish, and we stick to version 15 as originally used.
There are also different variants of Stockfish, targeting different operating
systems, possibly with some optimizations w.r.t. CPU instructions. We
selected a variant of Stockfish matching the name of the binary.

Once familiar with the code and offered facilities, we had to develop some
programs and scripts: (1) procedures to filter out illegal3 positions (as also

2Reproduction results can be verified at the beginning of the notebook, available in the
replication package [34]

3The dataset used in [22] contains randomly generated positions. Some are illegal for
subtle reasons e.g., impossible double checks or situation where both kings are checked.
In such cases, Stockfish either crashes or still performs an evaluation, but on impossible
positions. We developed some procedures to detect invalid FEN based on a library such
as https://github.com/niklasf/chessops/ or through the catching of Stockfish errors.

13

https://github.com/ MMH1997/MT_ChessEngines
https://github.com/ MMH1997/MT_ChessEngines
https://github.com/niklasf/chessops/

reported and done in the original study); (2) a way to fully instrument the
execution of Stockfish on the transformed positions; (3) a way to analyze the
results and depicts heatmaps similar to Figure 3. Overall, we reproduced the
experiments with the original dataset, depth=10, and SF15.

Figure 3 compiles the percentage of applications of the MR sim mirror that
failed. A first observation is that running (more than) twice our experiments
lead to the exact same heatmaps and results. Stockfish in a single thread is
indeed deterministic, and so the evaluations.

We then compared the heatmap included in the original paper and cor-
responding to our setup. The percentages were very similar with little dif-
ferences. The small differences can be explained by a different variant of
Stockfish running on a different platform. Another source of explanation is
related to the thresholds used that can be sensitive to small centipawn dif-
ferences. Even a difference of a few centipawns on some positions can affect
some percentages here and there. As an example, we re-analyzed Carlsen vs
Nepo, WCC 2021, game 6 with sim mirror δ = 0.25 and ε = 25 as thresholds.
We did not find 4 MR violations as in the original article, but only 1 MR vi-
olation. Looking at centipawns evaluation, the numbers were very close but
not exactly similar, making relative and absolute differences slightly different
due to the thresholds used. The use of Stockfish 16 (instead of Stockfish 15)
lead to 0 MR violation, with similar observations4.

Overall, we found the discrepancies negligible and for all metamorphic
relations (sim mirror, sim axis, better, first) we obtained results consistent with
the original study. We also concur with the observations of the original study
e.g., better leads to very few violations and is the less effective metamorphic
relation.

The original article is reproducible. Though there are small raw differ-
ences of numbers, the overall observations and trends remain consistent.
Using the different metamorphic relations, we confirm the reported vio-
lations for Stockfish at depth=10, using the original dataset.

4Reproduction results can be verified at the beginning of the notebook while the specific
game Carlsen vs Nepo is at the end of the notebook, available in the replication package [34]

14

Figure 3: Reproduction of original results with depth=10, SF15, and the original dataset

15

5. Replicability Study

The reproduction under strict conditions of the original study has shown
that metamorphic testing is indeed effective to reveal discrepancies across
evaluations of Stockfish on positions that are syntactically different but se-
mantically similar. However, we question and raise some doubts in Section 3
about some key aspects of the study. We now replicate and deviate from
the original experiment. Specifically, we explore the possible effects of three
factors (depth, dataset, version) and possibly their combinations.

5.1. Effect of depth

We consider the following experimental setup: the same original dataset,
the same version (SF15), but this time we increase the depth. Instead of
depth=10, we use depth=15 and depth=20 on all positions and all meta-
morphic relations. We also use larger depths than 20 (possibly infinite) for
a sample of positions5.

Our first observation is that increasing the depth (depth=15 or depth=20)
does not alter the effectiveness of metamorphic testing. Percentages of MR
violations are even increasing for sim mirror (resp. best move): 6.9% on av-
erage (σ2.15) (resp. 5.9%, σ1.9). For sim axis (resp. sim diag), the effective-
ness slightly decreases on average −1.9% (σ = 2.2) (resp. -1.6%, σ = 2.67).
Hence, the results invalidate our original hypothesis that increasing the depth
should mitigate evaluation discrepancies. It is not the case, at least for the
original dataset.

An important inquiry comes from the plot of the evaluation evolution
w.r.t. depth. Figure 4 shows the evolution for the positions of Figure 1 and
for depth until 30. In this example, the evolution of the two lines is similar
across depth, and the metamorphic relation is verified at depth 2, 3, 5, 9, 12,
13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 29, 30 for δ = 0.25 and ε = 25
as thresholds6. We also note that there could be stronger discrepancies, e.g.,
at depth=6 or at depth=20. There is some stability after depth 25 and the
metamorphic relation then still holds. Another example is given in Figure 5.
The position involves a score excessively high (i.e.,-1000 centipawns is a

5Results at different depths can be verified at the beginning and middle of the notebook,
available in the replication package [34]

6These specific threshold values of δ and ε are often used in [22], since they represent
medium values and a good tradeoff.

16

decisive advantage). In any case, there are fluctuations with some depths for
which absolute discrepancies are severe while for some other depth, there is
some stability.

There are several comments and general observations to make. The first
is that discrepancies can occur at certain specific depth (e.g., depth=20) and
then disappear or re-appear for subsequent depths. It shows the sensitivity
of the metamorphic testing to the depth factor. Metamorphic relation can
be violated depending on the choice of the depth or some discrepancies can
be ignored. Unfortunately, there is no depth value that optimizes the effec-
tiveness of the method. It is specific to a position and a relation to check,
hence complicating the task of testers.

Second, we found that there always exist a depth threshold, beyond which
further increases in depth do not result in any violation of metamorphic rela-
tion. We have verified this property on a sample of 200 realistic positions of
the original dataset (excluding endgames with 7 pieces that are anyway re-
solved with tablebase) and using unlimited depth and 15 minutes for timeout.
Intuitively, increasing the depth leads to some stability in the evaluation, as
the search space is more and more explored and covered (see also Section 6
for more details about the Stockfish implementation).

Third, when a discrepancy or inconsistency is found at a particular depth,
but then no further discrepancies are found, it raises questions about the
usefulness and reliability of the testing method. The primary goal of a chess
engine is not to be perfectly accurate at any specific depth, especially at
lower depths. Lower depths represent shorter-term predictions, which may
not always align with the best long-term strategy. Instead, the engine aims to
provide the best overall evaluation of the position once the search is complete,
which typically occurs at higher depths.

Using the original dataset, we found that metamorphic relation violations
occur only at specific depths, with a threshold beyond which the testing
method loses its effectiveness. A depth of 10 may lead to false violations,
with higher depths providing more accurate results.

5.2. Effect of dataset

As argued in Section 3, the original dataset contains randomly generated
positions, checkmates, and end-games that may limit the applicability of

17

Figure 4: Evolution of the evaluation w.r.t. depth. The dashed line corresponds to the
original position of Figure 1, while the other one is about the transformed position.

Figure 5: Evolution of the evaluation with SF=15 (sim mirror)

18

the testing method. How about realistic positions that come from existing
games?

Original dataset with real positions. The original dataset also con-
tains a subset of real-world games. Hence, we use this opportunity to filter
out the original dataset and only keeps realistic positions7. Figure 6 depicts
the results for depth=10 and sim mirror. Though it is not the same data,
we can compare with the results of Figure 3. We can observe that the focus
on realistic positions has positive effects, with an increase of percentage for
small values of ε and δ (top-left of the heatmap). There are also negative
effects, with low percentage (closed to 1 instead of 10) for large values of
ε and δ (bottom-right of the heatmap). The general observation is that on
average the percentages are closed to 0.01 (with strong standard deviation
9.9), suggesting a neutral balance. However, there is also a shift from the
right-hand side to the left-hand side: metamorphic testing is less effective for
large values of ε (absolute value in centipawn).

Figure 7 depicts the results for depth=20, sim mirror, on the new dataset.
The effectiveness is largely reduced compared to Figure 3 and Figure 6. The
increase of depth (20 instead of 10) has a large negative effect: -7.7% with
standard deviation of 5.1. For sim axis (resp. best move, we observe similar
effect: -6.9 on average (σ = 4.3) (resp. -7.2, (σ = 5.1).

Lichess dataset. We gathered a dataset of positions coming from
Lichess database [19]. It contains 21,000 realistic positions, much more than
the subset of 600 realistic positions from the original dataset. We considered
different games starting at move=10, move=20, move=30, and move=40
played by players at different Elo ratings (from amateurs to top grand mas-
ter). This diversity allows us to determine whether the testing method is
effective and general from chess positions’ perspective.

For sim axis and at depth=20, we observed a large decrease of the per-
centage of metamorphic relations that do not hold. Considering all Elo, the
percentage on average is 3.4% (σ = 5.8) a comparatively very low score.
Moreover, for values of ε greater than 30 (right-hand side of the heatmap),
the percentage is closed to 0. Similar observations are made for other meta-
morphic relations.

7Results about datasets’ changes can be verified at the middle of the notebook (e.g.,
with the Lichess dataset) available in the replication package [34]

19

Figure 6: Replicability with depth=10, SF15, and only considering real positions

Controlled experiments on realistic positions (as opposed to randomly
generated or puzzle-like positions from the original study) show that
metamorphic testing with the current metamorphic relations is less ef-
fective. Additionally, increasing the depth to 20 for this type of data
further reduces effectiveness, with percentages dropping to 0 across a
wide range of threshold values. These findings cast doubt on the appli-
cability of the testing method to realistic positions, suggesting that it
may become ineffective as depth increases, warranting a reassessment of
its use in such contexts.

20

Figure 7: Replicability with depth=20, SF15, and only considering real positions (i.e., we
change both depth and dataset)

21

5.3. Effect of version

Instead of using Stockfish 15, we considered the version 168. A first setup
is to experiment on the original dataset, at depth=10 (same as in the original
study). Hence, addressing whether the testing is as effective with a new
version of Stockfish. The result is that, for all metamorphic relations, there
is a decrease in the percentage. This decrease applies to every threshold,
but is negligible. For example, for sim axis (resp. sim mirror), -0.9% on
average (resp. -3.7%). Overall, the sole change of the Stockfish version does
not question the results of the original study – using the same experimental
settings

A second setup is to experiment this time on the original dataset, at
depth=20, and compare the results of Stockfish 16 vs Stockfish 15. The
effect is negative and more pronounced (e.g.,-5.2% for sim axis). That is,
increasing the depth with Stockfish 16 can further reduce the effectiveness.

We also experimented with different realistic datasets (e.g., real positions,
Lichess) and observed similar results: the effectiveness of metamorphic test-
ing is reduced with Stockfish 16 at depth 20 across all metamorphic relations.
In other words, changing the version confirms that using realistic positions di-
minishes the effectiveness of the metamorphic testing method. However, this
reduction is not significantly different from what was observed with Stockfish
15.

Finally, we confirm the observations about the importance of depth w.r.t.
evaluation. Figure 8 plots the evolution of evaluation for depth up to 35
and for the same FEN and transformation as Figure 5. With Stockfish 16,
the discrepancies vary, but the metamorphic relation holds for e.g., medium
thresholds. This position also shows that the testing method is sensitive
to Stockfish version and depth. If we consider depth=25 and Stockfish 15
(Figure 5) the metamorphic relation does not hold for medium thresholds
since the gap is important. However, for depth=25 and the same position
(Figure 8), there is no issue.

8Results about Stockfish 16 can be verified at the end of the notebook, available in the
replication package [34]

22

Figure 8: Evolution of the evaluation with SF=16. Same FEN and transformation as
Figure 5.

Switching to Stockfish version 16 (from version 15) yields similar key ob-
servations: at low depth (10) on the original dataset, MR violations still
occur, albeit less frequently. However, when using realistic positions or
increasing the depth (e.g., to 20), the effectiveness of the testing method
declines significantly, with MR violations for a given position depending
heavily on specific depth values.

6. How and Why Transforming Positions Influence Stockfish

So far, we have shown evidence that symmetries may provide some dif-
ferences in evaluation in Stockfish. Although these discrepancies only occur
at certain depth and are less frequent on realistic chess positions, we now
would like to find out the reasons why Stockfish’s evaluations differ. In the
original article, the authors hypothesize about possible reasons:

”Although we do not have concrete evidence, we can still specu-
late on the potential main cause for the detected failures. Chess
engines explore moves in a specific order during the search pro-
cess. However, if this order is different, for example, between a

23

position and its symmetrical position, or if there is any random-
ness introduced within this order at any point, it could lead to
differences in the evaluation due to variations in the lines of play
considered.”

However, it is crucial to emphasize that they were not certain about them,
neither about the specific root cause in the implementation nor whether the
issue was a result of a bug or not.

Our basic observation is that Stockfish has to consider all legal moves,
however in order to consider those moves they must be in some arbitrary
order. We will show that those symmetries change the order of the generated
legal moves. Furthermore, we are going to show that in most cases it fully
explains the differences in evaluation score. It is also interesting to note that
since it explains most differences in evaluations, it also implies that chess
specific optimizations have little to no impact on these asymmetries.

In the process of finding behavior differences across positions, we modified
the Stockfish source code to trace intermediate steps, compare outcomes, and
also edit some parts of the implementation. Then, we executed Stockfish on
original positions and transformed positions, at different depth. We initially
observed that the first ordering of moves during search is different, for some
depths, eventually leading to a different evaluation. Our hypothesis is shown
on Figure 9 for the axis symmetry. The order of legal moves is changed even
up to symmetry. That is if we applied the reverse symmetry on the symmetric
position we would not get the same order of moves as in the original position.
This list of moves is then used for search, which is used to evaluate positions.

Protocol:. In order to test our hypothesis about the interplay between legal
moves generation and ordering of moves during initial search, we modified
the generate_all method in movegen.cpp. Our idea was to force the same
order for the generation of moves, for an original and transformed position.
Just before returning the array of legal moves, we sorted them according
to an arbitrary order, here in order of increasing 16-bit representations of
the moves, this is what we call the ”sorted” version. Now, without loss of
generality, let us consider the mirror symmetry. We also made the same
modification, but we applied the reverse symmetry to go back to the original
move when sorting move – let us call this version the ”sorted mirror”. To
be clear that means that if ”c3c4” is sorted first in the ”sorted” version then
”f3f4” would be the first move in the list in the ”sorted mirror” version since
after applying the symmetry ”f3f4” maps to ”c3c4”.

24

Figure 9: Overview of how legal move order is used for the evaluation of position

Given that we have these two versions, we record the differences of evalua-
tion between the position and its symmetry. We will show the mean, median
and standard deviation, we will also consider that move order explains a
difference in evaluation when the difference between the evaluations of the
”sorted” version on the position and the ”sorted symmetry” on the symmet-
ric position is exactly 0 and there was initially a difference in evaluations
when we did not sort the moves.

Explanation:. Let us explain why the order of moves changes the evaluation
with the help of Figure 10.

First, let us be clear: there is no bug or error in the code; this is a
natural property of the algorithm. The process involves exploring different
boards at different depths using heuristics to estimate a board’s value. As
the search continues, the evaluation of a board may be updated based on the

25

Figure 10: Overview of the position expansion using α − β pruning. The order of moves
at depth 1 influences the values of α−β when evaluating the next moves. Thus, changing
the order of moves may change the evaluation.

evaluations of its child nodes, leading to a more accurate assessment. Since
heuristics guide the exploration, the order in which legal moves are examined
matters. Importantly, altering the move order, as we did, not only changes
the exploration sequence but also affects the heuristics used for evaluation.
Modifying just one without the other can actually increase the discrepancies
in evaluation.

Each node represents a different board. Starting from the root node,
all child nodes are generated. Stockfish uses iterative deepening, meaning
it progressively selects the most relevant nodes to explore at each iteration.
Initially, since all child nodes lack a value, they are chosen in the order they
were added. Once a node is selected, it is marked as explored (represented
by the dotted arrows), and its child nodes are generated. Their values are
estimated, and the best value is propagated back to the parent node (shown
by the blue arrows). This process continues as long as Stockfish has time or

26

has reached the maximum depth. A key point is that Stockfish assigns an
initial value to nodes using heuristics, but this value is noisy and becomes
more accurate as the node and its children are explored. Node selection
balances exploration and exploitation, meaning that with more iterations,
more paths are explored, and their values are refined. This explains why
values converge as depth increases: early choices may be inaccurate, but are
corrected over time as deeper exploration leads to better evaluations.

The bias effect of this initial evaluation is amplified with α− β pruning.
The idea is that α−β describes an interval of value in which we are interested,
that is nodes whose value is outside this interval are not explored because
they are not relevant. When you explore a node you can update α−β based
on the evaluation of the node, since you have a node that allows you to not
do any worse than this node, thus pruning a large part of the search space
where you might make worse choices which is irrelevant since you would not
choose such a worse path.

Results:. We show the results of our experiments on Table 1 for sim mirror
and similar results with negligible differences have been obtained for sim axis
on Table 2. It is highly likely that these subtle differences depend on some
positions that are not equivalent after symmetry, for examples pawns that
might get farther away from the opposite side of the board. We count a
position as explained by move order if using the same order of move with
respect to the symmetry used reduces the differences in evaluation to 0.

We show two different views of the same data, the version where all
positions are kept and another where only ”stable” positions were kept, that
is we kept only the positions whose evaluation did not change when the
symmetry was applied. This is why 0% of the differences of these positions are
explained by move order because the positions that diverged were removed.

First, let us look at only the changes with depth, a pattern emerges when
we increase depth, the mean and std increases whereas the median decreases
and percentage of move explained by move order decreases. The fact that the
median decreases is a synonym of our earlier explanation of the algorithm, in
most cases these differences in evaluations are fixed over increasing depths of
exploration. In other words, in most scenarios when we increase the depth, in
a majority of scenario differences of evaluations tend to disappear. The mean
and the increase in std is mainly due to differences in evaluation because of
different move orders, as we will explain. In fact, at depth 10 for random
positions more than 95% of the differences in evaluation can be fixed by

27

changing the move order, for Lichess position it is still more than 64% of the
positions. However, it only accounts for 10% cases for random at depth 20
and at most 5% for Lichess. If we change the threshold of explained by move
order to differences of less than 0.4 then at depth 20 it explains around 50%
of the differences in both random and Lichess datasets.

While it seems that the move order explain most differences at depth 10,
this is not as obvious to depth 20 and furthermore the standard deviation
and mean can be seen as still relatively high when considering only stable
positions, so we looked into what was happening. We found that on random
data in more than 3% of cases, there was a difference of evaluation greater or
equal to 100 between the position and its symmetry, in all of these cases the
engine found a mate in one position but not in the symmetric one. When we
remove these positions, the mean for stable positions goes to 0. For Lichess
positions, it occurs in 0.4% of positions, and removing these positions put
the mean to 0.03 for stable positions. In both cases, the standard deviation
decreases to less than 0.1. So these rare positions explain most of the high
mean and high standard deviation, but does the move order help solves these
high differences in evaluation? We found that for around 45% for random and
60% for Lichess of these positions, using the same order fixes the discrepancy
in evaluation to a difference of less than 0.4. In other words, fixing the move
order even up to depth 20 fixes the evaluations differences. We do not know
how to explain the remaining 2% of random positions and 0.2% of Lichess
positions difference up to a negligible amount. A manual review of a sample
of these positions tends to suggest positions with high score. Chess engines
are not finely tuned for interpreting extremely lopsided positions. When
the score is excessively high, it often simply means an imminent mate, and
further distinctions in the score become less relevant.

Feature, not bug:. Our analysis explains the source of MR violations, which
are caused by changes in the move ordering of legal moves during board rota-
tions. This understanding can also be used to fix these violations by applying
a patch to Stockfish to make the move ordering invariant to board rotations.
However, enforcing such a fix is unnecessary, as move ordering at shallow
depths is arbitrary due to the lack of guiding information. Implementing
this patch would result in computational overhead without providing any
meaningful performance gains for the engine.

28

Our controlled, in-depth analysis of the source code revealed that apply-
ing board rotations alters the move ordering of legal moves during the
search process, explaining the evaluation discrepancies at certain depths.
This behavior is a feature, not a bug, inherent to how modern chess en-
gines operate. At a depth of 10, nearly all discrepancies are accounted
for, while at a depth of 20, most remaining differences are either negli-
gible or occur in positions with a clear advantage (e.g., large centipawn
values or imminent checkmates).

Table 1: Comparative statistics of the differences in evaluation between a position and the
mirror position

dataset positions depth mean median std
% explained by
move order

random
all

10 3.23 0.10 18.15 95.4%
20 3.66 0 19.4 10.0%

stable
10 0.05 0 2.31 0%
20 1.38 0 12.3 0%

Lichess, no castling
all

10 0.46 0.09 5.85 64.45%
20 0.56 0.06 7.11 4.94%

stable
10 0.02 0 0.04 0 %
20 1.37 0.01 12.2 0 %

Table 2: Comparative statistics of the differences in evaluation between a position and the
axis position

dataset positions depth mean median std
% explained by
move order

random
all

10 2.91 0.09 17.12 95.4%
20 3.63 0 19.3 9.68%

stable
10 0.02 0 1.57 0%
20 1.40 0 12.4 0%

Lichess, no castling
all

10 0.43 0.09 5.56 67.76%
20 0.62 0.06 7.54 5.37%

stable
10 0.27 0 5.18 0 %
20 0.92 0.01 9.90 0 %

29

7. Related work

Metamorphic Testing. Segura et al. [28] surveyed metamorphic test-
ing. It can be used to compare different programs for the same input and
determine whether some relations are kept from one execution to another [5].
For instance, Donaldson et al. [10] applied metamorphic testing to reveal bugs
in compilers for OpenGL. Symmetries can reveal to be a key part in detecting
potential failures of a system, indeed they tend to be very generic properties
that can induce relevant metamorphic relations [38].

The effectiveness of metamorphic testing is highly dependent on the spe-
cific metamorphic relations that are used, and designing effective metamor-
phic relations is thus a critical step when applying metamorphic testing.
Defining good metamorphic relations requires knowledge of the problem do-
main. Chen et al. [8] compared the effectiveness of metamorphic relations
solely based on the theoretical knowledge of the problem (black–box) versus
those derived from the program structure (white–box) using two case studies.
They argue that good metamorphic relations should be preferably selected
with regard to the algorithm under test following a white–box approach.

Testing and chess engines. There have been several applications of
metamorphic testing [39, 7, 16, 25], and chess has attracted some attention.
Another notable use of MT for chess was made with a different goal [17, 18],
their goal was to ensure that the implementation of the engines were actually
playing chess, in other words they checked if the performed moves were legal
or not. The goal of their MR was to detect illegal moves, in order to do
that they used mutation testing in order to modify part of the code and then
checked that their MR detected the faults. Common techniques for analyzing
chess engines are made in order to find among a set of chess engines which
engine is the best at analyzing the game. By construction, better chess
engine is more likely to win a game against a weaker chess engine. Thus, by
using tournament techniques [33] or sequential statistical tests [36, 35] one
can tackle the question. However, these techniques are of no interest since
as in the original work of Méndez et al. the goal is to check the consistency
of one, the best, chess engine.

Chess engines, evaluation and depth. The development of chess en-
gines have a long tradition [6, 14, 2, 29], with many applications and use
cases. Guid and Bratko [13] leveraged chess engines to determine who is the
best chess player in history. Regan and Haworth [24] aim to represent playing
strength at chess by the quality of moves played (as stated by computer chess

30

programs), rather than by the results of games. Chess engines can also be
used to detect cheaters [3] while cheaters can also use chess engines. There
are some attempts to extract learned representation of the chess board out of
neural networks to reconstruct many human chess concepts [20]. Specialized
chess engines are still proposed. Maia, a customized version of AlphaZero
trained on human chess games, aims at predicting decisions made by play-
ers at a specific skill level [21]. Some engines specifically target puzzles or
fortress [37, 30].

8. Conclusion

We re-evaluated the article ”Metamorphic Testing of Chess Engines.”
that originally reported on evaluation discrepancies of Stockfish, the state-
of-the-art chess engine. Our replication stems from our observation that the
original paper had multiple threats, and certainly drew incorrect conclusions
on the applicability of their testing method, including the alarming claim that
Stockfish has numerous faults and issues. We first succeeded to reproduce the
results of the original study, thanks to the remarkable availability of source
code and datasets.

We then considered potential threats and varied three factors of the ex-
periments:

• the depth value (originally at a very low value, 10);

• the dataset through the inclusion of realistic positions;

• the version of Stockfish;

We analyzed the individual influence of each factor as well as their combina-
tions (e.g., using greater depth on realistic positions with a different version
of Stockfish). We conducted novel experiments on thousands of positions,
employing significantly deeper searches.

The replication results showed that:

• the metamorphic relations are not as effective as in the original article,
especially on realistic chess positions and increase of depth.

• we raised awareness of the sensitivity of depth: metamorphic relations
may only be violated at specific depths, and there is a depth threshold
beyond which the testing method becomes ineffective.

31

• through a rigorous and in-depth analysis of the source code, we found
why Stockfish can exhibit discrepancies on transformed positions and
why at certain low depths, metamorphic relations are not effective. Our
overall conclusion is that it is not a bug, but a feature of the exploration
process of modern chess engines.

There are two main takeaways. From a chess engine perspective, our re-
evaluation shows that Stockfish is not as faulty as originally suggested. In
particular, we do not found evidence of realistic positions with evaluations’
discrepancies at large depths. From a metamorphic testing perspective, the
metamorphic relations should be parameterized by the search depth – ignor-
ing this key parameter of modern chess engines is a fatal methodological flaw
and leads to false conclusions.

As of now, metamorphic relations are not an effective technique for find-
ing real faults of Stockfish, but the original attempts can certainly be refined
(e.g., with depth in mind), based on our quantitative and qualitative in-
sights. The replication process taught us a valuable lesson: metamorphic
relations need to be verified within the unique context of a specific domain.
Without this context-specific validation, conclusions can be misleading or ir-
relevant. Also, changes in parameters and input dataset can drastically alter
the effectiveness of a testing method – hence the importance of replicating
studies.

Although our findings indicate that the metamorphic relations in our
study are inadequately defined and lack the domain knowledge specificity
required for effective testing of the state-of-the-art chess engine Stockfish,
this limitation should not be seen as indicative of metamorphic testing as a
whole. On the one hand, the development of more sophisticated metamorphic
relations could enable effective metamorphic testing of chess engines in future
research, and we believe that our insights will contribute to the formulation
of these new relations. On the other hand, there is potential for applying
metamorphic relations to non-standard chess engines, such as those based on
transformers (e.g., [26, 12, 15, 27]). Overall, our work highlights the need for
further exploration of the original ideas and for refining metamorphic testing
approaches.

Data availability. The material of this study is publicly available online:
https://github.com/acherm/chess-MT-Stockfish and includes all data
(Stockfish analysis of all positions at different depth, with different version,
and on transformations), instructions to reproduce experiments, scripts used

32

https://github.com/acherm/chess-MT-Stockfish

to analyze data, as well as heatmaps and results integrated in notebooks.
Statement. During the preparation of this work, the authors used Chat-

GPT and Mistral in order to improve the readability and language of the
manuscript. After using these services, the authors reviewed and edited the
content as needed and take full responsibility for the content of the published
article.

Acknowledgements. We thank Martin Monperrus, Helge Spieker, and
Arnaud Gotlieb for their insightful discussions about metamorphic testing
and feedbacks about the paper.

References

[1] 2024. Top Chess Engine Championship (TCEC). Online Computer
Chess Tournament. https://tcec-chess.com/ Accessed: 2024-04-13.

[2] Mathieu Acher and François Esnault. 2016. Large-scale Analy-
sis of Chess Games with Chess Engines: A Preliminary Report.
arXiv:1607.04186 [cs.AI] https://arxiv.org/abs/1607.04186

[3] David J Barnes and Julio Hernandez-Castro. 2015. On the limits of
engine analysis for cheating detection in chess. Computers & Security
48 (2015), 58–73.

[4] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and
Shin Yoo. 2014. The oracle problem in software testing: A survey. IEEE
transactions on software engineering 41, 5 (2014), 507–525.

[5] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. 2015. The
Oracle Problem in Software Testing: A Survey. IEEE Transactions on
Software Engineering 41, 5 (May 2015), 507–525. https://doi.org/

10.1109/TSE.2014.2372785

[6] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. 2002. Deep
blue. Artificial intelligence 134, 1-2 (2002), 57–83.

[7] Tsong Yueh Chen, Jianqiang Feng, and TH Tse. 2002. Metamorphic
testing of programs on partial differential equations: a case study. In
Proceedings 26th Annual International Computer Software and Applica-
tions. IEEE, 327–333.

33

https://tcec-chess.com/
https://arxiv.org/abs/1607.04186
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785

[8] Tsong Yueh Chen, DH Huang, TH Tse, and Zhi Quan Zhou. 2004. Case
studies on the selection of useful relations in metamorphic testing. In
Proceedings of the 4th Ibero-American Symposium on Software Engi-
neering and Knowledge Engineering (JIISIC 2004). Citeseer, 569–583.

[9] Andrew G. Clark, Michael Foster, Neil Walkinshaw, and Robert M.
Hierons. 2023. Metamorphic Testing with Causal Graphs. In 2023 IEEE
Conference on Software Testing, Verification and Validation (ICST).
153–164. https://doi.org/10.1109/ICST57152.2023.00023

[10] Alastair F. Donaldson and Andrei Lascu. 2016. Metamorphic testing for
(graphics) compilers. In Proceedings of the 1st International Workshop
on Metamorphic Testing, MET@ICSE 2016, Austin, Texas, USA, May
16, 2016. 44–47. https://doi.org/10.1145/2896971.2896978

[11] Engineering, Medicine, National Academies of Sciences, Engineering,
Medicine, et al. 2019. Reproducibility and replicability in science.
(2019).

[12] Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue
Yang, Kun Shao, David Mguni, Yali Du, and Jun Wang. 2023.
ChessGPT: Bridging Policy Learning and Language Modeling.
arXiv:2306.09200 [cs.LG] https://arxiv.org/abs/2306.09200

[13] Matej Guid and Ivan Bratko. 2006. Computer analysis of world chess
champions. ICGA journal 29, 2 (2006), 65–73.

[14] David Heath, Derek Allum, and Park Square. 1997. The Historical De-
velopment of Computer Chess and its Impact on Artificial Intelligence.
Deep Blue Versus Kasparov: The Significance for Artificial Intelligence
63 (1997).

[15] Adam Karvonen. 2024. Emergent World Models and Latent Variable Es-
timation in Chess-Playing Language Models. arXiv:2403.15498 [cs.LG]
https://arxiv.org/abs/2403.15498

[16] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation
via equivalence modulo inputs. ACM Sigplan Notices 49, 6 (2014), 216–
226.

34

https://doi.org/10.1109/ICST57152.2023.00023
https://doi.org/10.1145/2896971.2896978
https://arxiv.org/abs/2306.09200
https://arxiv.org/abs/2403.15498

[17] Aisha Liaqat and Muddassar Azam Sindhu. 2018. A metamorphic rela-
tion based approach for testing a chess game. In 2018 14th International
Conference on Emerging Technologies (ICET). IEEE, 1–6.

[18] Aisha Liaqat, Muddassar Azam Sindhu, and Ghazanfar Farooq Siddiqui.
2020. Metamorphic testing of an artificially intelligent chess game. IEEE
Access 8 (2020), 174179–174190.

[19] Lichess.org. 2021. Lichess Database. https://database.lichess.

org/. Accessed: [Access Date].

[20] Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce,
Martin Wattenberg, Demis Hassabis, Been Kim, Ulrich Paquet, and
Vladimir Kramnik. 2022. Acquisition of chess knowledge in alp-
hazero. Proceedings of the National Academy of Sciences 119, 47 (2022),
e2206625119.

[21] Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton An-
derson. 2020. Aligning Superhuman AI with Human Behavior: Chess as
a Model System. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (Virtual Event, CA,
USA) (KDD ’20). Association for Computing Machinery, New York,
NY, USA, 1677–1687. https://doi.org/10.1145/3394486.3403219

[22] Manuel Méndez, Miguel Benito-Parejo, Alfredo Ibias, and Manuel
Núñez. 2023. Metamorphic testing of chess engines. Information and
Software Technology 162 (2023), 107263. https://doi.org/10.1016/

j.infsof.2023.107263

[23] Krishna Patel and Robert M. Hierons. 2018. A mapping study on testing
non-testable systems. Softw. Qual. J. 26, 4 (2018), 1373–1413. https:

//doi.org/10.1007/S11219-017-9392-4

[24] Kenneth Regan and Guy Haworth. 2011. Intrinsic chess ratings. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 25.
834–839.

[25] Manuel Rigger and Zhendong Su. 2022. Intramorphic testing: A new
approach to the test oracle problem. In Proceedings of the 2022 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. 128–136.

35

https://database.lichess.org/
https://database.lichess.org/
https://doi.org/10.1145/3394486.3403219
https://doi.org/10.1016/j.infsof.2023.107263
https://doi.org/10.1016/j.infsof.2023.107263
https://doi.org/10.1007/S11219-017-9392-4
https://doi.org/10.1007/S11219-017-9392-4

[26] Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya,
Li Kevin Wenliang, Elliot Catt, John Reid, Cannada A. Lewis, Joel
Veness, and Tim Genewein. 2024. Amortized Planning with Large-
Scale Transformers: A Case Study on Chess. arXiv:2402.04494 [cs.LG]
https://arxiv.org/abs/2402.04494

[27] John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael
Kaisers, Sarah Perrin, Daniel Hennes, Jeremy Shar, Cannada Lewis,
Anian Ruoss, Tom Zahavy, Petar Veličković, Laurel Prince, Satinder
Singh, Eric Malmi, and Nenad Tomašev. 2024. Mastering Board Games
by External and Internal Planning with Language Models. arXiv (4
December 2024).

[28] Sergio Segura, Gordon Fraser, Ana B. Sánchez, and Antonio Ruiz
Cortés. 2016. A Survey on Metamorphic Testing. IEEE Trans. Soft-
ware Eng. 42, 9 (2016), 805–824. https://doi.org/10.1109/TSE.

2016.2532875

[29] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, et al. 2017. Mastering chess and shogi by self-
play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815 (2017).

[30] Hedinn Steingrimsson. 2021. Chess fortresses, a causal test for state
of the art Symbolic [Neuro] architectures. In 2021 IEEE Conference on
Games (CoG). IEEE, 1–8.

[31] Stockfish Team. 2024. Stockfish, Powerful Open-Source Chess Engine.
https://stockfishchess.org/ Accessed: 2024-04-13.

[32] Syzygy Tablebase. 2021. Syzygy Tablebase. https://syzygy-tables.
info/. Accessed: [Access Date].

[33] M Tearth. 2022. A few thoughts about testing
chess engines. (2022). https://tearth.dev/posts/

a-few-thoughts-about-testing-chess-engines/

[34] https://github.com/acherm/chess-MT-Stockfish. 2024. Replica-
tion package.

36

https://arxiv.org/abs/2402.04494
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1109/TSE.2016.2532875
https://stockfishchess.org/
https://syzygy-tables.info/
https://syzygy-tables.info/
https://tearth.dev/posts/a-few-thoughts-about-testing-chess-engines/
https://tearth.dev/posts/a-few-thoughts-about-testing-chess-engines/
https://github.com/acherm/chess-MT-Stockfish

[35] Abraham Wald. 1992. Sequential tests of statistical hypotheses. In
Breakthroughs in statistics: Foundations and basic theory. Springer, 256–
298.

[36] Abraham Wald and Jacob Wolfowitz. 1948. Optimum character of the
sequential probability ratio test. The Annals of Mathematical Statistics
(1948), 326–339.

[37] Tom Zahavy, Vivek Veeriah, Shaobo Hou, Kevin Waugh, Matthew Lai,
Edouard Leurent, Nenad Tomasev, Lisa Schut, Demis Hassabis, and
Satinder Singh. 2023. Diversifying ai: Towards creative chess with alp-
hazero. arXiv preprint arXiv:2308.09175 (2023).

[38] Zhi Quan Zhou, Liqun Sun, Tsong Yueh Chen, and Dave Towey. 2018.
Metamorphic relations for enhancing system understanding and use.
IEEE Transactions on Software Engineering 46, 10 (2018), 1120–1154.

[39] Zhi Quan Zhou, ShuJia Zhang, Markus Hagenbuchner, TH Tse, Fei-
Ching Kuo, and Tsong Yueh Chen. 2012. Automated functional testing
of online search services. Software Testing, Verification and Reliability
22, 4 (2012), 221–243.

37

	Introduction
	Background
	Chess engines
	Metamorphic testing of chess engines

	Motivation and Design
	Review of the original study
	Chess players perspective
	Replication

	Reproduction
	Replicability Study
	Effect of depth
	Effect of dataset
	Effect of version

	How and Why Transforming Positions Influence Stockfish
	Related work
	Conclusion

