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Abstract 38 

Sugarcane is a major tropical C4 crop of global economic significance, primarily used for sugar, 39 

ethanol, and bioenergy production. As climate change accelerates, with projected increases in 40 

global temperatures, understanding the temperature sensitivity of sugarcane's radiation use 41 

efficiency (RUE) is crucial for predicting yield under changing environmental conditions. This 42 

study aimed to characterize sugarcane RUE response to temperature across various 43 

environments and varieties from key producing regions worldwide. Using experimental data 44 

from five countries (Brazil, South Africa, United States of America, Zimbabwe, Argentina, and 45 

La Réunion) and 40 distinct varieties, our results indicated that maximum RUE (RUEMAX) 46 

remained consistent across varieties, while apparent RUE (RUEA) showed significant variation. 47 

Based on this dataset, we parameterized different RUEMAX temperature response formalisms 48 

used in crop models (APSIM-Sugar, DSSAT-Canegro, MOSICAS, and emergent formalisms). 49 

We compared their ability to simulate RUEA in various regions accurately. Our analysis 50 

revealed significant differences in formalism performance, emphasizing the need for accurate 51 

parameterization. Additionally, we demonstrated that predictions of biomass production under 52 

climate change scenarios are highly sensitive to the formalism parameterization used to 53 

represent the RUE-temperature relationship. These findings highlight the critical importance of 54 

refining crop models considering temperature response and cardinal temperatures (optimal 55 

range: 30–33 °C) to enhance predictions of sugarcane yield under future climate conditions. We 56 

discussed several physiological processes that may explain differences in RUEA among 57 

varieties. Incorporating these refined mechanisms into models will support more accurate 58 

climate impact assessments and aid breeding programs focused on developing high-yield 59 

sugarcane varieties. 60 

 61 

Keywords: Saccharum spp.; Resource use efficiency; Cultivar; Cardinal temperatures; Climate 62 
change; Crop modelling 63 

 64 

  65 
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Table 1. Acronyms and definitions. 66 

Acronyms Units Definitions 

RUE g DM MJ-1 Radiation-use efficiency, the rate at which a plant is able to 

convert intercepted solar radiation into dry biomass. 

RUEA g DM MJ-1 Apparent radiation-use efficiency, calculated as total 

aboveground biomass at final biomass sampling date 

divided by cumulative intercepted shortwave (global) solar 

radiation since crop start. 

RUEMAX g DM MJ-1 The maximum radiation-use efficiency calculated across a 

sequence of biomass sampling dates in a single cropping 

season.  

RUEO g DM MJ-1 Theoretical maximum radiation-use efficiency under ideal 

water, temperature, and nutrient conditions.  

ADM t ha-1 Aboveground dry biomass per area 

SRAD MJ m-2 d-1 Daily shortwave radiation (global solar radiation) 

PAR MJ m-2 d-1 Daily photosynthetically active radiation 

fiRAD MJ MJ-1 Canopy interception fraction of shortwave (global) solar 

radiation 

iRADc MJ m-2 Cumulated canopy-intercepted shortwave (global) solar 

radiation 

Anet µmol m-2 s-1 Instantaneous leaf net photosynthesis 

GPP µmol m-2 s-1 Gross primary productivity 

 67 

 68 

1. Introduction 69 

Sugarcane (Saccharum spp.) is a perennial C4 tropical grass belonging to the Poaceae 70 

(Gramineae) family and the genus Saccharum (Moore et al., 2013). It is a crop of significant 71 

economic importance worldwide, cultivated primarily to produce sugar, ethanol, electricity, and 72 

other by-products such as fertilizers, specialty chemicals, paper, and compost (Moore and 73 

Botha, 2013). In 2022, around 1.9 billion tons of sugarcane were produced from 26 million ha 74 

globally (FAOSTAT database). The demand for sugarcane-derived products is projected to rise 75 

in the future, driven by population growth and increasing industrial applications, including 76 

biofuels, bioplastics, and other innovative uses (Goldemberg et al., 2014; Leal et al., 2013). To 77 

meet this demand, there is a need to avoid extensification and increase yield in existing 78 

cultivated areas. 79 

Climate change, driven by increases in air temperature in response to increasing 80 

concentrations of greenhouse gases (carbon dioxide, methane, and nitrous oxide), is expected 81 

to impact future sugarcane production (Dias and Inman-Bamber, 2020; Linnenluecke et al., 82 

2018; Marin et al., 2014; Singels et al., 2021). As temperature change is a primary response to 83 

greenhouse gas accumulation in the atmosphere, projected increases in temperature are 84 

associated with a relatively low level of uncertainty (Thornton et al., 2014). Global surface 85 

mean temperatures have risen by 1.1°C over the last century and are projected to reach +1.5°C 86 

in the near term (2030–2035). By 2100, temperatures are expected to increase further, ranging 87 
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from +1.4°C under a low-emission scenario to +4.4°C under a high-emission scenario (IPCC, 88 

2023). Tropical regions, where sugarcane is predominantly grown, are expected to experience 89 

significant increases in the annual hottest day temperatures (IPCC, 2023).  90 

While global warming’s impacts on other climatic variables, such as rainfall, involve 91 

great uncertainty, there remains a substantial risk that precipitation may decrease or become 92 

more variable in many sugarcane-producing regions in the future (Feng et al., 2013). Water 93 

performs numerous critical functions in plants, with cooling through evaporation requiring the 94 

largest volume of water. Thus, decreases in rainfall can exacerbate heat stress in plants by 95 

effectively increasing the temperatures they experience (Inman-Bamber et al., 2012). 96 

Consequently, accurate predictions of climate change impacts on sugarcane production depend 97 

on robust modeling of how changes in temperature influence key plant physiological processes. 98 

One of the advantages of sugarcane is its exceptional ability to use sunlight to drive 99 

photosynthesis and produce biomass. The efficiency with which a crop converts canopy-100 

intercepted solar radiation into biomass can be quantified using a parameter known as radiation-101 

use efficiency (RUE, g MJ-1) (Monteith et al., 1997). Sinclair and Muchow (1999) reported a 102 

sugarcane RUE of about 2.0 g MJ-1 and stated that this is the highest value of all economically 103 

significant field crops. However, there is ongoing debate regarding whether RUE is a stable 104 

trait across varieties and the growing season, excluding yield-limiting factors (Acreche, 2017; 105 

Acreche et al., 2015; De Silva and De Costa, 2012; Dias et al., 2021a; Donaldson et al., 2008; 106 

Robertson et al., 1996). This controversy reduces the accuracy of climate change predictions 107 

on biomass production in different regions.  108 

Resolving the RUE-variety debate requires some interpretation of how RUE is measured 109 

and what different reported RUE values represent (see Table 1, which includes detailed 110 

acronyms and their definition and units of measure). In principle, RUE is calculated as the 111 

change in dry biomass between two points in time, divided by the solar radiation intercepted by 112 

the crop during that period (Monteith et al., 1997). Typically, biomass measurements exclude 113 

root biomass, and intercepted radiation can refer to either shortwave (global) (SRAD, MJ m-2 114 

d-1) or photosynthetically active radiation (PAR, MJ m-2 d-1). When RUE is calculated as the 115 

total crop biomass at harvest (or final biomass sample) divided by total radiation intercepted 116 

since crop start, it is referred to as ‘apparent’ RUE (RUEA, g MJ-1) (Robertson et al., 1996; 117 

Sinclair and Muchow, 1999). Conversely, RUE calculated for a period between two biomass 118 

sampling events is termed RUEP (g MJ-1). RUEA can be lower than RUEP if stresses (e.g., very 119 

hot or cold conditions, drought, low nutrient availability) or other processes (high maintenance 120 

respiration, lodging) reduce biomass accumulation rates during specific sampling periods. The 121 

highest sugarcane RUEP value for sugarcane in a single cropping season has been termed 122 

RUEMAX (g MJ-1) (Jones et al., 2019; Muchow et al., 1994; Park et al., 2005; Robertson et al., 123 

1996; Sinclair and Muchow, 1999). For a large dataset, the highest RUEMAX approaches the 124 

theoretical maximum RUE for sugarcane (or a specific variety), referred to as RUEO (Jones et 125 

al., 2019; Singels, 2013). 126 
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RUE has been observed to be sensitive to air temperature (Dias et al., 2021a; Donaldson 127 

et al., 2008). Crop species with the C4 photosynthesis pathway, such as sugarcane, are better 128 

adapted to higher temperatures (> 25 °C) compared to species with C3 photosynthesis (Long, 129 

1999). This adaptation underscores the importance of C4 crop species in warmer future climatic 130 

conditions. It is also acknowledged that C4 crop species are significantly sensitive to variations 131 

in air temperature within the 20–30 °C range (Long, 1999). This temperature range is typical of 132 

current sugarcane-producing regions worldwide (Dias and Inman-Bamber, 2020). The 133 

anticipated economic importance of sugarcane in the future underscores the urgent need to 134 

predict the impacts of climate change on sugarcane productivity accurately. This is essential for 135 

planning effective adaptation strategies to mitigate the adverse effects of climate change and, 136 

where possible, capitalize on its positive impacts. In this context, RUE emerges as a critically 137 

important physiological trait in sugarcane. The magnitude of expected future temperature 138 

changes is substantial enough to significantly impact the RUE of typical C4 crops by shifting 139 

sugarcane-growing environments closer to, or further from, their optimal temperature range. 140 

RUE is an important parameter in many dynamic sugarcane simulation models, 141 

including DSSAT-CSM-CANEGRO (referred to as ‘DSSAT-Canegro’ from now on; Jones and 142 

Singels, 2018) and APSIM-Sugar (referred as ‘APSIM’ from now on; Keating et al., 1999), 143 

which are the most widely used worldwide to date (see Dias and Inman-Bamber, 2020 for a 144 

complete list of sugarcane models). MOSICAS (Christina et al., 2021) and DSSAT-CSM-145 

SAMUCA (Vianna et al., 2020) have gained attention in the past five years. These models differ 146 

in their representation of RUEO and its response to temperature, which includes both the 147 

cardinal temperature as well as the formalism for response to temperature (Jones et al., 2019; 148 

Vianna et al., 2022) usually using linear (e.g. DSSAT-Canegro and APSIM) or symmetric 149 

curvilinear (e.g. MOSICAS) responses. Some of these differences can be linked to the 150 

difference in RUE representation in crop models, whether considering net (APSIM) or gross 151 

(DSSAT-Canegro and MOSICAS) photosynthesis (Jones et al., 2021). To explore the impact of 152 

climate change on sugarcane productivity, crop models are essential tools to represent biomass 153 

accumulation response to temperature through the RUE concept, and literature suggests that 154 

formalisms that represent the nonlinear and non-symmetric response of photosynthesis to 155 

temperature (Johnson et al., 2010; Wang and Engel, 1998) can be used to improve the ability of 156 

crop models to make reliable predictions under current or future climate scenarios (Wang et al., 157 

2017). Thus, having confidence in the sugarcane RUE response to temperature in these models 158 

is critical. 159 

The broad objective of this study was to characterize the sugarcane RUE response to 160 

temperature using field data spanning environments and varieties across important sugarcane-161 

producing regions worldwide to ensure that predictions of future sugarcane yield are as accurate 162 

and representative as possible. Specific objectives were to i) evaluate if RUEMAX varies across 163 

varieties in major producing countries, ii) assess whether the formalisms used in crop models 164 

appropriately represent the RUE response to temperature, and iii) investigate the impact of 165 

different formalisms on biomass predictions in crop models and their sensitivity to the choice 166 

of RUE-temperature response, in the context of warming climates.  167 
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2. Material & Methods 168 

2.2. RUE Datasets 169 

The data used in this study included sugarcane in-field experimental data previously 170 

published in the literature (Table 2). Two experiment datasets were gathered: i) varietal 171 

experiment datasets, where experiments included variety comparisons in the same field, and ii) 172 

crop model calibration and sensitivity datasets, including only one variety per experiment. The 173 

first dataset was used to assess variety differences in RUEMAX and RUEA, and the second was 174 

used for crop model calibration and sensitivity analysis.  175 

The “varietal experiment” dataset included measurements of the fraction of intercepted 176 

radiation (fiRAD) by the sugarcane canopy considering the incident global solar radiation 177 

(SRAD, in MJ m-2 d-1) and periodic aboveground dry mass (ADM, in tons, g or kg DM ha-1) 178 

sampling over the crop season. 179 

The “calibration and sensitivity” dataset included periodic ADM, fiRAD, and Leaf Area 180 

Index (LAI), except for South African data (SAF-PONG and SAF-MEDG), which only 181 

included observations of accumulated intercepted radiation with ADM. All experiments were 182 

fertilized under optimal conditions. Most of the experiments were irrigated except for a few, 183 

which were rainfed (experiments in Argentina and the RUN-SALS experiment in La Reunion) 184 

when rainfall was enough to meet sugarcane water demand. In this paper, a trial was defined as 185 

a one-year growth cycle in a specific site and country (Table 2). 186 

 187 

Table 2. RUE datasets used for the varietal experiment analysis or the calibration and sensitivity 188 

analysis, including country, experiment identification, number (No.) of plant and ratoon crop 189 

cycles, and number of varieties compared in each site and data source. 190 

   No. of Crop Cycle   

Datasets Country Experiment ID Plant  Ratoon No. of 

varieties 

Source 

Varietal 

experiment  

La Reunion RUN-DEL1* 1 0 18 (Christina et al., 2020)  

RUN-ICSM* 1 1 5 (Jones et al., 2019)  

Brazil BRA-MGSR* 2 0 6 (Dias et al., 2021a, 2020)  

BRA-PIGL* 3 0 6 (Dias et al., 2021a, 2020)  

BRA-CRU 1 1 3 (Cruz et al., 2021)  

South Africa SAF-ICSM* 1 1 5 (Jones et al., 2019)  

USA USA-ICSM* 0 1 6 (Jones et al., 2019)  

Zimbabwe ZIM-ICSM* 1 0 6 (Jones et al., 2019)  

Argentina ARG-SAEZ 1 2 5 (Saez et al., 2019)  

Calibration 

& 

Sensitivity  

La Reunion RUN-SALS 0 3 R579 

 

(Viaud, 2023)  

RUN-LINV 1 0 (Christina et al., 2020) 

Brazil BRA-VIAN 0 2 RB867515 (Vianna et al., 2020)  

BRA-PIGL 3 0 (Dias et al., 2021a, 2020)  

South Africa SAF-PONG 0 3 NCo376 (Donaldson, 2009)  

SAF-MEDG 0 2 (Singels et al., 2005)  

Argentina ARG- SAEZ 1 2 LCP 85-

384 

(Saez et al., 2019)  

* used in the variety x environment interaction analysis in this study (section 2.3) 191 

 192 
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2.3. Leaf photosynthesis and GPP datasets 193 

In addition to RUE, in-field data of instantaneous leaf net photosynthesis (Anet, µmol m-194 
2 s-1) and gross primary productivity (GPP, µmol m-2 s-1) were gathered from the literature. Anet 195 

and GPP variables were normalized between 0 and 1 using the 99% upper quantile as the higher 196 

observed values. The sources, experimental conditions, and measurements are briefly described 197 

below.  198 

The first dataset measured leaf photosynthesis in sugarcane (plant crop cycle) in 199 

Campinas, Sao Paulo State, Brazil (Magalhães Filho, 2014). The design included four varieties 200 

(SP79-1011, IACSP94-2094, IACSP94-2101, and IACSP95-5000) with four replicates grown 201 

under optimal fertilization and irrigation. Anet was measured on eleven dates, from 125 to 477 202 

days after planting, from 7:00 to 17:00, every 2 hours. Measurements were taken using an 203 

infrared gas analyzer (LI-6400XT, LICOR, Lincoln NE, USA) under natural variations of air 204 

temperature, relative humidity and light intensity. Measurements were recorded under low 205 

coefficient of variation (CV < 5%) and temporal stability. Leaf and air temperature were 206 

measured with the LI-6400XT. Note that leaf and air temperature were similar in this 207 

experiment, and thus, the response to air temperature was chosen in the following analysis.  208 

In the second dataset, GPP was estimated in a highly monitored rainfed experimental 209 

site with eddy-covariance measurements during the second and third ratoons of sugarcane 210 

variety SP83-2847 at an hourly time step, in Luiz Antonio, Sao Paulo State, Brazil (Cabral et 211 

al., 2013, 2012). The filtered and gap-filled net ecosystem exchange (NEE) data was partitioned 212 

into GPP and Ecosystem respiration (Reco) through the “nighttime partitioning” method 213 

(Wutzler et al., 2018), applying the temperature response function of nighttime NEE fluxes to 214 

estimate Reco during daytime, based on the Lloyd & Taylor model (Lloyd and Taylor, 1994). 215 

GPP and air temperature above the canopy were used in our analysis.  216 

 217 

2.4. RUE calculation and varietal effect analysis 218 

RUE was calculated as the increase in sugarcane ADM divided by the accumulated daily 219 

iRAD in each plot from each trial. Two RUEs were calculated: RUEA, defined as the final ADM 220 

at harvest divided by the cumulated intercepted global radiation over the crop cycle since 221 

planting, and RUEMAX, calculated as the maximum RUE observed between successive biomass 222 

sampling dates during the crop cycle. The corresponding mean air temperature to this RUEMAX 223 

was calculated as the mean between these two sampling dates. To calculate RUE, the daily 224 

fiRAD was estimated over the growth season based on a logistic growth function (Verhulst, 225 

1838), a common sigmoidal-style curve used in agricultural studies (Archontoulis and Miguez, 226 

2015): 227 

𝑓𝑖𝑅𝐴𝐷(𝑑) =  
𝑓𝑖𝑅𝐴𝐷𝑚𝑎𝑥

1 + 100 𝑒−𝑏 𝑑
(1) 228 

𝑅𝑈𝐸𝐴 =
𝐴𝐷𝑀(ℎ𝑎𝑟𝑣𝑒𝑠𝑡)

∑ 𝑓𝑖𝑅𝐴𝐷(𝑑) 𝑆𝑅𝐴𝐷(𝑑)𝑑=ℎ𝑎𝑟𝑣𝑒𝑠𝑡
𝑑=0

(2) 229 
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𝑅𝑈𝐸𝑀𝐴𝑋 = max
0≤𝑑1,𝑑2≤ℎ𝑎𝑟𝑣𝑒𝑠𝑡

(
𝐴𝐷𝑀(𝑑2) − 𝐴𝐷𝑀(𝑑1)

∑ 𝑓𝑖𝑅𝐴𝐷(𝑑) 𝑆𝑅𝐴𝐷(𝑑)𝑑=𝑑2
𝑑=𝑑1

) (3) 230 

Where d is the number of days since planting or previous harvest, fiRADmax is the maximum 231 

intercepted radiation reached, and b is an empirical fitting parameter. 232 

Regressions were performed in each plot from the varietal experiment dataset using the 233 

nlsLM function (minpack.lm R package, Elzhov et al., 2016). A comparison between predicted 234 

fiRAD and measured fiRAD can be found in Supplementary Material Fig. S1, which yielded a 235 

root mean square error (RMSE) of 0.11 and a mean bias of -0.03.  236 

First, the RUE response to the interaction between the variety and its environment 237 

(defined as a trial) was assessed using a subset of the varietal experiment where the same variety 238 

was tested in different sites (Table 2). The effect of the interaction between variety and trial, 239 

and crop class (CropClass, i.e., plant or ratoon crop) on RUEA and RUEMAX was assessed using 240 

a linear analysis of variance: 241 

𝑅𝑈𝐸 ~ 𝐶𝑟𝑜𝑝𝐶𝑙𝑎𝑠𝑠 + 𝑉𝑎𝑟𝑖𝑒𝑡𝑦 + 𝑇𝑟𝑖𝑎𝑙 + 𝐶𝑟𝑜𝑝𝐶𝑙𝑎𝑠𝑠: 𝑉𝑎𝑟𝑖𝑒𝑡𝑦 + 𝑇𝑟𝑖𝑎𝑙: 𝑉𝑎𝑟𝑖𝑒𝑡𝑦 (4) 242 

To ensure residue normality, the RUE variables were transformed using a Box-Cox 243 

transformation (powerTransform and bcPower R function, car R package, Fox et al., 2023). As 244 

non-significant interaction was found (see 3.1 result section), the influence of crop class and 245 

variety on the whole varietal experiment dataset was assessed using a mixed linear analysis of 246 

variance with the trial as a random effect (nlme R package, Pinheiro et al., 2022): 247 

𝑅𝑈𝐸 ~ 𝐶𝑟𝑜𝑝𝐶𝑙𝑎𝑠𝑠 + 𝑉𝑎𝑟𝑖𝑒𝑡𝑦 + (1|𝑇𝑟𝑖𝑎𝑙) (5) 248 

Variables were also Box-Cox transformed to ensure residue normality. Predicted means 249 

and confidence intervals per variety or CropClass were estimated using the emmeans function 250 

(emmeans R package, Lenth et al., 2023). The emmeans function was also used to perform 251 

pairwise comparison with a Tukey p-adjustment method. 252 

 253 

2.5. Description of RUE - temperature formalisms in crop models  254 

In most sugarcane crop models, the influence of daily mean temperature (TMEAN) on 255 

RUE is applied as an efficiency response function of temperature (fTRUE, 0-1), and the daily 256 

potential biomass production results from fTRUE, total intercepted radiation, and RUEMAX. Crop 257 

models use different formalisms of temperature effects on RUE, and four of them were 258 

compared in this study. The first formalism (referred to as ApsimCanegro), used in the APSIM 259 

(Keating et al., 1999) and DSSAT-Canegro (Jones and Singels, 2018) models, consists of a 260 

trapezoidal function, with a linear increase or decrease between two optimal temperatures: 261 

𝑖𝑓(𝑇𝑀𝐸𝐴𝑁 ≤ 𝑇𝐵 | 𝑇𝑀𝐸𝐴𝑁 ≥ 𝑇𝑋) {𝑓𝑇𝑅𝑈𝐸 = 0} (6) 262 

𝑖𝑓(𝑇𝑀𝐸𝐴𝑁 ≥ 𝑇𝑂𝑃𝑇1 | 𝑇𝑀𝐸𝐴𝑁 ≤ 𝑇𝑂𝑃𝑇2) {𝑓𝑇𝑅𝑈𝐸 = 1 } (7) 263 

𝑖𝑓(𝑇𝑀𝐸𝐴𝑁 > 𝑇𝐵 | 𝑇𝑀𝐸𝐴𝑁 < 𝑇𝑂𝑃𝑇1) {𝑓𝑇𝑅𝑈𝐸 =
𝑇𝑀𝐸𝐴𝑁 − 𝑇𝐵 

𝑇𝑂𝑃𝑇1 − 𝑇𝐵
} (8) 264 
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𝑖𝑓(𝑇𝑀𝐸𝐴𝑁 > 𝑇𝑂𝑃𝑇2 | 𝑇𝑀𝐸𝐴𝑁 < 𝑇𝑋) {𝑓𝑇𝑅𝑈𝐸 =
𝑇𝑋 − 𝑇𝑀𝐸𝐴𝑁 

𝑇𝑋 − 𝑇𝑂𝑃𝑇2
} (9) 265 

Where TB, TOPT1, TOPT2, TX are base, first, and second optimum (optimum range), and maximum 266 

temperature, respectively. 267 

The second formalism (referred to as Mosicas), used in the MOSICAS crop model 268 

(Christina et al., 2021), was a symmetric curvilinear response with only one optimal 269 

temperature and no base and maximum temperature but a rate of decrease with suboptimal 270 

temperatures: 271 

𝑓𝑇𝑅𝑈𝐸 = 1 − 𝑇𝐷𝐸𝐶|𝑇𝑀𝐸𝐴𝑁 − 𝑇𝑂𝑃𝑇|
𝛾 (10) 272 

𝑖𝑓(𝑓𝑇𝑅𝑈𝐸 ≤ 0) {𝑓𝑇𝑅𝑈𝐸 = 0} (11) 273 

Where TOPT is the optimal temperature and TDEC and γ are parameters controlling the rate of 274 

decrease in RUE with temperature. 275 

The third formalism (referred to as Wang-Engel) proposed by (Wang and Engel, 1998) 276 

has been shown to be effective in simulating the phenology and photosynthesis response of 277 

varied annual crops to temperature (Streck et al., 2007; Wang et al., 2017, 2018). It is a non-278 

symmetric curvilinear response with an optimal temperature, base temperature, and maximum 279 

temperature: 280 

𝑖𝑓(𝑇𝑀𝐸𝐴𝑁 ≤ 𝑇𝐵 | 𝑇𝑀𝐸𝐴𝑁 ≥ 𝑇𝑋) {𝑓𝑇𝑅𝑈𝐸 = 0} (12) 281 

𝑖𝑓 (𝑇𝑀𝐸𝐴𝑁 > 𝑇𝐵|𝑇𝑀𝐸𝐴𝑁 < 𝑇𝑋) 

{
 
 

 
 𝛼 =

ln(2)

ln (
𝑇𝑋 − 𝑇𝐵

𝑇𝑂𝑃𝑇 − 𝑇𝐵
⁄ )

𝑓𝑇𝑅𝑈𝐸 = (
2(𝑇𝑀𝐸𝐴𝑁 − 𝑇𝐵)

𝛼(𝑇𝑂𝑃𝑇 − 𝑇𝐵)
𝛼 − (𝑇𝑀𝐸𝐴𝑁 − 𝑇𝐵)

2𝛼

(𝑇𝑂𝑃𝑇 − 𝑇𝐵)2𝛼
)

𝛽

}
 
 

 
 

(13) 282 

Where TOPT is the optimal temperature, TB and TX are the base and maximum temperature for 283 

RUE, and β is a parameter controlling the curvature. 284 

The fourth formalism (referred to as Johnson), a modified beta function to describe the 285 

photosynthesis response to temperature, proposed by Johnson et al. (2010), was similar to the 286 

Wang-Engel formalism but with a maximum threshold:  287 

𝑓𝑇𝑅𝑈𝐸 = (
(1 + 𝑐)𝑇𝑂𝑃𝑇 − 𝑇𝐵 − 𝑐 𝑇𝑀𝐸𝐴𝑁
(1 + 𝑐)𝑇𝑂𝑃𝑇 − 𝑇𝐵 − 𝑐 𝑇𝑅𝐸𝐹

)(
𝑇𝑀𝐸𝐴𝑁 − 𝑇𝐵
𝑇𝑇𝑅𝐸𝐹 − 𝑇𝐵

)
𝑐

(14) 288 

Where TOPT and TREF are optimal temperatures, TB is the base temperature, and c a curvature 289 

coefficient. 290 

  291 
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2.6. Temperature response regression analysis 292 

The parameterization of the fTRUE functions was performed based on a quantile 293 

regression to assess the envelop curve of RUE response to temperature, as many other processes 294 

could reduce RUEMAX other than temperature in the dataset, such as variation in water and 295 

nutritional status in field-grown plants even under well-managed conditions. The dataset used 296 

to assess the change in RUEMAX with air temperature included the dataset used in the varietal 297 

experiment (averaged per variety and trial, Table 1) as well as additional RUEMAX values 298 

published in the literature (Araújo, 2016; Barbosa, 2017; De Silva and De Costa, 2012; 299 

Donaldson, 2009; Donaldson et al., 2008; Muchow et al., 1997; Olivier et al., 2016; Park et al., 300 

2005; Schwerz et al., 2018; Silva, 2009; Singels and Smit, 2002). To parameterize the fTRUE 301 

response, a normalized RUEMAX was defined as the measured RUEMAX divided by the 302 

maximum predicted RUEMAX obtained in the varietal effect analysis (i.e., 3.0 g DM MJ-1).  303 

Despite including published RUE data, the dataset did not include RUEMAX response to 304 

very high (above 32 °C) or very low (below 15 °C) air temperatures and could not be used alone 305 

to parameterize RUE response to very low and high temperatures. Consequently, the change in 306 

leaf photosynthesis and canopy GPP to temperature was also explored through two additional 307 

datasets as a proxy for crop RUE (see section 2.2). The change in Anet and GPP with air 308 

temperature was parameterized for each formalism using a 99% quantile regression (nlrq 309 

function from quantreg R package, Koenker, 2009). For formalisms including a minimum 310 

temperature, a lower boundary was defined for minimum temperature as 7 °C in the regression, 311 

based on previous studies on canopy GPP or net ecosystem exchange responses to temperature 312 

(Colmanetti et al., 2024; Cuadra et al., 2012) as well as leaf photosynthesis response (Peixoto 313 

and Sage, 2017; Sage et al., 2013).  314 

For high-temperature response, two strategies were defined for RUE response to air 315 

temperature: i) a Leaf-type response, where temperature parameters at high temperatures 316 

(TOPT2, TMAX, and TREF) were fixed to the same value obtained in the leaf photosynthesis 317 

response regression, and ii) a GPP-type response, in which the temperature parameters at high 318 

temperatures were fixed to the same value obtained in the GPP regression. Note, as the Mosicas 319 

formalism did not require minimum and maximum temperatures, no parameters were fixed for 320 

this formalism. The change in RUEMAX with mean air temperature in each formalism was 321 

parameterized using a 90% quantile regression due to a lower number of observations (n = 179) 322 

compared to Anet (n = 1,055) or GPP (n = 8,436). 323 

To compare formalisms and assess the quantile regression quality, we calculated the 324 

quantile loss (or pinball loss) index QLI as follows: 325 

𝑄𝐿𝐼 =  
1

𝑛
∑{

𝜏 (𝑦𝑖 − 𝑦𝑖̂) 𝑖𝑓(𝑦𝑖 ≥ 𝑦𝑖̂)

(1 − 𝜏) (𝑦𝑖 − 𝑦𝑖̂) 𝑖𝑓(𝑦𝑖 < 𝑦𝑖̂)

𝑛

𝑖=1

(15) 326 

Where 𝑦𝑖  is the observation, 𝑦𝑖̂  is the corresponding predicted quantile, 𝜏 is the quantile level 327 

(e.g., 0.9), and n is the number of observations. A lower QLI indicated a better quantile fit (note 328 

that only comparison at the same quantile level is appropriate). 329 
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The default RUE parameterization for the different formalisms referred to the parameter 330 

values obtained from the literature (Jones et al., 2021 for ApsimCanegro; Christina et al., 2021 331 

for Mosicas; Wang et al., 2018 with maize parameters for Wang-Engel; Johnson et al., 2010 332 

with C4 species parameters and TOPT = 33 °C for Johnson) and QLI was calculated for this 333 

default parameterization. 334 

 335 

2.7. Crop model sensitivity to RUE-T formalism and parameterization 336 

The influence of model formalism and parameterization on RUEA and ADM predictions 337 

was explored in different locations under current and future climates. To this aim, we adapted 338 

the MOSICAS crop model (Christina et al., 2021), which was written in R in open-access 339 

(https://gitlab.cirad.fr/mathias.christina/mosicas), and thus the RUE – temperature response 340 

equation was easily changed. MOSICAS, a deterministic thermoradiative type model that 341 

accounts for water stress, consists of daily growth and carbon balance modules linked to a water 342 

balance module. The canopy is represented by LAI following a ‘big-leaf’ approach, whereas 343 

the intercepted radiation is calculated based on the extinction coefficient approach. The model 344 

converts the daily intercepted radiation into daily gain in total dry mass, considering 345 

temperature-reducing factors, water stress, and maintenance respiration. To use the 346 

aboveground RUE measured in this study, we modified the model to express RUE based on 347 

SRAD. Note that the MOSICAS model uses the air temperature above the canopy in the RUE 348 

temperature response curve, so the input temperature from the weather station is directly used 349 

in the calculation.  350 

For each variety (Table 2, calibration and sensitivity analysis dataset) and depending on 351 

available observations, we first calibrated the model on the dynamics of leaf area index (LAI), 352 

fraction of intercepted radiation (fiRAD), or cumulated intercepted radiation (iRADc, details 353 

on calibrated parameter in Supplementary Material Table S1). The RUEMAX value was assumed 354 

constant across varieties and fixed to the same higher value as the one used to normalize 355 

RUEMAX (3.0 g DM MJ-1, see section 2.6). Parameter optimizations were performed using the 356 

RGenoud optimization code provided with the MOSICAS model (see gitlab repository). Then, 357 

we changed the RUE temperature response equations using the new parameter values obtained 358 

during the procedure described in section 2.4. In addition, the sensitivity of each variety to water 359 

stress was calibrated to simulate ADM observations accurately. RUEA simulation accuracy was 360 

assessed by comparing observations (calculated in section 2.5) and predictions based on relative 361 

RMSE (rRMSE).  362 

We assessed the long-term sensitivity of the crop model to the choice of formalism in 363 

three sites on Reunion Island with contrasting temperature patterns. We chose Reunion Island 364 

as a study case due to its high climate variability with sugarcane ranging from sea level to 1,000 365 

m a.s.l. (Christina et al., 2021). Climate change scenarios are available at a high spatial 366 

resolution (3x3 km, Leroux et al., 2021) for Reunion Island, and we used climate change data 367 

from the RCP 8.5 scenarios to illustrate the sensitivity to high changes in temperature over time. 368 

Based on a previous climate change study on sugarcane yield (Christina et al., 2024b), we 369 
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selected three sites with contrasting average annual temperatures (12.7, 22.1, and 25.1°C, 370 

average over the 2016-2025 period) but similar average daily global radiation (8.6, 9.4, and 8.7 371 

MJ m-2 d-1). These sites were located (latitude/longitude) at -20.93/55.66, -21.11/55.75, and -372 

21.14/55.72 at 20, 135, and 730 m a.s.l. Simulations were performed following the method 373 

applied by Christina et al. (2024b) in these areas using the R579 variety. Potential ADM under 374 

non-limiting water conditions was simulated to isolate the predicted ADM's response to the 375 

temperature increase. 376 

  377 
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3. Results 378 

 379 

3.1. RUE response to variety and crop cycle 380 

The maximum and apparent RUE showed high variability depending on countries, sites 381 

and varieties with RUEA values ranging from 0.5 to 2.5 g DM MJ-1 and RUEMAX ranging from 382 

1.0 to 4.5 g DM MJ-1 (Fig. 1a). In our varietal experiment dataset, there was no interaction 383 

between variety and trial for RUEA (F21,141 = 1.06; p = 0.398) or RUEMAX (F21,141 = 0.88; p = 384 

0.613). Similarly, neither RUEA (F10,141 = 0.78; p = 0.644) nor RUEMAX (F10,141 = 1.26; p = 385 

0.258) presented interaction between crop class and variety. In the mixed model without 386 

interaction, the crop class did not influence RUEA (F1,11 = 0.14; p = 0.71) or RUEMAX (F1,11 = 387 

0.004; p = 0.95, Fig. 1b,c). On the contrary, RUEA (F39,236 = 3.08; p < 0.0001) and, to a lesser 388 

extent, RUEMAX (F39,236 = 1.54; p = 0.027) differed between varieties. 389 

Considering RUEA, and crossed confidence intervals, a high number of significant 390 

differences were noticed among varieties, with mean predicted values ranging from 0.66 to 1.78 391 

g DM MJ-1 (Fig. 1d). The highest RUEA values were observed in varieties from Argentina (e.g., 392 

Fam, L91, RA or Tuc varieties) and Brazil (RB varieties). The change in RUEMAX among 393 

varieties was much lower compared to RUEA. The mean RUEMAX predicted values ranged from 394 

1.32 to 3.04 g DM MJ-1 (Fig. 1e). Nonetheless, considering pairwise regressions, only two 395 

varieties differed among themselves in the RUEMAX pairwise comparison at 5%, the SP80-1842 396 

and F160 varieties (p = 0.0491). All others showed no significant differences in the pairwise 397 

comparisons. 398 

 399 

  400 
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 401 
Fig. 1. Apparent (RUEA) and maximum (RUEMAX) radiation use efficiency (g DM MJ-1) 402 

depending on trials in the varietal experiment dataset (a), crop class (plant or ratoon crop, b, c), 403 

and variety (d, e). Black points and bars represent the predicted means and confidence interval 404 

by the mixed model. Small transparent points indicate the observed values. 405 

  406 
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3.2. Change in RUE with temperature 407 

Based on the current default RUE formalism parameterizations (default temperature 408 

response parameter values), ApsimCanegro and Mosicas formalisms did not allow an 409 

appropriate envelop curve of normalized RUEMAX response to mean air temperature with high 410 

quantile loss index (QLI, Fig. 2a, Table 3). ApsimCanegro and Mosicas overestimated RUEMAX 411 

for temperatures ranging from 10 to 20 °C (Fig. 2a). Considering the net photosynthesis (Anet) 412 

response at leaf level or GPP response to air temperature, all formalisms were able to accurately 413 

represent the observed values range with low 99% QLI ranging from 0.0055 to 0.0057 for Anet 414 

and 0.0061 to 0.0065 for GPP (Fig. 2b,c Table 3). Based on a visual assessment, the Johnson 415 

formalism represented a slightly lower increase in GPP for temperatures ranging from 10 to 20 416 

°C compared to other formalisms. Based on Anet and GPP regressions, we have fixed the base 417 

(TB) and high temperature (TX, TOPT2, or TREF) parameters in ApsimCanegro, Wang-Engel, and 418 

Johnson formalisms to propose two options based on the leaf photosynthesis or GPP dynamics 419 

at very high temperature (Fig. 2d,e, Table 2). In the normalized RUEMAX – temperature 420 

response, whether based on Anet or GPP dynamics, all formalisms presented similar QLI, lower 421 

than the default parameterization (Table 3). Nonetheless, the Mosicas formalism failed to 422 

predict realistic base temperature in the GPP-type regression. 423 

 424 

Table 2. Parameter values in the different RUEMAX – temperature response formalisms 425 

depending on the quantile regressions on net leaf photosynthesis (Anet), gross primary 426 

productivity (GPP), and radiation use efficiency (RUE).  427 

Formalism Parameter Anet GPP RUEMAX 

(default) 

RUEMAX  

(Leaf-type) 

RUEMAX  

(GPP-type) 

ApsimCanegro TB 13.0 7.0 10 13.0* 7.0* 

TOPT1 32.1 27.6 20 27.8 29.6 

TOPT2 35.6 32.6 40 35.6* 32.6* 

TX 46.8 37.7 47 46.8* 37.7* 

Mosicas TOPT 33.7 28.7 32 33.1 33.1 

TDEC 0.032 0.027 0.0025 0.0027 0.0027 

γ 1.14 1.17 2.0 2.0 2.0 

Wang-Engel TB 7.0 7.0 0 7.0* 7.0* 

TOPT 34.5 29.9 27.5 30.7 30.6 

TX 39.4 36.0 40 40.6* 36.0* 

β 0.39 0.44 1 0.84 0.44 

Johnson TB 7.0 7.0 10 7.0* 7.0* 

TOPT 33.4 26.4 25 29.6 29.1 

TREF 34.0 29.1 33 34.0* 29.1* 

c 2.50 2.45 2 1.80 2.21 

* fixed values in the regression. 428 

 429 

  430 
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 431 

Fig. 2. Change in normalized maximum radiation use efficiency (RUEMAX) with mean air 432 

temperature depending on formalism (ApsimCanegro, Johnson, Mosicas, and Wang-Engel) 433 

based on default parameters values (a) and quantile regression using a Leaf-type (d) or GPP-434 

type response (e) for very high and very low temperatures. Leaf-type and GPP-type response 435 

parameters for very low and high temperatures were obtained from the change in normalized 436 

net leaf photosynthesis (Anet, b) or normalized gross primary productivity (GPP, c) with 437 

temperature.  438 

 439 

  440 
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Table 3. Quantile loss index (QLI) in the different RUEMAX – temperature response formalisms 441 

depending on the quantile regressions on net leaf photosynthesis (Anet), gross primary 442 

productivity (GPP), and radiation use efficiency (RUE). The quantiles used for regressions were 443 

0.99, 0.99, and 0.9 for Anet, GPP, and RUE due to differences in number of observations. 444 

Formalism Index Anet GPP RUE 

(default) 

RUE  

(Leaf-type) 

RUE  

(GPP-type) 

ApsimCanegro QLI 0.00551 0.00613 0.0411 0.0248 0.0238 

Mosicas QLI 0.00570 0.00626 0.0280 0.0249 0.0249 

Wang-Engel QLI 0.00549 0.00628 0.0357 0.0242 0.0241 

Johnson QLI 0.00554 0.00646 0.0313 0.0240 0.0272 

 445 

  446 
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3.3. Change in RUEA simulations depending on formalism and parameterization 447 

Dynamics of LAI, fraction of intercepted radiation (fiRAD), and cumulative intercepted 448 

radiation were calibrated for each variety, allowing accurate prediction of fiRAD with rRMSE 449 

ranging from 0.08 to 0.16 depending on varieties (Fig. 3). Different parameters were calibrated, 450 

including a parameter controlling the daily rate of increase in LAI, the sensitivity of LAI to 451 

water stress and the extinction coefficient (Table S1). A unique optimal RUEMAX value was 452 

used for all varieties (3.0 g DM MJ-1), based on the maximum predicted value per variety in the 453 

variance analysis (Fig. 1) and used to normalize the RUE – temperature response (Fig. 2). 454 

Nonetheless, to accurately simulate the aboveground dry mass dynamics, the sensitivity of RUE 455 

to water stress was calibrated for each variety and lowered for LCP85384 and NCo376 varieties 456 

(Fig. 3d, Table S1). With a unique RUEMAX across varieties, simulated aboveground dry 457 

biomass (ADM) rRMSE ranged from 0.19 to 0.43 (considering all formalism and 458 

parametrization combined, Fig. 3d). Nonetheless, the choice of formalism and parameterization 459 

influenced the accuracy of simulated RUEA (Fig. 3e). Using the default parameterization, the 460 

ApsimCanegro, Mosicas, and Wang-Engel formalisms tended to overestimate RUEA values. 461 

For all four formalisms, the GPP-type and Leaf-type parameterization showed a lower rRMSE 462 

on RUEA compared to default parameterization (Fig. 3e). In addition, GPP-type and Leaf-type 463 

parameterization showed similar rRMSE in the Mosicas and Wan-Engel formalisms. 464 

Nonetheless, the GPP-type showed a slightly lower rRMSE (0.188) compared to Leaf-type 465 

parameterization (0.200) with ApsimCanegro, and it was the opposite for Johnson formalism. 466 

 467 

 468 

Fig. 3. Comparison between observed and simulated leaf area index (LAI, a), fraction of 469 

intercepted radiation (fiRAD, b), cumulated intercepted global radiation (iRADc, c), 470 

aboveground dry mass (ADM, d), and apparent radiation use efficiency (RUEA, e) depending 471 

on the formalism used (ApsimCanegro, Mosicas, Wang-Engel, and Jonhson) and the 472 

parameterization (Default, Leaf-type, and GPP-type). The relative rRMSE was indicated per 473 

variety or formalism parameterization. The dashed lines represent the identical curve (1:1). 474 
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3.4. Biomass response to climate change and sensitivity to formalism 475 

The influence of model formalism choice and parameterization in model responses to 476 

future climate was explored using three selected sites with contrasting mean air temperatures 477 

in Reunion Island (Fig. 4), evaluated through projected potential ADM (without water stress). 478 

Regarding parameterization, the change from the default parameterization to the new Leaf-type 479 

or GPP-Type parameterization significantly affected the rate of increase in ADM over the years 480 

in most sites (Fig. 4a). With the ApsimCanegro, Mosicas, and Wang-Engel formalisms, the 481 

default parameterization predicted a lower increase in ADM over the years compared to the 482 

new Leaf and GPP-Type parameterization. For example, with ApsimCanegro in the 483 

intermediate site (TMEAN = 22.1 °C), the average yearly increase in ADM was 0.09 t ha-1 yr-1 484 

with the default parameterization. At the same time, it was 0.36 and 0.28 t ha-1 yr-1 with Leaf-485 

type and GPP-type parameterizations (Fig. 4b). In addition, the difference was higher in the 486 

warmer site. With ApsimCanegro, the yearly increase in ADM was higher by 21, 200, and 307% 487 

with the GPP-type parameterization compared to default one in the 18.7°C, 22.1°C, and 25.1°C 488 

sites, respectively (Fig. 4b). Similar behavior was observed for the Wang-Engel formalism and 489 

to a lesser extent the Mosicas formalism. With the Johnson formalism, lower differences 490 

between default and new parameterization were observed, except in the coldest site, where the 491 

increase in ADM was lower with the new parameterization than with the default one.  492 

The sensitivity to the choice of formalism was low with the new parameterization 493 

(whether Leaf-type or GPP-type) compared to the default parameterization (Fig. 4b). The 494 

coefficient of variation (CV) in the yearly increase in ADM among formalisms was higher in 495 

the default parameterization than the Leaf or GPP-type in all sites. Small differences were 496 

observed between Leaf-type and GPP-type regarding sensitivity to the choice of formalism with 497 

similar CV between 4.2% and 11.6% depending on sites, except for the GPP-type sensitivity in 498 

the warmest site with a CV of 21.6% due to lower early increase with the Johnson formalism. 499 
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 500 

Fig. 4. Change in predicted potential sugarcane aboveground dry mass (ADM without water 501 

stress, t ha-1) from 2015 to 2100 compared to the average 2016 to 2025 period (a) and average 502 

yearly increase in ADM (b) in three selected sites of Reunion Island with contrasted mean air 503 

temperatures (TMEAN = 18.7, 22.1, and 25.1 °C, respectively) and depending on model 504 

formalism and parameterization. The coefficient of variation (CV) of the yearly increase in 505 

ADM among formalism is indicated for each parameterization and site. Sugarcane growth was 506 

predicted under the RCP 8.5 climate change scenario. 507 

 508 

 509 

 510 

  511 
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4. Discussion 512 

 513 

4.1. Contrasted response of RUEA and RUEMAX to variety 514 

It is well known that sugarcane RUE declines with crop age, even when temperature, 515 

water, and nutrient status are not apparently limiting. This phenomenon was termed the 516 

‘reduced growth phenomenon’ (RGP) by Park et al. (2005) and later on further explored by Van 517 

Heerden et al. (2010). Our results suggest that the RUE before its decline, equivalent to 518 

RUEMAX, is minimally influenced by varieties, not only locally as observed in high-yielding 519 

sites in Brazil (Dias et al., 2021a), but also for 40 varieties across six producing countries in our 520 

study where only two varieties differed in RUEMAX (SP80-1842 and F160). Sugarcane breeders 521 

worldwide have likely involuntarily selected high RUEMAX genotypes while screening for high 522 

sucrose yields. Despite the expectation that RUEMAX is closely linked to crop yield, existing 523 

evidence does not always support this, likely due to RGP (De Silva and De Costa, 2012; 524 

Donaldson et al., 2008; Jones et al., 2019). Our results highlight how RUEA strongly differs 525 

among varieties. Thus, there are opportunities to understand the reasons better and exploit that 526 

for crop and agronomic intervention improvements to increase sugarcane production. As the 527 

RGP varies among sugarcane varieties (Dias et al., 2021a), growth slowdown sensitivity could 528 

explain differences in RUEA despite similar RUEMAX among varieties. 529 

Lodging, declining leaf nitrogen status with age, localized feedback inhibition of 530 

photosynthesis by high sugar content in leaf and/or high stalk sucrose content, and high 531 

respiration were hypothesized to be the causes of RGP (Park et al., 2005; Van Heerden et al., 532 

2010) but none of them are conclusive to date and perhaps will not be because these phenomena 533 

might have concomitant causes operating together to decrease RUE over time. Lodging is 534 

definitely involved with RGP (Van Heerden et al., 2015), and recent studies showed how 535 

lodging sensitivity differed significantly among varieties according to aerial traits as tillering 536 

and plant height (Christina et al., 2024a) but also potentially to belowground traits 537 

(Jongrungklang et al., 2018). However, there were many situations where crops did not lodge, 538 

but RUE still declined towards harvest under unlimited growth conditions (Park et al., 2005; 539 

Van Heerden et al., 2010).  540 

Differences in RGP among varieties may represent differences in sensitivity to 541 

environmental limitations when considering two key physiological processes - photosynthesis 542 

and respiration. Leaf N status is closely linked to photosynthesis, and previous studies suggest 543 

that as the sugarcane canopy begins to expand, the plant relies significantly on its internal 544 

nitrogen reserves (Sage et al., 2013). As a result, the available nitrogen is distributed across a 545 

larger leaf area, therefore declining Anet over time. However, evidence suggests that the nitrogen 546 

use efficiency varies among sugarcane genotypes (Robinson et al., 2007), which has a close 547 

relationship with photosynthesis as most leaf nitrogen is invested in photosynthetic proteins 548 

such as Rubisco and PEPC (Sage et al., 2013). Alternatively, sugarcane photosynthesis can be 549 

inhibited by the accumulation of sugars in leaves (McCormick et al., 2009, 2008, 2006). When 550 

comparing the sensitivity of sugarcane to sucrose spraying – a way to inhibit photosynthesis, 551 
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there was a significant variation between genotypes when considering Rubisco and PEPC 552 

abundances and activities (Ribeiro et al., 2017). In that regard, one could argue that other leaves 553 

within the sugarcane canopy could compensate for the inhibitory effect of carbohydrates on the 554 

photosynthesis of light-exposed leaves and prevent or even reduce a decline in overall canopy 555 

photosynthesis (Inman-Bamber et al., 2011), a topic that deserves more research. In fact, leaf 556 

photosynthesis in sugarcane is modulated more by the leaf carbohydrate dynamics than by leaf 557 

carbohydrate concentration (Ribeiro et al., 2017). When active sinks demand energy and 558 

carbon, leaf photosynthesis in sugarcane is stimulated (Ribeiro et al., 2017). In such a scenario, 559 

high-yielding genotypes might present stronger sinks and higher stimulation of photosynthesis 560 

compared to low-yielding genotypes. Taken together, these findings would suggest that the 561 

extension of down- or up-regulation of photosynthesis by sugars is genotype-dependent and 562 

could justify variations in RGP and RUEA among sugarcane cultivars studied herein. 563 

Regarding respiration and its components, the scientific literature is very limited when 564 

considering its importance in field-grown crops, such as sugarcane. For instance, both 565 

maintenance and growth respiration would increase due to high temperatures (Amthor, 2025), 566 

and literature suggests that increased biomass production for summer-started crops limits high 567 

sugarcane yields compared to winter-started ones under well-watered and managed conditions, 568 

possibly due to elevated maintenance respiration of larger crops (Van Heerden et al., 2010). As 569 

the RGP occurs during the final months of the crop cycle during stalk maturation in dry and 570 

cold winter seasons (Martins et al., 2025), one could argue that changes in respiration are not 571 

key in determining RGP in tropical conditions. However, the same is not true when considering 572 

photosynthesis, which is significantly reduced during winter and certainly reduces RUEA in 573 

sugarcane plants (Martins et al., 2024, 2025). Although there is a significant variation in leaf 574 

respiration rate among sugarcane genotypes (Almeida et al., 2021; Ribeiro et al., 2017; Tejera 575 

et al., 2007), the impact of such process on overall canopy respiration and then on RGP and 576 

RUEA of sugarcane remains unknown. Understanding this response is a crucial target for crop 577 

improvement (Amthor, 2025). 578 

In addition to RGP sensitivity, other processes could explain the difference in RUEMAX 579 

and RUEA response to variety, such as the diffuse radiation effect (determining yield factor) or 580 

the water stress sensitivity (limiting factor). RUE is well known to increase with the fraction of 581 

diffuse radiation (Sinclair et al., 1992). Nonetheless, the extent to which different sugarcane 582 

canopy architectures among varieties may induce different responses to diffuse radiation still 583 

needs deeper investigation (Luo et al., 2014, 2013). Under water-limited conditions, there is 584 

evidence that some varieties are better than others regarding water deficit tolerance (Inman-585 

Bamber and Smith, 2005; Venkataramana et al., 1986). Such differences in key periods of 586 

sugarcane growth could explain why RUEA may differ among varieties while RUEMAX remains 587 

constant. Nonetheless, previous studies on an extensive range of varieties showed that the 588 

genotype x water stress interactions effect on stomatal conductance and yield were small 589 

compared to the genotype effect (Basnayake et al., 2015, 2012), suggesting that differences in 590 

water-stress resistance may not be a significant effect explaining the high difference in RUEA. 591 

In our study, most of the experiments were irrigated, so no or limited water stress should have 592 
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occurred, supporting the hypothesis that differences in RUEA may be primarily linked to 593 

differences in growth slowdown sensitivity (Dias et al., 2021a). 594 

 595 

4.2. RUE response to temperature 596 

Improving the temperature response in crop models is essential to reduce the uncertainty 597 

of crop yield projections in the context of global warming (Maiorano et al., 2017; Wang et al., 598 

2017). Nonetheless, our study highlights that biomass production response to temperature is 599 

more sensitive to the choice of cardinal temperatures (base, optimal, and maximum) than the 600 

choice of formalism itself. In addition, improvements in the parameterization significantly 601 

reduced the differences between models.  602 

Based on our study, we recommend that crop models that use the daily RUEO as a 603 

parameter, a base temperature of 7 °C and optimal temperature ranging from 30 to 33 °C, 604 

depending on formalisms, should be encouraged. This base temperature is lower than the ones 605 

historically adopted to represent photosynthesis in the widely used sugarcane crop models (TB 606 

= 9 °C, APSIM, Keating et al., 1999; TB = 10 °C, DSSAT-Canegro, Jones and Singels, 2018), 607 

however it is consistent with carbon exchange measurements at the canopy (Colmanetti et al., 608 

2024; Cuadra et al., 2012) and leaf-scale photosynthesis (Peixoto and Sage, 2017; Sage et al., 609 

2013). Nevertheless, estimating the maximum mean daily temperature based on RUEMAX is 610 

difficult considering the usual sugarcane-cultivated regions since average temperature above 611 

35°C is not observed in such areas. Therefore, obtaining the uppermost RUEMAX temperature 612 

response based on biomass accumulation will require experiments in controlled environments 613 

or specific experiments under very warm regions. 614 

With the currently available datasets, we recommend using GPP-type maximum 615 

temperatures between 36 and 38°C for models based on air temperature above the canopy (e.g., 616 

DSSAT-Canegro, APSIM-Sugar, and MOSICAS) and using Leaf-type maximum temperatures 617 

between 41 and 47 °C for models based on the air temperature inside the canopy (e.g., STICS, 618 

Kebalo et al., 2025) depending on formalism. Nonetheless, for models that use a daily time 619 

step, our study suggests that the maximum temperature adjustments are less sensitive since 620 

those conditions are not common over regions where sugarcane is cultivated (neither nowadays 621 

nor in the future). However, it should be important for models using photosynthesis at an hourly 622 

scale (e.g., JULES, Vianna et al., 2022). Even if our study highlights a low sensitivity to the 623 

choice of RUE-temperature formalism, we recommend Wang-Engel as a more appropriate 624 

formalism for future studies, as i) the parameters have clearer meanings compared to Johnson 625 

formalism, ii) the ApsimCanegro formalism was found to be highly sensitive to the cardinal 626 

temperature values, compared to other formalisms, and iii) Mosicas does not allow a base 627 

temperature to be specified. 628 

Whether the RUEO response to temperature may differ among varieties remains 629 

unsolved in our analysis. The absence of interaction between variety and the trial on RUEMAX 630 

in our study suggests that varieties should respond similarly to temperature (as suggested by 631 

Parent and Tardieu, 2012, in various crops). Previous studies on an international dataset also 632 
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showed low interaction between genotype and environments with stable RUEO in four countries 633 

(Jones et al., 2019). Nonetheless, previous studies at the leaf scale suggest that some sugarcane 634 

varieties or species may differ in their photosynthetic rate response to chilling (Du et al., 1999) 635 

or heat stress (Kohila and Gomathi, 2018; Liu et al., 2020; Peixoto and Sage, 2017). Currently, 636 

we recommend fixing the cardinal temperature parameters for the sugarcane species, 637 

independent of varieties and across environments. More detailed datasets may reveal that 638 

RUEMAX response to temperature significantly differs among varieties. 639 

As highlighted by our study, the estimation of cardinal temperatures (base, optimal, and 640 

maximum) for RUE has substantial consequences for application in climate change studies, 641 

with potential underestimation of the increase in ADM in previous studies using the two most 642 

used models APSIM-Sugar (e.g., Dias et al., 2021b) and DSSAT-Canegro (e.g., Marin et al., 643 

2013; Singels et al., 2014). While we are confident that our new parameterization should reduce 644 

the uncertainty of ADM estimates for projected climate change, the current formalisms in crop 645 

models still contain an inherent bias by not considering the daily temperature range (minimum 646 

at night and maximum during the day). High temperatures at hourly time scales are strongly 647 

correlated with low VPD and could reduce photosynthesis at midday and potentially daily RUE. 648 

For example, a modeling approach using an hourly time scale model (JULES) simulated an 649 

abrupt negative impact on sugarcane yields when daytime temperatures above 35°C become 650 

more frequent in Brazil (Vianna et al., 2022). In addition, we cannot rule out the influence of 651 

low night temperatures in reducing sugarcane photosynthesis, as reported in other species 652 

(Santos et al., 2011). To overcome such limitations into current crop models, a first option would 653 

be to develop hourly time-scale routines into crop models, but it becomes potentially more 654 

difficult to use in climate change scenario assessments. A second option would be to use an 655 

empirical weighting factor applied to the daily maximum temperature to account for changes 656 

in VPD during the day. However, it may increase the level of empiricism in model 657 

parametrization. Most importantly, an appropriate compromise has to be found between 658 

biological reality and parsimony in crop models (Hammer et al., 2019; Yin et al., 2021). 659 

  660 

4.3. Recommendation for calibration strategy in crop models and varietal-sensitivity 661 

improvements 662 

As discussed in the previous section, the first step in calibrating crop models is to 663 

standardize the cardinal temperatures for sugarcane across all environments and varieties. If the 664 

cardinal temperatures or formalisms are modified from previous model versions, it may 665 

necessitate reparametrizing RUEO in crop models. This does not imply that earlier studies were 666 

incorrect, but rather that they may have used an inappropriate RUEO (e.g., very high RUE in 667 

Marin et al., 2011), or changed other parameter values (e.g., distinct extinction coefficient 668 

among sites, Dias et al., 2021a, 2019), to compensate for underestimating the effect of 669 

temperature.  670 

This study used an RUEO value of 3.0 g DM MJ⁻¹ using ADM and iRAD. While this 671 

value might seem high, it was derived from trials conducted under optimal temperature and 672 
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irrigation conditions in Brazil. This value is higher than the ones used in previous studies 673 

modeling sugarcane growth in South Africa, Zimbabwe, USA, Australia, or La Reunion, with 674 

RUEO ranging from 1.3 to 2.1 g DM MJ-1 depending on crop models and varieties (Jones et al., 675 

2021; Thorburn et al., 2010), which were conducted under lower temperature conditions. 676 

Nonetheless, our value is lower than the one used in modeling studies in Brazil with Canegro 677 

in DSSAT v4.5 (Singels et al., 2010), with RUEO values around 4.6 g DM MJ-1 (Dias and 678 

Sentelhas, 2017; Marin et al., 2015). Herein, the RUEO chosen is directly linked to the dataset 679 

used and may be subjected to biases, such as measurement errors or the absence of data from 680 

even higher temperature conditions. This value can be used as a reference but the choice of the 681 

RUEO value must also consider the processes incorporated into carbon assimilation in crop 682 

models (Table 3). This includes factors such as the type of radiation used (RAD vs. PAR), 683 

whether the biomass considered includes above- and belowground components or only 684 

aboveground, and whether maintenance respiration is considered before (net RUE) or after 685 

(gross RUE) C assimilation. 686 

As an initial approach, we recommend fixing the RUEO across all environments. 687 

However, while most models account for water stress, other processes influencing carbon 688 

assimilation are not always included (Table 3). The processes not necessarily included in the 689 

models are diverse: nitrogen stress, lodging and other RGP processes in high-yield 690 

environments, unpredictable variations in the root-to-shoot ratio (which is highly influenced by 691 

environmental factors, as highlighted by Chevalier et al., 2023), and for example the effects of 692 

diffuse radiation. When the crop models do not consider these processes, it may be necessary 693 

to calibrate the RUEO for a homogeneous environment (in terms of soil and climate). 694 

Nonetheless, modelers should remain aware that this calibration might inadvertently 695 

compensate for other environmental factors the model cannot adequately represent. 696 

Regarding varietal effects, our results suggest that RUEO should be standardized across 697 

varieties. Therefore, varietal calibration should focus on other processes that influence the daily 698 

RUE calculation in crop models, as mentioned in the discussion on variety in section 4.1. Many 699 

processes that vary among varieties are not currently accounted for in crop models or are 700 

accounted for but not easily calibrated per variety (Table 3). In such cases, a varietal calibration 701 

of RUEO may be necessary with the same limits as previously mentioned. Nonetheless, to 702 

effectively use these models as tools for evaluating varieties and potential adaptations to climate 703 

change, it is essential to incorporate these processes in future crop model development, 704 

especially for high-yielding varieties. For these high-yielding varieties, two key processes 705 

warrant further investigation: i) integrating RGP mechanisms into crop models more 706 

mechanistically, as suggested by Van Heerden et al. (2015) in Canegro structure, and ii) 707 

assessing how respiration is incorporated into crop models, given its critical role and sensitivity 708 

to varying temperature. 709 

 710 

  711 
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Table 3. Processes included in the RUEO concept and daily RUE calculations in four crop 712 

models, and possibility to perform a varietal calibration on these processes. 713 

  DSSAT-

Canegro 
APSIM MOSICAS STICS 

Processes 

included in 

RUEO 

Biomass whole ADM whole 

ADM + 

perennial 

reserve 

Radiation PAR RAD PAR PAR 

Respiration gross RUE net RUE gross RUE net RUE 

Processes 

accounted for 

in daily RUE 

calculation 

Water stress yes yes yes yes 

Nitrogen stress no yes no yes 

Diffuse radiation effect no no yes no 

Change in root-to-shoot yes yes yes yes 

Lodging yes yes 1 no no 

RGP no yes 1 no no 

Possibility to 

perform a 

varietal 

calibration 

Water stress sensitivity yes yes yes yes 

Nitrogen stress sensitivity no yes no yes 

Diffuse radiation effect no no yes no 

Change in root-to-shoot no yes yes no 

Lodging yes yes 1 no no 

RGP no yes 1 no no 

* RGP: reduce growth phenomenon; RAD: global radiation; PAR: photosynthetic active radiation; ADM: 714 
aboveground dry mass 715 

1 See section ‘2.2.3. Reduced growth phenomenon (RGP)’ in (Dias et al., 2019) for further details.  716 

  717 
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5. Conclusion 718 

This study provides critical insights into sugarcane RUE, showing that RUEMAX is stable 719 

across elite varieties and is highly temperature-dependent, while RUEA varies significantly. 720 

Therefore, in crop modeling, RUEMAX should be assumed constant across genotypes and 721 

environments. Based on an international dataset, the analysis emphasizes the importance of 722 

accurately parameterizing crop model formalisms and cardinal temperatures (optimal: 30–33 723 

°C) to improve predictions of sugarcane yield under climate change. Additionally, it offers a 724 

reference for calibrating RUE temperature response formalisms in major crop models and 725 

provides guidelines for model calibration. While RUEMAX remains consistent, the sensitivity of 726 

RUEA to environmental factors highlights the need for refining crop models to capture better 727 

varietal responses to factors related to RGP (i.e., lodging, the decline in N use efficiency with 728 

age, and respiration of large crops). Incorporating these mechanisms will enable crop models 729 

to more accurately simulate sugarcane productivity dynamics, supporting climate impact 730 

assessments and breeding programs for high-yield, climate-resilient varieties. 731 

  732 
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