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1 Symbolic Regression

1.1 Internal regression parameters

The following are PySR parameters which were quickly optimized to prevent under- and over-

fitting, and excessively long calculations. Train-test split: test size=0.33, random state=42)

Regression parameters: binary operators=[”mult”, ”plus”], unary operators=[”sqrt”,”root3(x)

= cbrt(x)”], extra sympy mappings=”root3”: lambda x: x**(1/3), procs=21, verbosity=False,

progress=False, turbo=True, deterministic=False, niterations=500, maxsize=10, maxdepth=20,

populations=50, constraints=’sqrt’: (1,1), ’root3’: (1,1), ’mult’: (3, 3), nested constraints =

”root3”: ”root3”: 0, ”sqrt”: ”root3”: 0, ”root3”: ”sqrt”: 0, complexity of variables=2,

For promolecular densities, all 432 combinations of parameters were studied, but for DFT
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densities, only ρc = 0.07 was considered due to previous studies.

1.2 Variation in equations for an example set of parameters

As the PySR algorithm employs the genetic algorithm, it is inherently non-deterministic

and the resulting equations it produces, vary every time the model is fitted. Nevertheless,

due to the breadth of the search employed by the PySR package prevents the variability of

the equations from being too large as the search is extensive enough to find the optimum

result for the given constraints. To showcase the forms of equations obtained, below we list

equations obtained from repeated PySR fits. The NCIPLOT parameters used are sc = 1.0

and λsmall = 0.02 for specified λlarge = 0.2, γref = 0.85 and ρc = 0.07 for the HB375 dataset.

EHydrogen bond(ρ) = −(1.805× 103
√

I3,Hydrogen bond + 2.928× 102 × I3/2,van der Waals) (1)

EHydrogen bond(ρ) = −(1.765× 103
√
I3,Hydrogen bond + 2.852× 102 × I2,van der Waals) (2)

EHydrogen bond(ρ) = −(1.200× 103I5/3,Hydrogen bond + 7.457× 102 ×
√

I5/2,van der Waals) (3)

with respective MAE (in kJ/mol): 3.03, 3.05, 3.40, and R2 coefficients: 0.86, 0.85, 0.83.

Should we additionally allow the train and test dataset compositions to vary, the equations

are still similar:

EHydrogen bond(ρ) = −(1.809× 103
√

I3,Hydrogen bond + 2.9250× 102 × I3/2,van der Waals) (4)

EHydrogen bond(ρ) = −(1.754× 103
√

I3,Hydrogen bond + 6.610× 102 × I5/3,van der Waals) (5)

EHydrogen bond(ρ) = −(1.768× 103
√

I3,Hydrogen bond + 2.841× 103 × I5/2,van der Waals) (6)
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with respective MAE (in kJ/mol): 3.26, 3.12, 3.06, and R2 coefficients: 0.82, 0.88, 0.85.

Additionally, we tested the effect of NCI indices with n = 0 (which represent volume

rather than charge) which could have shown meagre improvement in D1200 fits only (2.11

vs. 2.30 kJ/mol) and no effect for the HB375 dataset. The combined equation (again

excluding the dispersion term in the HB375 equation) also showed a slight improvement

(2.53 vs. 2.63 kJ/mol). However, this has not shown to be transferrable, giving a much

worsened 5.2 kJ/mol result for the S66 lateral test versus the original 4.9 kJ/mol; therefore,

we decided against utilizing the n = 0 terms.
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1.3 Parametrisation of HB375 dataset with promolecular densities

Figure 1: Heat map of mean absolute error (MAE) for two varying parameters: sc and λsmall

for specified λlarge, and γref and ρc = 0.05 for the HB375 dataset. All underlying NCI indices
calculations were carried out using the promolecular approach and errors are in kJ/mol.
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Figure 2: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge, and
γref and ρc = 0.05 for the HB375 dataset. All underlying NCI indices calculations were
carried out using the promolecular approach.
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Figure 3: Heat map of mean absolute error (MAE) for two varying parameters: sc and λsmall

for specified λlarge, and γref and ρc = 0.07 for the HB375 dataset. All underlying NCI indices
calculations were carried out using the promolecular approach and errors are in kJ/mol.
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Figure 4: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge, and
γref and ρc = 0.07 for the HB375 dataset. All underlying NCI indices calculations were
carried out using the promolecular approach.
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1.4 Parametrisation of D1200 dataset with promolecular densities

Figure 5: Heat map of mean absolute error (MAE) for two varying parameters: sc and λsmall

for specified λlarge, and γref and ρc = 0.05 for the D1200 dataset. All underlying NCI indices
calculations were carried out using the promolecular approach and errors are in kJ/mol.
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Figure 6: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge,
and γref and ρc = 0.05 for the D1200 dataset. All underlying NCI indices calculations were
carried out using the promolecular approach.
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Figure 7: Heat map of mean absolute error (MAE) for two varying parameters: sc and λsmall

for specified λlarge, and γref and ρc = 0.07 for the D1200 dataset. All underlying NCI indices
calculations were carried out using the promolecular approach and errors are in kJ/mol.
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Figure 8: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge,
and γref and ρc = 0.07 for the D1200 dataset. All underlying NCI indices calculations were
carried out using the promolecular approach.
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1.5 Parametrisation of HB375 dataset with DFT densities

Figure 9: Heat map of mean absolute error (MAE) for two varying parameters: sc and λsmall

for specified λlarge, and γref and ρc = 0.07 for the HB375 dataset. All underlying NCI indices
calculations were carried out using DFT densities and errors are in kJ/mol.
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Figure 10: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge,
and γref and ρc = 0.07 for the HB375 dataset. All underlying NCI indices calculations were
carried out using DFT densities and errors are in kJ/mol.
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1.6 Parametrisation of D1200 dataset with DFT densities

Figure 11: Heat map of mean absolute error (MAE) for two varying parameters: sc and
λsmall for specified λlarge, and γref and ρc = 0.07 for the D1200 dataset. All underlying NCI
indices calculations were carried out using DFT densities and errors are in kJ/mol.
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Figure 12: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge,
and γref and ρc = 0.07 for the D1200 dataset. All underlying NCI indices calculations were
carried out using DFT densities and errors are in kJ/mol.
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2 Multivariate Gradient Boosting Regression

2.1 Internal regression parameters

The following are sklearn gradient boosting regression parameters which were quickly op-

timized to prevent under- and over-fitting, and excessively long calculations. Train-test

split: test size=0.33, random state=42) Regression parameters: random state=None, learn-

ing rate=0.1 ,max depth=3, n estimators=100, max features=None)
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2.2 Parametrisation of HB375 dataset with promolecular densities

Figure 13: Heat map of mean absolute error (MAE) for two varying parameters: sc and
λsmall for specified λlarge, and γref and ρc = 0.05 for the HB375 dataset. All underlying NCI
indices calculations were carried out using the promolecular approach and gradient boosting
regression and errors are in kJ/mol.
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Figure 14: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge,
and γref and ρc = 0.05 for the HB375 dataset. All underlying NCI indices calculations were
carried out using the promolecular approach and gradient boosting regression.
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Figure 15: Heat map of mean absolute error (MAE) for two varying parameters: sc and
λsmall for specified λlarge, and γref and ρc = 0.07 for the HB375 dataset. All underlying NCI
indices calculations were carried out using the promolecular approach and gradient boosting
regression and errors are in kJ/mol.
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Figure 16: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge,
and γref and ρc = 0.07 for the HB375 dataset. All underlying NCI indices calculations were
carried out using the promolecular approach and gradient boosting regression.
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2.3 Parametrisation of D1200 dataset with promolecular densities

Figure 17: Heat map of mean absolute error (MAE) for two varying parameters: sc and
λsmall for specified λlarge, and γref and ρc = 0.05 for the D1200 dataset. All underlying NCI
indices calculations were carried out using the promolecular approach and gradient boosting
regression and errors are in kJ/mol.
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Figure 18: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge,
and γref and ρc = 0.05 for the D1200 dataset. All underlying NCI indices calculations were
carried out using the promolecular approach and gradient boosting regression.
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Figure 19: Heat map of mean absolute error (MAE) for two varying parameters: sc and
λsmall for specified λlarge, and γref and ρc = 0.07 for the HB375 dataset. All underlying NCI
indices calculations were carried out using the promolecular approach and gradient boosting
regression and errors are in kJ/mol.
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Figure 20: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge,
and γref and ρc = 0.07 for the HB375 dataset. All underlying NCI indices calculations were
carried out using the promolecular approach and gradient boosting regression.
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2.4 Parametrisation of HB375 dataset with DFT densities

Figure 21: Heat map of mean absolute error (MAE) for two varying parameters: sc and
λsmall for specified λlarge, and γref and ρc = 0.07 for the HB375 dataset. All underlying NCI
indices calculations were carried out using DFT densities and gradient boosting regression
and errors are in kJ/mol.
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Figure 22: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge,
and γref and ρc = 0.07 for the HB375 dataset. All underlying NCI indices calculations were
carried out using DFT densities and gradient boosting regression.
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2.5 Parametrisation of D1200 dataset with DFT densities

Figure 23: Heat map of mean absolute error (MAE) for two varying parameters: sc and
λsmall for specified λlarge, and γref and ρc = 0.07 for the D1200 dataset. All underlying NCI
indices calculations were carried out using DFT densities and gradient boosting regression
and errors are in kJ/mol.
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Figure 24: Heat map of R2 for two varying parameters: sc and λsmall for specified λlarge,
and γref and ρc = 0.07 for the D1200 dataset. All underlying NCI indices calculations were
carried out using DFT densities and gradient boosting regression.
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3 HB375 Internal not-hydrogen-bonded control results

The HB375 dataset contained a set of 108 ”no hydrogen bond” compounds - ones which

did not feature a conventional hydrogen bond (a short contact between N/O and H bound

to N/O) but were still found to be primarily driven by electrostatics as found by SAPT

analysis?

Figure 25: a) promolecular symbolic regression, b) promolecular gradient boosting regression,
c) DFT symbolic regression, d) DFT gradient boosting regression calculated for the HB375
dataset with optimized parameters. For the regression calculation, the dataset was split into
train and test sets at a 2:1 ratio and the 108 control compounds were separated completely
and plotted with the obtained model.
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4 Optimized results using the DFT densities

An analysis parallel to the one presented in the main article text was performed here but for

the NCIPLOT calculations done with the DFT densities. The DFT HB375 equation using

the best parameters - (λlarge = 0.2, λsmall = 0.02, ρc = 0.07, sc = 1.0, and γref = 0.75 - is

EHydrogen bond(ρ) = −(3.4× 103
(
I3/2,van der Waals + I3/2,Hydrogen bond

)
+1.15× 102 3

√
I5/2,van der Waals)

(7)

and gave R2 = 0.91 and MAE = 2.51 kJ/mol for the test set.

Similarly, DFT D1200 equation using the best parameters - λlarge = 0.2, λsmall = 0.02,

ρc = 0.07, sc = 1.0, and γref = 0.75 - is

Evan der Waals(ρ) = −
(
8.1× 102 × I1,van der Waals (−I1,van der Waals + 0.2966816) + 1.3436404

)
(8)

and gave R2 = 0.825 and MAE = 1.80 kJ/mol for the test set.

The best resultant equation for the DFT-density-derived NCI approach was not a direct

sum of equations (1) and (2) but instead, appears to be a more complicated combination,

whereby only the repulsive component from equation (2) was used, suggesting a subtle effect

that was not captured by equation (1). For the promolecular approach, the joined equation

used an entirety of the D1200 equation for the van der Waals equations, however, such a

combined equation (and indeed all other combinations) produced many worse-performing

equations. Hence, the final equation was

Eint(ρ) = −(3.4× 103
(
I3/2,van der Waals + I3/2,Hydrogen bond

)
+1.15× 102 3

√
I5/2,van der Waals − 8.1× 102 × I21,van der Waals)

(9)

which gave a small improvement over the promolecular result. The performance of this
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combined equation (3) is shown in Figure 26 b) and gave an improved R2 of 0.89 and MAE

of 2.20 kJ/mol.

Figure 26: Scatter plot of calculated energy using a single equation from DFT-derived den-
sities versus CCSD reference for the color-coded datasets: blue is HB375 and pink is D1200.
a) represents the exact sum of equations (1) and (2), and b) represents equation (3). The
overall R2 and MAEs are: a) 0.66 and 12.17 kJ/mol, and b) 0.89 and 2.20 kJ/mol.

As the equation changed with the use of DFT versus the promolecular approach, it

also was sensitive to the accuracy of electron density used. We wondered if this would be

functional-dependent, and hence performed a calculation with B3LYP-D3, PBE0-D3, and

SVWN functionals (and def2-SVP basis set, and the same NCIPLOT parameters for all) to

evaluate the possible differences. As seen in Figure 27, the differences due to the chosen

functional are insignificant.
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Figure 27: Scatter plot of calculated energy using a single equation from DFT-derived den-
sities versus CCSD reference for the S66 dataset: color-coded by functional used in the
calculation. The R2 and MAEs are: a) 0.93 and 2.86 kJ/mol, and b) 0.92 and 3.18 kJ/mol,
c) 0.93 and 2.97 kJ/mol.

5 HB375x10 for extended and compressed geometries

The HB375x10 dataset contained a series of equilibrium as well as compressed and extended

structures by a constant fraction for all the complexes. We wanted to check the extent to

which the symbolic equation (7) derived in the main article text could be used to extrapolate

to other geometries.
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Figure 28: HB375 predicted binding energies calculated with the optimum equation (7)
for 5 color-coded geometry extensions (0.8x, 0.9x, 1.0x, 1.25x, 1.5x). The prediction of
equilibrium geometry (1.0x) is very good, yet predictions of out-of-equilibrium complexes,
especially compressed geometries (¡1.0x) show straight lines with much steeper gradients.

Figure 28 shows the energies calculated with the same equation, and clearly showcases

the limitation of the equation’s lack of repulsion term. For small extensions, the energy

predictions were fair, yet for larger extensions, the best-fit line would have a smaller gradient

than the y=x line suggesting the NCI indices were dropping faster than expected with the

increasing distance. For compressions, the decreasing distance increased the NCI indices

for hydrogen bonding and van der Waals, but with no repulsive compensation, the energies

increased dramatically. Interestingly, the energy predictions could still be fit to a straight

line, but with a differing gradient. Such a line could be found by retraining the symbolic

regression model at different extensions, but clearly, such an approach does not generalize

easily. The other route would be to include the ratio of extension in the training information

and, therefore, use the entirety of the data to identify one equation. This does produce

an equation including the extension variable; however, such an equation is incapable of
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predicting the energy well for an array of extensions, see Figure 29.

Figure 29: HB375 dataset at 5 geometry extensions (0.8x, 0.9x, 1.0x, 1.25x, 1.5x) modeled
with symbolic regression with PySR. The input data included the extension, and NCI indices
of hydrogen bond, van der Waals and repulsion contacts. The train:test split was 2:1.

6 Regression for subsets of the HB375 and D1200

Both HB375 and D1200 datasets are meant to represent the chemical space and, hence,

contain a variety of interaction subtypes; specifically, HB375 can be divided by bond type

- depending on the identity of the electron donor (OH, NH, CH) and acceptor (O, C, π

system) - and D1200 can be divided based on elements present in the monomers - second and

third row, halides, and noble gases. As such, the underlying interactions could differ in the

balance of underlying energetic contributions and be best represented by a slightly different

symbolic equation. Therefore, to test the extent of this effect, we created subsets of each of

the datasets, fitted them with PySR separately and compared the results. HB375 results are

present in Figure 30 and D1200 results in Figure 31. Qualitatively, the fits do not look much

improved, showing much the same scatter. Quantitatively, the overall HB375 fit gave R2 =
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0.86 and MAE = 3.35 kJ/mol, versus the separated fits which gave improved results of R2 =

0.90 and MAE = 2.87 kJ/mol for the re-combined dataset. For D1200, the original equation

gave R2 = 0.75 and MAE = 2.22 kJ.mol, whereas the re-combined dataset gave R2 = 0.785

and MAE 2.01 = kJ/mol. The overall errors and correlations might have been improved

indeed, with such a slight difference, that we feel confident concluding the equations (5)

(6) and (7) in the main text represent the variability of the hydrogen bonds and dispersion

interactions sufficiently. Furthermore, the implementation of unique parametrisation for each

interaction subtype would vastly complicate the underlying NCIPLOT algorithm and likely

contribute to worsening the computation time.

35



Figure 30: HB375 dataset separated by the nature of hydrogen bond donor and acceptor.
a) Predicted binding energy using the equation (7) in the main text, b) Separately fitted
equation for the subset. All results used the promolecular approach.
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Figure 31: D1200 dataset separated by the nature of hydrogen bond donor and acceptor.
a) Predicted binding energy using the equation (7) in the main text, b) Separately fitted
equation for the subset. All results used the promolecular approach.
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