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The aim of this paper is to describe how the reliability characteristics of a
system living in a controlled environment with constant stress may be modi-

fied by taking into account of random failure of the control device. Such issue

arise when reliability objectives have been demonstrated under stong assump-
tion of constant environmental conditions, but some device that controls the

environment (temperature, pressure, voltage, current intensity), may also be

subject to failure. Standard results obtained by applying a cumulative damage
model are introduced to provide updated predictive reliability characteristics

(reliability function, mean time to failure) that mix reliability distributions of

the principal component and the control device. An application on real data in
the aeronautic field is proposed. The statistical analysis is also addressed and

illustrated with simulated data under different observation and maintenance
policies.

Keywords: Accelerated Failure Time models, time-dependant covariate,
repairable systems, maintenance policy, dynamic stress

1. Introduction

In the framework of reliability analysis of repairable systems, the very well

known standard AGAN model (Asher and Feingold [5]) assumes strong

assumptions that may not be fullfilled in practice. First and foremost is

the hypothesis of independent and identically distributed interarrival times

of failure. Secondly is the testability of items, that induces the ability to

monitor the state of the system, detect the failure immediately, and apply

a perfect corrective maintenance.

In that paper, we maintain the assumption that the corrective mainte-

nance is perfect (for instance by assuming that the replacement of a failed

unit in done by a new one, whose reliability distribution does not change).

We also assume that the system is sufficiently monitored to ensure that the
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failure is detected as soon as it occurs, and lead to a remplacement of the

failed unit.

These restrictions are well adapted to issues encountered in the aeronau-

tic or automotive industry (the present work has been motivated by a real

problem in aeronautics) : assume that electronic components are placed in

a container where the temperature is maintained to a constant value by an

air cooling system. The reliability demonstration test of the electronic sys-

tem was planned and done with an objective fixed by engineers to a given

temperature x0. The issue is to guarantee the same reliability objective by

assuming that the air cooling system may fail, and thus loose the ability to

provide the target temperature x0 and deliver a higher temperature (say

x1). For that, it is assumed that the control device has a known reliability

distribution, but its failure may be hidden or detected with a delay of re-

pair. We thus face the problem of dormant failures of sub-system (control)

that may precipite the failure of the principal system due to the elevation

of stress. Furthemore, we must consider maintenance aspects, such that in-

spection policies or testability of devices state, in order to fulfill a reliability

objective, often given in terms of MTBF for repairable systems.

A lot of work has been done on the analysis of dormant or hidden

failures of complex systems, most of them tackling the problem of optimiz-

ing the maintenance policy according to specific criteria, see ([1]) for the

mathematical treatment with Markov processes and independent Poisson

processes, [2] for an application in aircraft reliability, ([3]) in the medical

field, or ([4]) in the electrical power systems industry. To our knowledge,

this paper is the first attempt to provide a stochastic model that adresses

the issue of the accelerated lifetime of a principal system precipitated by a

hidden failure of a control sub-system.

In this paper, we provide closed form expressions for reliability functions

and mean time to failure (MTTF) under various hypotheses of monitoring

and maintenance policies. We then analyse the effect of the repair duration

on the reliability of the principal system.

An exponential distribution for the cooling part and an Arrhenius-

Weibull distribution for the principal component are assumed to illustrate

the point.

We finally consider the statistical analysis of such data.



2. The model and the notations

Let us denote by T the time to failure of a main system, and (Ti)i≥1 the

sequence of i.i.d. successive duration times between failures of a renewal

process. It is assume that a remplacement is immediately done and that

the Ti’s are observed.

The environmental conditions (resumed in the covariate x ∈ Rp) may

affect the reliability of the system. Let us denote by R0 the reliability

function of T under the assumption of constant stress x0.

For the sake of clarity, we pose p = 1 and assume a parametric model

R(t) = P (T > t) = R(t, θ) under the following accelerated failure time

model : Denoting by θ0 the parameter value under the stress X = x0 and

θ1 the parameter value under the stress X = x1, we assume that there exist

a function AF such that

Rx1
(t) = R(t, θ1) = R(AF (x0, x1) t, θ0) = Rx0

(AF (x0, x1) t). (1)

The reliability distribution usually lies in a ”log-location-scale” family such

that Weibull, Log-Normal, or Log-Logistic, see Meeker ([6]), Lawless ([7]),

for further details.

The standard AFT model for constant stress is generalized to time-

varying stress x(.) = (x(t), t ≥ 0) through the very natural assumption of

cumulative damage (Nikulin et al. [8]):

Rx(.)(t) = Rx0

(∫ t

0

AF [x0, x(u)]du

)
. (2)

For the one-step stress x(t) = x010≤t≤e + x11t>e, with known change

point e, (2) reduces to

Rx(.)(t) = Rx0
(t)1t≤e +Rx1

(t− e+ e∗)1t>e (3)

where the time e∗ is determined by Rx0
(e) = Rx1

(e∗), i.e. e∗ =

e/AF (x0, x1). We thus may rewrite the reliability under known step-stress

:

Rx(.)(t) = Rx0
(t)1t≤e +Rx0

(AF (x0, x1)t− e(AF (x0, x1)− 1))1t>e. (4)

The figure 1 represents the cumulative damage AFT model under one-step

stress with know change point.

To conclude this section, let us define a model for the control sub-system

and the monitoring and maintenance policies. Assume that a device is

designed to maintain a constant stress to a nominal value x0. We consider
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Figure 1. AFT model under one-step stress with know change point

that this control device may fail and denote by E the time to failure, with

reliability functionRE and density function fE . Hence, the principal system

lives under a constant stress value x0 until the failure of the control device,

then switch to a non-controlled stress, which we shall assume to take a

higher constant value x1. This time-varying stress model for T is evidently

related to the previous one, exept that the change-point is random.

The monitoring and maintenance policies that we consider are of two

types :

• Hidden non repaired control (HNRC): The principal system is con-

tinuously observed. At the time of failure, a perfect corrective

maintenance of both principal and control system is carried out in

a negligible duration. If a failure of the control device was hid-

den, then the stress level recovers the lower value immediately at

the repair time. Note that in case of non failed control device,

the remplacement is nevertheless done resulting to a preventive

replacement.

• Observed repaired with delay control (ORDC): The monitoring al-

lows the testability and the perfect observance of the control de-

vice’s state as well as the principal system. The repair of the control

device has a fixed known duration ∆I during which the principal



system, if alive, undergoes an overstress of value x1.

Obviously, the ORDC policy with ∆I = 0 coincides with a perfect

reliable control device providing a constant stress x0 for the principal com-

ponent. Both policies are still compatible with a AGAN renewal model

for the principal system, the main difference being in the expression of the

reliability function to be considered.

In the rest of the paper, we provide closed forms for reliability functions

and mean time to failure, analyse the effect of the duration ∆I on the reli-

ability - a major issue for pratitionners, and conclude with a short remark

on the statistical analysis of data.

3. Reliability analysis

3.1. Reliability of system with Hidden and non repaired

control device HNRC

Denoting by E, the hidden random time of failure of the control device, the

stress experienced by the principal system takes the form :

x(t) = x11t≤E + x21t>E

where x0 and x1 are the lower and upper stress values. Assume that E has

a density fE then it can be shown that the reliability function of T is :

Rx(.)(t) =

∫
Rx(.)|E=e(t)fE(e)de

= Rx0
(t)P (E > t) +

∫ t

0

Rx0
(AFt− e(AF − 1))fE(e)de, (5)

where AF is a short notation for AF (x0, x1). It is worth noting that even

if log-location-scale distribution families such that Exponential, Weibull or

Log-Normal are stable with accelerated constant stress, the mixed distri-

bution obtained in (5) does not lie in the original family of distributions.

The figure 2 shows an example of Rx(.) for Rx0 ∼ W (3000, 2), AF = 3,

E ∼W (2000, 4).

We also get the following result for the mean time to failure (MTTF)

under the HNRC-policy :

MTTFx(.) = MTTFx0−
(

1− 1

AF

)∫ +∞

0

(∫ +∞

e

Rx0
(u)du

)
fE(e)de (6)

The equation (6) is the key point to analyse the loss of MTTF involved

by a non reliable control device. The loss MTTFx(.) −MTTFx0
is clearly
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Figure 2. An example of th reliability function with hidden loss of control - HNRC

dependent of the acceleration factor and a complex relationship between

the reliabity function Rx0
and the density fE .

3.2. Reliability of system with Observed and Repaired with

Delay Control device ORDC

In this section, we assume that the control device is continuously monitored.

The failure is thus immediately observed and triggers a repair action of fixed

duration ∆I. Thus, for a fixed time period, the principal system lives under

a higher stress x1, considering that the starting point of this overstress

period is random. The stress profile takes the following expression:

x(t) = x010≤t≤E + x11E<t≤E+∆I + x01t>E+∆I . (7)

The reliability function Rx(.) of the principal system under ORDC policy

given in (7) takes the form:

Rx(.)(t) = Rx0
(t)P (E > t) +Rx0

(t−∆I(1−AF ))P (E < t−∆I)

+

∫ t

t−∆I

Rx0 (AFt− e(AF − 1)) fE(e)de, (8)

The mean time to failure is also updated (compare with (6)):

MTTFx(.) = MTTFx0
−
(

1− 1

AF

)∫ +∞

0

(∫ e+AF∆I

e

Rx0
(u)du

)
fE(e)de

Note that theses equations generalize those given in the previous section

by considering that ∆I → +∞ could be interpreted as an absence of repair

of the control device until the observed failure of the principal system.



Note also that the right-hand term of (8) is worth being minored which

provides an easily handled expression:

Rx(.)(t) ≥ Rx0
(t) + P (E < t−∆I) [Rx0

(t−∆I(1−AF ))−Rx0
(t)] . (9)

The figure 3 shows an example of the ORDC policy that mimics the

previous example in Figure 3.1, with ∆I = 300.
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Figure 3. An example of reliability with observed and delayed repaired control- ORDC

4. Statistical Analysis of field data - Simulation study

As the above sections deal with predictive reliability, used in the design

process of a system that requires reliability demonstration, we ask here the

question of the statistical estimation of unknown parameters from various

types of monitoring. The reliability function of a system undergoing a

random stress due to failure of the control device has been provided in (5)

and (8) according to the monitoring and maintenance policies HNRC and

ORDC. Assume that (Di)i=1..n are i.i.d. random variables with reliability

function Rx(.). The likelihood of such data requires the derivation of the

density function fx = − ∂
∂tRx(.) where t appears both in the intergrand

bounds and in the quantity to integrate. Such parametric integrals are

derivated thanks to the well known Leibniz intergral rule for parametric

integrals:

d

dt

(∫ b(t)

a(t)

f(x, t) dx

)
= f

(
b(t), t

)db
dt
− f

(
a(t), t

)da
dt

+

∫ b(t)

a(t)

∂f

∂t
dx



Heres, it reduces to (ORDC case):

fx(t) = − ∂

∂t
Rx(.)(t) = R0(t)fE(t)−R0 (t+ ∆I(AF − 1)) fE(t−∆I)

+
∂

∂t

∫ t

t−∆I

R0 (AFt− e(AF − 1)) fE(e)de.

We provide here the likelihood function for the ORDC data (the modifica-

tion for the HNRC is straightforward):

lnL(η0, β, AF, λ) =

n∑
i=1

ln

[
f0(Di)RE(Di) + f0 (Di + ∆I(AF − 1))FE(Di −∆I)

+AF

∫ Di

Di−∆I

f0 (AFDi − e(AF − 1)) fE(e)de

]
This may easily be generalized to right censored samples.

Simulation studies show that the estimation of parameters is feasible, at

least for standard parametric models. As an example, we have investigated

the maximisation of the likelihood function by considering a Weibull distri-

bution for the principal component under stress x0(with parameter η0 and

β), an accelerated failure time model with unknwon acceleration factor AF

between stress values x0 and x1, an exponential distribution with unknown

failure rate λ, and a fixed repair duration ∆I. The figure above shows for

instance the contour profile of the log-likelihood lnL(η0, β, λ,AF ) in the

plan (η0, λ), the other parameters being fixed to the estimated values.
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Figure 4. Log-Likelihood profile in (η0, λ) for parametric ORDC simulated data
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