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Abstract
Most commercial Finite Element codes rely on hypo-elastoviscoplastic constitutive equations for structural computations at
large deformations. Such formulations are known to suffer from physical and thermodynamical flaws but their versatility
and ease of implementation made them ubiquitous. The paper presents an alternative systematic and thermodynamically
consistent extension of anisotropic thermo-elastoviscoplastic constitutive equations at finite strain. The formulation is based
on the well–known multiplicative decomposition of the deformation gradient into a thermoelastic and an inelastic part. This
decomposition relies on Mandel’s isoclinic intermediate configuration. The present framework covers a wide range of multi-
mechanism elastoplastic models so that it can advantageously replace the constitutive part of existing codes. The choice of a
suitable hyperelastic potential, hardening variables and anisotropy evolution laws are discussed. The concept of plastic spin
is used and can be either derived from general representation theorems or obtained from the normality rule. The effect of the
plastic spin is discussed in the light of examples involving anisotropic plasticity. The response of the proposed formulation
is compared to hypoelastic models in the case of several structural applications. The implementation of this methodology
in a commercial FE object-oriented code is detailed. We show how to extend readily a wide range of small strain nonlinear
constitutive models to finite deformations. The paper contains original features such as multimechanism based inelastic
contributions, a Mandel-stress tensor based nonlinear kinematic hardening rule containing dynamic and static recovery terms,
and a study of lattice rotation in single crystalline volume elements and turbine blades. The implementation is proved to be
competitive with respect to existing hypo-elastoviscoplastic formulations in terms of CPU time.
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1 Introduction

Finite strain elastoplasticity, as observed in various mate-
rials, requires combined geometric and material nonlinear
analysis of solids. Since the early sixties, a myriad of strate-
gies have been developed to extend the well-established
infinitesimal elastoplasticity theory to finite transformations
[1, 2]. A widely used approach is the so–called hypoelastic
formulation relying on additive decomposition of the total
deformation rate into elastic and inelastic parts, and consti-
tutive equations for objective stress rates [3, 4]. However,
this framework has been the subject of much controversy.
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First, the constitutive equations are generally not integrable,
which results in spurious energy dissipation in the elastic
regime even prior to yield (see, e.g. [5–7] among others).
In order to recover the integrability of hypoelastic formu-
lations, a logarithmic rate has been put forward by [8, 9].
However, it was shown in [10] that the post-yield response of
the logarithmic rate is inconsistent with the notion of elastic-
ity. Second, the rate of elastic deformation is related to a non
unique objective stress rate [11, 12]. In addition, some hypoe-
lastic models are well-known to depend on the reference
configuration, e.g.Green–Naghdi, and logarithmic rates [13].
Formulations relying upon the additive decomposition of the
Green-Lagrange strain tensor were developed [1]. Given that
the considered strain measure is symmetric, the latter model
cannot describe full anisotropy. Another formulation based
on the additive split of logarithmic strain was suggested by
[14]. These formulations however imply a dependence on the
choice of the reference configuration, meaning that the form
of the constitutive laws is not left unchanged by the change
of reference configuration [13]. Significant differences in the
plastic strain localization behaviour of material laws involv-
ing additive andmultiplicative decompositions were recently
evidenced in [15].

Since the aforementioned models are unsatisfactory in
describing finite deformations, several authors have put
forward the necessity to introduce the multiplicative decom-
position as a generalwayof describing the kinematics at finite
strain [16, 17]. This decomposition assumes the existence of
an intermediate configuration that is generally not unique.
The concept of isoclinic intermediate configuration was pro-
posed first by [18, 19]. Since then, several models relying
upon the multiplicative decomposition and a hyperelastic
potential for the stress have been developed (e.g. [7, 20–23]).
It is noteworthy to mention that there exist different ver-
sions of the multiplicative decomposition, e.g. considering a
decomposition in the reverse order [24, 25], decomposition
assuming symmetric elastic part or symmetric plastic part
[17, 26]. Alternatively, a rigorous presentation of this theory
has been proposed by [27] based on material isomorphisms.
This approach defines a special class of materials described
by elastic ranges that are independent of plastic deformation.

Constitutive modeling of kinematic hardening is still an
active area of research even in the small strain regime [28].
Kinematic hardening models at finite strain can be gener-
ally classified into two main groups; both are regarded as
extensions of the Armstrong-Frederick model [29]. The first
one employs an evolution equation for the back stress, or
the so-called ’Chaboche-type’ model [30]. The second one
involves an additional multiplicative decomposition of the
plastic part of the deformation gradient into storage and dis-
sipative parts [20, 23, 31–33]. The difference between these
models becomes visible, particularly in caseswhere principal
axes rotate, e.g. simple glide and torsion [34]. Significant dif-

ferences are observed for the special case of linear kinematic
hardening (Prager model) which leads to stress oscillations
for Jaumann rate [34]. Meanwhile, many studies have shown
that different extensions of the Armstrong-Frederick model
yield, at least qualitatively, similar results [32, 35, 36]. The
differences are mainly due to second-order effects for load-
ing conditions involving large rotations, apparent in simple
shear [32, 37].

At finite strain, the material does not undergo only
macroscopic stretches and rotations but also rotations of its
substructure described by some privileged directions called
directors. The notion of plastic spin describes the evolution
of material’s directors with plasticity. As highlighted by sev-
eral works (e.g. [38, 39]), the plastic spin is undetermined for
isotropic materials and is often assumed to vanish. Several
constitutive equations for the plastic spin have been proposed
independently by [40, 41]. It has been argued that multiple
plastic spins are required since each internal variable has a
different nature and, consequently, a different rotating frame
is required for each internal variable [42]. Furthermore, the
plastic spin is useful to prevent stress oscillation, particularly
in the case of the simple shear problem [41] when applied to
elastoplastic materials with linear kinematic hardening. Con-
stitutive modeling of plastic spin can be achieved through:
(i) an additional ad-hoc constitutive equation [40, 43, 44] (ii)
generalized normality conditions [19, 45, 46].

The additive hypo-elastoplastic models are widely used
in finite element codes for the sake of computational ease.
Small deformation material models are adapted to large
deformation problems with appropriate tangent operators
and stress/strain measures. To our knowledge, there is no
finite element software supporting a systematic extension of
infinitesimal models using the multiplicative decomposition.
Meanwhile, this approach is already used, exclusively, for
some particular models, e.g. in MSC Marc [47], or by using
user material subroutines in ABAQUS [7, 23].

This work aims to propose a generic and systematic
extension of small strain models to finite deformations. The
multiplicative decomposition of the deformation gradient
into thermoelastic and inelastic parts is adopted. All constitu-
tive equations are expressed in the local isoclinic intermediate
configuration. Accordingly, the stress is related to the elas-
tic strain through a hyperelastic law. Emphasis is put on the
broad range of addressed constitutive equations and on the
numerical implementation of the present formulation in a
commercial finite element code provided with an object-
oriented interface [48].By this approach, small strainmodels,
including isotropic and anisotropic plasticity models with
various isotropic and kinematic hardening rules, can be re-
used in the framework of the multiplicative decomposition.
On the other hand, unlike usual hypoelastic models, various
constitutive equations for the plastic spin can be formulated
within this framework. A significant part of the paper is a
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review of existing formulations and a systematic compari-
son of the results obtained with the proposed formulation
to previous ones. Original features deal with the formula-
tion of kinematic hardeningwith dynamic and static recovery
terms, coupling of various inelasticmechanisms, and detailed
description of the rotation of directors in single and polycrys-
tals.

Themanuscript is organized as follows. Section2 presents
a general thermodynamical framework for constitutive mod-
eling of anisotropic finite strain thermo-elastoviscoplasticity
basedon themultiplicative decomposition.Kinematic assump-
tions and a thermodynamically consistent derivation of
constitutive equations for multi-mechanism modeling are
depicted. Several models accounting for kinematic harden-
ing are discussed. Two constitutive choices of plastic spin
are presented. In Sect. 3, we describe the implementation
of the present formulation in a commercial finite element
code by taking advantage of its object oriented interface.
Special attention is paid to the integration of constitutive
equations and the construction of tangent matrices. Two
integration schemes are adopted: using the exponential map-
ping or correcting residuals in order to fulfill the plastic
incompressibility condition. Finally, the response of some
particular models is presented in Sects. 4 and 5 for a volume
element and structural applications, respectively. Through
these applications, comparisons are made with hypoelastic
formulations presented in the Appendix A. For the sake of
brevity, the thermomechanical coupling of the balance laws
is not considered in the present work. This means that the
temperature fields are assumed to be given in all samples,
for instance after solving independently the heat equation, as
often done in engineering computations.

The notations used throughout are as follows. a, A∼ , and A≈
stand respectively for first, second and fourth order tensors.
The transpose, inverse, transpose of inverse andmaterial time
derivative of a second order tensor are denoted by A∼

T , A∼
−1,

A∼
−T , and Ȧ∼ respectively. Double contractions are denoted

by A∼ : B∼ = Ai j Bi j and A≈ : B∼ = Ai jkl Bkl ei ⊗ e j , with
(ei )i=1,2,3 being a Cartesian orthonormal basis. The follow-
ing tensor products are used: A∼ ⊗B∼ = Ai j Bkl ei⊗e j⊗ek⊗el ,
A∼ ⊗̄ B∼ = Aik B jl ei ⊗ e j ⊗ ek ⊗ el , A∼ ⊗̄B∼ = Ail B jk ei ⊗
e j ⊗ ek ⊗ el .

2 General framework for elastoviscoplastic
modeling at finite strains

2.1 Kinematics

The deformation gradient is multiplicatively split as

F∼ = F∼
eF∼

p (1)

intermediate isoclinic configuration

reference configuration current configuration

Fig. 1 Illustration of the local isoclinic intermediate configuration

where F∼
e and F∼

p denote the thermoelastic and the inelas-
tic parts, respectively, see Fig. 1. In contrast to F∼ , the parts
F∼
e and F∼

p are not necessarily defined as gradients of one-to-
one mappings. As a consequence of possible incompatibility
of thermoelastic and plastic deformation fields, the interme-
diate configuration is local, i.e. it belongs to the immediate
vicinity of a material point and is obtained from the current
deformed configuration by a purely elastic unloading of this
vicinity only. The volume changes due to elastic and plastic
deformations are respectively denoted by

Je = det(F∼
e) = ρe

ρ
, Jp = det(F∼

p) = ρ0

ρe
(2)

and ρ, ρe and ρ0 stand for the mass densities in current,
intermediate and reference configurations, respectively.
The decomposition (1), however, is not unique since any
invertible transformation H∼ can be introduced such that

F∼ = (F∼
eH∼ )(H∼

−1F∼
p) = F∼

e∗F∼
p∗ (3)

To remedy this concern, we shall define some material
directors. These privileged directors are attached to some
microstructural features and undergo a different transforma-
tion than the material. For solids, we can always define a
triad of directors describing its microstructure (fibers, crys-
tal lattice vectors,...). In general, an infinity of directors may
be identified for a material. Nevertheless, if the relative spin
of all directors with respect to a single triad of directors is
known, the problem shall be simplified by considering only
this triad. It leads to the concept of local isoclinic intermediate
configuration, advocated in [19], where thematerial directors
have the same inclination or orientation as in the reference
configuration. The intermediate configuration is obtained by
elastic virtual unloading, whereas the rigid-body rotation of
directors is included in the thermoelastic part of the defor-
mation gradient. The isoclinic local configuration is uniquely
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defined up to a symmetry operation belonging to the symme-
try group of the material. It is one example of the co-rotated
intermediate configurations recommended in [49] where the
used structural tensors are also based on a triad of directors
[50].
The velocity gradient is additively decomposed in the current
configuration

Ḟ∼ F∼
−1 = L∼

e + F∼
eL∼

pF∼
e−1 (4)

L∼
e is the purely elastic part of the velocity gradient and L∼

p is
referred to as the plastic deformation rate in the intermediate
configuration. The latter, in turn, can be split into symmetric
and skew-symmetric parts as

{
L∼
e = Ḟ∼

eF∼
e−1 = D∼

e + W∼
e

L∼
p = Ḟ∼

pF∼
p−1 = D∼

p + W∼
p

(5)

where D∼
e = sym(L∼

e), D∼
p = sym(L∼

p) are the elas-
tic and the plastic strain rates, and W∼

e = skw(L∼
e) and

W∼
p = skw(L∼

p) are the elastic and plastic spin tensors.

2.2 Thermodynamic framework

The local form of the Clausius–Duhem inequality expressed
in the local current configuration is written as

σ∼ : D∼
ρ

− (ψ̇ + Ṫη) − 1

ρ

q · g
T

≥ 0, g = ∇xT (6)

where q is the heat flux vector. This inequality involves the
Helmholtz free energy and entropy densities per unit mass.
The former is defined as ψ = e− Tη where e is the specific
internal energy function, T is the absolute temperature and
g is the current spatial gradient of temperature. The volume
density of internal forcesw.r.t. the intermediate configuration
is given by

Jeσ∼ : D∼ = �∼
e : Ė∼ e + M∼ : L∼ p (7)

where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E∼
e = 1

2

(
F∼
eT F∼

e − 1∼
)

Ė∼
e = F∼

eT D∼
eF∼

e

�∼
e = JeF∼

e−1σ∼ F∼
e−T

M∼ = JeF∼
eT σ∼ F∼

e−T = C∼
e�∼

e

(8)

�∼
e and M∼ denote the Piola and Mandel stress tensors,

expressed in the intermediate configuration. The Mandel
stress tensor M∼ is generally non-symmetric, in contrast to

�∼
e. By expressing the dissipation inequality in the interme-

diate configuration, we obtain

�∼
e : Ė∼ e + M∼ : L∼ p − ρe(ψ̇ + Tη) − q

e
· g

e

T
≥ 0 (9)

where q
e

= JeF∼
e−1q and g

e
= F∼

eT g. The specific
free energy density ψ(E∼

e, T ,α I ) is a function of elastic
strain E∼

e = (F∼
eT F∼

e − 1∼)/2, i.e. the Green-Lagrange strain
measure with respect to the intermediate configuration, tem-
perature T and internal variables α I which are scalar and/or
tensor quantities accounting for hardening properties. It fol-
lows that

ψ̇ = ∂ψ

∂E∼
e : Ė∼ e +

∑
I

∂ψ

∂α I
α̇ I + ∂ψ

∂T
Ṫ (10)

The Clausius–Duhem inequality takes the form:

(
�∼

e − ρe
∂ψ

∂E∼
e

)
: Ė∼

e + M∼ : L∼ p − ρe
∑
I

∂ψ

∂α I
α̇ I

−ρe

(
∂ψ

∂T
+ η

)
Ṫ − q

e
· g

e

T
≥ 0 (11)

The following state laws are adopted

�∼
e = ρe

∂ψ

∂E∼
e , η = −∂ψ

∂T
(12)

so that the intrinsic dissipation remains as

φin = M∼ : L∼ p − ρe
∑
I

∂ψ

∂α I
α̇ I ≥ 0 (13)

together with the condition q
e
· g

e
≤ 0. The condition (13)

is satisfied for any process if there exists a convex potential
� w.r.t. the generally non-symmetric second order tensor M∼
and concave w.r.t. AI such that

L∼
p = ∂�(M∼ , AI )

∂M∼
, α̇ I = −∂�(M∼ , AI )

∂AI
(14)

AI are the thermodynamic forces associated with the state
variables α I :

AI = ρe
∂ψ

∂α I
(15)

In the case of time–independent plasticity, the flow rule in
Eq. (14) is rewritten

L∼
p = λ̇

∂ f (M∼ , AI )

∂M∼
(16)
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where f (M∼ , AI ) is the yield function and λ̇ denotes the
plastic multiplier which can be determined by use of the
consistency condition as

ḟ (M∼ , AI ) = ∂ f

∂M∼
: Ṁ∼ + ∂ f

∂AI
: ȦI = 0 (17)

For viscoplasticity with a threshold, from Eqs. (16) and Eq.
(14), a viscoplastic multiplier can be defined as

λ̇ = ∂�(M∼ , AI )

∂ f (M∼ , AI )
(18)

The existence of a convex potential from which the flow
rule and the evolution law of internal variables are derived is
sufficient to satisfy the dissipation inequality in Eq. (13), but
it is not necessary.

2.3 Thermo-hyperelasticity

A myriad of free energy potentials are available to model
hyperelasticity at finite strains. A widely used free energy
potential is the so-called St. Venant–Kirchhoff model, as a
straightforward generalization of Hooke’s law

ρeψ
e(E∼

e) = 1

2
E∼
e : C≈ : E∼ e, with E∼

e = 1

2
(F∼

eT F∼
e − 1∼)

(19)

where C≈ is the fourth-order elasticity moduli. This non-
polyconvex potential [51] fails to respond appropriately in
some cases e.g. the stress needed to shrink a bar to zero
volume goes to zero which is physically unreasonable [52].
Several modified versions of this model are proposed in lit-
erature in order to circumvent the aforementioned limitation
[52–54] e.g. the isotropic neo-Hookean model

ρeψ
e(E∼

e) = 1

2
λ(log(Je))

2 + μ
(
trace(E∼

e) − log(Je)
)
(20)

λ andμ are Lamé coefficients. Wemention that the proposed
formulation is not restricted to a unique hyperelastic model.
The model in Eq. (19) is proposed by default. In particular
this choice is sufficient to represent the elastic part of the
elastoplastic behavior of metals and alloys which are char-
acterized by small elastic strains.

Two approaches for introducing thermoelasticity at finite
strain may be distinguished. In the first approach, two con-
figurations of material sample are considered: The initial
configuration at uniform reference temperature, and the
deformed configuration characterized by non-uniform stress
and temperature fields [27, 55, 56]. The second approach
has been proposed by [55, 57–59] and by [20, 60, 61] in the

framework of thermo-elastoplasticity, where a supplemen-
tary intermediate configuration is considered. In the purely
thermoelastic case, the deformation gradient is then splitmul-
tiplicatively into thermal and elastic parts as

F∼ = F∼
elF∼

θ (21)

An alternative decomposition in the form of F∼ = F∼
θ F∼

el

is suggested by [62]. For isotropic materials, the two
approaches yield identical or similar results [59]. When
extended to anisotropic elastoplasticity, the latter approach
gives rise to potential decompositions of the form F∼ =
F∼
elF∼

θ F∼
p and all permutations of this decomposition can

be found in the literature1 without unambiguous justification
for the best–suited choice. That is why the first approach,
see [56], which relies on a unified thermoelastic deformation
F∼
e is preferred in the following, so that superfluous sub-

decompositions are avoided.
The thermoelastic part of the Helmholtz free energy ψ the

is defined as a function of the thermoelastic deformation ten-
sor, still defined by Eq. (19), and temperature as

ρeψ
the(E∼

e, T ) = ρeψ
e(E∼

e) − 
T β
∼

: E∼ e−ρeCε

2T0

T 2

(22)

where β
∼
is a second order symmetric stress temperature ten-

sor [63] and Cε is the specific heat at constant strain. The
difference 
T = T − T0 depends on a constant reference
parameter T0. If the free energy definition (19) is adopted,
the stress is obtained as

�∼
e = C≈ : (E∼

e − α∼T

T ), α∼T

= C≈
−1 : β

∼
(23)

where α∼T
denotes the thermal expansion second order ten-

sor which, for isotropic materials, can be reduced to only
one scalar parameter as α∼T

= αT 1∼. Due to the fact that in
usual materials thermal expansion always remains small, the
proposed framework closely related to the usual small strain
formulation will be sufficient.

2.4 Multimechanism dissipation potential

The inelastic deformation observed on the macroscale has
various origins at the level of material microstructure (dislo-
cation slip, twinning, grain boundary sliding, viscosity and
molecular orientation in polymers...). Each mechanism leads
to a specific type of non-linearity and constitutive equations.
To sum up the contributions of all mechanisms, the total dis-

1 F∼ = F∼
el F∼

pF∼
θ according to [20] and F∼ = F∼

el F∼
θ F∼

p in [60, 61]
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sipation potential is written in the form

�(M∼ , AI ) =
N∑
k

�k(M∼ , AI ) (24)

�k denotes the potential associated with the individual vis-
coplastic mechanism k. Each mechanism is characterized by
several internal variables summarizing, at a given time, the
material state and the influence of the past thermomechanical
loading. The yield surface is defined in the stress-hardening
variable (and temperature) space. For a given temperature and
hardening, the elastic range is limited by the yield surface. It
is a part of the vector space of dimension 9 of non-symmetric
second order tensors denoted byDe = {M∼ / f (M∼ , AI , T ) ≤
0}. The condition f (M∼ , AI , T ) = 0 defines the yield surface
and is chosen here of the form

f (M∼ , X∼ , R) = [
M∼ − X∼

]
eq

− R0 − R(p,α I ) (25)

where [�]eq denotes an equivalent stress measure involving
appropriate invariants of the tensor inside the brackets, R0

is the initial yield stress, R describes the isotropic hardening
law depending on the accumulated plastic strain p and inter-
nal variables α I , and X∼ is the back stress. Considering for
instance the case of two internal variables α I = (α∼, r) and
using Eq. (15), the associated forces X∼ and R are obtained
through

X∼ = ρe
∂ψ

∂α∼
, R = ρe

∂ψ

∂r
(26)

where α∼ and r are the internal variables associated to kine-
matic and isotropic hardening, respectively. Multiple yield
functions and multiple kinematic hardening variables can be
used in the context ofmultimechanismapproach, as proposed
in [64, 65]

It follows from Eqs. (16) and (18) that the inelastic strain
rate is the sum of the individual contributions of all mecha-
nisms:

L∼
p =

N∑
k

∂�k(M∼ , AI )

∂M∼
(27)

This method circumvents the decomposition of the inelastic
deformation into various contributions, often used in the lit-
erature in the form F∼

p = F∼
plF∼

vF∼
dF∼

tr ... including plastic
(rate–independent), viscoplastic, damage or transformation
deformations. Such decompositions and all their possible
permutations are hard to justify or define unambiguously. In
contrast, each mechanism contributes incrementally to the
inelastic deformation rate and can generally not be time–
integrated into one single deformation part.

2.5 Kinematic hardening

In small strain theory, the use of Armstrong-Frederick–
Chabochemodels iswidely accepted [29, 66, 67]. Thismodel
was enriched by a static recovery term, initially proposed by
[30]. This term allows for a full or partial recovery of the
kinematic hardening variable. It has been demonstrated that
the Armstrong-Frederick model does not admit a dissipation
potential [28] when used with a standard yield function [68].
Accordingly, this model is non standard. Generalized stan-
dard materials (GSM following [45]) are characterized by a
single potential to describe the yield function, the flow rule
and the evolution laws for internal variables. Nonlinear kine-
matic hardening can be introduced in this GSM framework
by modifying the yield function as follows [68]

f (M∼ , X∼ ) = [
M∼ − X∼

]
eq

− R0 + D

2C
J 2(X∼ ) (28)

where C and D are material parameters related to kinematic

hardening evolution and J (�) =
√

3
2 (� : �). Nevertheless,

this modification Eq. (28) induces an isotropic hardening
term in addition to the one describing the kinematic hard-
ening effect. A different approach has been proposed in [69]
by introducing a new class of materials called implicit stan-
dard materials.

The extension of the Armstrong-Frederick model to finite
strain ranges can be achieved in several ways. This issue
was investigated thoroughly in [21, 32, 37]. A widely used
approach is based on the multiplicative decomposition of the
plastic part of the deformation gradient [7, 21, 32, 47]

F∼
p = F∼

p
s
F∼

p
d (29)

The free energy, depending on E∼
e and E∼

p
s

= 1
2 (F∼

pT
s

F∼
p
s
−1∼),

is split into elastic and kinematic hardening contributions as

ρeψ(E∼
e, E∼

p
s
) = ρeψ

e(E∼
e) + ρeψ

kin(E∼
p
s
) (30)

The back stress acting on the local intermediate configuration
is derived from

X∼ = ρeF∼
p
s

∂ψkin

∂E∼
p
s

F∼
pT
s

(31)

The dissipation inequality becomes

M∼ : D∼ p − ρe
∂ψkin

∂C∼
p
s

: Ċ∼
p
s ≥ 0 (32)

(
M∼ − 2ρeF∼

p
s

∂ψkin

∂C∼
p
s

F∼
pT
s

)
: D∼ p + 2ρeC∼

p
s

∂ψkin

∂C∼
p
s

: D∼ p
d ≥ 0

(33)
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where

C∼
p
s

= F∼
p−T
d C∼

pF∼
p−1
d (34)

and

Ċ∼
p
s = 2F∼

pT
s

D∼
pF∼

p
s

− 2 sym
(
C∼

p
s
D∼

p
d

)
,

D∼
p
d = sym(Ḟ∼

p
d F∼

p−1
d ) (35)

We denote by X∼ = 2ρeF∼
p
s

∂ψkin

∂C∼
p
s

F∼
pT
s

the back stress act-

ing on the local intermediate configuration and by M∼ d
=

2ρeC∼
p
s

∂ψkin

∂C∼
p

s

aMandel-like stress tensor. The evolution equa-

tions satisfying (33) are given by

⎧⎪⎨
⎪⎩
Ḟ∼

pF∼
p−1 = λ̇

∂ f

∂M∼
Ḟ∼

p
d F∼

p−1
d = λ̇

b

c
M∼ d

(36)

where b and c are material constants. For time-dependent

plasticity, the plastic multiplier is given by λ̇ = ∂�

∂ f
where�

is the dissipation potential. Otherwise, the plasticmultiplier λ̇
is determined by applying the consistency condition ḟ = 0.

The proposed kinematic hardeningmodel

As investigated in [32, 37], different extensions of the
Armstrong-Frederick model lead to qualitatively similar
results if the material parameters are selected appropriately.
Another formulation of the kinematic hardening model with
both static and dynamic recovery terms is adopted here avoid-
ing any further decomposition of F∼

p and resulting from the
non-standard evolution equation as

X∼ = 2

3
Cα∼, α̇∼ = D∼

p − λ̇Dα∼ − 3

2

(
J (X∼ )

M

)m X∼
J (X∼ )

(37)

where C , D, m and M are material parameters. The second
term in the right describes the dynamic recovery and the third
one is responsible for static recovery. The fact that the chosen
internal variableα∼ lives in the objective isoclinic intermediate
configuration allows the use of the standard time derivative in
the evolution equation. The push-forward operation applied
to this equation will deliver the suitable objective derivative.
This evolution equation must be complemented by the initial
value of α∼ . The kinematic hardening variable α∼ in Eq. (37)
is symmetric provided that its initial value is symmetric.

This rule can be generalized to a non-symmetric kinematic
hardening variable by substituting D∼

p in Eq. (37) by L∼
p

α̇∼ = L∼
p − λ̇Dα∼ − 3

2

(
J (X∼ )

M

)m X∼
J (X∼ )

(38)

It follows that X∼ is generally not symmetric, like the Mandel
stress tensor. We mention also that a model with non-
symmetric internal variable of kinematic hardening has been
proposed in [46].

A more accurate description of a large variety of experi-
mental stress–strain curves is possible by combining several
independent kinematic hardening variables [30] such that

X∼ =
NX∑
i=0

X∼ i
, X∼ i

= 2

3
Ci jα∼ j

(39)

where NX is the total number of kinematic hardening vari-
ables associatedwith (visco)-plasticmechanisms.Thematrix
Ci j accounts for the interaction between kinematic hardening
variables.

2.6 Plastic spin

The tensor L∼ , defined as the pull-backof L∼ to the intermediate
configuration, can then be split into purely elastic and plastic
parts as

L̄∼ = F∼
e−1L∼ F∼

e = L∼
e + L∼

p
(40)

noting

L∼
e = F∼

e−1 Ḟ∼
e and L∼

p = Ḟ∼
pF∼

p−1 (41)

Strain rate and spin tensors expressed in the intermediate
isoclinic configuration are derived as

L∼ = D∼ + W∼ , L∼
e = D∼

e + W∼
e
, L∼

p = D∼
p + W∼

p

(42)

The plastic deformation is induced by various mechanisms
such as mutual slips between material particles (crystals in
metals, soil particles, etc.) without causing the rotation of
the substructure defined by appropriate directors. Hence, the
rotation and stretch of the substructure is induced only by
the elastic distortion, including additional rigid body rotation,
both included in F∼

e. Accordingly, the spin of the substructure

W∼
e
is independent of plastic deformation. Therefore, W∼

e
is

given by subtracting the plastic spin from the total spin as
follows

W∼
e = W∼ − W∼

p = skw(F∼
e−1 Ḟ∼

e) (43)
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One should note that if the plastic spinW∼
p
vanishes, the spin

of directors will coincide with the material rotation rate.
Two important classes of plastic spin constitutive laws are

distinguished in the literature. The first one is derived from
normality rules whereas the second one follows from the
application of tensor representation theorems.

2.6.1 Plastic spin derived from tensor representation
theorems

A general explicit expression of plastic spin has been pro-
posed independently by [40, 41] using appropriate tensor
representation theorems as

W∼
p =β1(a∼s∼ − s∼a∼) + β2(a∼

2s∼ − s∼a∼
2) + β3(a∼s∼

2 − s∼
2a∼)

+ β4(a∼s∼a∼
2 − a∼

2s∼a∼) + β5(s∼a∼s∼
2 − s∼

2a∼s∼) + · · · (44)

where s∼ is the stress measure, a∼ denotes an internal variable
and βi arematerial parameters. Tensor a∼ can be also regarded
as a structure tensor [70, 71]. For instance, for a unidirectional
composite described by a director n [72], a∼ = n ⊗ n. This
allows to describe the evolution of the material substructure
or directors [44]. To the best of our knowledge, all the studies
of models including plastic spin make use only of the first
order approximation of Eq. (44). By doing so, the plastic spin
expressed in terms of Mandel’s stress tensor is given by

W∼
p = β(M∼ D∼

p − D∼
pM∼ ) (45)

This model is used to describe the evolution of anisotropic
axes [42, 44] where β is a parameter having the dimension of
the inverse of stress. W∼

p vanishes as long as M∼ and D∼
p are

coaxial. A similar but more sophisticated formulation was
proposed in [73] to model deformation induced anisotropy
in free-end torsion.

2.6.2 Plastic spin derived from the normality rule

According to this approach, the plastic spin is derived natu-
rally from the normality rule as the skew-symmetric part of
L∼
p

W∼
p = skw(L∼

p) = skw

(
∂�(M∼ , AI )

∂M∼

)
(46)

Thismodel of plastic spinwill be studied in the case of crystal
plasticity (see section 4.6).

3 Implementation in an object oriented FEM
code

3.1 Object oriented architecture

The full description of the implementation of a generic
formulation of constitutive equations in an object–oriented
code, such as the Z-set software2 used in the present work,
is detailed in [48, 68]. The software is designed in such a
way that material models are implemented independently
from the FEM. Therefore, the material library can be used by
other FEM codes. This is made possible by proper interfaces
between the FEM software and the material library Z-mat.
The implementation of a generic material behaviour requires
the following ingredients:

• grad: the imposed variable e.g. F∼ . It allows driving the
behaviour externally.

• flux: returned variable associated to agrad variable. It
represents the response of the behavior law to the appli-
cation of grad variable, e.g. the conjugate stresses σ∼ ,
P∼• EP: external parameters as temperature, humidity, grain
size,... EP are set by the user and thus always known in
advance.

• IV: Integrated variables which are to be integrated over
a given time increment in order to update flux, e.g. F∼

e,
α I ,...

• AV: auxiliary variables do not define the material state
directly, and they are kept for output. They may be useful
in post-processing.

• CO: material parameters appearing as coefficients intro-
duced in constitutive laws. They may depend on EP, IV
and AV.

Figure2 describes the implementation of a class named
GEN_FEFP derived from BEHAVIOR. This class allows
to consider various inelastic mechanisms through the class
POTENTIAL. Each potential includes a flow rule (time-
independent plasticity,Nortonpower law...), several isotropic
and kinematic hardening rules. The internal variables associ-
ated with kinematic hardening (i.e. α∼) are held by the corre-
sponding KINEMATIC object. Explicit and implicit integra-
tion of constitutive equations are handled byRUNGE_KUTTA
andTHETA_METHOD classes, respectively.TheCRITERION
object specifies the yield surface (vonMises, Tresca, Hill,...).
This implementation allows a minimum programming effort
since all the required classes to build a material behavior
(exceptGEN_FEFP) are already implemented andused in the
framework of other formulations (small strain, hypoelasto-
plasticity,...).

2 See www.zset-software.com.
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Fig. 2 A diagram showing the
organization of some objects
used to build material behaviors

3.2 Global resolution of equilibrium equations

The current (resp. reference) configuration of the body at time
t (resp. t0) is called V (resp. V0) with boundary ∂V (resp.
∂V0). The latter can be split into the sub–boundaries ∂V u and
∂V tr such that ∂V = ∂V u∪∂V tr and ∂V u∩∂V tr = ∅,where
Dirichlet and Neumann conditions are respectively pre-
scribed. Corresponding surfaces ∂V u

0 and ∂V tr
0 are defined

on the reference boundary of the body. The space of kinemat-
ically admissible displacements field is the set of sufficiently
regular displacement functions that satisfy the Dirichlet con-
ditions:

K = {u(x)|u = ũ(x) if x ∈ ∂V u} (47)

knowing that ũ is the prescribed displacement field on ∂V u .
Virtual displacements are set to zero over ∂V u defining the
space of virtual displacements as

V = {η(x)|η(x) = 0 if x ∈ ∂V u} (48)

The surface tractions are prescribed over the region ∂V tr .
Following [74] among others, the initial boundary value

problem amounts to find a displacement field u ∈ K that
satisfies

W(u, η) = 0, ∀η ∈ V (49)

where the virtual work functional under finite deformation is
given by

W(u, η) =
∫
V0

(
P∼ : ∇Xη − b.η

)
dV −

∫
∂V tr

0

t.ηdS (50)

where b and t denote the reference body force and surface
traction fields, respectively. P∼ stands for the Boussinesq
stress tensor. The Boussinesq stress tensor P∼ is related to
Kirchhoff’s stress tensor τ∼ by

P∼ = τ∼F∼
−T = Jσ∼ F∼

−T (51)

The linearization of Eq. (49) at a given state defined by the
field u∗ is written

W(u∗, η) + DW(u∗, η)[
u] = 0, ∀η ∈ V (52)

where DW(u∗, η)[
u] is the directional derivative of
W(u∗, η) in the direction of 
u. For convenience, the force
and surface traction fields on ∂V tr

0 are assumed to be inde-
pendent of the displacement field. Then,

DW(u∗, η)[
u] = d

dε

(
W(u∗ + ε
u, η)

)∣∣∣∣
ε=0

(53)

= d

dε

(∫
V0

P∼
(
F∼

∗ + ε
F∼
) : ∇Xη

)∣∣∣∣
ε=0

(54)

= d

dε

(∫
V0

[
P∼

(
F∼

∗) + 
P∼ (F∼
∗, ε
F∼ )

] : ∇Xη

)∣∣∣∣
ε=0

(55)

=
∫
V0

[
∂ P∼

∂
F∼

∣∣∣∣
F∼

∗ : 
F∼

]
: ∇Xη (56)

where


F∼ = ∇X (
u), F∼
∗ = 1∼ + ∇Xu∗ (57)

The tangent modulus is computed as

A≈ = ∂ P∼
∂
F∼

∣∣∣∣
F∼

∗=
∂τ∼

∂
F∼

∣∣∣∣
F∼

∗ F∼
−T + τ∼

∂F∼
−T

∂
F∼

∣∣∣∣
F∼

∗ (58)

or in index notation

Ai jkl = ∂τi p

∂
Fkl
F−1
j p − τi p F

−1
jk F−1

lp (59)

By approximating the domain V0 with a finite number of
elements nel denoted by V e

0 , the discrete form of the virtual
work (50) is written

nel∑
e=0

∫
V e
0

(
[B]T {P} − [NT ]{b}

)
dV
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−
nel∑
e=0

∫
∂V tr ,e

0

[N]T {t} dS = 0 (60)

[N] and [B] denote the interpolation matrix and the discrete
material gradient operator, respectively (see Appendix B).
The element stiffness matrix is given by

[K e] =
∫
V e
0

[B]T [A][B]dV (61)

The global stiffness matrix is obtained by assembling the
element tangent stiffness matrices as

[K g] =
nel

A
e=1

([K e]) (62)

The linear set of equations to be solved for 
u iteratively is
given by

[K ]g
u = −R(u) (63)

where

R(
u
) = f int

(
u
) − f ext (64)

The global internal and external forces are written

f int =
nel

A
e=1

(∫
V e
0

[B]T {P}dV
)

(65)

f ext =
nel

A
e=1

(∫
V e
0

[NT ]{b}dV +
∫

∂V tr ,e
0

[N]T {t}dS
)

(66)

The consistent tangent moduli A≈ c are calculated from the
implicit incremental constitutive equations as

∂τ∼(αn, F∼ n+1
)

∂
F∼ n+1

= ∂τ∼(αn, F∼ n+1
)

∂
F∼
e
n+1

∂
F∼
e
n+1

∂
F∼ n+1

(67)

The general iterative resolution algorithm of the incremental
boundary value problem is summarized in Fig. 3.

3.3 Integration of constitutive equations

The set of time–integrated variables is given by

Vint = {
F∼
e; p1, α1; · · · ; pn, αn

}
(68)

pi is the accumulated inelastic strain associated with the i-
th mechanism, αi denote internal variables describing both
isotropic (e.g. ri ) andkinematic hardening (e.g.α∼ i

) specific to
eachmechanism. Semicolons in (68) represent the separation
between different mechanisms. A distinction between αi and

Fig. 3 Iterative resolution algorithm of the incremental boundary value
problem

pi was considered so that partial derivatives required by inte-
gration methods can be implemented efficiently. The model
for each deformation mechanism will be defined by the fol-
lowing system of elementary equations via the POTENTIAL
interface:

• Plasticity criteria fi (M∼ , pi ,αi ): Each criterion depends
on theMandel stress tensor, the accumulatedplastic strain
and variables that describe multi-kinematic hardening.
Only the case where a criterion is associated with one
and only one dissipation potential is discussed in the fol-
lowing. Alternative models involving multi-mechanisms
and one single unified criterion can be found in [65]. The
implementation of this kind of models is discussed thor-
oughly in [48].

• Flow rule: The plastic multiplier is defined in two ways.
For time-independent plasticity, λ̇ must fulfill the con-
sistency condition Eq. (17). In the rate–dependent case,
the multiplier is defined as the derivative of dissipation
potential�i w.r.t the yield function fi Eq. (18). It follows
that

L∼
p
i = λ̇i

∂ fi
∂M∼

= λ̇iN∼ i
(69)

with N∼ i
being the inelastic flow direction.

• Isotropic and kinematic hardening laws take the generic
form

α̇i = λ̇imi − q̇i (70)

where mi is the hardening potential normal and q̇i rep-
resents the time derivative of the hardening variable
evolution due to static recovery effects. Note that in case

of associated plasticity, mi = ∂ f

∂Ai
, meaning that the

hardening potential normal is simply given by the nor-

mal to the yield surface. For instance,m∼ i
= N∼ i

− 3Di

2Ci
X∼ i
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for nonlinear kinematic hardening. The evolution of the
nonlinear isotropic hardening variable r , from Eq. (14),

writes ṙ = λ̇(1 − R

Q
) which implies that m = 1 − R

Q
.

The integrated variable r is related to R by R = bQr
(see Eq. (15)), with the material parameters b and Q.
The latter model can be integrated analytically (cf. Equa-
tion (104) in Sect. 5), which allows to reduce the number
of time–integrated variables in the code.

Two integration methods for ordinary differential equa-
tions have been implemented for the present general for-
mulation. The first one is explicit, namely second or fourth
order Runge–Kutta methods with automatic time–stepping,
the second one is implicit: θ -method resolved using the iter-
ative Newton–Raphson scheme.

Each inelastic deformation mechanism is accounted for
within the class POTENTIAL. This class provides the
increment of integrated variables for explicit integration
and residuals for implicit integration. Each POTENTIAL
object possesses various methods with regard to the model
definition (isotropic and kinematic hardening, yield crite-
ria,...). The implementation supports an unlimited number
of POTENTIAL objects with possible interactions. In case
of interactions, another class is dedicated to add interac-
tion terms appropriately. The expression of L∼

p is calculated
through summation of all potential contributions according
to Eq. (27), in addition to the supplementary ad-hoc consti-
tutive equation for the plastic spin.
RUNGE_KUTTA:
the integration of variables is based on the calculation of the
rate of Vint . For viscoplastic cases, the plastic multiplier is
calculated using the flow rule. For time-independent plastic-
ity, the increment of the plastic multiplier is derived from the
consistency condition as

2N∼ :
[
1∼ ⊗̄ �∼

e + 1

2
C∼
e.C≈

]
:
(
F∼
eT D∼ F∼

e − C∼
e

N∑
i

L∼
p
i

)

+ ∂ f

∂Ai
:

N∑
i

∂Ai

∂αi
α̇i + ∂ f

∂ pi
ṗi + ∂ f

∂EP
: ĖP = 0

(71)

THETA_METHOD:
θ = 0 corresponds to the explicit Euler method and θ = 1
results in the so-called backward Euler method. The consti-
tutive equations are expressed in the residual form as follows

Rel = F∼
eF∼

p − F∼ or Rel = 
F∼
e − 
F∼ F∼

−1F∼
e
cor

+ F∼
e
cor

N∑
i=0


piN∼ i
(72)

Rpi = fi (M∼ , Ai ) or

Rpi = 
pi − 
t
∂�

∂ fi
(viscoplasticity) (73)

Rαi = 
αi − 
pimi − 
t q̇i (74)

N being the total number of mechanisms. The residual in
Eq. (72)-left involves the use of the exponential mapping
which satisfies the plastic incompressibility [75, 76]. Its lin-
earization requires the expression of the derivative of the
exponential of a second order tensor w.r.t. a second order
tensor. As L∼

p
is in general non symmetric, calculating these

terms is a non-trivial task. In that case, the infinite series rep-
resentation is used and truncated [32, 47]. Alternatively, in
Eq. (72)b, the plastic incompressibility is not satisfied any-
more. For this reason, the elastic part of the deformation
gradient is corrected at each iteration as

F∼
e
cor

=
(

det F∼
det F∼

e

) 1
3

F∼
e (75)

The values of all associated forces and parameters, calculated
from internal variables evaluated at an intermediate time des-
ignated by θ are

V t+θ
t
int = V t

int + θ
Vint (76)

The set of equations (72,73,74) can be gathered in the fol-
lowing form

R(V t+θ
t
int ,
Vint ) = 0 (77)

Since Eq. (77) is highly non-linear, it is usually solved by
means of a Newton method which requires the calculation of
the Jacobian matrix [J]. The new estimate of 
Vk+1

int is then
given by


Vk+1
int = 
Vk

int − [J ]−1Rk (78)

where

[J ] = ∂R
∂
Vint

∣∣∣∣
k+1

(79)

and Rk denotes the local residual at the k-th iteration. The
variation of R resulting from the variation of Vint and F∼
vanishes as well

δR = ∂R
∂
Vint

δ
Vint + ∂R
∂
F

δ
F∼ = 0 (80)

which implies that, after convergence, the inverted Jacobian
matrix relates the change of 
Vint with respect to a change
in 
F∼ as
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Fig. 4 Diagram showing
explicit and implicit integration
methods. Each POTENTIAL
provides the update of
associated internal variables and
the corresponding block of the
Jacobian matrix

δ
Vint = −
(

∂R
∂
Vint

)−1
∂R

∂
F
δ
F∼ (81)

The expression of the Jacobian matrix is detailed in the
Appendix (C). By using Eq. (81), one can calculate the term
∂
F∼

e

∂
F∼
in Eq. (67).

4 Applications to volume element
simulations

The capabilities of the model formulation and its implemen-
tation are illustrated in this section in the case of complex
homogeneous loading conditions. The tests are therefore per-
formed at the material point level and require integration
of the constitutive equations. Some original features of the
models are highlighted and compared to the predictions of
hypoelastic models.

4.1 Cyclic closed deformation path

Hypoelastic formulations are well known to result in some
spurious predictions under complex loading conditions. For
instance, when a closed strain cycle is applied, the resulting
stress cycle is not necessarily closed. This issue was investi-

gated theoretically [5, 6] and numerically [7] in the case of
purely mechanical loadings. In this example, the response of
finite strain formulations is investigated in the thermoelastic
domain for two different loading cases. In both cases, we
consider two hypoelastic constitutive models for the Cauchy
stress based on the Jaumann and Green–Naghdi rates and a
hyperelastic model given by Eq. (23).
Case 1:
A cyclic and non-proportional mechanical loading is applied
(see Fig. 5a). Accordingly, the applied deformation gradient
and the resulting Cauchy stress tensor have the following
forms

⎛
⎝F11(t) F12(t) 0

0 1 0
0 0 1

⎞
⎠ and σ∼ =

⎛
⎝σ11 σ12 0

σ12 σ22 0
0 0 σ33

⎞
⎠ (82)

where the functions F11(t) and F12(t) are prescribed.
Case 2:
Is concerned with a non-proportional thermomechanical
loading described in Fig. 5b and corresponding to prescribed
shear F12(t) and temperature variation
T (t). The deforma-
tion gradient is imposed as
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Fig. 5 Illustration of loading
conditions corresponding to a
case 1, b case 2

Fig. 6 Case 1, the resulting
stress during the first and the
10000th cycles for a
hyperelastic material b
hypoelastic materials. Young’s
modulus E = 210000 MPa, and
Poisson ratio ν = 0.3

F∼ =
⎛
⎝1 F12(t) 0
0 F∗

22 0
0 0 F∗

33

⎞
⎠ and σ∼ =

⎛
⎝σ11 σ12 0

σ12 0 0
0 0 0

⎞
⎠ (83)

F∗
22 and F∗

33 are determined by the analysis in such a way that
the conjugate Cauchy stress components vanish. The com-
ponent σ11 does not vanish due to the applied temperature
and to the Poynting effect, i.e. finite deformation induced
stress components other than shear. The Figs. 6 and 7 depict
an elastically inconsistent response of the two hypoelastic
formulations, namely Jaumann and Green–Naghdi. When a
closed strain cycle is applied, residual stresses remain at the
end of each cycle. Consequently, due to the accumulation of
residual stresses during thedeformationprocess, the resulting
stress drifts away over cycles. In contrast, for a hyperelas-
tic model, no residual stresses are detected after each cycle,
i.e. all stress components return back to zero. As suggested
by [8], some hypoelastic models, e.g. based on the logarith-
mic rate, produce consistent results compared to hyperelastic
models. Nevertheless, in the case of elastoplasticity, these
rates are no longer integrable [10]. It has been shown that
any hypoelastic law is integrable in the case of proportional
loading i.e. for deformation processes depending on a single
parameter [77].

4.2 Simple glide with kinematic hardening

The deformation gradient for a simple glide test has the form

F∼ =
⎛
⎝1 γ (t) 0
0 1 0
0 0 1

⎞
⎠ (84)

In this section, a comparison is drawn between the
elastoplastic models previously presented by looking at the
classical cases of monotonic and cyclic simple shear. In par-
ticular the proposed kinematic hardening evolution law (37)
is compared to the existing formulation (31), for which the
kinematic hardening contribution ψkin to the free energy is
given in the Neo-Hookean form [32, 47]

ψkin(E∼
p
s
) = c

(
tr(E∼

p
s
) − log(det F∼

p
s
)
)

(85)

In the case of linear kinematic hardening, significant differ-
ences are found between the various formulations as shown
in Figs. 8 and Fig. 9. Figure8 depicts a spurious oscillatory
response of both multiplicative and Jaumann formulations.
The corresponding analytical solution in the rigid plastic
case can be found in [68]. In contrast, the model based on
the Green–Naghdi rate predicts that σ12 increases monoton-
ically. The model based on the multiplicative decomposition
of the plastic part of the deformation gradient does not dis-
play oscillations as depicted in Fig. 9a. These oscillations
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Fig. 7 Case 2, the resulting
stress during the first and the
2000th cycles for a hyperelastic
material b hypoelastic materials.
E = 210000 MPa, ν = 0.3 and
αT = 10−4K−1

Fig. 8 Monotonic simple glide
test for different formulations of
elastoplasticity with kinematic
hardening: Stress oscillations in
the case of Jaumann rate and the
multiplicative decomposition if
D = 0. These oscillations are
suppressed as the parameter D
increases. Values of material
parameters: C = 10000 MPa,
R0 = 1000 MPa

can be suppressed by increasing the value of the parameter
D from Eq. (37). By doing so, kinematic hardening satu-
rates rapidly which leads to almost the same predictions by
different models. Accordingly, when the dynamic recovery
term is sufficiently high (compared to the storage part), the
saturation rate of the various models becomes similar.

4.3 Static recovery of kinematic hardening

In this example, the effect of the static recovery of the kine-
matic hardening is illustrated. It corresponds to the last term
in the evolution equation Eq. (37). This term introduces time-
dependent material behavior even in the absence of viscosity.
We consider a von Mises surface yield given by

f (M∼ , R) =
(
(M∼ − X∼ )dev : (M∼ − X∼ )dev

)1/2 − R0 (86)

where (�)dev denotes the deviatoric part. The back stress

X∼ = 2

3
Cα∼ and the evolution of α∼ follows the constitutive

equation (37). This model is applied to relaxation and creep
tests.

4.3.1 Relaxation test under simple glide

A time-dependent simple glide function γ (t) is considered
according to the following conditions

F∼ =
⎛
⎝1 γ (t) 0
0 1 0
0 0 1

⎞
⎠ , γ (t) =

⎧⎪⎪⎨
⎪⎪⎩

t

2t0
0 ≤ t ≤ 1 s

1

2
1 s ≤ t ≤ 4 s

(87)

with t0 = 1 s. This loading corresponds to monotonic glide
followed by a constant shear value inducing stress relaxation
in order to highlight the impact of the static recovery term.
The material response is shown in Fig. 10 for three different
sets of values of material parameters (m, M).

The following features can be observed

• 0 ≤ t ≤ 1 s: During this time interval, the applied shear
is monotonically increasing. After yielding, there is a
competition between different terms in Eq. (37): storage
part, dynamic and static recoveries. For given parameters
C and D, a higher value of parameter M or a lower value
of parameterm allow for slower recovery of the kinematic
hardening leading to a higher value of σ12 (see Fig. 10).

• 1s≤ t ≤ 4 s: The imposed shear strain is constant
i.e. Ḟ∼ = 0. Consequently, the variation of the accumu-
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Fig. 9 Cyclic simple glide
loading: a linear (D = 0) b
nonlinear kinematic hardening
with dynamic recovery

Fig. 10 Relaxation test: Higher values of m and lower values of M
result in a faster recovery of kinematic hardening. C = 300000 MPa,
D = 20. Parameter M in MPa

lated plastic strain is low due to small elastic strain since
L∼
p = −F∼

e−1 Ḟ∼
e during a relaxation test. Therefore, the

evolution of the kinematic hardening variable reduces to

α̇∼ ≈ −3

2

(
J(X∼ )

M

)m X∼
J(X∼ )

(88)

The recovery rate increases then with higher values of
the power m (resp. lower values of M).

In metals, this effect occurs significantly at high temperature
due to thermal activation. In fact, the crystalline structure of
themetal is partially recovered by annihilation of dislocations
and redistribution of point defects [30]. This relaxation of
internal stresses generally results in a decrease of themechan-
ical resistance.

4.3.2 Creep test

In this example, the imposed deformation components are
Fi j = 0 for i �= j and {i j} �= {12}. F11, F22, F33 and F12 are
set to be free. The imposed Cauchy stress component σ12 is

Fig. 11 Plastic flow during a creep test

is a function of time (s) given by

σ12 =
{
1000t̄ MPa, 0 ≤ t̄ ≤ 1

1000 MPa, 1 ≤ t̄ ≤ 4
(89)

where t̄ = t/t0, t0 = 1 s. The remaining components of
the Cauchy stress tensor vanish.

The material response is shown in Fig. 11. It is important
to note that the used model does not include any viscosity,
meaning that the yield condition is exactly fulfilled.The creep
deformation is induced solely by the static relaxation of the
back-stress that has developed during the loading stage (see
Eq. (37)):

• 0 ≤ t̄ ≤ 1: As the imposed stress increases, the accu-
mulated plastic strain increases after yielding (σ12 =√
3R0).

• 1 ≤ t̄ ≤ 4: According to the consistency condition, the
kinematic hardening does not evolve since the applied
stress is constant. Therefore, the plastic multiplier is con-
stant and the accumulated plastic multiplier increases
linearly. Due the static recovery term, themodel becomes
time-dependent. In other words, if the static recovery
term is omitted, then α̇∼ = 0 ⇒ ṗ = 0.
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Table 1 Material parameters for a model with two inelastic mechanisms: (p) time-independent plastic and (v) viscoplastic. Cpv = Cvp = 0 MPa

E ν K n R0v Cv Dv R0p Cp Dp

(MPa) (–) (MPa
1
n ) (–) (MPa) (MPa) (–) (MPa) (MPa) (–)

210000 0.3 120 7 0 20000 200 140 1000 10

4.4 Application to a vonMises-based
multimechanismmodel

The concept of multimechanism modeling is applied in this
section to isotropic von Mises plasticity. A model is intro-
duced involving two inelastic mechanisms and two plasticity
criteria, called 2M2C in the terminology defined in the ref-
erences [64, 65]. The yield function, flow rule and evolution
equations adopted for this example are as follows

f p(M∼ , X∼ p) =
(
(M∼ − X∼ p)

dev : (M∼ − X∼ p)
dev

)1/2 − R0p (90)

fv(M∼ , X∼ v) =
(
(M∼ − X∼ v)dev : (M∼ − X∼ v)dev

)1/2 − R0v (91)

v̇ =
〈
fv
K

〉n
,

ṗ =
N∼ p :

(
1∼ ⊗̄ �∼

e + 1

2
C∼
e · C≈

)
:
(
F∼
eT D∼ F∼

e − v̇ C∼
eN∼ v

)

N∼ p :
[
(1∼ ⊗̄ �∼

e + 1

2
C∼
e · C≈) : (C∼

eN∼ p)

]
+ 1

3
CpN∼ p : m∼ p

(92)

α̇∼ p
= ṗ

(
∂ f p
∂M∼

− Dpα∼ p

)
, α̇∼v

= v̇

(
∂ fv
∂M∼

− Dvα∼v

)
(93)

(
X∼ p
X∼ v

)
= 2

3

(
Cp Cpv
Cvp Cv

)(
α∼ p
α∼v

)
(94)

Thefirst plasticmechanismassociatedwith the yield function
f p is rate–independent, whereas the second one is viscoplas-
tic. The (visco)plastic multipliers are computed either by a
power lawor the consistency condition, according toEq. (92).
The material parameters used in the following examples are
given in Table 1.

Consider now a simple tensile/compressive test under
strain control, divided into five stages. The resulting stress
state is uni-axial (σ11). The response of the model for two
distinct strain rates is given in Fig. 12. The following obser-
vations can be made:

• F11 = 1.1t/t0, for 0 ≤ t ≤ t1 (tension): The (v) mecha-
nism is active first because the corresponding yield stress
is taken as R0v = 0. But after a while, the mechanism (p)
is activated once the threshold Rp is reached. In fact, the
activation of an inelastic mechanism will depend on the
associated initial yield stress and also on the hardening
properties of the other mechanism. Higher strain rates

induce more plastic strain, while lower strain rates result
in more viscoplastic strain.

• F11 = 1.1, for t1 ≤ t ≤ t2: During this stage the
imposed strain is maintained at a constant value. The
inelastic deformation remains quasi–constant accompa-
nied by stress relaxation due to dynamic recovery of
kinematic hardening.

• F11 = 1.1 − 0.1(t − t2)/t0, for t2 ≤ t ≤ t3 (unload-
ing+compression): The plastic yielding in compression
occurs at a rather large stress level due to the Bauschinger
effect.

• F11 = 0.9, for t3 ≤ t ≤ t4: The imposed strain
is constant. A quasi–constant inelastic deformation and
stress relaxation due to kinematic hardening recovery are
observed.

• F11 = 0.9 + 0.1(t − t4)/t0, for t4 < t < t5 (unloading
phase). At F11 = 1, the residual stress does not vanish
due to kinematic hardening.

4.5 Plastic spin in anisotropic plasticity

The effect of plastic spin on the response of a Hill perfectly
plastic material is illustrated in this example. Hill’s yield
criterion is expressed in terms of Mandel stress tensor in the
form

f (M∼ ) =
(
F(M22 − M33)

2 + G(M33 − M11)
2

+ H(M11 − M22)
2

+ 2NM2
12 + 2LM2

23 + 2MM2
13

)1/2

− R0

(95)

where F , G, H , N , M , L are material parameters character-
izing the anisotropy of plasticity. This yield function reduces
to vonMises if F = G = H = 0.5 and H = N = M = 1.5.

A simple glide test is considered with constant shear rate
in the plane (1, 2). When the hypoelastic–plastic model is
used with the Jaumann derivative, the continuum under a
constant shear strain rate γ̇ rotates endlessly at the spin

θ̇W = − γ̇

2
. Consequently, the spin of directors is equal to

θ̇Wdir = θ̇W = − γ̇

2
. The value of σ12 oscillates between

R0√
2N

at F12 = γ = kπ (k ∈ N) and a peak (or valley) value
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Fig. 12 Tension/compression test for two deformation rates Ḟ11 =
0.1 s−1 (a) and Ḟ11 = 0.001 s−1 (b). Model with a time-independent
and a viscoplastic mechanism

R0√
F + G + 4H

at γ = 2k + 1

2
π (k ∈ N). In the case of the

Green–Naghdi formulation, the spin of directors is equal to

θ̇Rdir = − 2γ̇

4 + γ 2 . Therefore, the rotation angle converges to

π/2 as γ goes to infinity. This is illustrated by Fig. 14.
The responses of the proposedmodel are shown in Fig. 15.

If the plastic spin vanishes i.e. β = 0, for small elastic
stretches, the proposed model without plastic spin and the
model based on Jaumann derivative have the same response.
This means that the orthotropic axes rotate at the same rate as
the continuum θ̇ = −γ̇ /2. In contrast, as shown in Fig. 14,
when β �= 0MPa−1, the spin of the substructure is different
from material spin. In fact, as the value of β increases, the
spin induced by W∼

p balances out the material spin. Further,
if β is sufficiently high, the rotation of directors saturates
rapidly at an angle of ≈ π/4. The rate of directors’ spin
is illustrated in Fig. 15 for several values of the plastic spin
parameter β: constant spin for β = 0, rapid saturation for
high values and oscillatory response for intermediate values.

4.6 Plastic spin: crystal plasticity

Crystal plasticity represents one of the fewphysical situations
for which the plastic spin of crystal directors is precisely
known. The spin of directors uniquely results from the slip
of Ns systems on specific crystallographic planes and along
specific slip directions. The dissipation potential is expressed
in terms of the Schmid yield function f s associatedwith each
slip system s

f s = ∣∣M∼ : N∼ s − xs
∣∣ − τ sc with N∼

s = ls ⊗ n∼
s (96)

where τ sc denotes the critical resolved shear stress (CRSS) for
the s-th slip system, ls and ns are, respectively, the slip direc-
tion and the normal to the slip plane. The resolved Mandel
shear stress τ s = M∼ : N∼ s is the driving force for activation
of the s-th slip system. Kinematic hardening has been intro-
duced by [78] in the crystal plasticity framework, in the form
of a back stress variable xs obeying the following evolution
rule

α̇s = γ̇ s − D|γ̇ s |αs, xs = Cαs (97)

where C, D are the kinematic hardening material parame-
ters. For the sake of demonstration, a power law potential is
considered

�(M∼ , N∼
s) =

Ns∑
s=0

K

n + 1

〈 |M∼ : N∼ s − xs | − τ sc

K

〉n+1

(98)

where n and K are viscosity material parameters and < · >

denotes the Macauley brackets. Further, a non-linear hard-
ening law is adopted for the CRSS τ sc given by

τ sc = τF(s)
c +

Ns∑
r=0

Hsr (1 − exp(−bF(r)γ r
cum)) (99)

F(r) identifies the slip system family towhich the slip system
r belongs (for example basal and prismatic system families
in HCP crystals), Ns is the total number of slip systems and
γ r
cum denotes the accumulated plastic slip. The matrix Hsr

accounts for interactions between slip systems. The evolution
of the plastic slip variables γ s follows as

γ̇ s =
〈 |M∼ : N∼ s − xs | − τ sc

K

〉n
sign

(
M∼ : N∼ s − xs

)
,

γ̇ s
cum = |γ̇ s | (100)
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Fig. 13 Hypoelastoplastic material response under simple glide loading. Jaumann (left) and Green–Naghdi (right) formulations. Coefficients of
Hill’s yield criterion used in this simulation: F= G= H =0.5, L= M=1.5, N =4, initial yield stress R0 = 1000MPa

Fig. 14 Effect of plastic spin on stress values in the case of simple glide loading. a Without plastic spin i.e. β = 0 MPa−1 b with plastic spin
β = 0.01 MPa−1. Multiplicative plasticity model with yield stress R0 = 1000 MPa, Hill yield criterion coefficients F = G = H = 0.5,
L = M = 1.5, N = 4

According to the normality rule (27), the plastic deformation
rate reads

L∼
p =

Ns∑
s=0

γ̇ sN∼
s (101)

and the plastic spin writes

W∼
p =

Ns∑
s=0

γ̇ sskw
(
ls ⊗ ns

)
(102)

As an illustration, the simple glide kinematics (84) is
imposed to a face centered cubic (FCC) single crystal. The
single crystal model response is compared to two fake crystal
models in order to highlight the importance of properly char-
acterizing the plastic spin. In the fakemodels no plastic spin is
introduced and Jaumann or Green–Naghdi hypoelastic laws
are used insteadof the actual plastic spin (102). The responses

Fig. 15 Directors’ spin for various values of parameter β during a
simple glide test for a Hill perfectly plastic material and multiplicative
decomposition. When β = 0MPa−1, the rotation rate of directors is
constant and coincides with the material spin
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Fig. 16 The effect of plastic spin in the case of a simple glide loading of a FCC single crystal for three different finite strain formulations: Jaumann
(a) and Green–Naghdi (b) rates (with no plastic spin) and the multiplicative decomposition (c). (d) comparison of σ12 for all three formulations

of the three models are shown in Fig. 16. The material is per-
fectly plastic, with an initial CRSS value τ sc = 100 MPa.
The simple glide loading direction 1 initially coincides with
the crystal direction [100], whereas the direction 2 initially
coincides with the crystal direction [011]. The octahedral
slip system family of the FCC crystal is employed and con-
tains 12 slip systems. The reference solution based on the
multiplicative decomposition and plastic spin predicts a sat-
uration of stress levels after F12 = 2 shear. In contrast, the
fake crystal responses exhibit oscillatory stress evolutions.
It is noteworthy that the stress component σ33 vanishes for
hypoelastic models. On the other hand, the approach based
on the multiplicative decomposition includes a plastic spin
derived from the dissipation potential. This model of plastic
spin dictates the spin of directors independently of material
rotation (see Fig. 17). In addition, the σ33 does not vanish
according to the present model contrary to the hypoelastic
formulations.

Furthermore, the rotation rate tends to zero for the crys-
tal orientation considered in the present example, which is
not the case for Jaumann rate. The comparison with experi-
mental results confirms that the rotation of anisotropic axes

of a single crystal does not follow the material rotation [79,
80]. Clearly, the fake crystal plasticity models are physically
inadequate. Note that oscillatory responses can be observed
for special crystal orientations within the framework of mul-
tiplicative crystal plasticity, see [81].

4.7 Crystal plasticity with system interactions

The interaction matrix in Eq. (99) has the general form

(103)

where Qi is the isotropic hardening parameter associated
with each slip system family i , Hi matrices denote the self-
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Fig. 17 The spin of material directors in the case of a simple glide
loading for three different finite strain formulations of crystal plasticity:
Jaumann andGreen–Naghdi rates and themultiplicative decomposition

hardening coefficients, and hnm denotes the latent hardening
parameters (hardeningof slip systemsbelonging to the family
n causedby slip systemsbelonging to the familym). The table
2 shows typical material constants for a single crystal with
octahedral and cubic slip system families. Such combination
of octahedral and cube slip system families are encountered
in single crystal Nickel–based superalloys [78].

Figure18 shows the influence of latent hardening parame-
ter h12 on the activation of slip systems. In fact, if h12 = 0, the

cubic slip systems are activated as soon as σ33 ≈ 3
√
2

2
τ (2)
c

(according to Schmid’s law, neglecting the overstress due
to viscoplasticity), and the octahedral slip systems are acti-

vated when σ33 ≈ 3
√
6

2
τ (1)
c . If h12 > 0, the octahedral slip

systems will be activated later since the corresponding criti-
cal resolved shear increases due to accumulated cubic plastic
slip according to Eq. (99). This is the manifestation of latent
hardening between slip system families.

5 Structural applications

The proposed generic formulation and implementation are
now illustrated in the case of structural components subjected
to various loading conditions. The model predictions and
computational efficiency are compared to those obtained by

standard approaches involving hypo-elastoviscoplastic mod-
els.

5.1 Application 1: Deep drawing for anisotropic
materials

The present approach is applied first to the three dimensional
problem of cup deep drawing. This problem is common in
literature and solved using various finite strain formulations,
see [23, 44]. The geometry of the test is described in Fig. 19.

A time-independent elastoplastic model is considered
with aHill yield function as in Eq. (95). A nonlinear isotropic
hardening rule is adopted in the form

R(p) = R0 + Q(1 − exp(−bp)) (104)

Here the value of the initial yield stress is R0 = 253 MPa,
the isotropic hardening parameters are chosen as b = 14 and
Q = 215 MPa. The parameters of Hill’s yield function are
set to F = G = H = N = 0.5 and L = M = 1.5.

Herein, only a quarter of the cup is analyzed due to
the orthotropic material symmetry. The mesh of the sheet
contains 900 C3D8 hexahedral solid elements (linear inter-
polation with 8 Gauss points per element), with 3 elements
in the thickness direction. The plate is initially circular. The
tools are modeled as rigid surfaces and are completely fixed
except the punch which is pushed in z-direction to a total
displacement of uz = −40 mm.

Figure20 shows the distribution of the accumulated plastic
strain and the deformed configuration. If the plastic spin van-
ishes, the maximal values of the accumulated plastic strain
are located along the directions of the material symmetry x-
and y- axes.When plastic spin is taken into account bymeans
of parameter β fromEq. (45), the distribution of accumulated
plastic strain tends to bemore isotropic for β = 0.01MPa−1.

The earing profile after forming is depicted in Fig. 21 for
two values of the parameter β. The edge of the sheet has
a wavy shape. As the value of β increases, the edge shows
less pronounced wave-shape. Similar results were reported
in [44] for an isotropic elastic and a transverse isotropic Hill-
type plastic model. The hypoelastic version of this model
yields similar results to the present approach, including the
wavy shape of the cup and the distribution of plastic strains.
The present formulation, however, is advantageous since
a supplementary plastic spin describing the evolution of
anisotropy axes can be incorporated in the model.

Table 2 Material parameters for octahedral (1) and cubic (2) slip systems with isotropic hardening

K1 n1 τ
(1)
c Q1 b1 H1 K2 n2 τ

(2)
c Q2 b2 H2

(MPa1/n1 ) (–) (MPa) (MPa) (–) (–) (MPa1/n2 ) (–) (MPa) (MPa) (–) (–)

0.1 20 100 50 50 1 0.1 20 100 100 100 1
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Fig. 18 A single crystal including two slip system families (octahedral an cubic) in tension along < 111 >. γ cub
cum (resp. γ oct

cum ) denotes the
accumulated cubic (resp. octahedral) plastic slip

Fig. 19 Schematic view of the cup drawing process. No friction is
considered between sheet and tools. The die, punch and the holder are
assumed to be linear elastic with a Young modulus of E = 106 MPa
and a Poisson ratio ν = 0.3. Lengths in mm

5.2 Application 2: Turbine blade with single crystal
plasticity

In the following, the behavior of a nickel-based superalloy
single crystal turbine blade subjected to creep at high tem-
perature is studied. During their operation, turbine blades
are subjected to centrifugal forces induced by the rotation
(∼ 20000 RPM) of the turbine disc in addition to gas pres-
sure. During one flight, the turbine blades are subjected
to high and non-uniform temperatures (maximum temper-
ature ∼ 1200 ◦C), which will induce thermal strains. The
thermomechanical loading is maintained for a longer time,
compared to the nominal in-service conditions, at the maxi-
mum temperature(∼ 640 ◦C at the root and∼ 1200 ◦C at the
tip). The mesh of the turbine blade geometry contains 1366
linear C3D8 hexahedral solid elements. We consider two ini-
tial orientations of the crystal. The first one is such that the
crystal directions triplet ([100]−[010]−[001]) coincidewith
the orthogonal basis vectors triplet (x1,x2,x3). For the second
orientation, the crystal is tilt by 15◦ in the x1-x3 plane. The

objective is to assess the impact of crystal misorientation on
the thermomechanical response of the blade.

The material model has 18 slip systems potentially
active, 12 octahedral {110}<111> and 6 cubic slip sys-
tems {110}<100>. The constitutive equations of the model
including kinematic hardening law were given in Sect. 4.6.
Typical values of the material parameters used in the sim-
ulation can be found in [82]. Cubic elasticity moduli, the
coefficient of isotropic thermal expansion, critical resolved
shear stresses, viscoplastic flow parameters and nonlinear
kinematic hardening parameters are identified as functions
of temperature.

Figure22 shows that both hypoelastic formulations yield
similar creep results. The present model prediction slightly
differs and the difference increases with time. The difference
between various formulations becomes apparentwhen an ini-
tial rotation of 15◦ around y-axis is considered. Figure23
shows the relative rotation of material directors with respect
to material rotation for the present model. For hypoelastic
formulations, the spin of directors coincides with mate-
rial rotation which is not the case for the model based on
the multiplicative decomposition. The multiplicative crystal
plasticity model assumes a relative rotation of crystal direc-
tors with respect to material lines, induced by the plastic spin
(102). An initial misorientation of 15◦ leads to slightly larger
relative rotation of crystal directors, as shown in Fig. 23. This
result explains the fact that the difference in creep predicted
by various formulations is much more pronounced for an
initialmisorientation of 15◦ compared to 0◦. Itmust be under-
lined that the presented crystal plasticity formulations based
on corotational frames are physically unsound but represent
standard extensions of small strain crystal plasticity.
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Fig. 20 Accumulated plastic strain induced by cup drawing in an anisotropic elastoplastic plate: a Without plastic spin β = 0 MPa−1, b with
plastic spin β = 0.01 MPa−1

Fig. 21 Distance of rim to the sheet center versus angle to x-axis. The
curve shows the earing pattern for two values of the parameter β

5.3 Computational efficiency of the approach

The present formulation is compared to two hypoelastic for-
mulations, Jaumann (J) and Green–Naghdi (GN) rates, in
terms of computational efficiency. We consider four exam-
ples of structural applications and different material models.
In addition to the applications discussed previously, we carry
out a tensile test on a notched specimen with 323703 nodes
corresponding to 73920 C3D20R quadratic elements with
reduced integration. A vonMises plasticity model is adopted
with initial yield stress R0 = 300MPa.The parameter values
for nonlinear isotropic and kinematic hardening are taken as
Q = 400 MPa, b = 2.5, C = 5700 MPa and D = 17,
as in [33]. The results predicted by different formulations
(hypoelastic and multiplicative models) turn out to be almost
identical in this isotropic case. Figure24 depicts the obtained
accumulated plastic strainfield. Theobjective of this example

Fig. 22 a The accumulated
plastic strain in a turbine blade
subjected to creep at high
temperature. b Displacement of
the node Q as a function of time:
comparison of different finite
deformation formulations
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Fig. 23 Relative rotation of crystal directors w.r.t. material lines for the multiplicative-based model in two cases a ideal < 1001 > orientation of
the blade, b deviation of 15◦ around y-axis

is to illustrate the performance of the approach for a problem
with almost one million degrees of freedom.

Note that the integration of constitutive equations is car-
ried out using a fully implicit integrationmethod (θ = 1). The
time increment is set to the samevalue for all the formulations
(if it does not converge, the time increment is divided by 2).
Comparison results for various formulations are presented in
Fig. 25. Computations were carried out on processors of type
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz. It is found
that the formulation based on the multiplicative decomposi-
tion leads to a slightly higher computational cost compared
to hypoelastic formulations (+15–20%). This is due to the
fact that more operations are implied by the systematic use
of non–symmetric tensors in the algorithm. Besides, the total
number of iterations for convergence of global equilibrium,
is slightly higher for the model based on the multiplicative
decomposition. In spite of that, the computational cost is still
reasonable compared to formulations common in commer-
cial FEMsoftware. The slight increase in computation time is
counter–balanced by additional possibilities in the modeling
of anisotropic inelasticity.

6 Conclusion

The present work demonstrates that elasto-viscoplastic mod-
els based on the multiplicative decomposition of the defor-
mation gradient are now mature for a systematic use in
commercial finite element codes for structural computations.

Fig. 24 Accumulated plastic strain in a notched specimen subjected to
tensile loading using the multiplicative decomposition based model
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Fig. 25 Comparison of the total number of increments, total number of
iterations andCPU time for different formulations. Applications: a deep
drawing with 900 C3D8 elements (1324 nodes), b deep drawing with

19500 C3D8 elements (26564 nodes), c turbine blade under creep with
1366 C3D8 elements (2498 nodes), d Notched specimen with 73920
C3D20R elements (323703 nodes). Simulations are run on 24 CPUs

The proposed generic constitutive framework overcomes the
shortcomings of standard formulations used in most avail-
able FE codes and based on hypoelastic laws and limited
description of anisotropic behavior. It has been shown that the
computing efficiency is comparable to the standard approach,
although slightly less advantageous. The use of a thermody-
namically consistent formulation of constitutive equations
ensures increased reliability of model predictions. It also
contains new model formulations including multiple inelas-
tic mechanisms and internal hardening variable that remain
to be applied to available experimental data.

The proposed extension of constitutive equations at finite
strain relies upon the multiplicative decomposition of the
deformation gradient and a hyperelastic relation between
stress and elastic strain measures. The other characteris-
tic feature is the expression of plasticity laws in terms of
the Mandel stress tensor, which is generally non-symmetric.
The approach accommodates contributions of many defor-
mation mechanisms combining thermo-plasticity, viscosity
and possibly damage, without resorting to arbitrary further
multiplicative decompositions of elastic or plastic parts of
the deformation gradient. Instead, the rates of multimecha-
nism contributions are added in the viscoplastic flow rule.
Anisotropy is incorporated via the consideration of direc-
tors and associated structural tensors and plastic spin concept

which are often absent in existing standard formulations. It
was illustrated in the case of Hill’s criterion and crystal plas-
ticity.

Two numerical integration methods of the nonlinear evo-
lution equations are proposed. First, the elastic or the plastic
part of the deformation gradient is integrated using an expo-
nential map. In general, this method involves calculating the
exponential of a non-symmetric second-order tensor and its
derivative, which is not an easy task. An alternative integra-
tion method is considered, which consists of correcting the
elastic part of the deformation gradient to enforce the plas-
tic incompressibility. The present framework is illustrated
through various models, including isotropic and anisotropic
(visco)-plasticity with isotropic and kinematic hardening.
Most formulations exist in the literature but a feware original:
nonlinear non-symmetric kinematic hardening rule includ-
ing dynamic and static recovery terms. In the case of linear
kinematic hardening, models based on the Jaumann rate and
the multiplicative decomposition exhibit stress oscillations
extensively discussed in the literature. However, regarding
nonlinear kinematic hardening including dynamic recovery
term, the various models provide similar predictions for a
proper choice of material parameters.

The capabilities of the present formulation are illustrated
through elementary industrial applications. The effect of
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plastic spin on the evolution of anisotropy described by a
triad of directors was evaluated in the case of cup drawing.
This effect cannot be neglected, particularly for materials
showing a high degree of anisotropyunder large plastic defor-
mation. The comparison between hypo-elastoplastic models
applied to crystal plasticity shows that the result heavily
depends on the objective stress rate. The crystal plasticity
model based on themultiplicative decomposition remains the
reference model in that case and was successfully validated
by experiments, especially the rotation of crystal directors
with respect to loading axes. The model formulation should
also be applied to benchmarks available in finite elastoplas-
ticity as proposed in [83]. Consideration of enhanced element
formulations such mixed or hybrid elements [84] is recom-
mended to improve the treatment of plastic incompressibility.

Meanwhile, further research is necessary to develop yield
criteria in terms of the generally non-symmetric Mandel
stress tensor [44, 46]. The identification of the constitu-
tive equations for the plastic spin requires more experi-
mental investigations at large deformations. Furthermore,
non-symmetric internal variables (e.g. kinematic hardening)
are to be considered. Examples showing applications to com-
pressible elastoviscoplastic materials could also be provided,
for instance based on the family of yield functions proposed
and implemented in [85]. Non associated flow rules for appli-
cations to granular media should also be envisaged.

It is hoped that the present results can increase the inter-
est of the engineering computation community towards the
systematic use of physically consistent nonlinear constitutive
equations and improved modeling of anisotropic plasticity at
finite deformation.

Appendix A Hypoelastic-based formulations

The corotational strain rate e∼ and stress s∼ are given by

ė∼ = Q
∼
T D∼ Q

∼
, s∼ = Q

∼
T σ∼ Q

∼
(A1)

where Q
∼
is a rotation tensor. For Jaumann-rate based formu-

lation, Q
∼
is obtained from the integration of the differential

equation W∼ = Q̇
∼
Q
∼
T where W∼ = skw(L∼ ) is the skew-

symmetric part of the velocity gradient. For Green–Naghdi
rate, Q

∼
= R∼ , where R∼ is an orthogonal tensor obtained from

the polar decomposition F∼ = R∼U∼ (U∼ is the right stretch ten-
sor). Accordingly, the spin tensors corresponding to Jaumann
and Green–Naghdi rates are defined as

�∼
J = W∼ and �∼

GN = Ṙ∼ R∼
T (A2)

The corotational strain rate is additively split into elastic and
plastic parts:

ė∼ = ė∼
e + ė∼

p (A3)

The elasticity law is defined as

s∼ = C≈ : e∼e (A4)

whereC≈ is a fourth-order elasticitymoduli. The elasticity law
can be written in rate form, as an hypoelastic constitutive law
involving an objective derivative:

Dσ∼
Dt

= σ̇∼ + σ∼�∼ − �∼ σ∼, with �∼ = �∼
J ,�∼

GN (A5)

corresponding respectively to the Jaumann and Green–
Naghdi rates.
The yield condition is given by

f (s∼, AI , T ) = 0 (A6)

The plastic part of the corotational strain rate is determined
by the flow rule

ė∼
p = λ̇

∂ f (s∼, AI , T )

∂s∼
(A7)

Appendix B Finite element implementation

The nodal displacements are written in vector form as

{ue} =
{
u11 u12 u13 · · · u p

1 u p
2 u p

3

}T
(B8)

uij denotes the j-th (1 ≤ j ≤ 3) component of the nodal
displacement at node i . p is the total number of nodes. The
shape functions can be written as

[N] =
⎡
⎣N 1 0 0 · · · N p 0 0

0 N 1 0 · · · 0 N p 0
0 0 N 1 · · · 0 0 N p

⎤
⎦ (B9)

and

{u} = [N]{ue} (B10)

It follows that

{F∼ } = {F11 F22 F33 F12 F23 F31 F21 F32 F13}T
= [B]{ue} (B11)

123



Computational Mechanics

where

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂X1
0 0 · · · ∂N p

∂X1
0 0

0 ∂N1

∂X2
0 · · · 0 ∂N p

∂X2
0

0 0 ∂N1

∂X3
· · · 0 0 ∂N p

∂X3
∂N1

∂X2
0 0 · · · ∂N p

∂X2
0 0

0 ∂N1

∂X3
0 · · · 0 ∂N p

∂X3
0

0 0 ∂N1

∂X1
· · · 0 0 ∂N p

∂X1

0 ∂N1

∂X1
0 · · · 0 ∂N p

∂X1
0

0 0 ∂N1

∂X2
· · · 0 0 ∂N p

∂X2
∂N1

∂X3
0 0 · · · ∂N p

∂X3
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B12)

The linear set of equations to be solved for 
u iteratively is
given by

[K ]g
u =
∫

�0

[NT ]{b}dV0 +
∫

∂�tr
0

[N]T {t}dS0

−
∫

�0

[B]T {P}dV0 (B13)

where [K ]g is the global tangent matrix in Eq. (63) and Eq.
(67) and {P∼ } is the Boussinesq stress tensor. {b} and {t}
denote the reference body force and surface traction fields,
respectively.

Appendix C Tangent matrices

The Jacobian matrix is required to integrate the constitutive
equations at the Gauss point level. The block form of the
Jacobian matrix writes⎛
⎜⎜⎜⎜⎝

∂Rel

∂
F∼
e

∂Rel
∂
pi

∂Rel
∂
αi

∂Rpi

∂
F∼
e

∂Rpi
∂
pi

∂Rpi
∂
αi

∂Rαi

∂
F∼
e

∂Rαi
∂
pi

∂Rαi
∂
αi

⎞
⎟⎟⎟⎟⎠ (C14)

where the residuals are taken as

Rel = 
F∼
e − 
F∼ F∼

−1F∼
e + F∼

e
N∑
i=0


piN∼ i
(C15)

Rpi = fi or Rp = 
pi − 
t
∂�

∂ fi
(C16)

Rαi = 
αi − 
pimi + 
qi (C17)

The terms related to the global part of the Jacobian (the first
row and the first column) are given by

∂Rel

∂
F∼
e = 1≈ − (
F∼ F∼

−1) ⊗̄ 1∼ +
N∑
i=0


pi

(
1∼ ⊗̄ N∼

T
i

)

+ θF∼
e

[
N∑
i=0


pi
∂N∼ i

∂M∼

]
: ∂M∼

∂F∼
e (C18)

∂Rel

∂
pi
= F∼

eN∼ i
+ 
pi

∂N∼ i

∂Ai

∂Ai

∂ pi
(C19)

∂Rel

∂
αi
= θF∼

e
N∑
i=0


pi

(
∂N∼ i

∂Ai

∂Ai

∂αi

)
(C20)

∂Rp

∂
F∼
e = θ

∂ f

∂M∼
: ∂M∼

∂F∼
e or

∂Rp

∂
F∼
e = −θ
t

∂ ṗi
∂ fi

(
∂ f

∂M∼
: ∂M∼

∂F∼
e

)
(C21)

∂Rαi

∂
F∼
e = −θ
pi

∂mi

∂M∼
: ∂M∼

∂F∼
e (C22)

where

∂M∼
∂F∼

e = 1∼⊗̄(�∼
eF∼

eT ) + F∼
eT ⊗̄ �∼

e + F∼
eT F∼

e ∂�∼
e

∂E∼
e : ∂E∼

e

∂F∼
e

(C23)

∂E∼
e

∂F∼
e = 1

2

(
1∼⊗̄F∼

eT + F∼
eT ⊗̄ 1∼

)
(C24)

Recall that θ ∈ [0,1] is a parameter of the integrationmethod.
Next, the block of the Jacobian related to the internal variable
evolution equations writes

∂Rpi

∂
pi
= θ

∂ f

∂ p
or

∂Rpi

∂
pi
= 1 − θ
t

∂ ṗi
∂ fi

∂ fi
∂ pi

(C25)

∂Rpi

∂
αi
= ∂ f

∂αi

∂αi

∂
αi
or

∂Rpi

∂
α i
= −θ
t

∂ ṗi
∂ fi

∂ f

∂Ai

∂Ai

∂αi
(C26)

∂Rαi

∂
pi
= −mi − θ
pi

∂mi

∂ pi
(C27)

∂Rαi

∂
αi
= 1 − θ

(

pi

∂mi

∂Ai
+ 
t

∂qi
∂Ai

)
∂Ai

∂αi
− θ
pi

∂mi

∂αi

(C28)

The interaction terms are given by

∂Rpi

∂
p j
= θ

∂ fi
∂ p j

or
∂Rpi

∂
p j
= −θ
t

∂ ṗi
∂ fi

∂ fi
∂ p j

(C29)

∂Rpi

∂
αi
= θ

∂ f

∂Ai

∂Ai

∂α j
or

∂Rpi

∂
αi
= −θ
t

∂ ṗi
∂ fi

∂ f

∂Ai

∂Ai

∂α j

(C30)

∂Rαi

∂
pi
= 0 (C31)

∂Rαi

∂
α j
= 1 − θ

(

pi

∂mi

∂Ai
+ 
t

∂qi
∂Ai

)
∂Ai

∂α j
(C32)
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The matrix
∂Ai

∂α j
accounts for interactions between the hard-

ening variables.
The second method to integrate constitutive equations

relies upon the following definition of the residual in Eq.
(C15)

Rel = F∼
eF∼

p − F∼ (C33)

F∼
p is the solution of the following differential equation

Ḟ∼
p = L∼

pF∼
p (C34)

So F∼
p, at increment n + 1, can be estimated by using the

exponential mapping [75] as

F∼
p
n+1

= exp(
L∼
p)F∼

p
n

(C35)

Accordingly, the plastic incompressibility, i.e. trace(L∼
p) = 0

or det(F∼
p) = 1, is satisfied since

det(exp A∼ ) = exp(trA∼ ) (C36)

The first row of the Jacobian matrix in Eq. (C14) is rewritten

∂Rel

∂
F∼
e = 1∼ ⊗̄ F∼

pT

+ θF∼
e

[
∂ exp(
L∼

p)

∂
L∼
p

:
(

N∑
i=0


pi
∂N∼ i

∂M∼

)
: ∂M∼

∂F∼
e

]
F∼

p
n

(C37)

∂Rel

∂
pi
= F∼

e

(
∂ exp(
L∼

p)

∂
L∼
p

: N∼ i

)
F∼

p
n

(C38)

∂Rel

∂
αi
= F∼

e

[
∂ exp(
L∼

p)

∂
L∼
p

:
(

N∑
i=0


pi
∂N∼ i

∂
αi

)]
F∼

p
n

(C39)
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