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Abstract

The NCI method has existed for over a decade, and it has had great success in

qualitative studies of non-covalent interactions in a variety of systems. It relies on the

detection of low-density and low-reduced density gradient volumes in intermolecular

complexes that co-locate at sites of interactions making for an excellent visualization

tool.

A quantitative aspect has been theorized as the integral over the detected volume,

though the derivation of the equation justifying is still elusive. Consistent correlations

between NCI indices and binding energies nonetheless suggest its existence. This work

sets out to find the symbolic form of this relationship and evaluate its accuracy in the

prediction of interaction energies in small dimeric complexes. To that end, it system-

atically evaluates the integration of NCI volumes, and their dependence on variable

parameters, and hence clarifies the definitions of low densities. The symbolic rela-

tionship between the NCI index values and gold standard binding energies has been

determined for the NCI atlas’ hydrogen bond and dispersion datasets and calculated
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the errors below 3.0 kJ/mol. The resultant equation was laterally tested on the S66

dataset and found to calculate its interaction energies at chemical accuracy. This work

is the first step for the creation of a binding energy predictor from electron density

alone across different chemical families, therefore for the creation of a tool capable of

predicting and calculating NCIs in a variety of structures.

1 Introduction

Non-covalent interactions (NCIs) are the underlying reason behind an array of physical and

biological processes and dictate the structure and function of biological macromolecules,

their interactions with their environment, pharmaceuticals, agrochemicals, and materials.1–5

Furthermore, it underpins the supramolecular and nano-material self-assembly and therefore

has crucial consequences in material design across size scales.6,7

Considering the importance of NCIs, it is no wonder that a plethora of computational

tools have been developed to visualize, calculate, probe, and predict them in systems of

chemical and biochemical interest.8,9 Depending on the scale of the complex studied, and

the size of computing resources to be devoted to the cause, a series of methods have been

deployed. The cheapest include empirically and knowledge-based pairwise interatomic po-

tentials (IAPs) which are combined with conformation-generating software (for instance,

genetic or Monte Carlo algorithms10,11) to create a docking function to probe molecules’

binding modes.12–14 Should the IAPs be linked to a more physically sound function (for in-

stance, a quasi-time integrator), we could pursue not only the interesting interaction modes

but also the trajectories linking them together; this is most famously implemented as molec-

ular dynamics (MD).15 The great advantage of those methods is in being able to investigate

systems of very large size, even including the protein-protein or whole membrane complex

simulations.16–18 Such calculations are made feasible by the use of computationally cheap

strategies - fitted force fields relying on the Lennard-Jones potential and the Coulomb law to

describe van der Waals and electrostatic interactions, respectively.19,20 These rely on long-
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known and tested relationships which capture the correlation but fall short of explaining

their underlying quantum origin. Indeed, the NCIs are not merely a monolith, but the ori-

gin of the interactions varies from electrostatic to quantum origin, and the final strength of

interactions could be down to a combination of often subtle effects.21

To account for this detail, many quantum mechanics approaches are possible, most fa-

mously the density functional theory (DFT) which calculates the energy of the molecules

and complexes, and the interaction energy is found by the supermolecular approach where a

difference between the complex and individual energies often needs to be supplemented by

a counterpoise correction for the elimination of the basis set superposition error (BSSE).22

DFT is by no means the only method, especially due to its inability to fully derive the elec-

tron exchange and correlation.23,24 Wavefunction methods, like coupled cluster, or CASSCF

incorporate a more detailed description of the interactions, though pay for this accuracy

with an exponentially large computational cost.25 The chasm between accuracy and expen-

diture has been populated by a range of interesting, unique and often powerful algorithms,

for example, energy decomposition schemes,26 or the symmetry adapted perturbation the-

ory (SAPT).27,28 The topic of this paper, the NCI approach is an example of a similar but

distinct class of real-space approaches, spearheaded by QTAIM29 which aim to detect NCIs

using physically sound and interpretable tools. In this respect it is worth mentioning the

work of Espinosa et. al.,30 who provided correlations for families of hydrogen bonds.

In order to go beyond classification of non-covalent families, efforts have been devoted

within the NCI approach.8,31 This approach is almost 14 years old and has become a

widespread technique for qualitative analysis of NCIs due to its ease of use, speed, and

graphic visualization of sites of interest.32 It identifies the low-density low-reduced density

gradient regions around topological -3 critical points which have been found to correspond

to NCIs in real space as disc-shaped volumes. This approach makes use of partitioning of the

interaction into intra- and interatomic components and even further into types of NCIs, for

example, hydrogen bonding, repulsive contacts or van der Waals interactions.32 The tech-
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nique has been encoded as an easy-to-use program33 and is available as a web tool,34 which

are, nevertheless, subject to an array of parameters which dictate the search for the region

which could be integrated to give a further context. The integrand over the volume - the NCI

index - is a promising avenue to adding a quantitative dimension to the NCI approach.35,36

Although it allowed to go beyond families of NCIs, it has not been studied systematically to

date (e.g. not applied to other test sets than the training); hence, the following article aims

at exploring both the effect of NCI parameters on the found regions and an investigation of

the relationship between the NCI index and interaction energy of the revealed interactions.

2 Theory

2.1 NCI Index

Figure 1: a) The RDG sr - electron density ρ plot for an example interaction, b) the RDG
sr - signed electron density signλ2ρ(r) plot for an example complex, c) the visualization of
an example complex with the NCI region. There are four parameters that dictate the size
of the NCI region which are depicted as quantities with arrows indicating their definition.

The NCI approach detects NCI regions as characterized by low electron density and low

reduced electron density (RDG), s(r)

s(r) =
| ∇ρ(r) |

2(3π2)1/3ρ(r)4/3
(1)

and these so-defined low values are parameter-dependent. The latter, especially, is a
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quantity highlighting the inhomogeneity of electron density that has been the cornerstone

of the NCI method due to a pattern of troughs which can be tracked down as non-covalent

interactions occurring in the complex (see Figure 1 a) ) where through in bottom left corner

correspond to NCIs). When plotted, these low-density regions correspond to volumes in real

space located at the sites of interactions (see Figure 1 c) ), and hence have been widely

used to track the qualitative presence of interactions.37 Further characterization is possible

when utilizing the electron density Hessian to describe the nature of the troughs, more

specifically the sign of its second eigenvalue, λ2; the resultant scale dictates the type of

interaction taking place: hydrogen bonds are strongly negative, repulsion - strongly positive,

and weaker interactions are found with values in between (see Figure 1 b) ). The second

eigenvalue of the Hessian was chosen due to its ability to track density concentration or

depletion - as expected from bonding or anti-bonding situations.38,39

The limits signλ2ρ(r) for each interaction type were dependent on two additional pa-

rameters which partition the integration volume (see Figure 1 b) ). If we want to consider

intermolecular NCIs preferentially, we ought to consider one more parameter, bringing the

total to five. This other parameter is the intermolecularity fraction, γref , and it ensures

that the density considered has significant contributions from both molecules in the com-

plex. Hence, the density to be considered, the ”integration domain”, ΩNCI must satisfy the

following conditions 

ρ(ri) < ρc

s(ri) < sc

ρA(ri) < γrefρ(ri)

ρB(ri) < γrefρ(ri)

(2)
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and gets split into the three integration ranges


ΩHydrogen bond if sign(λ2ρ(ri) < −λlarge

ΩV an der Waals if sign(−λsmall < λ2ρ(ri) < λsmall

ΩRepulsion contact if sign(λ2ρ(ri) > λlarge

(3)

An integral called the NCI index is taken over each of the integration domains

In,X =

∫
ΩX

drρn(r) (4)

for X = {Hydrogen bond, Van der Waals, Repulsion contact} and where we have added

an nth power dependency as it was not obvious to us why only the n = 1 case should be

investigated, and the NCIPLOT software already calculated a series integrals with powers

of n = {1, 4/3, 1.5, 5/3, 2, 2.5, 3}.

The NCIPLOT software requires an input of geometry of the complex and its wavefunc-

tion, but its underlying computation could vary depending on whether the input is from an

independent SCF calculation or, alternatively, whether it has been constructed from a set

of pre-calculated promolecular densities;33 the latter is an option to speed up the calcula-

tion and enable the investigation of supramolecular and biomolecular systems. The features

of the RDG remain stable across the exact density calculation detail, though, as we shall

present, the integration of the density and the resultant NCI indices vary with the chosen

density calculation method.

2.2 Symbolic Regression

It has been established in many previous publications32,35,40 that there exists a relationship

between the NCI index and the interaction energies as calculated by CCSD(T)/CBS or its

approximations. The explicit relation is not easily derivable, nor is its closed form obvious.
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For that reason, we decided to identify a symbolic relationship first and seek an explanation

of the form second. Such an investigation is made possible with PySR - a symbolic regression

library,41 that has been used in such a manner in a variety of fields already.42 The overall

advantage and reason for using symbolic regression is in the interpretability of the resultant

model, and the ability to probe the importance of various factors within it so that the

relationship and physics behind the equations terms might be investigated.

PySR is high-performance and open-source with an efficient Julia backend and works very

well on low-dimensional datasets where there are few qualifiers that describe a data point.41

The library uses a multi-population evolutionary algorithm with adjustable mutation and

cross-over rates to grow an equation and improve it through the evolution of new terms

as offspring. It does additionally contain a few modifications (e.g. simulated annealing at

lower temperatures) to both increase the diversity of investigated space of equations and to

favor the fittest equations. PySR, therefore, stands out among other symbolic regression

tools which are usually designed to handle more straightforward cases and therefore to be

less scalable. It contains a simplification step to appreciate that the goal is to find the best

equations hence balancing their complexity and accuracy.41 It also allows us to tune the

complexity of the equations sought by specifying the operators used and their complexity

in the equation, hence preventing the search for overly complicated and fitted forms. We

decided to restrict the equations to only containing addition, subtraction, multiplication,

and simple powers, square and cube roots; the last three as a counterbalance to nth powers

in the NCI indices.

Nevertheless, the nature of the algorithm is inherently stochastic, and the path taken to

construct the equation differs with every run, much like it does in other machine learning

(ML) algorithms. In fact, the library is written much to mirror ML models whereby the

model is trained on a subset (train) dataset and the performance of the resulting equations

is evaluated on the data not used - the test set.

We also decided on a comparison with another ML technique to examine whether it is
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possible to obtain a better albeit less interpretable model with the available data. For this

purpose, we chose the very popular gradient boosting regression (GBR)43 as implemented in

the scikit-learn library.44 It is an incredibly powerful algorithm that creates a strong model

by combining weak learners into a model that is capable of detecting non-linear relationships

as well as outliers, and able to find relationships with a limited amount of data, in hundreds

and not millions of data points.45

3 Calculations

3.1 Training on the NCIA

In order to systematically study the non-covalent interactions, we turned to Rezac et. al.’s

Non-Covalent Interactions Atlas (NCIA)46 which contains large and diverse datasets for

various types of non-covalent interactions along with very accurate reference energies as

calculated with CCSD(T)/CBS. We decided to focus on the two most pervasive types of in-

teractions first - on hydrogen bonds and dispersion interactions and, hence, used the HB375

and D1200 datasets,47,48 and as suggested by their names, they contain 375 hydrogen bond

and 1200 dispersion complexes, respectively. These datasets contain small, organic and in-

organic dimeric complexes that were geometry-optimized to give an equilibrium separation.

For each of the monomers in each of the complexes, we calculated the electron density using

DFT with frozen core, PBE0-D3 functional, and def2-SVP basis set using Psi449 and con-

verted the result to the wavefunction file type (.wfn) using Multiwfn 3.8.50 We additionally

calculated the electron density using the promolecular approach as present internally in the

NCIPLOT 4.2 software.33 As we described in the Theory section, an NCIPLOT calculation

is subject to 5 parameters, hence we repeated the calculation for a five-dimensional set of

parameters, namely:

1. λlarge: {0.2, 0.1, 0.07}
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2. λsmall: {0.02, 0.015, 0.01}

3. ρc: {0.07, 0.05}

4. sc: {1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3}

5. γref : {0.95, 0.85, 0.75}

For each complex calculation, the NCI indices for the Hydrogen bond, van der Waals and

Repulsion regions were calculated for n = {1, 4/3, 1.5, 5/3, 2, 2.5, 3}. We also investigated

the effect of n = 0 - which corresponds to volume rather than charge - see SI for more details.

We decided that the best set of parameters from the 432 possibilities would do the best job

of predicting the energy of the intermolecular interactions versus the CCSD(T) reference.

We could have looked at the simple correlation between the NCI indices at a given n and

reference, but this approach would fall short should the equation be any more complicated

than a simple linear relationship (also see Figure 3 c) and f) ). For that reason, for each

parametrised result, we carried out a search for the best symbolic regression equation. Each

parametrised result gives five to nine ’hall of fame’ equations for a given increasing complexity

metric, and we decided to select the most accurate (and hence the most complex) equation

as the representation of the performance of the parameter set. This allows for a calculation

of not only the R2 correlation coefficient between the NCI indices and energies but also of

the mean absolute error (MAE, in kJ/mol throughout) to quantize the performance further.

Each symbolic regression was performed with a 2:1 train:test split and the reported numbers

correspond to the test set results. The train:test split was the same for every regression

calculation (seeded with the name number). Below, we present the method and results using

the promolecular approach, but a parallel analysis had been performed for the DFT densities;

these results are compiled in the Supplementary Information.

Figure 2 shows an example heat map cross-section through a two-dimensional plane of the

parameter space for both R2 and MAE for the HB375 dataset. Such heat maps were possible

through other cross-sections, and those are compiled in the Supplementary Information. The
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starred square in Figure 2 shows the consensus set of parameters that minimizes MAEs for

HB375 and D1200 datasets.

Figure 2: Heat map of a) R2 correlation coefficient, b) mean absolute error (MAE) for two
varying parameters: sc and λsmall at set λlarge = 0.2, ρc = 0.05, and γref = 0.85 for the
HB375 dataset. The color maps are present to the right of the graph, and note that the
best results have lowest and reddest MAE and largest and bluest R2. The starred square
with parameters sc = 1.0 and λsmall = 0.02 is the consensus best set of parameters, also
for the D1200 - for details, see the Supplementary Information. All underlying NCI indices
calculations were carried out using the promolecular approach.

We decided that the lowest MAE is the ultimate criterion for the best set of parameters,

along with the highest R2 and simplest form of the equation. The parameters are: λlarge =

0.2, λsmall = 0.02, ρc = 0.05, sc = 1.0, and γref = 0.85. This best result corresponds to the

following equations for HB375 - (5) and D1200 - (6). Equation (6) only depends on the van

der Waals NCI indices, as other NCI indices were evaluated to zero in 80% of the D1200

complexes.

EHydrogen bond(ρ) = −(2.8× 103 (I2,van der Waals + I2,Hydrogen bond)

+2.7× 101 3
√

I4/3,Hydrogen bond)

(5)
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Evan der Waals(ρ) = −
(
5.0× 101

√
I1,van der Waals − 7.3× 101 3

√
I5/3,van der Waals

)
(6)

An analogous analysis was performed with the gradient boosting regression (GBR) al-

gorithm. The presented performance is an average of three runs of the GBR code, as a

non-negligible variance has been detected in individual runs, as this code is likewise non-

deterministic. It gives the best performance for the above-mentioned set of parameters,

similarly to PySR, with the HB375’s R2 = 0.82 and MAE = 3.35 kJ/mol and D1200’s R2 =

0.75 and MAE = 2.22 kJ/mol. This not only reinforces the choice of the parameters but also

reveals the extent to which the energy results can be explained with the available density

data. Figure 3 shows the scatter plots calculated versus the reference energy for the two

methods, and also for the simple sum −(I1,Hydrogen bond + I1,van der Waals) against reference

energy (notice the change in y-axis scale) to further showcase the need for the more complex

form of the equation to appropriately capture the underlying behavior.
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Figure 3: Scatter plot of calculated energy versus CCSD reference when the calculation
is performed by a) PySR for the HB375 dataset, b) GBR for the HB375 dataset, c) Sum
of −I1,X for the HB375 dataset, d) PySR for the D1200 dataset, e) GBR for the D1200
dataset, f) Sum of −I1,X for the D1200 dataset. All the graphs come from calculations with
promolecular densities and using the optimum set of parameters.

Now, the choice of dataset and their analysis so far has been focussed on finding an

equation for each of the types of interactions separately. It would be highly desirable to

obtain a single unified equation that describes both of the interaction types simultaneously.

Their mere sum overestimated the energy for almost all complexes (see Figure 4 a) ); however,

if we noted the I1,van der Waals term in equation (5) was responsible for the calculation of

the dispersion contribution for the complexes in the HB375 dataset and, therefore if we

substituted this term by equation (6), we would bring about equation (7). This single

composite equation performed much better as it avoided double-counting of the contributions

to interactions (see Figure 4 b) ).
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EInt(ρ) = −(2.8× 103I2,Hydrogen bond + 2.7× 101 3
√

I4/3,Hydrogen bond

+5.0× 101
√

I1,van der Waals − 7.3× 101 3
√

I5/3,van der Waals)

(7)

It should here be noted that we understand the dependence on energy of larger values for

higher powers of NCI indices for hydrogen bonding akin to the relevance of charge for this

type of interactions. Likewise, the dependence of the final equation on lower NCI indices for

dispersion interactions could be due to the higher relevance of atomic volumes and contacts.

Figure 4: Scatter plot of calculated energy using a single equation versus CCSD reference
for the color-coded datasets: blue is HB375 and pink is D1200. a) represents the exact sum
of equations (5) and (6), and b) represents equation (7). The overall R2 and MAEs are: a)
0.21 and 6.52 kJ/mol, and b) 0.86 and 2.63 kJ/mol.

There was perhaps a strange curving of the D1200 predictions which appeared persistent

in all models, which was perhaps caused by the square and cubic roots in equations describing

dispersion which was not the case for the dispersion contribution in the HB375 dataset. It

was similarly seen in the GBR result, but not in the sum of NCI indices (Figure 3 f) ). In

trying to get a better estimate, we tried restricting the use of roots in sought-for equations

in PySR, yet the obtained models worsened all following metrics. However, the prediction of

D1200 energies using equation (7) significantly minimizes this perceived curving. For that
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reason, we retained equation (5) as the best possible model for dispersion interactions.

Therefore, we have obtained a predictor equation that calculates the interaction energies

as sub-chemical accuracy level (2.63 kJ/mol, 0.63 kcal/mol) even when using a rather ap-

proximate promolecular construction of electron densities. Using DFT densities produced

more accurate estimates of MAE (2.20 kJ/mol, 0.53 kcal/mol) with similar correlation co-

efficients (0.86 versus 0.89), see Supplementary Information for the parallel analysis. It has

also shown that this result is irrespective of the functional used to calculate the electron

densities.

3.2 Testing on S66 dataset

Armed with the unique equation to describe a variety of non-covalent interactions, we turn

our attention to a dataset of more complex and varied intermolecular interactions to test its

accuracy in a new setting. The S66 dataset51 was treated similarly with the densities cal-

culated by both DFT (with the same functional/basis set) and using promolecular densities

and the NCI indices calculated using the optimized parameters as identified in the previous

section. The energies calculated using DFT densities gave the result in Figure 5 a), and ones

found with equation (7) produced Figure 5 b).

The dataset is primarily split into complexes with binding energies below 40 kJ/mol

which are overall well predicted, and 5 complexes with very strong interactions, which were

all underpredicted by about 5 - 20 kJ/mol, depending on the origin of the electron densities.

The strongly bound cyclic double hydrogen bonds (for example, as found in an acetic acid

dimer) have been present in the HB375, and have similarly been underpredicted suggesting

this to be a shortcoming of the promolecular approach, which perhaps did not appreciate

the significance of the distortion of electron density by these strong hydrogen bonds. The

remaining significant outliers were both uracil complexes (AcNH2-uracil dimer and uracil-

uracil π stack).

When the strongly-bound hydrogen bond complexes were excluded the predictions gave
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Figure 5: Scatter plot for the S66 dataset of the calculated energy using a single equation
versus CCSD(T) reference using the a) DFT densities, and b) the promolecular densities.
The overall R2 and MAEs are: a) 0.92 and 3.18 kJ/mol, and b) 0.82 and 4.9 kJ/mol.

R2 of 0.80 and MAE of 2.48 kJ/mol for the DFT-density approach and R2 of 0.62 and MAE

of 3.67 kJ/mol for the promolecular approach.

3.3 Limitations

Obtaining a symbolic relationship between the NCI indices and the binding energies of com-

plexes resulted in simple equations capturing the underlying correlation. It also highlighted

the non-equal contribution of the NCI indices representing the various types of non-covalent

interactions. However, it should be noted that it did not produce a term describing the

repulsive contribution to binding. In order to verify the lack of this term, we also analyzed

the HB375x10 dataset, which contains compressed geometries (see Section 5 in the Supple-

mentary Information). As the systems were compressed, energies were consistently overpre-

dicted. If, on the contrary, we examine complexes with stretched interactions, a decrease

in NCI indices is starker than expected, and the energy prediction - though still correlated

- gives slightly lower energies than the reference (also see Figure 25 in SI for compressed

geometry energy predictions of HB375). Therefore, the equations presented here work well
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with equilibrium systems but should not be used to study out-of-equilibrium geometries.

It should also be noted that the PySR algorithm being non-deterministic. Hence, the

equations presented here, though, found optimal by the algorithm run, might not be the

absolute best equations that could exist to explain the relationship. When performing the

same search for the symbolic equation, the final result usually changes the multiplicative

constants slightly, and on several occasions, the exponents of the NCI index also differed

slightly (e.g. between 4/3 and 1.5). Some examples of these alternative equations are given

in SI.

4 Conclusions and Perspectives

We performed a detailed systematic study of the NCI method, evaluating the effect of its

key parameters and determining the best values for these, therefore improving the definition

of the method. These parameters corresponded to effectively considering the entire possible

non-covalent region (not just the bond critical point). At the same time, we have investi-

gated the relationship between the NCI indices obtained by NCIPLOT with the CCSD(T)

reference energies for the HB375 and D1200 datasets to look for the symbolic equation link-

ing the two. We have shown that a single equation can be created to describe both hydrogen

bonding and dispersion interactions, which predicts the interaction energy for the combined

HB375+D1200 dataset with a mean absolute error of well below chemical accuracy (using

DFT: 2.20 kJ/mol, using promolecular densities: 2.63 kJ/mol). In order to verify the appli-

cability of this equation, it was also tested on a different popular dataset S66 to evaluate how

well it performs on new and more complicated complexes. The resultant predicted energies

were still correct and very well correlated (R2 = 0.92 and MAE = 3.2 kJ/mol) even with

rather simplistic promolecular energies (R2 = 0.82 and MAE = 4.9 kJ/mol). We should

recall here that for promolecular densities, no SCF calculations were carried out. Hence, the

quantitative NCI approach is therefore a promising alternative to (semi-)empirical functions
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that calculate the non-covalent interaction energy with good accuracy even from the geom-

etry. Probably also related to the use of promolecular densities, we were not able to capture

correctly very strongly attractive neither repulsive interactions. Thenceforth, this approach

can only be used for equilibrium geometries, yet we hope that this first step will never-

theless already provide the users with a useful tool for examining NCIs within complexes,

and optimized conformers or ligand-protein interactions. Work is in progress for describing

repulsive interactions which feature prominently in out-of-equilibrium conformations, and

therefore are a key type of interaction to consider to extend the model to capture NCIs in

all geometries.
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Section 3 concerns the HB375 internal control of non-hydrogen bonding compounds. Section
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generalizability of the equations beyond equilibrium. Section 6 investigates the regression

analysis of subsets of HB375 and D1200 datasets to ascertain the generalizability of the
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