
HAL Id: hal-04943408
https://hal.science/hal-04943408v1

Submitted on 12 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A plastic correction algorithm for full-field elasto-plastic
finite element simulations: critical assessment of

predictive capabilities and improvement by machine
learning

Abhishek Palchoudhary, Simone Peter, Vincent Maurel, Cristian Ovalle,
Pierre Kerfriden

To cite this version:
Abhishek Palchoudhary, Simone Peter, Vincent Maurel, Cristian Ovalle, Pierre Kerfriden. A plas-
tic correction algorithm for full-field elasto-plastic finite element simulations: critical assessment
of predictive capabilities and improvement by machine learning. Computational Mechanics, 2024,
�10.1007/s00466-024-02561-6�. �hal-04943408�

https://hal.science/hal-04943408v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Computational Mechanics
https://doi.org/10.1007/s00466-024-02561-6

ORIG INAL PAPER

A plastic correction algorithm for full-field elasto-plastic finite element
simulations: critical assessment of predictive capabilities and
improvement by machine learning

Abhishek Palchoudhary1 · Simone Peter1,2 · Vincent Maurel1 · Cristian Ovalle1 · Pierre Kerfriden1

Received: 1 February 2024 / Accepted: 17 September 2024
© The Author(s) 2024

Abstract
This paper introduces a new local plastic correction algorithm that is aimed at accelerating elasto-plastic finite element (FE)
simulations for structural problems exhibiting localised plasticity (around e.g. notches, geometrical defects). The proposed
method belongs to the category of generalised multi-axial Neuber-type methods, which process the results of an elastic
prediction point-wise in order to calculate an approximation of the full elasto-plastic solution. The proposed algorithm relies
on a rule of local proportionality, which, in the context of J2 plasticity, allows us to express the plastic correction problem in
terms of the amplitude of the full mechanical tensors only. This lightweight correction problem can be solved for numerically
using a fully implicit time integrator that shares similarities with the radial return algorithm. The numerical capabilities of
the proposed algorithm are demonstrated for a notched structure and a specimen containing a distribution of spherical pores,
subjected to monotonic and cyclic loading. As a second point of innovation, we show that the proposed local plastic correction
algorithm can be further accelerated by employing a simple meta-modelling strategy, with virtually no added errors. At last,
we develop and investigate the merits of a deep-learning-based corrective layer designed to reduce the approximation error of
the plastic corrector. A convolutional architecture is used to analyse the neighbourhoods of material points and outputs a scalar
correction to the point-wise Neuber-type predictions. This optional brick of the proposed plastic correctionmethodology relies
on the availability of a set of full elasto-plastic finite element solutions to be used as a training data-set.

Keywords Model reduction · Plastic correction algorithm · Neuber’s rule · Nonlinear finite element analysis · Convolutional
neural networks
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Quantities from the elasto-static computation
σ̄ #
VM Von Mises stress coming from the elasto-static

computation at a fixed loading
σ
˜

#, ε
˜

# Stress and strain tensors coming from the elasto-
static computation

σ
˜

#
d , ε

˜

#
d Deviatoric stress and strain tensors coming from

the elasto-static computation
σ̄
˜

#
d , ε̄

˜

#
d Deviatoric stress and strain tensors coming from

the elasto-static computation at a fixed loading
σ
˜

#
d,o, ε

˜

#
d,o Deviatoric stress and strain tensors coming from

the elasto-static computation at the last peak of
cyclic loading

Quantities from a reference elasto-plastic
computation
σ
˜

, ε
˜

Reference stress and strain tensors
σ
˜

d , ε
˜

d Reference deviatoric stress and strain tensors
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ε
˜

p Reference plastic strain tensor
ε
˜

p
d Reference deviatoric plastic strain tensor
fy Reference yield surface function
J Reference von Mises stress
X
˜

Reference nonlinear kinematic hardening tensor
R Reference nonlinear isotropic hardening function
p Reference cumulative plastic strain

Quantities from an elasto-plastic computation by the
plastic corrector
σ̂
˜

d , ε̂d̃ Deviatoric stress and strain tensors computed by
the plastic corrector

σ̂
˜

d,o, ε̂d̃,o Deviatoric stress and strain tensors at the last peak
of cyclic loading computed by the plastic correc-
tor

ε̂
˜

p Plastic strain tensor computed by the plastic cor-
rector

ε̂
˜

p
d Deviatoric plastic strain tensor computed by the

plastic corrector
f̂ y Yield surface function computed by the plastic

corrector
Ĵ Von Mises stress computed by the plastic correc-

tor
X̂
˜

Nonlinear kinematic hardening tensor computed
by the plastic corrector

p̂ Cumulative plastic strain computed by the plastic
corrector

Scalar variables for proportional evolution rule
s Ratio of the approximated deviatoric stress tensor

to the deviatoric stress tensor from the elasto-
static computation

e Ratio of the approximated deviatoric strain tensor
to the deviatoric strain tensor from the elasto-
static computation

ep Ratio of the approximated deviatoric plastic strain
tensor to the deviatoric strain tensor from the
elasto-static computation

x Ratio of the approximated kinematic hardening
tensor to the deviatoric strain tensor from the
elasto-static computation

so Ratio of the approximated deviatoric stress tensor
to the deviatoric stress tensor from the elasto-
static computation at the last peak of cyclic
loading

eo Ratio of the approximated deviatoric strain tensor
to the deviatoric strain tensor from the elasto-
static computation at the last peak of cyclic
loading

epo Ratio of the approximated deviatoric plastic strain
tensor to the deviatoric strain tensor from the

elasto-static computation at the last peak of cyclic
loading

f Loading function
fo Loading function at the last peak of cyclic loading

Other miscellaneous notation
ˆ̂σ
˜

d Projected deviatoric stress tensor using the local
proportionality rule

u Displacement vector
I Identity tensor
�p Cumulative plastic strain range in a cycle
φ Intrinsic dissipation in a cycle

1 Introduction

The computer simulation of industrial components is often
based on plasticity analysis around critical areas with high
stress concentrations such as notches or defects like pores
[1–8]. These analyses usually require finite element simu-
lations. However, plasticity simulations are computationally
expensive due to the number of elements required to accu-
rately represent the geometry of stress concentrators, and due
to the number of time increments needed to integrate non-
linear material laws over time. In this context, we propose
a new methodology, which belongs to the class of plastic
correction approaches, to rapidly obtain an approximation of
the full-field elasto-plastic response of structures subjected
to proportional loading sequences, from a single 3D elasto-
static finite element solution.

Several types of plastic correction methodologies have
been developed in the past to post-process the elasto-plastic
response of structures from elastic finite element solutions.
One family of methods uses homogenization theory, which
consists in viewing the plastic zone as an inclusion in an
elastic matrix and deriving local constraints to simulate
the evolution of plastic quantities at the notch tip under
load, starting from an elastic finite element solution [9–11].
Another family of methods relies on the use of Neuber-
type rules. These rules are heuristics that relate the stresses
and strains in an elasto-plastic body to those in a geo-
metrically similar elastic body undergoing similar loading
conditions. While originally developed for a uni-axial stress
state at a notch subjected to monotonic loading [12] and
then cyclic loading [13, 14], the Neuber rule (and other
Neuber-type methods like the Equivalent Strain Energy Den-
sity approach [15]) have been generalized to multi-axial
loading states at notch tips. One sub-family of Neuber-
type methods for multi-axiality is based upon independently
employing Neuber-type rules for every scalar component of
the stress and strain tensors [16, 17]. The other sub-family
of Neuber-type approaches reduces the complexity of the
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previous approach by employing variations of proportional
evolution rules for the stress tensor, strain tensor, or for a
combination of stress and strain [18–21]. As far as we are
aware, these existing pieces of work concentrate specifically
on the development of Neuber-type plastic correction meth-
ods for the prediction of multiaxial stress and strain states
at notch tips. One specific piece of work by Desmorat et al.
[19] suggests using locally proportional evolutions together
with Neuber-type rules to predict the evolution of elasto-
plastic fields. Yet we could not find any detailed analysis
of the accuracy of the suggested methodology away from
notches and free boundaries, nor could we find the deriva-
tions of general-purpose algorithms to integrate the resulting
plastic correction equations numerically, i.e. under arbitrary
(proportional) load histories.

The first point of innovation proposed in this paper is
the development of a multiaxial Neuber-type plastic correc-
tion method that may be used to produce approximations
of elasto-plastic quantities at every quadrature point of a
finite element mesh. As such, the developed methodology
will not rely on particular strain state assumptions regard-
ing the recovery of elasto-plastic solutions at traction-free
boundaries. Our proposal is to use a local proportionality rule
for the deviatoric stress and strain tensors, which will there-
fore be linearly related to their counterparts as calculated
using an elasto-static analysis. Remarkably, in the context
of J2 plasticity (we use a Chaboche model with kinematic
and isotropic hardening), the local proportionality rule results
in scalar constitutive equations for the deviatoric strain and
stress amplitudes, without further assumption on plastic flow,
which was already identified in [19]. Complemented by a
scalar Neuber-type rule, the constitutive equations may be
solved locally, the load stemming directly from that heuris-
tic rule. We use the standard change of peaks method [14]
to account for load cycles with non-zero mean stresses. We
will analyse the accuracy of full 3D elasto-plastic solutions
computed using the Neuber-type approximation, i.e. at and
away from notches and free boundaries. This full-field aspect
is particularly relevant to fields whereby fracture criteria
are based on full-field elasto-plastic solutions, for example
non-local fatigue models that use elasto-plastic fields around
critical points [22], or weakest-link models that compute
probabilities of failure via a weighted average of mechan-
ical stresses over the entire computational domain [23, 24].

The second point of novelty is a machine-learning-based
acceleration of the proposed plastic corrector, which is par-
ticularly useful for finite element models exhibiting a large
number of degrees of freedom and long time analyses. This is
because the local time integration of the elasto-plastic equa-
tions, using the plastic correction methodology mentioned
previously, remains computationally expensive. We show
that under the previously stated rules (J2 plasticity, propor-
tionality of deviatoric strain and stress tensors, scalar Neuber

rule), and for a given load history, any output of the plastic
correction algorithm exhibits a (nontrivial) scalar depen-
dency to the von Mises stress of the elastic finite element
simulation. Therefore, we suggest a meta-modelling strat-
egy in the form of a Gaussian process regression [25], that
will be trained to produce the elasto-plastic quantity of inter-
est given a von Mises stress stemming from the elasto-static
simulation as input. A dataset is generated by populating the
real positive axis and computing the corresponding outputs
using the plastic corrector. Few (30 to 150) such datapoints
are necessary for a one-dimensional regression. We show
that training the Gaussian process regression on such a small
dataset is sufficient to act as a virtually cost-free surrogate
for all remaining local plastic corrections, without sacrificing
accuracy. As a consequence, the cost of acquiring approxi-
mated elasto-plastic quantities for specimens with single or
multiple stress concentrators reduces to the cost of the elas-
tic finite element simulation, as the number of degrees of
freedom of the finite element model increases.

As a third and more exploratory part of the development,
we propose a methodology of plastic correction using neural
networks, whichwe coinNeural plastic corrector (NPC). The
Neural Network developed here will be used to correct the
output of the proposed Neuber-type methodology in order
to better reproduce the mechanical fields delivered by a full
elasto-plastic finite element analysis. While the Neuber-type
method described thus far never requires elasto-plastic finite
element simulations to be performed, the NPC is based on
trainingwith examples (supervised learning), and is therefore
based on the availability of reference elasto-plastic solutions
that will be used as a dataset. The Neuber corrector being
local by nature, we aim to correct it by using information
about the local topology of material point neighbourhoods,
which will be analysed in an end-to-end fashion by a Con-
volutional Neural Network (CNN). More precisely, we will
first voxelise the neighbourhood of any point of interest.
We will then project the result of the previously described
Neuber-type methodology to be improved onto the voxelised
neighbourhood. Finally, we will provide this gridded data as
input to aNeural network and train it to predict a correction to
the elasto-plastic quantity of interest obtained approximately
using theNeuber-type plastic corrector.Whilst the previously
introduced Neuber-type method may be applied to general
structures exhibiting stress concentrations, the Neural plastic
corrector will be dedicated to the analysis of specimens with
randomly placed pores, such as those that may be of inter-
est when simulating the failure of porous alloys obtained by
casting, welding or additive manufacturing [26–28]. In this
context, the necessity to analyse specimens, or batches of
specimens, containing large quantities of defects may justify
the deployment of an AI that learns from a small to medium
quantity of reference elasto-plastic simulations in order to
predict the elasto-plastic output of subsequent simulations.
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We do not anticipate a strong generalisation ability of the
NPC, consistently with observations and analyses made in
our previous work [29, 30], albeit in a different mechanical
context.However,wewill show that the output of theNeuber-
type methodology may be improved upon by the proposed
AI, using a reasonable amount of data for training, and that
using the output of our Neuber-type methodology as full-
field input to the CNN is indeed beneficial as compared to
using inputs of the NPC with a lesser mechanical content.

This paper is divided into four sections: the first sec-
tion introduces the proposed Neuber-type plastic corrector
scheme. The second section is devoted to results and error
analysis of the plastic correction algorithm for two different
problems: A structure with a notch undergoing monotonic
loading, and a specimen made of a porous alloy with a
spherical pore population undergoing monotonic and cyclic
loading. The third section introduces the meta-modelling
strategy proposed to accelerate the plastic correction algo-
rithm, and the fourth section presents the Neural Plastic
Correction strategy. The three elements introduced in the
paper are separately validated in the section where they are
respectively presented. The paper is concluded by a discus-
sion and perspectives of future studies.

2 Full field Neuber-type plastic corrector

2.1 Linear elasticity problem

Neuber-type methods approximate plasticity by locally pro-
cessing the stress and strain fields stemming from a single
elasto-static finite element analysis. We set up a linear elastic
problem in an isotropic material, with stiffness tensor C and
Lamé coefficients λ,μ, over a time interval [0, T ], whereby
proportional loading conditions are assumed at the global
level, i.e. that of the structure. The time-dependent displace-
ment, stress and strain tensors for the elasto-static simulation
are denoted by u#(t), σ

˜

#(t) and ε
˜

#(t), respectively. The iden-
tity tensor is denoted by I. The boundary ∂�of computational
domain � is additively split into a Dirichlet part ∂�u and a
Neumann part ∂�t . The equations of linearised elasticity are
introduced as follows:

div σ
˜

#(t) + f (t) ξ̄ = 0 (1)

σ
˜

#(t) = C : ε
˜

#(t) = λTr(ε
˜

#(t))I + 2με
˜

#(t) (2)

ε
˜

#(t) = 1

2
(∇u#(t) + ∇u#(t)T ) (3)

u#(t) = f (t) ūa over ∂�u (4)

σ
˜

#(t) · n = f (t) t̄a over ∂�t (5)

In the previous set of equations, f : [0, T ] �→ R is an arbi-
trary function of time thatmaybe set to simulate, for example,
proportionally monotonic and cyclic loading. ξ̄ is a vector-
valued field of volume forces, ūa is a vector-valued field
of applied displacements, and t̄a is a vector-valued field of
applied traction loads. The previous elastic time-dependent
problem is proportional, in the sense that all prescribed
loading conditions, be it Neumann, Dirichlet conditions or
volume sources, are introduced as fixed vector-valued fields
multiplied by a function of time f .

Therefore, u#(t),σ
˜

#(t) and ε
˜

#(t)may be obtained by solv-
ing the equation of elasto-statics for f = 1, and processed in
the following way to recover the history of elastic solutions
over [0, T ]:

u#(t) = f (t) ū# (6)

σ
˜

#(t) = f (t) σ̄
˜

# (7)

ε
˜

#(t) = f (t) ε̄
˜

# (8)

where ū#, σ̄
˜

# and ε̄
˜

# are, respectively, the displacement field,
the stress tensor and the strain tensorfields obtainedby setting
f = 1. (note: a bar symbol (•̄) is used to denote quantities
that are obtained by solving the equations of elasto-statics
with f = 1).

If the elastic deviatoric stress and strain tensors obtained
for f = 1 are denoted by σ̄

˜

#
d and ε̄

˜

#
d respectively, then the

elastic deviatoric tensors at any time t (denoted by σ
˜

#
d(t) and

ε
˜

#
d(t)) are obtained by the following scaling:

σ
˜

#
d(t) = f (t) σ̄

˜

#
d (9)

ε
˜

#
d(t) = f (t) ε̄

˜

#
d (10)

2.2 VonMises plasticity constitutive model

A von Mises plasticity model with a non-linear kinematic
hardening and a non-linear isotropic hardening is chosen for
the description of the evolution of the yield surface [31].
The deviator of the stress tensor σ

˜

is henceforth denoted by
σ
˜

d , the total strain by ε
˜

and the plastic strain tensor by ε
˜

p.
Elasticity is given by

σ
˜

= C : (ε
˜

− ε
˜

p) (11)
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The von Mises stress is given as:

J (σ
˜

d − X
˜

) =
√

3

2
(σ
˜

d − X
˜

) : (σ
˜

d − X
˜

) (12)

where X
˜

is the non-linear kinematic hardening tensor. The
expression for the plastic strain rate ε̇

˜

p is given as:

ε̇
˜

p = ṗ

(

3

2

σ
˜

d − X
˜J (σ

˜

d − X
˜

)

)

(13)

The evolution of X
˜

is given by the following expression:

Ẋ
˜

= 2

3
C ε̇
˜

p − DX
˜

ṗ (14)

where ṗ is the time evolution of the cumulative plastic strain
p, and C and D are kinematic hardening material parame-
ters. The isotropic hardening R(p) is given by the following
expression:

R(p) = Q
(

1 − exp (−bp)
)

(15)

where Q and b are isotropic hardening material parameters.
The deviator of the plastic strain tensor is used to define the
cumulative plastic strain rate:

ṗ =
√

2

3
ε̇
˜

p
d : ε̇

˜

p
d (16)

The evolution of the yield surface fy(σ
˜

d; X
˜

, p) is required
to satisfy the following two constraints:

fy(σ
˜

d; X
˜

, p) = J (σ
˜

d − X
˜

) − σy − R(p) ≤ 0 (17)

fy ṗ = 0 (18)

2.3 Modified Neuber rule

Neuber rule for deviatoric stress and strain tensors
The Neuber-type rule proposed in this paper operates on

the deviatoric parts of the stress and strain tensors [16]:

σ̂
˜

d : ε̂d̃ = σ
˜

#
d : ε

˜

#
d (19)

where σ̂
˜

d , ε̂d̃ stand for the approximated deviatoric stress
and strain tensors, respectively (note: a hat symbol (•̂) is
used to denote quantities that are approximated by the plastic
corrector).

Tensors σ
˜

#
d , ε

˜

#
d , which are obtained by solving elasto-

statics instead of elasto-plasticity, are time-dependent, but
the (t) notation has been dropped for conciseness.

Cyclic loading is handled with the classical change of
origin at every peak, as proposed by Chaudonneret [14]:

(σ̂
˜

d − σ̂
˜

d,o) : (ε̂d̃ − ε̂d̃,o) = (σ
˜

#
d − σ

˜

#
d,o) : (ε

˜

#
d − ε

˜

#
d,o) (20)

In the previous equation, quantities σ̂
˜

d,o, ε̂d̃,o stand for the
approximated deviatoric stress and strain tensors at the last
peak of loading. The tensors σ

˜

#
d,o, σ

˜

#
d,o stand for the devia-

toric stress and strain tensors coming from the elastic finite
element solution evaluated at the last peak.
Proportional evolution rule for deviatoric stress and strain
tensors

It is important to note that stresses and strains in a struc-
ture depend on the geometry, the material behaviour and the
boundary conditions. When there is a change in the ratio of
any two components of the stress tensor at a given mate-
rial point, these local stresses become non-proportional, by
definition. If there is plastic flow anywhere in the structure,
local non-proportionality may arise even in the case where
the external loading is proportional.

TheNeuber rule developed so far and the constitutive rela-
tions operate on symmetric second order tensors. We assume
local proportionality [19], that is, while the local evolution of
the actual deviatoric stress and strain tensors at a point may
be arbitrarily complex, we postulate that the evolution is well
approximated by assuming that it remains in the direction of
the deviatoric stress and strain tensors obtained from elasto-
statics, i.e. there is no shift in the direction in which plasticity
develops.

Therefore, the deviatoric stress tensor may be written as
a scaling of the stress tensor stemming from elasto-statics,
which reads as

σ̂
˜

d(t) = s(t)σ̄
˜

#
d (21)

and similarly for the deviatoric strain tensor,

ε̂d̃(t) = e(t)ε̄
˜

#
d (22)

where the scalar variables s and e are introduced as scaling
factors to be determined.
Neuber rule in terms of proportionality ratios

Taking the local proportionality rules into account, the
Neuber rule reduces to a constraint on scalar variables s and
e. By substituting equations (9) and (10), and (21) and (22)
into equation (19), the monotonic Neuber rule, in the case of
monotonic loading functions, becomes:

s e σ̄
˜

#
d : ε̄

˜

#
d = f 2 σ̄

˜

#
d : ε̄

˜

#
d (23)

which yields

s e = f 2 (24)
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Fig. 1 An illustration of the
plastic correction algorithm
during the (a) first branch of
loading (b) second branch of
loading, with so and eo updated
to their respective values at the
last peak

s s

e e

s1

s2

s

e

e1

e2 s2o, e
2
o

0 0
s1o, e

1
o

(a)

(b)

where we remind the reader that s, e and f are time-
dependent variables (the (t) notation has been dropped for
conciseness).

For cyclic loading, we introduce so and eo, which are the
values of the scalar variables s and e at the last peak. Substi-
tuting equations (9) and (10), and (21) and (22) into equation
(20):

(sσ̄
˜

#
d −soσ̄

˜

#
d) : (eε̄

˜

#
d − eoε̄

˜

#
d)

= ( f σ̄
˜

#
d − foσ̄

˜

#
d) : ( f ε̄

˜

#
d − foε̄

˜

#
d) (25)

σ̄
˜

#
d : ε̄

˜

#
d(s − so)(e − eo) = σ̄

˜

#
d : ε̄

˜

#
d( f − fo)( f − fo) (26)

(s − so)(e − eo) = ( f − fo)
2 (27)

The scalar constraint between (deviatoric) stress and strain
amplitudes is illustrated in Fig. 1 in the context of cycling
loading. During the first branch of loading (denoted by the
superscript 1), the quantities so and eo take on the initial val-
ues of s1o and e

1
o, i.e. 0, and s and e evolve as s

1 and e1. When
the peak of loading is reached, and a load reversal is made
for a second branch of loading (denoted by the superscript
2), the values of so and eo are updated to the previous peak
values, shown in the figure as s2o and e

2
o. Next, s and e evolve

as s2 and e2 according to the updated origin. This process
is repeated, with the quantities so and eo successively taking
on the values of s and e at every peak of loading following
all the load reversals defined in the function f (t). Equation
(27) will be complemented by the elasto-plastic constitutive
equations to yield a constitutive update algorithm.

2.4 Elasto-plastic constitutive equations under
proportional tensor evolutions

The aim of this section is to reduce the tensorial equations of
the constitutive law (presented in section 2.2) to scalar equa-
tions, using the rules of proportionality stated in equations
(21) and (22), leading to a set of reduced constitutive equa-
tions in a set of scalar variables including s and e. The reader
is reminded that a hat symbol (.̂) is used to denote quantities
approximated by the plastic corrector.

Stress–strain relation
The approximated stress tensor is given by:

σ̂
˜

= 2μ(ε̂
˜

− ε̂
˜

p
) + λTr(ε̂

˜

− ε̂
˜

p
)I (28)

The approximated stress tensor σ̂
˜

can be split into its approx-
imated deviatoric σ̂

˜

d and hydrostatic σ̂
˜

h parts:

σ̂
˜

= σ̂
˜

d + σ̂
˜

h (29)

where the approximated deviatoric stress tensor σ̂
˜

d , under
isochoric plastic flow, becomes:

σ̂
˜

d = 2μ(ε̂d̃ − ε̂
˜

p
d ) (30)

The deviatoric strain is approximated by assuming propor-
tional evolution to the deviatoric strain coming from the
elasto-static simulation (refer to Sect. 2.3). By virtue of
equations (13) and (30) the plastic deviatoric strain evolves
proportionally to the deviatoric strain coming from the elasto-
static simulation, ε̄

˜

#
d . A scalar variable ep can be introduced

to encode this:

ε̂
˜

p
d (t) = ep(t)ε̄

˜

#
d (31)

123



Computational Mechanics

The approximated stress and strain tensors in equation (30)
are replaced with the scalar variables s, e and ep and the
corresponding quantities from elasto-statics σ̄

˜

#
d and ε̄

˜

#
d :

sσ̄
˜

#
d = 2μ(eε̄

˜

#
d − ep ε̄

˜

#
d) (32)

A projection of equation (32) in the direction of ε̄
˜

#
d is carried

out:

sσ̄
˜

#
d : ε̄

˜

#
d = 2μ(eε̄

˜

#
d : ε̄

˜

#
d − ep ε̄

˜

#
d : ε̄

˜

#
d) (33)

As σ̄
˜

#
d : ε̄

˜

#
d = 2με̄

˜

#
d : ε̄

˜

#
d (owing to the properties of isotropic

linear elasticity), equation (33) reduces to:

s = e − ep (34)

This equation for s can be extended to the cyclic variant
(s − so) by writing:

s − so = (e − eo) − (ep − epo ) (35)

Here, alongside the updating strategy of so and eo previously
described in Sect. 2.3, epo is also updated with the value of
ep at the last peak, every time a load reversal takes place.

Von Mises Stress
By virtue of equations (14) and (31), the approximated

kinematic hardening tensor evolves proportionally to the
deviatoric strain stemming from the elasto-static computa-
tion. A scalar variable x can be introduced to encode this:

X
˜

(t) = x(t)ε̄
˜

#
d (36)

Then, equation (12), with equations (21) and (36), now reads:

Ĵ (s, x) =
√

3

2

(

s2σ̄
˜

#
d : σ̄

˜

#
d − 2sx σ̄

˜

#
d : ε̄

˜

#
d + x2ε̄

˜

#
d : ε̄

˜

#
d

)

(37)

From σ̄ #
V M =

√

3
2 σ̄
˜

#
d : σ̄

˜

#
d and σ̄

˜

#
d = 2με̄

˜

#
d we retrieve

σ̄
˜

#
d : σ̄

˜

#
d = 2

3 (σ̄
#
V M )2, σ̄

˜

#
d : ε̄

˜

#
d = 1

3μ(σ̄ #
VM)2 and ε̄

˜

#
d : ε̄

˜

#
d =

1
6μ2 (σ̄

#
VM)2.

This finally leads to:

Ĵ (s, x) =
∣

∣

∣

∣

s − x

2μ

∣

∣

∣

∣

σ̄ #
VM (38)

Kinematic hardening
We now need to derive the scalar evolution equation for ẋ

as a function of x and ep. From equation (14), with equations
(31) and (36), we have

ẋ ε̄
˜

#
d = 2

3
Cėp ε̄

˜

#
d − D ˙̂px ε̄

˜

#
d (39)

and therefore, after multiplying the right and left hand-side
by ε̄

˜

#
d and dividing both sides by ε̄

˜

#
d : ε̄

˜

#
d , we found that

ẋ = 2

3
Cėp − Dx ˙̂p (40)

Flow rule
We now reformulate the flow rule in terms of scalar vari-

ables s, x and ep. From equation (13), with equations (21),
(31) and (36), we have that:

ė p ε̄
˜

#
d = ˙̂p

(

3

2

sσ̄
˜

#
d − x ε̄

˜

#
d

Ĵ (s, x)

)

(41)

A projection of this equation (41) in the direction of ε̄
˜

#
d is

carried out:

ė p ε̄
˜

#
d : ε̄

˜

#
d = ˙̂p

(

3

2

sσ̄
˜

#
d : ε̄

˜

#
d − x ε̄

˜

#
d : ε̄

˜

#
d

Ĵ (s, x)

)

(42)

Substituting the contracted products for σ̄
˜

#
d : ε̄

˜

#
d and ε̄

˜

#
d : ε̄

˜

#
d ,

we get:

ė p = ˙̂p
(

3

2

2μs − x

Ĵ (s, x)

)

(43)

Cumulative plastic strain
The deviator of the plastic strain tensor is used for the com-

putation of the approximated cumulative plastic strain rate ˙̂p.
The reformulation from the tensorial equation to the scalar
equation uses the scalar variable ep, and reads as follows

˙̂p =
√

2

3
(ė p)2ε̄

˜

#
d : ε̄

˜

#
d (44)

or in a simplified form:

˙̂p = 1

3μ
|ė p|σ̄ #

VM (45)

Solution algorithm
The Neuber rule and constitutive equations derived under

the local proportionality rule are summarised in Table 1. We
provide these relationships in terms of mechanical tensors,
but also in terms of reduced scalar variables s, e, ep, x and
p̂. It is clear that the reduced scalar variables depend solely
on the elasto-static solution through the von Mises stress
(σ̄ #

VM). This dependency to a scalar quantity from the elasto-
static simulation is key to the success of the meta-modelling
approach developed later on in the paper.

The system of plastic correction equations needs to be
solved for each quadrature point of the finite element mesh.
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Table 1 Plastic correction equationswritten in terms of tensor variables
(σ̂
˜

d ,ε̂d̃ , ε̂
˜

p , p̂,X̂
˜

) to the left, and in terms of scalar variables (s,e,ep , p̂,x)
to the right. f is the global loading function, which is time dependent,

and σ̄ #
VM denotes the von Mises stress stemming from the elastic finite

element simulation performed with f = 1

Type Tensorial variables Scalar variables

Neuber rule σ̂
˜

d : ε̂d̃ = σ
˜

#
d : ε

˜

#
d se = f 2

Elasticity σ̂
˜

= 2μ(ε̂
˜

− ε̂
˜

p
) + λTr(ε̂

˜

− ε̂
˜

p
)I s = (e − ep)

Yield function fy(σ̂
˜

; X̂
˜

, p̂) = J
(

σ̂
˜

− X̂
˜

)

− σy − R( p̂) f̂ y(s; x, p̂) = Ĵ (s, x) − σy − R( p̂)

Evolution of yield function fy(σ
˜

d ; X
˜

, p̂) ˙̂p = 0 and fy(σ
˜

d ; X
˜

, p̂)≤ 0 f̂ y(s; x, p̂) ˙̂p = 0 and f̂ y(s; x, p̂)≤ 0

von Mises stress J (σ̂
˜

d − X̂
˜

) =
√

3
2 (σ̂

˜

d − X̂
˜

) : (σ̂
˜

d − X̂
˜

) Ĵ (s, x) =
∣

∣

∣s − x
2μ

∣

∣

∣ σ̄ #
VM

Isotropic hardening R( p̂) = Q
(

1 − exp (−b p̂)
)

R( p̂) = Q
(

1 − exp (−b p̂)
)

Kinematic hardening ˙̂X
˜

= 2
3C

˙̂ε
˜

p − DX̂
˜

˙̂p ẋ = 2
3Cėp − Dx ˙̂p

Flow rule ˙̂ε
˜

p = ˙̂p
(

3

2

σ̂
˜

d − X̂
˜

J (σ̂
˜

d − X̂
˜

)

)

ė p = ˙̂p
(

3

2

2μs − x

Ĵ (s, x)

)

Cumulative plastic strain ˙̂p =
√

2
3
˙̂ε
˜

p
d : ˙̂ε

˜

p
d

˙̂p = 1
3μ |ė p|σ̄ #

VM

Table 2 Parameters of the reference elasto-plastic equations detailed
in Eqs. (11)–(18) and the plastic corrector equations detailed in Table
1, used for test cases 1 and 2

E σy b Q C D
MPa MPa MPa MPa

200000 100 10 100 40000 400

For arbitrary (proportional) load functions f (t), this is done
by computing the value of ep(t) at a series of time steps,
using the fully implicit time stepping scheme described in
the appendix A.

We can finally reconstruct the approximated elasto-
plastic tensor variables (σ̂

˜

(t), ε̂
˜

(t), ε̂
˜

p
(t), p̂(t), X̂

˜

(t)) from
the scalar quantities computed using the plastic corrector,
i.e. (s(t), e(t), ep(t), p̂(t), x(t)). For example, to compute
a component of the stress tensor, we can first reconstruct
σ̂
˜

(t) = s(t)σ̂
˜

d + f (t)Tr(σ̄
˜

#)I and then report the time evolu-
tion of desired component of this approximated stress tensor.

3 Numerical investigations and results

The aim of this section is to evaluate the accuracy of the plas-
tic corrector with respect to reference computations, which
consist of full elasto-plastic FE simulations using the Z-Set
suite [32]. Two test cases, a notched structure and a spec-
imen with spherical pores, will be presented with detailed
full-field and point-wise comparisons of variables like the
cumulative plastic strain. A third test case, that of a spec-
imen with pores of realistic morphology, meshed based on
images from X-ray tomography, is presented in Appendix B.
The meshes for the test cases were created with GMSH [33],

and elasto-static simulations needed for the plastic corrector
methodology were performed with FEniCS [34].

The parameters used for the reference elasto-plastic equa-
tions (equations (11)-(18)) and the plastic corrector equations
(detailed in Table 1) chosen for this investigation, for test
cases 1 and 2, are summarized in Table 2.

3.1 Test cases

Notched structure
Test case 1 is a notched structure, illustrated in Fig. 2a.

For the plastic corrector, an elasto-static FEA computation
is computed with prescribed displacements ūa = [ux , 0, 0]
for x ≥ Lc and ūa = [−ux , 0, 0] for x ≤ −Lc such that
σ̄ #
VM at the notch area is at the yield stress of the material

(this computation corresponds to f = 1). The function f (t)
is then chosen to monotonically increase such that f (t)σ̄ #

VM
reaches 155% of the yield stress of the material at the notch
tip. This monotonic load function is shown in Fig. 2b. The
full-field σ̄ #

VM in the structure is used for the plastic corrector
approximations. The reference elasto-plastic computation is
performed in such a way as to achieve the same loading level
as in the plastic corrector computation.

Specimen with spherical pores
Test case number 2 is a specimen with a spatial distribu-

tion of spherical pores in the gauge section shown in Fig. 3.
The spherical pores are of a fixed size, and their centers
were generated using random sampling. For the plastic cor-
rector, an elasto-static FEA computation is computed with
prescribed displacements ūa = [ux , 0, 0] for x ≥ Lc and
ūa = [−ux , 0, 0] for x ≤ −Lc such that σ̄ #

VM in the gauge
section, away from pores, is at the yield stress of the material
(this computation corresponds to f = 1). The function f (t)
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Fig. 2 Test case 1: Geometry,
boundary conditions and applied
loading

f(t)ūa f(t)ūa−Lc Lc

(a) Notched structure, with displacement ūa at f = 1 scaled by f(t) on highlighted red
regions, in opposite directions

(b) At the notch tip, the von Mises stress from the
elastic computation σ̄#

VM at f = 1 is scaled by f(t).
f(t)σ̄#

VM goes up to 155% of the yield stress at the peak
of loading. The red points indicate the specific time-
steps at which the cumulative plastic strain results from
the full-field plastic corrector will be compared against
the reference cumulative plastic strain.

is evaluated twice, generating loading sequences of 2 cycles
and 20 cycles. At the peak of these cyclic loads, f (t)σ̄ #

VM
is chosen to reach 80% of the yield stress of the material in
the gauge section away from pores. These cyclic load func-
tions are shown in Fig. 3(b-c). Due to the presence of pores
in the specimen, the local loading exceeds the yield stress in
several regions. The full-field σ̄ #

VM in the specimen is used
for the plastic corrector approximations. For the reference
elasto-plastic computation, the same type of loading as in
the plastic corrector is applied.

3.2 Accuracy of the plastic corrector predictions

The accuracy of some quantities of interest computed using
the plastic corrector will now be examined for the previously
presented test cases. For test case 1, the evolution of the
cumulative plastic strain, at a point of the notch tip and for
the full 3D geometry will be shown, for monotonic loading.
For test case 2, the evolution of the cumulative plastic strain
will be shown in the 3D geometry encompassing the pores,
for both monotonic and cyclic loading. The accuracy of the

deviatoric stresses and strains will also be evaluated for a few
points around the pores. Finally, the accuracy of the cumu-
lative plastic strain range (denoted by �p = pcyclemax − pcyclemin )
over the 20th cycle will be evaluated. The 20th cycle is chosen
here because in subsequent cycles, the stress strain responses
do not change significantly from one cycle to the next, i.e. the
cycling response is stabilised. Quantities of interest extracted
from such stabilised cycles are notably suitable for the com-
putation of fatigue criteria [35].

Time-evolution of cumulative plastic strain
The field of cumulative plastic strain approximated by the

plastic corrector, at three time steps of the loading sequence,
is shown for test case 1 in Fig. 4 and compared with reference
computations at the same levels of applied loading. The time
steps correspond to the notch von Mises stress (of the elas-
tic FEA computation) reaching 102%, 127% and 152% of
the elastic yield limit. The plastic corrector predicts overall
higher cumulative plastic strain in the notch region, as com-
pared to the reference elasto-plastic solution. Scatter plots
of the cumulative plastic strain in all integration points in
the mesh are shown in Fig. 5. The approximated solution of
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Fig. 3 Test case 2: Geometry,
boundary conditions and applied
loading

f(t)ūa f(t)ūa−Lc Lc

(a) Specimen with spherical pores in gauge section, with displacement ūa at f = 1 scaled
by f(t) on highlighted red regions, in opposite directions

(b) Load function 1: In the gauge section
away from pores, the von Mises stress
from the elastic computation σ̄#

VM at f =
1 is scaled by f(t). The plastic correc-
tor and reference cumulative plastic strain
will be compared at the specific time-steps
indicated in red

(c) Load function 2: In the gauge section
away from pores, the von Mises stress
from the elastic computation σ̄#

VM at f =
1 is scaled by f(t). The plastic corrector
and the reference cumulative plastic strain
range over the 20th cycle (red), will be
compared

the plastic corrector algorithm aligns closely with the ref-
erence solution. However, there exists some scatter, which
is expected due to the cumulative errors linked to the rules
of the plastic correction algorithm. The reference computa-
tion has points that undergo plastic accommodation, which is
not captured in the Neuber-type computation, therefore lead-
ing to over-estimation by the plastic correction algorithm.
This is a known phenomenon and has been reported before
[10]. Secondly, the Neuber approach also under-estimates
the cumulative plastic strain at some points as it is localised
and does not take into account redistribution of stresses that
occur in the reference computation [15].

The time-evolution of a maximally loaded point on the
notch region is shown in Fig. 6. The plastic corrector over-
estimates the cumulative plastic strain throughout the loading
sequence because stress redistribution was not considered.
The relative error is very high at first, due to very low values
of plasticity. During loading at the notch between 127% −
152%σy , the relative error lowers to around 15–20%. These
over-estimations match with the literature [15, 36].

For test case 2, the cumulative plastic strains obtained
using the plastic corrector at a couple of time steps of the
applied loading (corresponding to 40% and 80% of the yield
stress of the material) are shown in Fig. 7 and compared with
reference computations at the same levels of applied loading.
Plasticity develops around the pores, and the plastic corrector

once again predicts overall higher cumulative plastic strain in
a slightly larger region, as compared to the reference. Scatter
plots of the cumulative plastic strain in all integration points
in the mesh are shown in Fig. 8. The full-field predictions
matchwell with the reference, especially for the time instants
corresponding to lower levels of loading. This is because the
plastic corrector’s accuracy improves when the plasticity is
relatively confined. However, a slight over-estimation by the
plastic correction algorithm is observed.

The time-evolution of a maximally loaded point near a
pore is shown in Fig. 9a–b. Similar to case 1, the plas-
tic corrector over-estimates the cumulative plastic strain
throughout the loading sequence. Interestingly, the relative
error is lower at the beginning of loading and rises after-
wards, contrary to case 1. The relative error in the prediction
at the highest stressed points is around 35 − 40% during
the cyclic loading. The error oscillates with load rever-
sals, with the oscillations reducing with successive cycles.
The same analysis is done with a point seeing lesser load-
ing, shown in Fig. 9c–d. Conversely, the plastic corrector
under-estimates the cumulative plastic strain throughout the
loading sequence. Under-estimation at points away from
highly loaded regions is also a result of stress re-distribution,
and has rarely been reported in the literature as Neuber-type
methods have primarily been studied for highly loaded points
or surfaces.
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Fig. 4 Test case 1 (notched
geometry): Time-evolution of
cumulative plastic strain

(a) Plastic corrector, t=0.08
s, notch load 102%σy

(b) Plastic corrector, t=0.10
s, notch load 127%σy

(c) Plastic corrector, t=0.12 s,
notch load 152%σy

(d) Reference, t=0.08 s, notch
load 102%σy

(e) Reference, t=0.10 s, notch
load 127%σy

(f) Reference, t=0.12 s, notch
load 152%σy

Time-evolution of stresses and strains
We limit the study of stresses and strains to the more com-

plex loading case, i.e. the test case 2 with spherical pores.
We evaluate the accuracy of the plastic corrector on compo-
nents of the deviatoric stress and strain tensors. The same
two points are selected as the previous section, i.e. a highly
loadedonewith high relative error in cumulative plastic strain
(Fig. 10a) and another point with lesser loading and lower
relative error (Fig. 11a).

Figure10b–c shows the evolution of the axial and shear
components of the stress and strain tensors for the point under
high local loading.

While the stresses are relatively well approximated, the
strains have a much higher error–this is a known result [10,

19, 36]. The axial component is overestimated by the plastic
corrector. As aforementioned, the Neuber-type method used
does not take into account redistributionof stresses. The shear
component is not well predicted due to the proportional evo-
lution rule in the plastic corrector–this will be explained in
detail in a later section.

Figure11b–c shows the evolution of the axial and shear
components of the stress and strain tensors for the point under
low local loading.

Both the axial and shear components are reasonably well-
estimated by the plastic corrector. This is because this point,
experiencing lesser loading than the first one, is not as
affected by the proportional evolution rule–again, this is
proved later on.

123



Computational Mechanics

Fig. 5 Test case 1 (notched
geometry): Scatter plots of
cumulative plastic strain in all
integration points, at three
time-steps during monotonic
loading

(a) Notch load 102%σy (t=0.08 s) (b) Notch load 127%σy (t=0.10 s)

(c) Notch load 152%σy (t=0.12 s)

Fig. 6 Test case 1 (notched
geometry): Comparison of the
time-evolution of the cumulative
plastic strain at the notch tip
obtained by the plastic corrector
and the reference computation
during monotonic loading

(a) Selected point in the mesh, shown by the
arrow

(b) Time-evolution of the cumulative plastic
strain at the selected point
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Fig. 7 Full-field cumulative
plastic strain results computed
by the plastic correction
algorithm compared to the
reference, for two time steps
corresponding to successively
higher levels of loading

(a) Plastic corrector at t=0.06 s (applied load-
ing 0.4σy)

(b) Plastic corrector at t=0.12 s (applied load-
ing 0.8σy)

(c) Reference computation at t=0.06 s
(applied loading 0.4σy)

(d) Reference computation at t=0.12 s
(applied loading 0.8σy)

Finally, the von Mises stress approximated by the plastic
corrector is compared to the reference computation in Fig. 12.
The results show an excellent match between the plastic cor-
rector and the reference, for progressively higher loading.
Cumulative plastic strain range in the 20th cycle

The field of cumulative plastic strain range �p over the
20th cycle, obtained by the plastic correction algorithm and
the reference elasto-plastic FE computation, is shown respec-
tively in Fig. 13a and b for the test case number 2, specimen
with spherical pores. A comparison of the values at all the
quadrature points in the mesh is shown in Fig. 13c. A good

overall match is found in the values of the cumulative plas-
tic strain range obtained by the plastic correction algorithm
and the reference computation. Like the previously presented
cases, there is over and under-estimation by the plastic cor-
rector – the number of over-estimated points is significantly
higher than the under-estimated ones. The order of relative
error in the loaded zones is around 30 − 40%. However, we
acknowledge that the errors may be much higher if the mate-
rial presents ratcheting behaviour, which was not the case
here [10].
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Fig. 8 Scatter plots of
cumulative plastic strain in all
integration points, at time steps
corresponding to successively
higher levels of loading

(a) t=0.06 s (applied loading 0.4σy) (b) t=0.12 s (applied loading 0.8σy)

Fig. 9 Comparison of the
time-evolution cumulative
plastic strain obtained by the
plastic corrector and a reference
computation at two points in the
mesh of test case 2, showing an
over-estimation and
under-estimation of the plastic
corrector

(a) Selected point in the mesh with
high loading and high relative error
in p

(b) Evolution of cumulative plastic strain at
the shown point with high loading and high
error

(c) Selected point in the mesh with
low loading and low relative error in
p

(d) Evolution of cumulative plastic strain at
the shown point with low loading and low error
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Fig. 10 Point in the mesh of test
case 2 with a high amount of
plasticity and high error in p
(30% relative error between
reference p and plastic corrector
p̂ at t=0.12 s): evolution of the
individual components of the
approximated deviatoric stress
and strain tensors by the plastic
corrector (denoted by σ̂

i j
d , ε̂i jd )

compared to the respective
reference curves obtained via a
complete elasto-plastic
computation (denoted by σ

i j
d ,

ε
i j
d )

(a) Selected point in the mesh with high error (b) Axial component

(c) Shear component

3.3 Computational time needed for a full-field
plastic corrector computation

A breakdown of the computational costs required for obtain-
ing the elasto-plastic solution by the two methods, i.e. a full
reference computation and a plastic corrector computation,
is compared in Table 3. The mesh considered is the same
porous mesh as test case 2, and has around 661k quadrature
points (one per linear element). The loading considered here
comprises 1000 time-steps.

3.4 Errors due to the rule of local proportionality

Wewill now analyze the error that arises solely from the local
proportionality rule.Our objectives are to evaluate (i) the con-
tribution of this proportionality rule to the error in the plastic
corrector method and (ii) the characteristics of this error.
To achieve this, we will construct a projected elasto-plastic
solution based exclusively on the local proportionality rule,
omitting the Neuber-type rule. Specifically, we will project

the reference stress history at a given point onto the direction
of the stress derived from the elastic computation. This pro-
jected stress will be compared to the stress calculated using
the plastic corrector, which incorporates both the Neuber-
type rule and the local proportionality rule. This comparison
will allow us to isolate the part of the error that is due to
the local proportionality rule. Additionally, we will compare
the projected stress computed using only the proportionality
rule to the reference stress to assess the acceptability of the
proportionality rule in terms of error. Deviations between the
stresses computed with these two methods will indicate sig-
nificant local non-proportionality, which our algorithm may
not adequately capture. We will show the characteristics of
this error, i.e. the conditions and reasons for which usage of
the proportionality rule could result in high relative error.

The projected stress tensor resulting from the local pro-
portionality rule is computed using the following projection
of the reference stress σ

˜

d :

ˆ̂σ
˜

d = (σ̄
˜

d : σ
˜

d)

(σ̄
˜

d : σ̄
˜

d)
σ̄
˜

d (46)
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Fig. 11 Point in the mesh of test
case 2 with a low amount of
plasticity and low error in p (9%
relative error between reference
p and plastic corrector p̂ at
t=0.12 s): evolution of the
individual components of the
approximated deviatoric stress
and strain tensors by the plastic
corrector (denoted by σ̂

i j
d , ε̂i jd )

compared to the respective
reference curves obtained via a
complete elasto-plastic
computation (denoted by σ

i j
d ,

ε
i j
d )

(a) Selected point in the mesh with low error (b) Axial component

(c) Shear component

Quantities denoted by ˆ̂• represent projected quantities
assuming local proportionality; this approximation is thus
different from the plastic corrector approximations devel-
oped in the previous sections as it directly operates on the
reference stress (which is, of course, not available in prac-
tice). The absolute error ξ and the relative error ξrel between
the projected deviatoric stress tensor using the hypothesis
of proportionality ( ˆ̂σ

˜

d ), and the reference deviatoric stress
tensor via a full non-linear FE computation (σ

˜

d ) can be cal-
culated as follows:

ξ
˜

= σ
˜

d − ˆ̂σ
˜

d (47)

The relative error in stress is computed by taking the
Frobenius norm of the tensors:

ξrel = ‖ξ
˜

‖F
‖σ
˜

d‖F
(48)

Contribution of the local proportionality rule to the error
in the plastic corrector solution

We will now analyze the contribution of the proportional
evolution rule in terms of error in the plastic corrector solu-
tion, at a few points of the computational domain of test case
2. The same two points previously analyzed in Fig. 9a,c are
considered. Figure14a–b shows a comparison of the evolu-
tion of the axial and shear components of the deviatoric stress
tensors for the first point near a pore, with high plasticity
and high error, computed using (i) purely the proportional
evolution rule (denoted by ˆ̂σ i j

d ) (ii) the plastic corrector

(denoted by σ̂
i j
d ) (iii) reference (denoted by σ

i j
d ). For the

components computed using purely the local proportional
evolution rule, we observe that the axial component is very
well predicted. The shear component is badly predicted, but
the maximum stress value is acceptable. This shows that in
the plastic corrector solution, the proportional evolution rule
does not contribute significantly to the overall solution, and
it is the Neuber-type rule that causes most of the error. A
similar comparison is done for the second point with low
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Fig. 12 Full-field von Mises
stress results computed by the
plastic correction algorithm
compared to the reference, for
two time steps corresponding to
successively higher levels of
loading

(a) Plastic corrector at t=0.06 s (applied load-
ing 0.4σy)

(b) Plastic corrector at t=0.12 s (applied load-
ing 0.8σy)

(c) Reference computation at t=0.06 s
(applied loading 0.4σy)

(d) Reference computation at t=0.12 s
(applied loading 0.8σy)

plasticity and low error (Fig. 15a–b). For this point, both the
axial and shear components computed with the local propor-
tional evolution rule are reasonably well predicted, and also
do not differ from the plastic corrector solution.

The relative error ξrel due to the local proportionality rule
is shown for the two points in Figs. 14c and 15c, alongside
their cumulative plastic strain. The load reversal naturally
causes ξrel to increase sharply. ξrel becomes close to 1, which
indicates a 100% relative error. The explosion of relative
errors at these load inversion points is because the stress
values are very close to zero (see Figs. 14a,b and 15a,b).

The absolute error at these inversion points is very low. This
shows that even if the relative error is significant, in reality,
its effect is negligible.

Furthermore, the cumulative plastic strain does not increase
during these load reversals. In other words, the error during
load reversal does not contribute significantly to the error in
plasticity computations. For the first point with a higher p
error, cumulative plastic strain starts increasing again despite
a high ξrel . For the second point, with lower p error, we
observe that the ξrel always stays low during increase in
plasticity. Thus, some points of loading, which are closer
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Fig. 13 Full-field comparison
of �p in the 20th cycle in the
test case 2 mesh

(a) Plastic corrector (b) Reference computation

(c) Scatter plot of Δp values in all the integration points in mesh

to a proportional loading sequence, are better predicted than
others.

Relative error due to the local proportionality rule evaluated
in the full mesh

Only test case number 2, i.e. the specimen with spherical
pores, is considered. The relative error ξrel due to the local
proportionality rule is calculated for all the loading history.
The percentage of points in the mesh that stay below 15%

relative error during the loading sequence is shown in Fig. 16.
During the first branch of monotonic loading, around 70–
75% of all the points in the mesh remain below 15% relative
error, and during the load reversal, this number goes down
to 20%. As previously discussed, this occurs because the
near-zero stress values at these load inversion points lead to
a sharp increase in relative errors. The percentage of points
below 15% relative error goes back up to 70% after the load
reversal, when plasticity starts developing again.
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Table 3 CPU times (in seconds)
for full-field p computation for
the test case 2: mesh of a
specimen with spherical pores
(661771 quadrature points, 1000
time-steps)

Operation Reference FEA (s) Plastic corrector (s)

Elastic FEA for σ̄ #
VM - 236

Elasto-plastic computation 52850 156

Total CPU time 52850 392

Fig. 14 For a point with high
plasticity (shown in Fig. 9a):
Evolution of the individual
components of the projected
deviatoric stress tensor (denoted
by ˆ̂σ i j

d ) compared to the
respective reference curves
obtained via a complete
elasto-plastic computation
without any reduction (denoted
by σ

i j
d ). The plastic corrector

solution is recalled in red. The
relative error fraction for the
stresses is shown alongside the
cumulative plastic strain

(a) Axial component (b) Shear component

(c) Time evolution of ξrel and p

4 Machine learning-based acceleration of
plastic corrector computations

We wish to compute a scalar quantity of interest (QoI)
from the elasto-plastic solution at arbitrary time t ∈ [0, T ].
More precisely, we wish to extract a scalar value Q ∈ R

from (σ̂
˜

(t), ε̂
˜

(t), ε̂
˜

p
(t), p̂(t), X̂

˜

(t)) at an arbitrary number
of quadrature points of the finite element mesh.

During the process of acquiring the QoI, the computa-
tion of (s(t), e(t), ep(t), p̂(t), x(t)) requires implicit time
integration, as described in section 2.4 and the appendix A,
and needs to be done for every quadrature point of the finite
element mesh, which may lead to significant computational
expense, especially for long time analysis. Remarkably,
variables (s(t), e(t), ep(t), p̂(t), x(t)) are dependent on the
solution of the elastic finite element prediction through the
von Mises stress only, which can be seen by inspection of
the system of equations in Table 1, right column. Therefore,

any elasto-plastic quantity of interest, which depends solely
on these proportionality ratios also depends on the sole von
Mises stress σ̄ #

VM stemming from the elastic finite element
computation, for a given f (t).

We propose to acquire the scalar QoI with a one-
dimensional Gaussian process regression (GP) algorithm
[25] trained on plastic corrector computations. One may use
several independent GP regression models for several quan-
tities of interest.

Gaussian process regression algorithm
The GP needs to capture the dependence of the scalar QoI

on σ̄ #
VM. To this end, we need to define a training interval for

σ̄ #
VM. A uniformly distributed set of ns von Mises stress val-

ues, between 0 and s+ times the σy , is created in logarithmic
space. As stress values can span several orders of magnitude,
usage of logarithmic space ensures that theGPhas good inter-
polation ability. These values are input to the plastic corrector
to calculate the QoI. σ̄ #

VM and QoI constitute the training data
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Fig. 15 For a point with low
plasticity (shown in Fig. 9c):
Evolution of the individual
components of the projected
deviatoric stress tensor
calculated by assuming a
hypothesis of proportionality
(denoted by ˆ̂σ i j

d ) compared to
the respective reference curves
obtained via a complete
elasto-plastic computation
without any reduction (denoted
by σ

i j
d ). The plastic corrector

solution is recalled in red. The
relative error fraction for the
stresses is shown alongside the
cumulative plastic strain

(a) Axial component (b) Shear component

(c) Time evolution of ξrel and p

Fig. 16 Time evolution of the percentage of elements in the FE compu-
tation (test case 2: spherical pores) below 15% relative error, alongside
the applied loading history in the gauge section away from pores

for the GP. For numerical stability, we applied a logarithmic
transformation to both the input and target data. Any zero
values in the target data were replaced with a small positive
value to avoid undefined logarithmic values. The model was
then fitted to the log-transformed data.

Once trained, the GP can be applied to all integration
points within a given mesh of a structure without requiring
any time integration.

Numerical example on a QoI As an example we train a GP
to predict ep at the 1000th time-step of a given f (t) (shown in
Fig. 17a) for themesh of a specimenwith spherical pores (test
case 2). The training data set for learning the scalar relation
between σ̄ #

VM and ep is created using ns = 150 points and
s+ = 12. This is shown in Fig. 17b. The choice of 150 points
ensures sufficient resolution for accurately capturing the rela-
tionship between the two quantities, which is either zero or a
simple monotonically increasing function. The upper limit,
set at 12 times the yield stress, is chosen to be slightly higher
than the maximum stress concentration factor induced by the
pores in the mesh, which is approximately 8.

A comparison between the results obtained via the plastic
correction algorithm and the predicted results via the Gaus-
sian process regression is shown in Fig. 18 for all integration
points. The results show virtually no difference, indicating
that the 1D meta-model can be used to further accelerate
computation of scalar QoIs of the plastic corrector with no
added error.

TheGaussian process regression only needs a few seconds
in total to use for the prediction of a scalar QoI, including the
cost of computing the training set via the plastic corrector,
training time (computation and factorisation of data covari-
ance matrix), and prediction time (shown in Table 4).
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Fig. 17 a The load function
chosen, with 1000 time-steps,
with ep being extracted at the
last time-step at the peak of
loading (highlighted in red) b
Training data created for the
Gaussian Process (GP) using the
plastic corrector, along with the
GP’s predicted ep for the last
time-step

Fig. 18 Validation of the Gaussian process regression: Comparison
between the results obtained via the plastic correction algorithm (pure
Neuber-type algorithm) and the predicted results via the Gaussian pro-
cess regression

5 Neural plastic corrector: learning from
examples

The aim of this section is to investigate the relative mer-
its of the previously described Neuber-type plastic corrector
that corrects elasto-static simulations and that of an AI-

based alternative that learns plastic corrections from full
elasto-plastic simulations, before attempting to merge the
two approaches.

The application of machine learning as a surrogate or cor-
rection technique for finite element analysis (FEA) has been
successful across various fields, including the acceleration of
nonlinear computations in porous specimens [30], structural
analysis [37, 38] and other nonlinear mechanics problems
[39, 40]. However, these methods tend to perform poorly
when applied to cases that are geometrically very different
from the cases in the training set [29]. Taking this knowledge
on-board, we restrict our AI approach using Convolutional
Neural Networks (CNNs) to the correction of elasto-plastic
fields in specimens with given nominal geometries but with
randomgeometrical defects, themorphology and positioning
statistics of which are known in advance.Wewill concentrate
here on a tensile specimen including uniformly distributed
spherical pores of fixed radius.

The AI strategy is the following: we voxelise the neigh-
bourhood of points for which plastic correction is to be
performed. Next, we provide either (i) the von Mises stress
from the elastic computation or (ii) the result of the proposed
Neuber-type plastic corrector as input to a CNN designed
to predict a pointwise output of interest stemming from an
elasto-plastic simulation. Training is done by acquiring ref-
erence quantities of interests (QoI) from a series of full
elasto-plastic simulations using the Z-Set suite [32], for a
sufficiently large number of specimens with random pore
placement.

Table 4 CPU times (in seconds) for QoI computation for the test case 2: mesh of a specimen with spherical pores (661771 quadrature points,
1000th time-step). The training set comprises 150 points integrated over all 1000 time-steps

Operation Computing training set Training QoI computation Total CPU time

Plastic corrector - - 156 156

Gaussian process regression 0.6 0.3 1.7 2.6
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Fig. 19 Obtaining training data
from a mesh for the
Convolutional Neural Network

(a) Finite Element results on a continuous
space

(b) Transformation to a uniform grid of voxels

(c) Clusters using the K-medoids algorithm,
at which the QoI is to be predicted

(d) A subvolume of voxels around a cluster
voxel, serving as low-fidelity input to CNN

5.1 Dataset generation

The objective here is to generate a robust dataset that con-
tains sufficient mechanical information about pore-surface
and pore-pore interactions, so that the QoI in specimens con-
taining a new distribution of spherical random pores is well
predicted.

The Convolutional Neural Network (CNN) used here is
designed to work with 3D images. A procedure was devel-
opped in order to convert finite element results into uniform
grids of voxels (see Fig. 19a–b). CNNs are resource-heavy
when working with 3D images. Therefore, a size restriction
is necessary for the images to fit in memory. We choose the
CNN prediction of the QoI at a given voxel to be condi-
tioned on the surrounding sub-volume of 16x16x16 voxels
of the low-fidelity simulation. This sub-volume is assumed to
contain enough information about the mechanical behaviour
of the voxel’s surroundings. In other words, the influence
of the mechanical state beyond this sub-volume on the cen-
ter point is assumed to be sufficiently well-represented by
the mechanical fields that will be provided as input channel
for the 16x16x16 input volume. The QoI in the subvolumes
is normalised by the maximum value of the QoI across the
training set. Empty space due to the pores or due to regions
beyond the specimen’s surfaces are encoded with a negative
value, as input to our CNN is positive. If a negative input is to

be given, an additional binary channel can be used to encode
the geometric information of the specimens [29].

Next, the QoI computed by the plastic corrector is
extracted specifically for the points that experience plastic
deformation (i.e. all points with the vonMises stress exceed-
ing σy). A K-medoids clustering algorithm (scikit-learn) is
used to extract clusters from these points. K-medoids is pre-
ferred because it chooses actual data points as cluster centers,
rather than creating new, synthetic points like K-means. This
approach ensures that each cluster center is a real sample
from the dataset, and is necessary as the mechanical field
around the cluster center is needed. The number of clusters
per realisation of a randomporous specimenwas chosen to be
200, to extract a reasonable amount of data per specimen. An
example of the cluster points in a mesh is shown in Fig. 19c.

Finally, an input–output pair consists of a 16x16x16 vol-
ume of real values (the von Mises stress from the elastic
prediction, or the actual QoI computed using the Neuber-
type plastic corrector), associated with a reference value for
the QoI corresponding to the center of this volume.

5.2 Architecture

The input of the CNN (Fig. 20) consists of 16 x 16 x 16
subvolumes of low-fidelity information around a voxel of the
QoI to be corrected. The convolutional blocks used consist of
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Fig. 20 Architecture of the
CNN developed for
multi-fidelity corrections of a
quantity of interest (QoI)

3D convolutional operations with zero padding and a stride
of two voxels, which reduces the size of the volumes after
eachblock, followedbyReLUactivation functions.After two
blocks, the volumes are flattened and reduced through a fully
connected layer followed by a ReLU activation function, and
a last fully connected layer reduces the dimensions of the
pseudo-output to unity. An exponential function can be used
on the pseudo-output, to ensure that the CNN predictions
remain positive, which is activated if the QoI is required to be
strictly positive. Themodel parameters consist of theweights
of the kernel and the fully connected layers. The output of
the network is the value of the predicted QoI at the centre
of the given subvolume. A Mean Squared Error between the
CNN predictions and the reference data summed over the
batch (size of 32) is used as the loss function for training.

5.3 Numerical results

For the numerical study, the intrinsic dissipated energy φ

integrated over a loading cycle from time ti to t f [41] is
considered as a QoI to be corrected via a CNN:

φ =
∫ t f

ti

(

fy(σ
˜

; X
˜

, p) + σy + (R(p))2

2Q
+ D

2C
(J (X

˜

))2
)

ṗ dt (49)

with J (X
˜

) =
√

3
2 X
˜

: X
˜

.

Impact of mechanical inputs on the performance of the
CNN

The CNN is trained using the von Mises stress from the
elasto-static simulation (σ̄ #

VM) as input. The CNN learns to
predict the reference dissipation φ. We evaluate the accuracy
of the CNN on only the clusters of the K-medoids algorithm,
as we expect that this reflects well the CNN accuracy on full
fields due to the good representative nature of the clusters.
Figure21 shows the CNN predictions on the clusters of a
mesh that is not in the training set after being trained on a
progressively increasing number (20 to 100) of meshes. The
results show that the accuracy of the prediction increases as
a function of the amount of training data used. These results

highlight that the CNN is able to predict the QoI using only
σ̄ #
VM as input.
Next, the CNN is trained using the plastic corrector dissi-

pation (φ̂) as input to the CNN. TheCNN learns to predict the
difference between the plastic corrector dissipation φ̂i and the
reference dissipation φ. After the prediction, this difference
is then subtracted from the plastic corrector dissipation φ̂i to
get the final CNN-predicted dissipation. We focus on learn-
ing the difference because it typically yields better results
than directly learning the QoI [42].

Figure22a shows the plastic corrector dissipation as a
function of the reference dissipation, and Fig. 22b–e show
the CNN predictions on the K-medoid clusters of a mesh
that is not in the training set after being trained on a progres-
sively increasing number (20 to 380) of meshes. The results
show the accuracy of the predictions improved as a func-
tion of the amount of training data used. The CNN trained
with 380 meshes has 89% of cluster points of a mesh, not
included in the training set, falling in a ±20% error cone,
and the highest values of dissipation, which are generally of
the most interest, have less than a percent of error.

Figure22f shows the mean square error (MSE) calculated
on all the clusters of the mesh that is not in the training set,
as a function of the number of meshes used for training. The
downward trend of the CNNs trained with the two inputs is a
clear indicator that the CNN is able to perform better if given
more data during training.

We observe that training the CNN with the plastic cor-
rector is beneficial when there is a low amount of available
training data. The percentage of cluster points of a mesh not
included in the training set, falling in a ±20% error cone,
for the CNN trained on different amounts of training data, is
shown in the second column of Table 5. The CNN trained
with σ̄ #

VM as input, on 20 meshes, performs significantly
worse than the CNN trained with φ̂ as input. The difference
of the accuracy of the predictions between the CNNs, how-
ever, becomes smaller and smaller as the amount of training
data increases. In our opinion, this is because the corrections
provided by the proposed Neuber-type approach are purely
local. The plastic corrections do not contain any additional
information as compared to elastic results about the source
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Fig. 21 Using von Mises stress
coming from elasto-static
simulations (σ̄ #

VM) as input:
CNN predictions of dissipation
for the clusters of a new, unseen
mesh, after training for 2000
epochs on a varying number of
meshes

(a) 20 meshes (b) 40 meshes (c) 100 meshes

of the discrepancy between the input and output of the CNN
model from the topology of the neighbourhood of a point.

Accuracy of theCNNpredictions for a non-spherical defect
We now illustrate the behaviour of the CNN, trained suc-

cessfully on a data-set consisting of 380 specimens with
spherical pores, whenmaking predictions on a specimen con-
taining a defect of non-spherical morphology. To this hand,
we will generate a new specimen with a single non spherical
defect whose geometry is illustrated in Fig. 23a. The geo-
metric morphology of this defect comes from a computed
tomography scan of a cast aluminium alloy. We ask the CNN
to perform the plastic correction on all the points of the mesh
that plastify (shown by the red points in Fig. 23a). After being
corrected by CNN, the number of predictions that are within
the 20% error cone reaches 40.4%, starting from 40.8% for
correction-less Neuber-type predictions, as shown in Fig. 23.
This behavior is in agreement with previous scientific find-
ings [29] that report a poor performance of neural networks
when used to make predictions for cases outside the distri-
bution of the training set.

6 Conclusion

Aplastic correction algorithm has been proposed that rapidly
post-processes elasto-statics simulations to approximate the
full-field elasto-plastic response of structures subjected to
proportional loading. The classical Neuber’s rule has been
modified to operate on the deviatoric part of stress and strain
tensors. Cyclic loading is handled via a change of origin at
every loading peak, using the method in [14]. A pointwise
rule of proportional evolution of the deviatoric stress and
strain tensors is used to reduce J2 elasto-plastic constitutive
laws to a set of equations operating on scalar representa-
tions of stresses and strains. A fully implicit time integration
algorithm for this system of equations has been developed,
which leads to approximations of elasto-plastic solutions for
arbitrary (proportional) loading sequences.

Numerical investigations on two test cases, one being a
notched structure and the other one being a specimen with
spherical pores, have shown good overall approximations of
cumulative plastic strain fields, for bothmonotonic and cyclic
loading, with errors in the notched structure matching pre-
vious studies [15, 36]. The overly stiff behavior observed
in these plastic corrector predictions arises because plas-
tic accommodation and stress redistribution effects have
not been taken into account [10, 15]. For cyclic loading
sequences, quantities computed over later cycles, like the
cumulative plastic strain range, are reasonably well approx-
imated. The plastic corrector’s accuracy improves when the
plasticity is relatively confined.

Furthermore, we have attempted to isolate the error due to
the local proportional evolution rule in the plastic corrector
algorithm. Investigations reveal that the proportionality rule
contributes significantly less error compared to the Neuber-
type rule. We have also shown that the major part of the error
owed to the rule of local proportional evolution occurs during
load reversal, when there is no accumulating plasticity.

Despite the plastic corrector’s low computational cost
compared to a full nonlinear finite element simulation, time-
integration over long time histories may remain expensive.
However, as a consequence of the rules underlying the
proposed plastic corrector (J2 plasticity, pointwise propor-
tionality of deviatoric strain and stress tensors, scalar Neuber
rule), any output of the plastic correction algorithm depends
on the elastic finite element simulation via the von Mises
stress only.We have shown that this property can be exploited
to build 1Dmeta-models that accelerate the plastic correction
method even further, for any quantity of interest, by sampling
the output of the plastic corrector for a relatively small num-
ber of von Mises stresses, training the meta-model and using
it at almost no cost in place of the time integration algorithm.

Lastly, we have investigated the possibility of performing
plastic correction using deep learning. These neural networks
need reference elasto-plastic computations on a set of geome-
tries for training, and do not generalise well to other types of
geometries. We have shown that the output of the Neuber-
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(a) Without CNN (b) 20 meshes (c) 40 meshes

(d) 100 meshes (e) 380 meshes (f) Sensitivity analysis

Fig. 22 Using plastic corrector dissipation (φ̂) as input: CNN predic-
tions of dissipation in the clusters of a new, unseen mesh: a Plastic
corrector, before passing into CNN, b–e CNN predictions after train-

ing for 2000 epochs on a varying number of meshes, and f Sensitivity
analysis showing decrease of the MSE between the CNN predictions
and reference data with increase in training data

Table 5 Percentage of cluster
points in a mesh not included in
the training set falling in a
±20% error cone for the
networks trained with different
inputs (σ̄ #

VM and φ̂) at different
amounts of training data used

Training data used (number of meshes) Input σ̄ #
VM (% points) Input φ̂(% points)

20 62% 80.5%

40 73% 77.5%

60 69% 76.0%

80 76.5% 79.0%

100 89% 87.5%

380 - 89.0%

type plastic corrector can be improved by using a CNN that
leverages information about the local topology of material
point neighbourhoods. We have also shown that the output
of our Neuber-type methodology, as full-field input to the
CNN, is indeed beneficial compared to using inputs of the
NPC with a lesser mechanical content, i.e. the von Mises
stress from elasto-static simulations. We have shown that the
benefit rapidly becomes negligible with an increase in the
training data. Thus, the plastic corrector offers an advantage

for deep learning-based corrections, particularly when the
amount of training data is limited.

To further advance the research presented in this paper,
several directions can be pursued. First, the accuracy of
the plastic corrector could be evaluated on cyclic loading
sequences with non-zero mean values and irregular shapes.
Second, the plastic corrector algorithm could be extended
to accommodate non-proportional applied loading condi-
tions, with an assessment of the algorithm’s robustness and
limitations under these scenarios. Finally, the potential of
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Fig. 23 Accuracy of the CNN
trained on 380 specimens with
spherical pores on a specimen
containing a defect of
non-spherical morphology. The
highlighted red points indicate
points that undergo plastic
deformation, that are selected
for correction, in a mesh not
included in the training set with
a defect of complex morphology

(a) Points in mesh selected for correction

(b) Before passing into CNN (c) CNN predictions

the plastic corrector in predicting elasto-viscoplastic mate-
rial behavior and creep could be explored by incorporating
time-dependent plasticity and viscous flow effects into the
algorithm.

Appendix A: Algorithm for solving the plastic
corrector equations

This section details the algorithm used to solve numerically
the equations of the local plastic corrector, for arbitrary (pro-
portional) loading functions f (t).

Monotonic loading
In that case, the proposed Neuber-type rule (from Sect.

2.3) reads as:

se = f 2 (50)

The plastic corrector equations derived in Sect. 2.4 are
reminded here for the sake of readability.

Stress strain relation s = (e − ep) (51)

Yield surface f̂ y(s; x, p̂) = Ĵ (s, x) − σy − R( p̂) (52)

Yield surface evolution f̂ y ˙̂p = 0 and f̂ y(s; x, p̂)≤ 0
(53)

von Mises stress Ĵ (s, x) =
∣

∣

∣

∣

s − x

2μ

∣

∣

∣

∣

σ̄ #
VM (54)

Kinematic hardening ẋ = 2

3
Cėp − Dx ˙̂p (55)

Isotropic hardening R( p̂) = Q(1 − e−b p̂) (56)
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Cumulative plastic strain ˙̂p = 1

3μ
|ė p|σ̄ #

VM (57)

Implicit time integration of this set of equations is done
by introducing the following set of discretised equations for
si+1, ei+1, e

p
i+1, p̂i+1 and xi+1 at time ti+1 ∈ [0 T ], scalar

quantities epi , p̂i and xi at time 0 ≤ ti < ti+1 being known.

si+1ei+1 = f 2i+1 (58)

si+1 = ei+1 − epi+1 (59)

p̂i+1 = p̂i + ∣

∣epi+1 − epi
∣

∣

1

3μ
σ̄ #
VM (60)

xi+1 = xi + 2
3C(epi+1 − epi )

1 + D(epi+1 − epi )
(61)

f̂ y(si+1, xi+1, p̂i+1) ≤ 0

f̂ y(si+1, xi+1, p̂i+1)( p̂i+1 − p̂i ) = 0 (62)

To solve this system of equations, we first need to express
si+1 as a function of epi+1 by making use of equations (58),
and (59):

si+1 =

⎧

⎪

⎨

⎪

⎩

−epi+1+
√

(

epi+1

)2+4 f 2i+1
2 if fi+1 > fi

−epi+1−
√

(

epi+1

)2+4 f 2i+1
2 if fi+1 < fi

(63)

There are two roots for s. Substituting the expression for e
from the scalar stress–strain relation of the material law in
the scalar Neuber-type equation, a second order polynomial
equation is obtained: The positive sign in the root is taken
for increasing f (tensile loading), the negative sign is taken
in the case of decreasing f (compression loading).

Now, the following solution algorithm is proposed

• compute

s

i+1 =

⎧

⎪

⎨

⎪

⎩

−epi +
√

(

epi
)2+4 f 2i+1

2 if fi+1 > fi
−epi −

√

(

epi
)2+4 f 2i+1

2 if fi+1 < fi

(64)

• compute f ∗
y,i+1 = f̂ y(s


i+1, xi , p̂i ), i.e. the value of the
yield function assuming that no plastic flow takes place
between ti and ti+1.

• if f ∗
y,i+1 ≤ 0, set epi+1 = epi

• if f ∗
y,i+1 > 0, find epi+1 such that

f̂ y(si+1, xi+1, p̂i+1) = 0 (65)

with si+1 given as a function of epi+1 in equation (63),
xi+1 given as a function of epi+1 in equation (61) and
p̂i+1 given as a function of epi+1 in equation (60). The

root of this equation is found by a Newton algorithm,
which is initialised by setting epi+1 = epi , xi+1 = xi and

p̂i+1 = pi . In our implementation, the derivative of f̂ y
with respect to epi+1 is computed by finite differences.

• set xi+1 = xi+ 2
3C(epi+1−epi )

1+D(epi+1−epi )
and p̂i+1 = p̂i + ∣

∣epi+1 − epi
∣

∣

1
3μ σ̄ #

VM

Cyclic loading
In that case, the proposed Neuber-type rule (from Sect.

2.3) reads as:

(s − so)(e − eo) = ( f − fo)
2 (66)

From the plastic corrector equations derived in Sect. 2.4, the
scalar stress–strain relation extended for cyclic loading is:

(s − so) = (e − eo) − (ep − epo ) (67)

The rest of the plastic corrector equations are the same as
equations (52)-(57). The equations (66) and (67) involve the
quantities so, eo, e

p
o and fo which are updated with si , ei ,

epi and fi respectively, each time a load reversal occurs. The
time discretisation of these equations is given here:

(si+1 − so)(ei+1 − eo) = ( fi+1 − fo)
2 (68)

si+1 − so = (ei+1 − eo) − (epi+1 − epo ) (69)

And the expression for si+1 as a function of e
p
i+1 by making

use of equations (68), and (69):

si+1 − so

=

⎧

⎪

⎨

⎪

⎩

−(epi+1−epo )+
√

(

(epi+1−epo )
)2+4( fi+1− fo)2

2 if fi+1 > fi
−(epi+1−epo )−

√

(

(ep−epo )i+1
)2+4( fi+1− fo)2

2 if fi+1 < fi
(70)

The same implicit time integrator used for the monotonic
case presented in the previous paragraph is used to find the
value of ep point-wise at each time-step.

Python implementation
A Python implementation of this algorithm is made

available under LGPL licence. The code and detailed
usage instructions can be found in this GitHub repository
(https://github.com/AbhishekPalchoudhary/PlasticCorrecto
r/tree/main). The repository includes scripts and instructions
for point-wise plastic correction and correction of full elastic
FEA computations. Examples are also included. This will
enable reproduction of our results and enable further explo-
ration of the algorithm’s capabilities.
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Appendix B: Accuracy of the plastic corrector
on a specimen with pores from X-ray tomog-
raphy loaded in thehigh-cycle fatigue regime

As a final test case, we present here a specimen contain-
ing pores (arising due to the manufacturing process) that
weremeshed using information from tomography of a porous
AlSi7Mg0.3 alloy. This case was chosen to show the par-
ticular suitability of application of the plastic corrector for
high-cycle fatigue models that require elasto-plastic fields
around pores of non-spherical geometry [26, 28, 43]. The
parameters of the Chaboche law are chosen according to ref-
erence [44], and are summarised in Table 6.

For the plastic corrector, an elasto-static FEAcomputation
is computed with prescribed displacements ūa = [ux , 0, 0]
for x ≥ Lc and ūa = [−ux , 0, 0] for x ≤ −Lc such that σ̄ #

VM
in the gauge section away from the pores is at the yield stress
of the material (this computation corresponds to f = 1). The
function f (t) is chosen to have 20 cycles. At the peak of the
cyclic load, f (t)σ̄ #

VM is chosen to reach 47% of the yield

stress of the material in the gauge section away from pores.
The boundary conditions are shown in Fig. 24.

For the reference elasto-plastic computation, prescribed
displacements are applied to both ends of the porous spec-
imen in the same way. The von Mises stress in the gauge
section away from pores reaches 47% of the material’s yield
stress at peak loads in the cycles, assuming the body behaves
elastically.

The plastic corrector and reference computations for
the cumulative plastic strain range �p in the 20th cycle
for this mesh are respectively shown in Fig. 25a and b.
A scatter plot comparing �p in all the integration points
in the mesh is shown in Fig. 25c. The accuracy of the
full-field approximation indicates that the plastic corrector
performs well for varying material parameters and on dif-
ferent sizes and geometries of pores. Despite the nominal
loading being 0.47σy , there are regions with higher stress
concentrations arising due to a maximum stress concentra-
tion factor of kt ∼ 4.3. The plastic corrector approximates
the solution well in these regions despite the high kt as

Table 6 Parameters of the
elasto-plastic model detailed in
Eqs. (11)–(18) [31, 45]

E σy b Q C D
MPa MPa MPa MPa

75500 170 19 20 127499 1334

Fig. 24 Boundary conditions
(shown in red) for a specimen
containing a sub-volume of
tomography-informed pores,
showing where displacement is
applied to get a cyclic loading in
the gauge section of the
specimen (away from pores)
with peak equal to 47% of the
yield stress of the material. The
20th cycle is chosen for the
computation of �p
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Fig. 25 a–b A comparison
between �p in the 20th cycle
calculated via the plastic
corrector and a reference
computation via Z-Set [32] in a
few pores of a specimen
containing a subvolume of pores
(with the maximum stress
concentration factor being
kt ∼ 4.3). The loading
corresponds to 80 MPa in the
gauge section at the peak of
cyclic loading, away from pores
(around 47% of σy) c A scatter
plot comparing �p calculated
via the plastic corrector and a
reference computation via Z-Set
[32] in all the integration points
of the specimen containing the
subvolume of pores

the plasticity remains confined due to the small size of the
pores.
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