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During a rainfall event, water infiltrates into the ground where it accumulates
in porous rocks. This accumulation pushes the underlying groundwater towards
neighboring streams, where it runs to the sea. After the rain has stopped, the
aquifer gradually releases its excess water, as the water table relaxes, until the
next rain. In the absence of recharge, the water table would eventually reach its
horizontal equilibrium position. The volume of groundwater stored above this
level, which we call the active volume, sustains the river between two rainfall
events. In this article, we use an experimental aquifer recharged by artificial rain
to investigate how this active volume depends on the rainfall rate. Restricting
our analysis to the steady-state regime, wherein the discharge into the stream
balances rainfall, we explore a broad range of rainfall rates, for which the water
table deforms significantly. We find that the active volume of water stored in the
aquifer decreases with its depth. Using conformal mapping, we derive the flow
equations, and develop a numerical procedure that accounts for the active volume
of groundwater in our experiments. In the case of an infinitely deep aquifer, the
problem admits a closed-form solution, which provides a satisfying estimate of
the active volume when the aquifer’s depth is at least half its width. In the
general case, a rougher estimate results from the energy balance of the dissipative
groundwater flow.
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1. Introduction

The ground beneath our feet forms a porous matrix of permeable soil and rock,
capable of storing water, called “aquifer” (Bierman & Montgomery 2014). Near
the surface, this matrix is only partially saturated with water. With depth,
however, the proportion of water increases until the pores are fully saturated,
and the groundwater pressure exceeds the atmospheric one (Dunne et al. 1990).
The water table, i.e. the interface that separates the unsaturated zone from the
saturated one, is a dynamic boundary, whose shape changes over time (Shercliff
1975; Alley et al. 2002). During rainfall, water infiltrates into the ground, travels
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down through the unsaturated zone, and reaches the water table (figure 1). This
input of water induces a pressure gradient that pushes groundwater through the
aquifer, and then up into the neighboring stream (Harrold 1934; Petroff et al.
2012). Viscous friction, however, delays this transfer. Part of the rainwater thus
accumulates temporarily in the aquifer, and make the water table bulge and rise
above the river level (Guérin et al. 2019). Once the rain has stopped, the aquifer
slowly releases this excess water into the stream. As a result, the latter continues
to flow until the water table relaxes to its equilibrium shape, a horizontal surface
leveled with the river.
A river is thus the visible manifestation of a much larger flow, most of which

occurs underground (Devauchelle et al. 2011, 2012). In particular, it is the volume
of groundwater that the aquifer stores above the river which sustains the river
between two rainfall events. This “active” volume thus determines the hydrologic
regime of the river. If it is small or, equivalently, if the return time between
rainfalls is long, the water table relaxes before the next rainfall event, and the
river dries up. The latter is then said to be ephemeral: it flows only over short
periods of time after a rainfall event (Costigan et al. 2017). Conversely, if the
active volume is large enough, or if the time between rainfalls is short, the water
table never returns to its equilibrium shape, and the river continuously flows
(Bierman & Montgomery 2014). Therefore, in order to estimate how a changing
precipitation pattern will affect the discharge of rivers, we need to identify the
factors that control the active volume (Taylor et al. 2013; Pokhrel et al. 2021).
Obviously, the volume of groundwater stored in an aquifer increases with the

duration of a rainfall event. If the latter lasts long enough, the active volume
eventually reaches a maximum, at which point the discharge at the aquifer outlet
balances the rainfall input. This maximum storage capacity is rarely achieved in
nature, where rainfalls are often short. However, Horton (1936) proposed to use
this maximum to characterize the capacity of an aquifer to store water. Following
him, we now define the active volume Va as the maximum volume of groundwater
that the aquifer can store above its outlet, when submitted to a given rainfall
rate. This definition makes the active volume independent of the duration of a
rainfall event. It does, however, depend on the intensity of rainfalls, and on the
porosity and hydraulic conductivity of the aquifer (Guérin et al. 2019). It also
depends on the geometry of the aquifer and its position relative to the river that
drains it.
The simplest configuration is that wherein the bottom of the aquifer is horizon-

tal and joins the stream (figure 1a). In this configuration – sometimes referred to
as the “fully penetrating stream” – groundwater flows almost horizontally (Guérin
et al. 2019). The active volume thus coincides with the total volume of water in the
aquifer, and the flow is amenable to the shallow-water approximation (Troch et al.
2013). Combined with Darcy’s law, the latter provides a simplified description of
the flow, in the form of the Dupuit–Boussinesq equation (Dupuit 1863; Boussinesq
1903). This theory, which assumes that the pressure is hydrostatic, provides an
accurate description of the response of the water table to rainfalls. It accounts for
the active volume of water stored in the aquifer during rainfall, and for its release
in the drainage network, once the rainfall has stopped (Horton 1936; Brutsaert
& Nieber 1977; Troch et al. 2013; Guérin et al. 2014, 2019).
In the field, however, fully penetrating streams are not the norm, and the

base of the aquifer often lies deep below the stream that drains it (figure 1b).
Groundwater must therefore rise to reach the stream, and the vertical component
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Figure 1: Flow of groundwater into a river (cross-sectional view). (a) Shallow
aquifer: in this configuration, sometimes referred to as the “fully penetrating

stream”, the bottom of the aquifer is horizontal and joins the stream. (b) Deep
aquifer configuration: the bottom of the aquifer lies deep beneath the river bed.

of the flow violates the Dupuit–Boussinesq approximation (Lehr 1963; Haria &
Shand 2004). In this configuration, which we call “deep aquifer”, the hydraulic
head that drives the flow obeys Laplace’s equation, the solution of which depends
on the boundary conditions (Polubarinova-Kochina 1962). The aquifer is usually
bounded by a quasi-horizontal impervious layer at its base. Below the river,
groundwater converges from both sides, forming a convergent groundwater divide
(figure 1b). Since groundwater does not cross this boundary, it is modeled as a
vertical impervious wall. Farther from the river, the groundwater flow changes
direction, and eventually moves toward a different stream (figure 1b). The surface
where this bifurcation occurs forms a divergent drainage divide, which, like
the convergent one, can be represented as an impervious vertical wall (Toth
1963). The last boundary is the water table, which freely adjusts its shape to
accommodate the rainfall input. One thus needs to solve Laplace’s equation inside
a domain that is a priori unknown. This free-boundary problem requires two
boundary conditions at the water table. In addition to equating the groundwater
pressure with the atmospheric one, one must also account for the flux of rainwater
that reaches the water table. In short, determining the flow inside an aquifer
recharged by rainfall is a Stefan problem: the values of both the hydraulic head
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and its derivative are specified at the water table, the shape of which must be
solved for.
Jules et al. (2021) investigated this problem in a deep two-dimensional labora-

tory aquifer recharged by artificial rain. After a short transient, the water table
adjusts so that the discharge at the aquifer outlet equilibrates the rainfall input.
For small rainfall rates, the water table barely departs from the horizontal. Based
on this observation, Jules et al. (2021) linearized the boundary condition at the
free surface and, thus, bypassed the difficulty of the Stefan problem. The resulting
theory provides an analytical expression for the shape of the streamlines in steady
state (Jules et al. 2021). Yet, the linearization of the boundary condition at the
water table comes at a cost: it reduces the aquifer outlet to a point, where the
hydraulic head diverges. This has an unexpected consequence: the linear theory
predicts that the active volume of water stored in the aquifer is exactly zero
(Jules et al. 2021). In short, the theory fails to account for the active volume. To
estimate it, we thus need to solve the original, non-linear Stefan problem.
As far as we know, the shape of the water table in a deep aquifer recharged by

rainfall remains an open question. Following Jules et al. (2021), we address this
problem in a laboratory aquifer recharged by artificial rain. Jules et al. (2021),
however, restricted their investigation to small rainfall rates, for which the water
table barely deviates from the horizontal. Here, on the contrary, we investigate
a broader range of rainfall rates, for which the water table deforms significantly.
We begin with a description of the experimental set-up (§2). We then focus on
the steady-state regime, for which the discharge at the outlet balances the rainfall
input, and examine how the groundwater pressure and the active volume of water
stored in the aquifer vary with the rainfall rate and the hydraulic conductivity
of the porous material (§3). To better constrain the flow, we introduce dye in the
aquifer, and track its trajectory (§4). This allows us to visualize the streamlines,
and to constrain the shape of the water table. Based on these observations, we
derive the equations of the flow (§5). For an infinitely deep aquifer, we find that
the latter admit a closed-form solution, which represents well the pressure and the
active volume in our experiment (§7). Finally, we propose a numerical procedure
that allows us to solve for the flow in an aquifer of finite depth, validate its
predictions against our experiments, and use it to show how the active volume of
water varies with the depth of the aquifer (§8).

2. Laboratory aquifer

Our experimental setup is similar to the one of Jules et al. (2021). It consists of
a narrow tank formed by two vertical PMMA plates (90.5 × 92 cm), separated
by a gap of width W = 5 cm (figure 2). The tank is filled with glass beads
of nearly uniform size (ranging from 0.3 to 3 mm in diameter depending on the
experimental series), which form an artificial aquifer bounded by an impermeable
bottom.
An array of 24 evenly-spaced needles, placed above the tank, feeds the aquifer

with artificial rain. These needles, of inner diameter 0.8 mm, uniformly dis-
tribute water over the aquifer’s surface, with a standard deviation of about
3% in discharge. The sprinkler pipe receives water from an overflowing tank.
A solenoid valve (Burkert W29MA), placed between the two, allows us to start
and stop the rainfall, by mean of an Arduino board operated from a computer. An
electromagnetic flowmeter (Kobold MIK 0.05–1 l min−1, accuracy 2%) measures
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Series Glass beads Median grain size Porosity Hydraulic Rainfall
diameter (mm) ds (m) S conductivity discharge

K (m s−1) R (l min−1)

1 300− 400 µm 3.5 · 10−4 0.38± 0.01 8.9± 0.7 · 10−4 0.05 – 0.2
2 0.8− 1.3 mm 1.05 · 10−3 0.37± 0.01 7.8± 0.1 · 10−3 0.03 – 1.1
3 3 mm 1.5 · 10−3 0.37± 0.01 5.2± 0.3 · 10−2 0.03 – 1.1

Table 1: Experimental parameters for each experimental series.

the rainfall input, Qin, from which we deduce the rainfall rate R = Qin/(LW ),
where L = 90.5 cm is the length of our aquifer.
Two impervious vertical walls close the left and right ends of our aquifer (figure

2). The right-hand one extends over the whole height of the tank. The left wall,
by contrast, extends only up to a height H = 63.7 cm above the aquifer’s bottom.
The remaining height (approximately 30 cm) is covered with a permeable, vertical
grid, which retains the glass beads, while allowing water to seep out of the aquifer.
During rainfall, the asymmetry of these boundary conditions forces water to leave
the aquifer through its left-hand side, at an elevation H = 63.7 cm above the
aquifer’s bottom. This outlet mimics the river into which a natural aquifer would
drain, and the aspect ratio of our aquifer is thus a = H/L ≈ 0.70. As for the
right-hand impervious wall, it plays the role of the drainage divide.
We monitor the pressure inside the aquifer, at a point located 10 cm from the

drainage divide and 7.5 cm below the level of the outlet (figure 2). The horizontal
and vertical coordinates of the measurement point relative to the aquifer outlet
are thus xp = 80.5 cm and yp = −7.5 cm. This position allows us to measure
pressure near, but not at, the divide, in a region where streamlines are nearly
vertical (see section 4). To measure pressure, we use a SENO343 differential
pressure transducer, mounted on an Arduino board connected to a computer.
Because it is designed to operate in a gas, the transducer cannot be in contact
with water. To bypass this issue, we drill a 5 mm hole through the lateral wall of
our experimental setup, at the measurement point, and cover it with a metallic
mesh, which retains the glass beads inside the tank. A PDMS tube (diameter
7 mm) connects the hole to the lower end of a small vertical cylindrical tank
of height 7.3 cm and diameter 15.2 mm, large enough to neglect surface tension
(figure 2). The tube and the lower half of the cylindrical tank are filled with water.
The upper half of the tank is filled with air, and its upper end is connected through
a second tube to the pressure transducer. In this way, the transducer measures the
pressure of the air, which equilibrates with that of water in the aquifer, with an
offset that depends on the position of the transducer. We eliminate this offset by
setting the zero of this measurement at equilibrium, after the aquifer has drained
entirely. This procedure allows us to measure, every second, the pressure in the
aquifer with an accuracy of ±0.5 Pa.
The presence of air bubbles trapped between glass beads can alter the ground-

water flow. To prevent this, we build our aquifer according to the following
procedure. We first fill the tank with water. Using a funnel, we then gradually
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Figure 2: Experimental set-up and notations. The aquifer (length L = 90.5 cm
and depth H = 63.7 cm) is made of glass beads (shaded area) piled between

two vertical PMMA plates (black solid lines) separated by a narrow gap (width
W = 5 cm). When rain falls on the aquifer, the water table deforms and

groundwater (in blue) flows out of the aquifer. The black dotted line indicates
the level of the aquifer outlet and the equilibrium position of the water table.
The volume of water above this line (dark blue) corresponds to the volume of

water that the aquifer stores during rainfall (active volume).

pour glass beads into the tank, where they settle and form a loose pile. To increase
the compacity of the latter, we regularly interrupt the pouring, and gently tap
the walls of the tank with a mallet. With each tap, the compacity of the pile
increases, and its free surface drops. After a dozen taps, its compaction reaches a
maximum. We then pour some more beads, and repeat this procedure until the
upper surface of the pile of beads (i.e. the free surface of the aquifer) extends up
to about 25 cm above the outlet.
We ran a total of three series of experiments, using three different types of

glass beads (manufacturer: Marteau & Lemarié). In series 1 and 2, the aquifer
was made of slightly heterogeneous grains, of sizes between 300 and 400 µm
(median diameter ds = 350 µm), and between 0.8 and 1.3 mm (median diameter
ds = 1.05 mm), respectively. During the third series, we worked with quasi-
homogeneous glass beads of diameter 3 mm.
We measured the hydraulic conductivity of each type of bead, following the

relaxation method of Jules et al. (2021). The method relies on two communicating
vessels connected by a Darcy column filled with glass beads, and saturated with
water. The release of a finite volume of water in one of the vessel induces
a pressure gradient in the Darcy column, which drives a flow that tends to
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Figure 3: Experimental run. (a) Rainfall discharge (l min−1), (b) dynamic
pressure ∆P = P − P0 (in cm of water), and (c) mass of water collected at the
aquifer outlet, M −M0 (grams), as a function of time. Due to experimental
limitations, we only measure the mass of water exiting the aquifer after the
rainfall has stopped, rather than over the entire duration of an experimental
run. Consequently, there are no data available for times t < 0. The aquifer,

made of 800− 1300 µm glass beads, is submitted to a rainfall input
Qin = 0.3 l min−1, corresponding to a dimensionless rainfall rate of
R/K = 0.018. Vertical dotted line: time t = 0, when rainfall stops.

equilibrate the water levels in the two vessels. The water level in each vessel then
relaxes exponentially, with a characteristic time that depends on the hydraulic
conductivity K of the pack of beads. Using this method, we find the values
reported in Table 1, which conform to the empirical Kozeni-Carman relationship,
K = c gd2s/ν, where ds is the grain size, ν the kinematic viscosity of water, g
the acceleration of gravity, and c = 5.9± 0.1 · 10−4 is a dimensionless coefficient
(Carman 1937) (appendix A, figure 17).

Finally, we also estimated the porosity of the aquifer by repeatedly weighing
known volumes of dry glass beads. We found porosities ranging from S ≈ 0.37
to S ≈ 0.38 (Table 1), as expected for the random close packing of spheres
(Andreotti et al. 2013).
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3. Active volume and dynamic pressure

To prepare the experiment before each run, we first feed the aquifer with an
arbitrary rainfall rate, until it overflows. We then stop the rain, and wait until
the discharge at the outlet vanishes. In this equilibrium state, the water table is
horizontal and leveled with the outlet, while pressure at the measurement point
is hydrostatic, with a value denoted P0. Starting from this initial condition, we
impose an artificial rain with the desired rainfall rate, R (figure 3a). Approxi-
mately 10 seconds after the rain starts, the pressure begins to rise, indicating
that the rainwater has reached the water table (figure 3b). As the water table
bulges to accommodate this input, groundwater starts flowing, and the pressure
inside the aquifer gradually increases. After a transient of about two minutes,
the pressure converges to a steady state value, P∞, indicating that the flow is
in steady state: the discharge at the aquifer outlet balances the rainfall input.
Because our pressure sensor measures the pressure with an offset, the values of
P∞ and P0 are of little use per se (§2). We thus introduce the dynamic pressure
∆P = (P − P0), and its steady-state value ∆P∞ = (P∞ − P0), which represent
the deviation of the pressure from hydrostatic equilibrium, and do not involve
any offset (figure 3b).

Our experimental setup does not allow us to measure directly the active volume
of water stored in the aquifer. Instead, we measure the volume of water collected
at the aquifer’s outlet after the rainfall has stopped, Vout, and hope that the
latter provides a reliable estimate of the active volume stored in the aquifer
during rainfall (figure 3c). To measure this volume, we collect the water exiting
the aquifer in a bucket placed beneath the outlet. A scale located under the
bucket records its weight every 0.1 seconds. To improve the accuracy of our
measurement, we use a scale with a precision of 1 mg. However, this precision
imposes a limitation: the scale cannot measure weights greater than 1200 g. As
a result, we cannot measure the mass of water leaving the aquifer over the entire
duration of an experimental run. Instead, we restrict our measurements to the
mass of water collected after the rainfall has stopped. To do this, we apply the
following procedure. The water that leaves the aquifer falls into a reservoir that
recirculates it to the sprinkler. We wait until the flow is in steady state, then use
a movable tray to replace the recirculating reservoir with the bucket. As long as it
rains, water accumulates in the bucket at a rate equal to the rainfall input. Once
the weight of water exceeds approximately M0 ∼ 200 g, we turn the rainfall off.
The water table immediately starts to relax towards equilibrium. As it does, the
discharge at the outlet gradually decreases towards zero, and the mass of water in
the bucket reaches a plateau M∞ (figure 3c). The volume of water collected after
the rainfall stopped is thus Vout = (M∞−M0)/ρ, where ρ is the density of water,
and M0 the mass of water in the bucket at the time when the rainfall stops. As
the water table returns to equilibrium, so does the pressure in the aquifer, which
relaxes to its hydrostatic value (figure 3b).

Following the above procedure, we systematically measure the dynamic pres-
sure, ∆P∞, and the volume of water collected at the aquifer outlet, Vout, as a
function of the rainfall rate, for each of the three types of glass beads presented
in the previous section. As expected, we find that these two quantities increase
with the rainfall rate (figure 4). For a fixed rainfall rate, the active volume and
the hydraulic head increase as the hydraulic conductivity decreases. This, again,
matches intuition: a decrease of the hydraulic conductivity implies a greater head
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Figure 4: (a) Dynamic pressure (cm of water) and (b) volume of water collected
at the aquifer outlet after the rainfall has stopped (l) vs rainfall discharge Qin

(l min−1). Different symbols represent different experimental series (table 1).

loss through the aquifer. A higher pressure, and thus a higher water table, is then
necessary for the groundwater discharge to equilibrate the rainfall input.
To understand how the active volume and the dynamic pressure depend on the

rainfall rate and the hydraulic conductivity, we now turn our attention to the
flow. In the next section, we inject dye in the aquifer, and track its propagation
to visualize the streamlines, and detect the shape of the water table.

4. Streamlines

To visualize the water table, we impose an artificial rainfall, and monitor the
pressure in the flow, as described in the previous section. After a few tens of
seconds, the pressure reaches steady state. We then inject small parcels of blue
dye into the aquifer, and monitor their propagation. The dye consists of a mixture
of water (90%) and food coloring (Matfer, 10%). Its density (997 kg m−3) is close
enough to that of water to assume that it behaves as a passive tracer. We inject the
dye into the aquifer by mean of six hypodermic needles, evenly spaced along the
aquifer surface. Six flexible tubes connect each needle to a syringe, mounted on a
syringe pump (SPLab06, Schenchen Baoding), which allows us to simultaneously
inject small volumes of blue dye (0.5 ml) through the six needles.
The six parcels of dye travel through the aquifer until they eventually reach

the outlet, where they exit the aquifer. A camera facing the set-up records an
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Figure 5: Trajectories of six parcels of dye in the experimental aquifer, revealed
by merging 250 pictures into one, keeping at each point the darkest pixel. The
aquifer, made of 800− 1300µm glass beads, is subjected to a rainfall input

Qin = 1.15 l min−1, corresponding to a dimensionless rainfall rate R/K = 0.07.
Orange, blue, and black dashed lines: seepage face, water table, and streamlines

computed from the numerical procedure presented in section 8.

image of their position every 15 seconds. A LED panel, placed behind the aquifer,
increases the contrast of the image. Once all parcels have left the aquifer, we stop
the camera and merge all the pictures (approximately 250 images) into a single
one, that keeps, for each pixel, its darkest value over the course of the experiment.
The resulting image reveals the trajectories of the parcels of dye, in the form of
six blue stripes (figure 5).
Jules et al. (2021) used a similar procedure to visualize the streamlines in

an aquifer submitted to an artificial rainfall, with two important differences.
First, Jules et al. (2021) restricted their investigation to small rainfall rates,
R/K ≲ 4 · 10−3, for which the water table barely deviates from the horizontal.
Here, on the contrary, we explore higher rainfall rates, up to R/K ∼ 0.1, which
significantly deform the water table. Secondly, Jules et al. (2021) injected the
dye as close as possible to the water table, to minimize its journey through the
unsatured zone. Here, we inject the dye far above the water table, in an area that
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is not saturated with water, in the hope that the shape of its trajectory will help
us locate the water table.
In the unsaturated zone, a parcel of dye travels under the sole action of gravity.

We therefore expect it to follow a vertical trajectory, until it reaches the water
table. This is indeed what we observe for all trajectories, except for the left-most
dye stream, which is slightly slanted (figure 5). We suspect that this anomalous
behavior might result from the flow of residual air trapped inside the aquifer
by the incoming rainfall. We have, however, no observation in support of this
hypothesis.
As the parcels of dye enter the saturated zone, their trajectories deviate from

the vertical, and follow an arcuate path toward the outlet (figure 5). This abrupt
change of direction allows us to locate the water table. It coincides with a slight
change of coloration of the aquifer, probably due to its saturation with water.
As expected, the elevation of the water table is maximum at the drainage divide
(right wall), and gradually decreases towards the outlet, where it forms a seepage
face, which extends a few centimeters above the bottom of the outlet.
Once in the saturated zone, the trajectory of the dye depends on the position of

the injection point. Parcels injected near the outlet stay above it throughout their
trajectory: they continuously descend from the water table down to the outlet.
Parcels injected far from the outlet have a different fate: they move downwards
and get below the outlet, until they eventually rise again, and flow towards the
seepage face, where they exit the aquifer (figure 5).
The injection of dye has allowed us to observe the flow streamlines and to visu-

alize the shape of the water table. In the next section, we use these observations
to derive the flow equations.

5. Flow equations

5.1. Physical space

Below the water table, groundwater flows according to Darcy’s law,

q = −K∇
(
p

ρg
+ y

)
, (5.1)

where ρ is the density of water, P is the pressure, and q is Darcy’s velocity. This
velocity, also referred to as Darcy’s flux, represents the volumetric flux of water
through a unit cross sectional area of porous medium. The horizontal and vertical
coordinates, x and y, are measured with respect to the position of the aquifer’s
outlet (figure 2). In steady state, combining Darcy’s law and incompressibility
yields Laplace’s equation

∇2ϕ = 0 , (5.2)

where we introduce the hydraulic head, ϕ = p/ρg + y. This quantity measures
the deviation of the pressure from hydrostatic equilibrium, expressed in height of
water.
To solve equation (5.2), we first assume that the flow does not vary across the

experiment. This assumption reduces our problem to a two-dimensional flow in
the (x, y) plane. To solve it, we introduce the complex potential Φ(z) = ϕ + iψ,
where ψ is the stream function associated to this Darcy flow, z = x + iy is the
complex coordinate, and i2 = −1 (Polubarinova-Kochina 1962). As long as Φ is
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an analytical function of z, its real (and imaginary) part obeys Laplace’s equation
(5.2).
To determine the expression of the complex potential Φ, we need to complement

equation (5.2) with boundary conditions. We first note that the three walls that
bound the aquifer are impervious, so that the normal velocity of groundwater
vanishes along them. These walls thus form a streamline, along which the value
of the stream function ψ is constant. By arbitrarily setting the latter to zero, this
boundary condition translates into

ψ = 0 (5.3)

along the right, bottom, and left walls (figure 6a).
Along the permeable grid, at the outlet, groundwater forms a seepage face, a few

centimeters high, through which water flows out of the aquifer (figure 5). Along
this seepage face, the pressure of water matches the atmospheric one. Arbitrarily
setting the latter to zero, this condition reads

ϕ = y . (5.4)

We now turn our attention to the water table. On this free surface of elevation
y = h(x), the pressure is atmospheric, so that

ϕ = y . (5.5)

The water table, however, is a free boundary which deforms to accommodate the
input of water during rainfall. It thus requires an additional condition, provided
by the mass balance across the water table (Jules et al. 2021). For an homogenous
rainfall, and in steady state, this condition reads

ψ =
RL

K

(
1− x

L

)
. (5.6)

This equation simply states that the quantity of water entering the aquifer in-
creases linearly with the distance to the drainage divide. Combined with boundary
conditions (5.3) and (5.4), it imposes that the stream function increases by an
amount [ψ] = RL/K over the seepage face, so that the discharge of water leaving
the aquifer matches the total rainfall input, Q = KW [ψ] =WRL.
The set of equations (5.2), (5.3), (5.4), (5.5), and (5.6) describes the flow in a

two-dimensional aquifer recharged by rainfall (figure 6a). Because the solutions of
the Laplace’s equation are complex analytical functions (Polubarinova-Kochina
1962), we introduce the dimensionless complex coordinate z̃ = z/L and the

dimensionless complex potential Φ̃ = Φ/L. Our set of equations thus becomes

∇2Φ̃ = 0 , (5.7)

with boundary conditions

ψ̃ = 0 on the bottom (ỹ = −a) , (5.8)

ψ̃ = 0 on the divide (x̃ = 1) , (5.9)

ψ̃ = 0 on the wall below the outlet (x̃ = 0, ỹ < 0) , (5.10)

ϕ̃ = ỹ on the seepage face (x̃ = 0, ỹ > 0) , (5.11)

ϕ̃ = ỹ and ψ = R̃(1− x̃) on the water table (0 < x̃ < 1, ỹ = h̃(x̃)) . (5.12)

In this dimensionless form, the flow depends on only two parameters: the aspect
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Figure 6: Conformal mapping from the physical plane (a) to the mathematical
one (b). Coordinates in the physical (resp. mathematical) plane are represented
by z = x+ iy (resp. ω = u+ iv). Laplace’s equation is solved within the shaded

domain. Colored lines represent the different boundaries of the problem, as
indicated in the legend.

ratio of the aquifer, a = H/L, and the dimensionless rainfall rate, R̃ = R/K.
As far as we know, this free boundary problem does not admit any closed-form
solution. In the next section, we use conformal mapping to transform it into a
simpler problem.

5.2. Mapping

Inspired by Zhukovsky (1932) and Jules (2020), we introduce the dimensionless
complex variable, ω = u+ iv, such that:

ω = z̃ − iΦ̃ , (5.13)

or, equivalently,

u = x̃+ ψ̃ , (5.14)

v = ỹ − ϕ̃ . (5.15)

Equation (5.13) maps our physical aquifer (figure 6a) into a mathematical one,
that takes the shape displayed on figure 6b. We must now look for an analytical
function z̃(ω) that satisfies the boundary conditions along the boundaries of the
mathematical aquifer:

x̃ = u and ỹ = −a on the bottom , (5.16)

x̃ = 1 on the divide (u = 1, v < 0) , (5.17)

x̃ = 0 on the wall below the outlet (u = 0, v < 0) , (5.18)

x̃ = 0 on the seepage face (0 < u < R̃, v = 0) , (5.19)

x̃ =
u− R̃

1− R̃
on the water table (R̃ < u < 1, v = 0) . (5.20)

If we find such an analytical function, we will just need to invert it, to recover
the complex potential that describes the flow in the physical space, Φ̃ = i(ω− z̃).
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The advantage of this transformation is that it maps the seepage face and the
water table on the horizontal axis v = 0, where the seepage face extends from
u = 0 to u = R̃, and the water table from u = R̃ to u = 1. The free surface
is now fixed. Similarly, the left and right walls of the aquifer are mapped on
two vertical lines located in u = 0 and u = 1, respectively. Yet, the problem
retains a free boundary: the location of the aquifer bottom in the mathematical
plane is unknown, which prevents us from deriving a closed-form solution. In
sections 6 and 7, we bypass this issue by successively considering two asymptotic
configurations. We begin with a discussion of the flow behavior near the aquifer
outlet. There, the flow is insensitive to the boundary conditions at the bottom
(5.16) and on the divide (5.17), and admits a closed-form solution (§6). In section
7, we reintroduce the drainage divide into the problem, and address the case of an
infinitely deep aquifer. In this asymptotic configuration, equation (5.16) is absent
from the problem, which admits a closed form solution (§7).

6. Flow near the aquifer’s outlet

Close enough to the outlet, the flow is insensitive to the boundary conditions at
the bottom (5.16) and on the divide (5.17), and the boundary conditions reduce
to

x̃ = 0 on the wall below the outlet (u = 0, v < 0) , (6.1)

x̃ = 0 on the seepage face (0 < u < R̃, v = 0) , (6.2)

x̃ =
u− R̃

1− R̃
on the water table (R̃ < u < 1, v = 0) . (6.3)

Finding an analytical function z̃(ω) that satisfies these conditions is challenging,
due to the dependency of the last boundary condition on the variable u = Re(ω).
To bypass this issue, we look for z̃′(ω), the derivative of z̃(ω), instead of z̃(ω)

itself. To do this, we introduce the intermediate function χ(ω) = (1− R̃) z̃′. Both
z̃(ω) and its its derivative z̃′(ω) are analytical, so that our intermediate function
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χ(ω) is also analytical. The latter satisfies the following boundary conditions

Im(χ) = 0 on the wall below the outlet , (6.4)

Re(χ) = 0 on the seepage face , (6.5)

Re(χ) = 1 on the water table . (6.6)

This system of equation admits the following solution

χ =
i

π
log

(
R̃+ ω

R̃− ω

)
. (6.7)

Integrating the above equation yields an explicit expression for z̃,

z̃ =
i

π(1− R̃)

[
(R̃− ω) log(R̃− ω) + (R̃+ ω) log(R̃+ ω)− 2R̃ log R̃

]
, (6.8)

where we have fixed the origin by setting z̃ = 0.
For any position ω in the mathematical plane, equation (6.8) yields the corre-

sponding position z̃ in the physical space, from which we deduce the value of the
complex potential Φ̃ using equation (5.13). This allows us to draw the streamlines
and the water table near the aquifer outlet (figure 7). Their shape is qualitatively
consistent with the experimental observations of figure 5.
Setting ω = R̃ in equation (6.8) yields the height of the seepage face,

h̃s =
2 log 2

π

R̃

1− R̃
. (6.9)

In the limit of vanishing rainfall rate, this height is proportional to discharge,
and therefore to the rainfall rate: h̃s = 2 log(2)R̃/π. The free surface is then a

flow line (ψ = R̃), and all the groundwater injected at infinity flows through the
seepage face. In this limit, our problem becomes a special case of the “drainage
ditch” discussed by Polubarinova-Kochina (1962, p.166).
To gain a more comprehensive understanding of how the seepage face constrains

the flow in the aquifer, we expand equation (6.8) under the condition of a small

rainfall rate, and at a distance from the outlet large enough to ensure that R̃/ω

is small. Assuming that 0 < R̃/ω ≪ R̃≪ 1, we find that (Appendix B)

Φ̃ ∼ 2

π
R̃ log z̃ , (6.10)

or, equivalently,

Φ̃ ∼ h̃s log z̃ , (6.11)

since the elevation of the seepage face is proportional to the discharge R̃ for
vanishing rainfall rates. Equations (6.10) and (6.11) tell us that, far from the
outlet, the flow perceives the seepage face as a sink point, which generates a
logarithmic singularity. As the flow approaches the aquifer outlet, it becomes
sensitive to the finite size of the seepage face, and one must use the full solution
(6.8).
Equation (6.8), (6.9), (6.10), and (6.11) describe the behavior of the flow close

to the aquifer outlet. They cannot, however, represent the flow in regions where
the influence of the drainage divide becomes significant. In the next section, we
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Figure 8: Flow in an aquifer of infinite depth submitted to a rainfall rate
R/K = 0.3. (a) Mathematical plane, ω = u+ iv. (b) Physical plane,

z̃ = x/L+ iy/L. Orange dashed lines: isoheads. Black dashed lines: streamlines.
Dotted red line: water table predicted from the near-outlet solution (6.8).

therefore reintroduce the drainage divide into the problem, and address the case
of an infinitely deep aquifer.

7. Infinitely deep aquifer

7.1. Potential, streamlines, and water table

To describe the flow in an aquifer of infinite depth, we only need to add the
boundary condition at the divide (5.17) to the set of conditions that govern the
problem discussed in Section 6. Jules (2020) showed that, with this additional
condition, the flow admits the following closed-form solution (Appendix C)

z̃(ω) = ω +
1

π2(1− R̃)
×

[
Li2
(
e−iπ(ω+R̃)

)
− Li2

(
e−iπ(ω−R̃)

)
+ Li2

(
eiπR̃

)
− Li2

(
e−iπR̃

)]
,

(7.1)

where Li2 denotes Spence’s function, sometimes referred to as “dilogarithm”
(Appendix C). For any position ω in the mathematical plane, equation (7.1)
yields the corresponding position z̃ in the physical space, from which we deduce
the value of the complex potential Φ̃ using equation (5.13).
Figure 8 shows the streamlines and the water table drawn after equation (7.1).

Near the outlet, the water table aligns closely with the predictions of the near-
outlet solution (6.8) (figure 8b). However, as the distance to the outlet increases,
the two models depart from each other, and the near-outlet solution gradually
overestimates the elevation of the water table.
In an aquifer of infinite depth, streamlines that originate close to the drainage

divide extend to infinity, preventing any quantitative comparison with the ex-
perimental streamlines of Figure 5. Yet equation (7.1) retains much of the
experimental behavior: (i) the depth reached by a streamline increases as its
origin approaches the drainage divide (where it diverges); (ii) the water table is
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Figure 9: (a) Dynamic pressure and (b) active volume of water stored in an
aquifer of infinite depth, as a function of the rainfall rate. The dynamic pressure

is evaluated in xp/L = 0.805 and yp/L = −0.075, the coordinates of the
pressure probe in our experimental aquifer. Solid blue line: exact solution.

Dashed red line: weak-rainfall approximation.

highest at the drainage divide, and gradually drops towards the outlet, where it
forms a seepage face (figure 8).

7.2. Dynamic pressure

Based on equation (7.1), we compute the dynamic pressure, ∆P∞/(ρgL), at the
position (xp, yp) of the pressure probe in our experiment, and plot it as a function
of the dimensionless rainfall rate, R/K. As expected, we find that the dynamic
pressure in the aquifer increases with the rainfall rate (figure 9a).
To compare our measurements with the infinitely-deep aquifer theory, we

rescale our pressure data with respect to the characteristic pressure ρgL, and
plot the result as a function of the dimensionless rainfall rate R/K. We find that
the three experimental series, obtained with different glass beads, gather along
the same curve (figure 10). Moreover, the infinitely-deep aquifer theory accounts
remarkably well for the experimental pressure, even though the aspect ratio of
our experimental aquifer is only a = 0.7 (figure 10). Encouraged by this result,
we now turn our attention to the active volume of water stored in the aquifer.
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infinitely-deep aquifer theory. Red line: weak-rainfall limit of the infinitely-deep
aquifer theory, equation (7.7). Dashed black line: numerical computation for an

aquifer of aspect ratio a = 0.7.

7.3. Active volume

The active volume of water stored in the aquifer during rainfall reads

Va = SL2W

∫ 1

0

h̃(x̃) dx̃ , (7.2)

where S is the porosity of the aquifer. In the absence of an explicit expression
for the water table h, equation (7.2) is of little practical use. Some algebraic
manipulation, however, yields a more convenient expression (appendix D)

Va

SL2W
=

1

1− R̃
Im

[∫

free surface

z̃ dω

]
, (7.3)

which allows us to calculate the active volume of water from the solution of the
problem in the mathematical space.
Equation (7.3) holds regardless of the aquifer’s aspect ratio. For an infinitely

deep one, we replace z̃ with its expression (7.1) in the above integral, and calculate
the result. Figure 9b shows a numerical approximation of this expression. As
might have been anticipated, the active volume of water stored in the aquifer
increases with the rainfall rate, and diverges as the latter approaches the conduc-
tivity of the aquifer, R/K → 1. Above this value, the rainfall rate exceeds the
infiltration capacity of the aquifer, and overland flow appears, at which point our
theory becomes irrelevant.
To compare our experimental data to the deep-aquifer theory, we rescale our

volume measurements with respect to the characteristic volume SL2W , and plot
the result as a function of the dimensionless rainfall rate R/K. We find that,
unlike pressure, the rescaled volumes do not gather along the same trend, but
exhibit a residual dependency on the size of the beads that make up the aquifer
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Figure 11: Proportion of water trapped in a Darcy column, Vt/Va, as a function

of the characteristic pore size, dp =
√

νK/g. Blue markers: experimental data.
Dotted red line: equation (7.5) with ϵ fitted to the data.

(Appendix E, figure 18). We suspect that this trend reflects the influence of
capillary effects. In the next section, we discuss this scenario, and propose a
crude model that accounts for the proportion of water retained in the aquifer by
capillary forces.

7.4. Water retention

We cannot measure directly the active volume of water stored in our experimental
aquifer, but we can estimate it from the water collected at its outlet, after the
rainfall has stopped. However, as the water table relaxes to its equilibrium shape,
a fraction of the water contained in the active volume does not leave the aquifer,
but remains trapped in the pores above the water table, due to surface tension
(Tschapek et al. 1985; Gennes et al. 2004; Bear 2018). To estimate this fraction,
we assimilate the aquifer to a collection of vertical pipes of radius r. The number
of pores in a vertical slice of aquifer of length dx is thus n = SWdx/(πr2).
Assuming that each of them retains a quantity of water proportional to the area
of contact with the pore wall, the total volume of water trapped above the outlet
reads

Vt = ϵ

∫ L

0

2πr h
SWdx

πr2
= 2S

ϵ

r
Va , (7.4)

where ϵ is the thickness of the film of water that remains trapped on the walls of
the pores. Estimating the pore size from the aquifer conductivity, dp =

√
νK/g,

yields the fraction of water that remains trapped in the aquifer

Vt

Va

=
2Sϵ√
νK/g

, (7.5)
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where ν is the kinematic viscosity of water. The above equation allows us to relate
the active volume of water to the volume of water collected at the aquifer outlet:

Va =
Vout

1− 2Sϵ/
√
νK/g

. (7.6)

Equation (7.6) predicts that the volume of water trapped in the aquifer depends
on the characteristic pore size, dp =

√
νK/g, a result that aligns with the findings

of Leverett (1941).
If equation (7.5) holds, the fraction of water trapped in the aquifer should

depend only on pore size. To test this idea, we fill a Darcy column with glass
beads, saturate it with water, let it drain, and estimate the volume of water
trapped in the column by comparing the weight of the column before and after
drainage. Figure 11 shows the proportion of water trapped in the Darcy column,
Vt/Va, as a function of pore size, dp =

√
νK/g, for the three types of glass beads

that make up our experimental aquifer. It varies from almost 50% for beads of
size ds = 350µm to 0.07% for beads of size ds = 3mm. A fit of equation (7.5)
consistently reproduces the data, with ϵ = 6.9± 0.2 µm, a value consistent with
previous measurements (Tschapek et al. 1985).
Using this value and equation (7.6), we evaluate the active volume of water

based on the volume collected at the outlet, and plot the result as a function
of the rainfall rate (figure 12). The three experimental series, corrected from
the effect of surface tension, gather along the same curve, regardless of bead
size. Again, the infinitely-deep aquifer theory accounts remarkably well for the
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experimental data. In the next section, we discuss the behavior of this theory
when the rainfall rate is small.

7.5. Weak rainfall regime

Equation (7.1) provides an exact solution of the flow in an aquifer of infinite
depth. We now explore the behavior of this solution when the rainfall rate is
vanishingly small. As the rainfall rate decreases, we expect that the water table
will decline until it eventually joins the horizontal axis, when R̃ = 0. Expanding
equation (7.1) at leading order in R̃, we find (appendix F):

Φ̃ ∼ 2

π
R̃

[
log

(
1− e−iπz̃

π

)
− log R̃

]
. (7.7)

Combining the above equation with the expression of the active volume (7.3) and

keeping only the leading terms in R̃, yields the behavior of the active volume in
the limit of small rainfall rate (appendix F)

Va

SL2W
∼ − 2

π

R

K
log

R

K
. (7.8)

For a small, but finite, rainfall rate (R/K ≲ 0.1), the dynamic pressure and
the active volume associated to the two approximate expressions above resemble
their exact counterpart (figure 9), and provide a good representation of our
experimental data (figure 10 and 12).
A surprising feature of equations (7.7) and (7.8) is that they are non-linear

functions of the rescaled rainfall rate, R̃ = R/K. In other words, the non-linearity
induced by the free surface appears to survive at a vanishingly small rainfall rate.
More specifically, the imaginary part of the velocity potential Φ is proportional
to R̃, and the shape of the corresponding streamlines remain unaffected by the
intensity of the dimensionless rainfall. This is not true, however, for the real part
of Φ, that is for the hydraulic head. Anywhere in the aquifer, the hydraulic head
is proportional to −R̃ log R̃, at leading order. Even for a vanishingly small rainfall
rate, the pressure field in the aquifer thus bears the signature of the non-linearity
induced by the free surface. In the next section, we show that this result can also
be derived from the energy balance of the flow.

7.6. Energy balance

To maintain the deformation of the water table, rainfall must inject energy into
the aquifer at the constant rate :

Pin =

∫ L

0

ρghR Wdx =
ρgRVa

S
. (7.9)

In steady state and when the outlet barely raises above zero, this energy is entirely
dissipated by viscous friction,

Pd =W

∫∫
(ρg −∇p)q dxdy =WρgK

∫∫
(∇ϕ)2 dxdy , (7.10)

where we integrate over the entire flow. Unfortunately, we were not able to derive
a closed-form solution for this integral. Instead, we now perform a scaling analysis
to understand how the energy dissipated in the aquifer depends on the parameters
of the problem.
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We first note that the integrand diverges logarithmically at the outlet. This
suggests that most of the energy is dissipated near the outlet, where streamlines
get squeezed by the singularity. Accordingly, we replace ϕ with its logarithmic
approximation near the outlet (6.11), so that the power dissipated in the aquifer
scales like

Pd ∼WρgKh2
s

∫∫
1

|z|2dxdy ∼WρgKh2
s

∫∫
dr

r
dθ , (7.11)

where we introduce the polar coordinates r and θ. The near-outlet expansion
(6.11) is valid at a distance of the outlet longer than a cutoff length which we
expect to be about the height of the seepage face, hs. Below this distance, the
flow interacts with the outlet, and the dissipation saturates. Consequently, we set
the lower bound of integral (7.11) to r = hs. As for the upper bound, we expect
it to scale like the characteristic length of the aquifer r ∼ L. Accordingly, we
calculate the integral (7.11) between r = hs and r = L, and find that

Pd ∼ −WρgKh2
s log

hs

L
. (7.12)

We now need to estimate the height of the seepage face, hs. To do so, we first note
that the outlet discharge equilibrates the input rainfall, so that Khs∇ϕ ∼ RL.
Near the outlet, however, the pressure gradient scales like ∇ϕ ∼ hs/hs ∼ 1, so
that hs ∼ RL/K, a result consistant with section 6. Replacing the length of the
seepage face with the latter expression in equation (7.12) yields the expression of
the viscous dissipation in the aquifer:

Pd ∼ −WρgR2L2

K
log

R

K
. (7.13)

Equating the input (7.9) and the dissipated (7.13) powers yields the following
scaling for the active volume,

Va

SWL2
∼ −R

K
log

R

K
, (7.14)

which is consistant with equation (7.8). Because of its simplicity, the above
reasoning holds independently of the exact shape of the aquifer outlet, provided
it is much smaller than the aquifer itself. We therefore expect that scaling (7.14)
applies in situations more general than that of our experiment, provided the
rainfall rate is small and the aquifer is deep.

8. Aquifer of finite depth

In the previous section, we discussed the flow in an aquifer of infinite depth,
for which there is a closed form solution. By design, however, the infinitely-deep
aquifer solution cannot reproduce the shape of the streamlines in our experimental
aquifer (figure 5). In this section, we turn our attention towards aquifers of finite
depth, and develop a numerical procedure that allows us to compute the flow
iteratively. To do this, we first derive an approximate solution for the flow in an
aquifer of finite depth recharged by a vanishingly small rainfall rate (§8.1). We
then use this approximate solution as the initial step of our numerical procedure,
with which we finally compute the flow for finite rainfall rates (§8.2).
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Figure 13: Approximate solution in an aquifer of aspect ratio a = 0.7 submitted
to a rainfall rate R/K = 0.2. (a) Mathematical plane, ω = u+ iv, and (b)

physical plane, z̃ = x/L+ iy/L. Laplace’s equation is solved within the blue
shaded domain using the finite elements method. Grey triangles: numerical

mesh. Orange dashed lines: isoheads. Black dashed lines: streamlines. δy is the
distance between the calculated position of the aquifer’s bottom (solid grey

line) and its real position in the experiment (dotted black line). The other lines
represent the different boundaries of the problem, according to the legend of

figure 6.

8.1. Approximate solution in the limit of weak rainfall

The mapping (5.13) introduced in section 5.2 simplifies the calculation of the
flow by placing the seepage face and the water table on the horizontal axis of
the mathematical space (figure 6). Yet, the problem retains a free boundary –
the location of the aquifer bottom in the mathematical plane is unknown. In
section 7, we bypassed this issue by considering an aquifer of infinite depth. We
now use a different limit: we consider an aquifer of finite depth, but send the
rainfall rate to zero. In the mathematical plane, this turns the mapping into the
identity, which leaves the aquifer’s bottom unchanged along the horizontal line
Im(ω) = −a. Based on this observation, we build an approximate solution of the
flow by letting the bottom lie at this position (figure 13a). This approximation
does not completely eliminate the rainfall rate from the problem, as the latter
still determines the length of the seepage face. It does, however, considerably
simplify the problem by fixing the shape of the free boundary.
It is now straightforward to solve the problem numerically. Using pyFreeFem†,

a Python wrapper for the finite-element software FreeFem++ (Hecht 2012), we
solve Laplace’s equation, and determine the complex function z̃(ω) that satisfies
the boundary conditions in the mathematical plane (figure 13a). We then compute
the complex potential from equation (5.13), and plot the result in the physical
space. As expected, our approximate solution looks correct only in the limit of
vanishing rainfall rates (R̃ ≲ 10−3). As the latter increases, however, the shape
of the aquifer bottom deviates from that of the experimental setup: it curves and
rises towards the surface (figure 13b).
To get a better approximation of the flow, we now need to relax the small-

rainfall approximation, and return to the original problem. In the next section,

† https://github.com/odevauchelle/pyFreeFem
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Figure 14: Convergence to the non-linear solution in an aquifer of aspect ratio
a = 0.7 submitted to a rainfall rate R/K = 0.3. (a), (b), and (c): weak-rainfall
approximation, intermediate solution after 2 iterations, and converged solution

after 8 iterations in the mathematical plane, ω = u+ iv. (d), (e), and (f):
corresponding solutions in the physical plane, z̃ = x/L+ iy/L. Orange dashed
lines: isoheads. Black dashed lines: streamlines. δy is the distance between the
calculated position of the aquifer’s bottom (solid grey line) and its real position
in the experiment (dotted black line). The other lines represent the different
boundaries of the problem, according to the legend of figure 6. The python

routines used to solve that problem are available online:
https://github.com/odevauchelle/pyFreeFem.

we use the weak-rainfall solution as a starting point to develop a better approxi-
mation of the flow.

8.2. Relaxation to the non-linear solution

We now return to the original problem, for which the location of the bottom
in the mathematical plane is unknown. To solve it, we develop the following
relaxation method. We place ourselves in the weak-rainfall approximation, and
compute the corresponding solution, as described in the previous section. In this
solution, the shape of the aquifer bottom deviates from the horizontal. It reads
ỹb(x̃) = −a+ δy(x̃), where δy(x̃) is the deviation of the bottom of the numerical
aquifer from the real one – a measure of the numerical error (figure 14a, d).
To reduce this error, we need to deform the mesh in the mathematical plane,

so that the bottom in the physical plane moves by an amount opposed to the
error, −δy(x̃). To deform the mesh in the smoothest possible way, we introduce
a deformation field, δv, that satisfies Laplace’s equation with the following con-
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ditions:

δv = −δy = a+ ỹ on the bottom,

δv = 0 on the seepage face,

δv = 0 on the water table,

∂nδv = 0 on the divide,

∂nδv = 0 on the wall below the outlet.

The last two boundary conditions are arbitrary. They only need to be compatible
with the first one at the junctions with the aquifer’s bottom. The reason why
we require the deformation field δν to satisfy Laplace’s equation is not based on
any fundamental mathematical principle. Instead, the choice is purely practical:
ensuring that δν follows Laplace’s equation results in a smooth field, which allows
us to deform the mesh in the smoothest possible manner (Hecht et al. 2005).
Using finite elements, we solve for the deformation field δv, and change the

original mesh according to it, replacing v with v−δv. Using, again, finite elements,
we solve Laplace’s equation and compute z̃(ω) in this new domain. We then repeat
the procedure, in the hope that the shape of the aquifer will converge towards
that of the real one (figure 14b, e). We find that, for aspect ratios larger than
H/L ≳ 10−2, the above procedure converges to a final mesh in the mathematical
plane, which corresponds to a realistic solution in the physical plane: the bottom
of the aquifer is almost horizontal, with ỹb ≈ −a (figure 14c, f). Below this
limit, the thickness of the aquifer is so small that the deformation of the mesh
generates numerical instabilities. We now compare our numerical solutions with
our experimental observations.

8.3. Comparison with experiments

The water table and the streamlines computed from our numerical solution
appear qualitatively consistent with the experimental observations (figure 14f).
To draw a more quantitative comparison, we solve for the flow of groundwater
under the experimental conditions of figure 5 (R/K = 0.07, a = 0.7). We find
that the numerical seepage face, water table, and streamlines fall very close to the
experimental observations, without any adjustable parameter (figure 5). Near the
outlet, the numerical water table drops a bit below the actual one, and pushes
down the streamline. We suspect that this discrepancy is due to surface tension.
Using the numerical procedure of section 8.2, we also compute the pressure and

the active volume of water stored in our experimental aquifer, as a function of
the rainfall rate. We find that the results are consistent with our experimental
data (figure 10 and 12).
Having thus validated our non-linear theory, we now turn our attention to the

dependency of the active volume on the aspect ratio of the aquifer.

8.4. Active volume dependence on aspect ratio

Using the numerical procedure introduced in section 8.2, we compute the active
volume of water as a function of the aquifer’s aspect ratio for a fixed rainfall rate
R/K = 5 10−3 (figure 15a). Our numerical method converges only for aspect
ratios larger than a ≳ 10−2. Within this range, we observe that the active volume
decreases as the aquifer becomes deeper (figure 15a). When the aspect ratio
exceeds a ∼ 0.5, the active volume of water saturates at the asymptotic value
predicted by the infinitely-deep aquifer theory (figure 15a).
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Figure 15: (a) Active volume of water stored in an aquifer, Va/(SWL2), as a
function of its aspect ratio, a = H/L, for a rainfall rate set to R/K = 5 · 10−3.
(b) Relationship between active volume and aspect ratio for three different

rainfall rates R/K = 1.5 10−3, 3.9 10−3, and 3.4 10−2. Grey markers: numerical
computation following the procedure described in section 8. Red stars:

experimental data. Blue dashed line: infinitely deep aquifer limit (7.1) combined
with the integral (7.3). Green dashed line: Dupuit-Boussinesq approximation

(8.1).

Repeating this procedure for various rainfall rates reveals the same qualitative
behavior: for a given rainfall rate, the active volume decreases as the aquifer
deepens, eventually saturating at a plateau predicted by the infinitely-deep
aquifer theory (figure 15b). Changing the rainfall rate affects the relation between
active volume and aspect ratio in two ways: (1) increasing the rainfall rate shifts
this relation toward larger active volumes, and (2) the aspect ratio at which the
active volume reaches its plateau slightly increases with the rainfall rate.
Although somewhat counterintuitive, the decrease of the active volume with the

aquifer depth is easily understood with the following reasoning. The groundwater
discharge roughly scales with the aquifer depth times the velocity of groundwater
averaged across the depth of the aquifer. As a result, the deeper the aquifer,
the smaller the velocity, and consequently, the smaller the pressure gradient that
drives the flow. The deviation of the water surface, which induces this pressure
gradient, is therefore smaller in a deeper aquifer.

8.5. Dupuit-Boussinesq approximation

We now compare our numerical computations with the predictions of the Dupuit-
Boussinesq approximation. This approximation, which neglects the vertical com-
ponent of the flow, yields the following prediction for the active volume of water
(Appendix G)

Va

SL2W
=
R/K + a2

2
√
R/K

arcsin

( √
R/K√

R/K + a2

)
− a

2
. (8.1)

A comparison of equation (8.1) with our numerical calculations suggests that
the two modeling approaches accord for aspects ratios a ≲ 0.02− 0.1 (figure 15).
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Figure 16: Numerical solutions of the flow for different aquifer aspect ratios and
rainfall rates: (a) a = 1.28 and R/K = 0.001, (b) a = 0.32 and R/K = 0.5, and
(c) a = 0.08 and R/K = 0.07. Orange dashed lines: isoheads. Black dashed

lines: streamlines. (d) Map of the error of the Dupuit-Boussinesq approximation
relative to the present theory in the aspect ratio – rainfall rate plane. The color
and the size of the bullets indicate the amplitude of the relative error. Red stars

indicate the position of the solutions (a), (b), and (c).

Unfortunately, our numerical method does not allow us to compute the active
volume for aspect ratios smaller than a ≲ 10−2. It is therefore impossible to verify
whether our numerical calculations approach the Dupuit-Boussinesq prediction
of Va/(SL

2W ) = π/4×
√
R/K as the aspect ratio tends to zero.

For aspect ratios greater than a ≳ 0.02 − 0.1, the Dupuit-Boussinesq approx-
imation systematically underestimates the active volume, a discrepancy that
increases with the aquifer’s aspect ratio (figure 15). In particular, the Dupuit-
Boussinesq approximation predicts that the active volume vanishes when the
aspect ratio tends to infinity, whereas it saturates to a finite asymptotic value in
the present theory (figure 15). As a result, the Dupuit-Boussinesq approximation
utterly fails to predict the active volume in our experimental aquifer of aspect
ratio a = 0.7 (figure 12).
A closer look at figure 15b suggests that the cutoff aspect ratio, above which the

two modeling approaches diverge, slightly varies with the dimensionless rainfall
rate R/K. We now discuss this point in more detail. We first note that the flow of
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groundwater is made of two superimposed horizontal layers (figure 2). The deeper
layer, of thickness equal to the aquifer depth H, lies below the aquifer outlet, and
develops a strong vertical flow component near the drainage divide (right wall)
and along the vertical wall below the outlet (figure 5). The upper layer lies above
the aquifer outlet, and the amplitude of its vertical flow component depends on
its thickness, which is equal to the elevation of the water table, h.
As the Dupuit-Boussinesq approximation requires that the vertical component

of the flow be negligible, we suspect that its validity depends on the thickness
of the upper layer. If this layer is too thin, h ≪ H, the vertical component of
the deeper layer dominates the flow, and the Dupuit-Boussinesq approximation
fails (figure 16a). Conversely, if the upper layer is too thick compared to the
aquifer length, h≫ L, it develops a strong vertical component, and the Dupuit-
Boussinesq approximation fails again (figure 16b). In short, we suspect that the
Dupuit-Boussinesq approximation holds only when H ≪ h≪ L (figure 16c).
Within the Dupuit-Boussinesq approximation, the characteristic thickness of

the upper layer scales like h/L ∼
√
a2 +R/K − a (Appendix G). The above

inequality therefore translate into the following condition,

3a2 ≪ R/K ≪ 1 , (8.2)

since the rainfall rate cannot exceed R/K = 1. To test this prediction, we compare
the active volume of water from the Dupuit-Boussinesq approximation (8.1), VDB,
with the prediction of our numerical simulations, Va. A map of the relative error
between the two models, |Vdb/Va − 1|, in the aspect ratio – rainfall rate plane
shows that the Dupuit-Boussinesq approximation works best within the limits
predicted by the inequality (8.2) (figure 16d). In short, the Dupuit-Boussinesq
approximation is valid provided that the aspect ratio of the aquifer is small, and
as long as the rainfall rate is not too low.

9. Conclusion

The experiments presented in this paper reveal that the active volume of water
stored in an aquifer decreases with the depth of the latter. This result is conform
to intuition: the discharge at the aquifer outlet scales like the product of its
depth by the average flow velocity. In a deeper aquifer, a smaller flow velocity,
and consequently a smaller deformation of the water table, is thus required for
the groundwater discharge to equilibrate the rainfall input.
Despite its simplicity, turning this qualitative observation into a quantitative

prediction proved a challenging problem: the seepage face and the water table
freely adjust their shapes to accommodate the rainfall input, and calculating
the active volume stored in the aquifer requires to solve Darcy’s law inside a
domain that is a priori unknown. Four approaches allows us to bypass this issue.
The first one is to linearize the boundary condition at the free surface. This
linear theory represents fairly well the flow streamlines in the limit of small
rainfall rates (R/K ≲ 5 10−3), but fails to account for the active volume of
water stored in the aquifer (Jules et al. 2021). The second approach is to use
the Dupuit-Boussinesq approximation (Horton 1936; Guérin et al. 2019). By
design, this theory, which neglects the vertical component of the groundwater
velocity, is unable to represent the flow streamlines (Jules et al. 2021). However,
our numerical calculations show that it provides an accurate estimate of the
active volume of water stored in aquifers provided that the aspect ratio of the
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aquifer is small and the rainfall rate not too low (R/K ≫ 3(H/L)2). The third
approach is to consider the limiting case of an aquifer of infinite depth. In this
asymptotic configuration, conformal mapping allows us to map the seepage face
and the water table onto well-defined surfaces, and derive a closed-form solution
for the groundwater flow. While strictly valid for an aquifer of infinite depth, our
experiments and simulations show that this solution provides a satisfying estimate
of the active volume provided the aquifer’s aspect ratio exceeds H/L ≳ 0.5. We
are left with the case of aquifers of aspect ratios between H/L ≳ 10−2 and
H/L ≲ 0.5, for which we were unable to derive any closed-form solution. Instead,
we propose a numerical procedure that allows us to solve the problem. We find
that the resulting numerical solution is in good agreement with our experiments.
According to this solution, the active volume in an aquifer, once properly

rescaled, is proportional to −(R/K) log(R/K). This unusual scaling bears the
mark of the viscous dissipation that takes place in the neighborhood of the river
that drains the aquifer. The logarithm of this formula, indeed, is directly inherited
from the behavior of a Darcy flow around a point sink.
As the water table recedes after a rainfall event, surface tension retains a portion

of the water stored within the aquifer (Tschapek et al. 1985; Gennes et al. 2004).
Consequently, the active volume of water stored in the aquifer may be significantly
larger than the volume of water collected at the aquifer’s outlet, after rainfall has
stopped. Based on our experiments, we propose a semi-empirical model that
accounts for the variation of the fraction of water retained inside the aquifer with
the characteristic pore size. Since our experiments involve only water and glass
beads, we cannot explore the influence of surface tension. Given that the latter
plays a crucial role in the retention process, additional experiments are necessary
to elucidate this aspect of the problem.
Our theory predicts that the active volume of water stored in the aquifer

depends on two dimensionless parameters: (1) the ratio of the aquifer depth to
the aquifer length, H/L, (2) the ratio of the rainfall rate to the aquifer hydraulic
conductivity, R/K. Evaluating the hydraulic conductivity of an aquifer in the
field is notoriously challenging and measuring its depth is even more difficult.
As a result, data is scarce. The little we found in the literature fall within the
ranges H/L = 10−3 to 10−1 and R/K = 10−7 to 10−2 (Appendix H, table 2).
However, this data is likely not representative of the variability of H/L and
R/K in nature. The ongoing development of geophysical methods to map the
subsurface of catchments could help to better constrain these two parameters
(Pasquet et al. 2022).
In this paper, we have restricted our analysis to the case of an aquifer bounded

by a flat horizontal bottom. However, the iterative numerical scheme presented
in section 8.2 can be adapted to accommodate the more complex, variable
topographies sometimes encountered in the field (see Appendix I, figure 19).
Finally, our theory adresses the steady-state regime, for which the discharge at

the aquifer outlet balances the rainfall input. As a result, it predicts the maximum
volume of water that an aquifer can store (Horton 1936). In the field, however,
the duration of a rainfall event is often too short for the water table to reach
this maximum storage volume. This calls for an investigation of the transient
stormflow regime, which is crucial to flood forecasting (Guérin et al. 2019). A
theory of this dynamical regime remains to be established for deep aquifers.

Acknowledgements. We thank P. Aussillous, P.Y. Lagrée, F. Métivier, and J. Neufeld for



30

100 101 102

gd2s / ν (m/s)

10−3

10−2

10−1

co
n
d
u
ct
iv
it
y
K

(m
/
s)

Carman-Kozeni

Data

Figure 17: Hydraulic conductivity, K, as a function of the characteristic
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Appendix A. Hydraulic conductivity

Figure 17 displays the hydraulic conductivityK as a function of the characteristic
velocity, gd2s/ν, where ds is the size of the beads that make up the aquifer, ν is
the kinematic viscosity of water, and g is the acceleration of gravity. We find
that K increases linearly with gd2s/ν, in accordance with the empirical Kozeni-
Carman relationship (Carman 1937). A fit of the data yields K = c gd2s/ν, with
c = 5.9± 0.1 · 10−4.

Appendix B. Flow near the aquifer outlet in the weak rainfall regime

Near the outlet, the flow is described by the following expression for z̃,

z̃ =
i

π(1− R̃)

[
(R̃− ω) log(R̃− ω) + (R̃+ ω) log(R̃+ ω)− 2R̃ log R̃

]
. (B 1)

To better understand how the seepage face constrains the flow in the aquifer,
we expand equation (B 1) under the conditions of a small rainfall rate, and at a

distance from the outlet sufficiently large to ensure that R̃/ω is small. Assuming

that 0 < R̃/ω ≪ R̃≪ 1, we find that

z̃ = ω +
2i

π
R̃ logω , (B 2)
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which yields the following expression for the potential,

Φ̃ =
2

π
R̃ logω . (B 3)

As expected when the rainfall rate vanishes, we find Φ̃ = 0, and therefore z̃ = ω:
the water surface is flat, and the groundwater flow vanishes. This observation
allows us to further simplify the complex potential and recover equation (6.10):

Φ̃ =
2

π
R̃ log z̃ . (B 4)

Appendix C. Infinitely deep aquifer

For an infinitely deep aquifer, the condition at the aquifer bottom (5.16) dis-
appears from the set of equations formulated in Section 5, and the boundary
conditions reduce to

x̃ = 1 on the divide (u = 1, v < 0), (C 1)

x̃ = 0 on the wall below the outlet (u = 0, v < 0), (C 2)

x̃ = 0 on the seepage face (0 < u < R̃, v = 0), (C 3)

x̃ =
u− R̃

1− R̃
on the water table (R̃ < u < 1, v = 0). (C 4)

Finding an analytical function z̃(ω) that satisfies these conditions is challenging,
due to the dependency of the last boundary condition on the variable u = Re(ω).
To bypass this issue, we follow a reasoning similar to that of Section 6, and look
for z̃′(ω), the derivative of z̃(ω), instead of z̃(ω) itself. To do this, we introduce the

intermediate function χ(ω) = (1 − R̃) z̃′. Both z̃(ω) and its derivative z̃′(ω) are
analytical, so that our intermediate function χ(ω) is also analytical. The latter
satisfies the following boundary conditions:

Im(χ) = 0 on the divide, (C 5)

Im(χ) = 0 on the wall below the outlet, (C 6)

Re(χ) = 0 on the seepage face, (C 7)

Re(χ) = 1 on the water table. (C 8)

(C 9)

This system of equation admits the following solution

χ = − i

π
log

(
eiπω − eiπR̃

eiπω − e−iπR̃

)
+ (1− R̃) . (C 10)

We now define the integral of χ as z̃s:

z̃s =

∫
χ

1− R̃
dω = ω +

1

π2(1− R̃)

[
Li2
(
e−iπ(ω+R̃)

)
− Li2

(
e−iπ(ω−R̃)

)]
, (C 11)

where Li2 denotes Spence’s function. This function, sometimes referred to as
“dilogarithm”, is defined by the following integral

Li2(z) = −
∫ z

0

log(1− u)

u
du , (C 12)
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where the logarithm has its branch cut along the real negative axis.
For readability, we have left integral (C 11) indefinite. The actual solution of

our problem is

z̃(ω) = z̃s(ω)− z̃s(0) , (C 13)

which corresponds to equation (7.1).

Appendix D. Active volume of water stored in the aquifer during
rainfall

The active volume of water stored in the aquifer during rainfall reads

Va = SL2W

∫ 1

0

h̃(x̃)dx̃ , (D 1)

where S is the porosity of the aquifer. To calculate this integral we first note that,
at the water table, condition (5.5) allows us to substitute ϕ̃ for h̃ in the above
expression. Using the definition of ω (5.13), we also rewrite dx̃ as

dx̃ = du− dψ̃ . (D 2)

Finally, the water balance at the free surface (5.6) yields

dψ̃ = −R̃dx̃ , (D 3)

so that we can express the active volume in a more convenient way:

Va

SL2W
=

1

1− R̃
Re

[∫

free surface

Φ̃ du

]

=
1

1− R̃
Im

[∫

free surface

(z̃ − ω) dω

]
.

(D 4)

Integrating the above equation yields (7.3).

Appendix E. Volume of water collected at the aquifer outlet

In our experiments, we evaluate the active volume from the volume of water
collected at the aquifer outlet, after the rainfall has stopped. Figure 18a displays
this volume, Vout, rescaled with respect to the characteristic volume SL2W as a
function of the dimensionless rainfall rate, R/K. The data do not gather along
the same trend, but exhibit a residual dependency: the quantity of water collected
at the outlet decreases with the size of the beads that make up the aquifer (figure
18a).
As discussed in section 7.4, this trend reflects the influence of surface tension,

which retains a fraction of the active volume of water stored in the aquifer. Using
equation (7.6), we correct for this effect, and evaluate the active volume of water.
We find that the three experimental series, corrected from the effect of surface
tension, gather along the same curve, regardless of bead size (figure 18b).

Appendix F. Weak rainfall regime in an infinitely deep aquifer

Equation (7.1) is an exact solution of Laplace’s equation in an aquifer of infinite
depth. As the rainfall rate decreases, we expect that the water table declines until
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Figure 18: (a) Dimensionless volume of water collected at the aquifer outlet as a
function of the dimensionless rainfall rate. (b) Dimensionless active volume of
water as a function of the dimensionless rainfall rate. The active volume of
water is evaluated from the volume collected at the aquifer outlet, using

equation (7.6). Different markers indicate different experimental series (see
legend of figure 10). Blue line: infinitely-deep aquifer theory. Red line:

weak-rainfall limit of the infinitely-deep aquifer theory, equation (7.8). Dashed
black line: numerical computation for an aquifer of aspect ratio a = 0.7.

it joins the horizontal axis when R̃ = 0. Expanding equation 7.1 at leading order
in R̃, we find

Φ̃ ∼ 2

π
R̃
[
log(1− e−iπω)− log π − log R̃

]
. (F 1)

As expected when the rainfall rate vanishes, we find Φ̃ = 0, and therefore z̃ =
ω. In short, the water surface is flat, and the groundwater flow vanishes. This
observation allows us to further simplify the complex potential (F 1) by keeping
only the leading-order terms. We find

Φ̃ ∼ 2

π
R̃

[
log

(
1− e−iπz̃

π

)
− log R̃

]
, (F 2)

which corresponds to equation (7.7).
To evaluate the active volume of water stored in the aquifer in the limits of

small rainfall rates, we inject equation (F 2) in the expression of the active volume
(7.3)

Va

SL2W
∼ 2

π
R̃ Re

[∫ 1

R̃

[
log(1− e−iπω)− log π − log R̃

]
dω

]
(F 3)

which, keeping only the leading-order terms in R̃, yields equation (7.8):

Va

SL2W
∼ − 2

π
R̃ log R̃ . (F 4)
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Appendix G. Active volume in the Dupuit-Boussinesq approximation

The Dupuit-Boussinesq approximation assumes that the vertical component of
the flow is negligible with respect to the horizontal one (Dupuit 1863; Boussinesq
1903). Darcy’s law (5.1), combined with the mass balance, yields the Dupuit-
Boussinesq equation, which, in steady state, reads

∂2(H + h)2

∂x2
= −2

R

K
. (G 1)

The Dupuit-Boussinesq equation requires two boundary conditions. At the out-
let, the groundwater pressure vanishes. The first boundary condition is therefore
h = 0 in x = 0. The right side of the aquifer is bounded by an impervious wall
that mimics a drainage divide. The water discharge therefore vanishes on that
wall, a condition that reads ∂h/∂x = 0 in x = L. With these two boundary
conditions, the Dupuit-Boussinesq equation (G 1) admits the following solution
(Horton 1936),

h

L
=

√
a2 − R

K

x

L

(x
L

− 2
)
− a . (G 2)

Integrating the above equation yields the expression of the active volume of water
stored in the aquifer within the Dupuit-Boussinesq approximation (8.1):

Va

SL2W
=
R/K + a2

2
√
R/K

arcsin

( √
R/K√

R/K + a2

)
− a

2
. (G 3)

This expression appears on figure 15.
When the aspect ratio of the aquifer tends to 0, the active volume predicted

from the Dupuit-Boussinesq approximation tends to

Va

SL2W
=
π

4

√
R/K . (G 4)

Conversely, when the aspect ratio of the aquifer goes to infinity, the active volume
tends to Va ∼ 0.
In section 8.5, we define the upper layer of the groundwater flow as the layer

of fluid above the outlet level. We estimate the characteristic thickness of this
upper layer by setting x = L in (G 2), which yields

h

L
∼
√
a2 +

R

K
− a . (G 5)

Appendix H. Aspect ratios and dimensionless recharge-rates of free
aquifers in nature

The flow of groundwater in a free aquifer depends on two dimensionless parame-
ters: (1) the ratio of the aquifer depth to the aquifer length, H/L, (2) the ratio
of the rainfall rate to the aquifer hydraulic conductivity, R/K. Evaluating the
hydraulic conductivity of an aquifer in the field is notoriously challenging and
measuring its depth is even more difficult. Table 2 summarizes the data we found
in the literature. However, this data is likely not representative of the variability
of H/L and R/K in nature.
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Catchment Quiock creek Zwalm Hafren Fraser River Seepage valleys
Guadeloupe Belgium Wales Colorado Florida Panhandle

French West Indies UK USA USA

R (mm/y) 1260 325 2000 300 1600
K (m/s) 5.6 · 10−6 2.7 · 10−4 1.2 · 10−1 10−3 − 10−5 10−3

R/K 7.1 · 10−3 3.8 · 10−5 5.3 · 10−7 10−5 − 10−3 5 · 10−5

L (m) 40 360 - 2.9 · 104 100
H (m) 10 3 - 2.5 · 103 -
H/L 0.25 8.2 · 10−3 - 8.7 · 10−2 -

Table 2: Annual recharge rate R (rainfall rate minus evapotranspiration),
hydraulic conductivity K, dimensionless recharge R/K, aquifer length L, depth
H, and aspect ratio H/L for several aquifers in the field. Data from Guérin
et al. (2019); Pasquet et al. (2022); Pauwels & Troch (2010); Benettin et al.

(2015); Aigler & Ge (2013); Petroff et al. (2011).
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Figure 19: Numerical solution in an aquifer inclined with respect to the
horizontal. The aquifer of aspect ratio a = 0.2 is submitted to a rainfall rate

R/K = 0.2. The slope of its impervious bottom is 0.2. (a) Mathematical plane,
ω = u+ iv, and (b) physical plane, z̃ = x/L+ iy/L. Orange dashed lines:

isoheads. Black dashed lines: streamlines.The other lines represent the different
boundaries of the problem, according to the legend of figure 6.

Appendix I. Tilted aquifer

So far, we have restricted our analysis to the case of an aquifer bounded by
a flat horizontal bottom. However, the iterative numerical scheme presented
in section 8.2 can be adapted to accommodate the more complex, variable
topographies sometimes encountered in the field. Figure 19 shows, for exam-
ple, the numerical solution obtained in an aquifer inclined with respect to the
horizontal. This aquifer of aspect ratio a = 0.2 is submitted to a rainfall rate
R/K = 0.2. The slope of its impervious bottom is 0.2 (approximately 11 de-
grees). The python routines used to solve that problem are available online:
https://github.com/odevauchelle/pyFreeFem.
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